1. Find the derivative of $\cos x$ as a limit.
2. Find the equation of the normal line to the curve $y=f(x)=\left(x^{2}-x\right)^{3}$ at the point where $x=2$.
3. A particle moves according the law of motion $s(t)=2 t^{3}-21 t^{2}+60 t$. Find the velocity function, determine when the particle is at rest and when it is moving forward. Find the average velocity from time $t=5$ to $t=10$ and find the total distance traveled from $t=0$ to $t=10$. Find the acceleration function and determine when the velocity is increasing and decreasing.
4. Find $f^{\prime}\left(\frac{\pi}{4}\right)$ if $f(x)=\frac{x}{\sin x}$.
5. Doctors estimate a person's body surface area S (in meters squared) by the formula $S=\sqrt{h m} / 60$, where h is height in cm and m is mass in kg. Calculate the rate of change of S with respect to mass if $h=180$ is constant. Find the rate at $m=60$ and at $m=70$.
6. Find $F^{\prime}(3)$ where $F(x)=(f \circ g)(x), g(3)=5, g^{\prime}(3)=3, f^{\prime}(3)=1$ and $f^{\prime}(5)=4$.
7. Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ where $f(x)=\cos ^{2}(3 x)$.
8. Find $f^{\prime}(3)$ and $f^{\prime \prime}(3)$ where $y=f(x), f(3)=1$ and $x y^{3}+x y=6$.
9. Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ where $f(x)=\frac{e^{x}}{e^{x}+1}$.
10. Find the second derivative of $f(x)=x^{2} \ln x$.
11. Let $f(x)=x+\sqrt{x^{3}+1}$ (so $f(2)=5$) and that $g(x)$ is the inverse function of $f(x)$. Find $g^{\prime}(5)$.
12. Use Logarithmic Differentiation to find $f^{\prime}(1)$ for $f(x)=e^{x^{2}}(x+3)^{2} /(2 x-1)$.
13. Find the tangent line to $y=\sin ^{-1} x$ at $x=\frac{1}{2}$ and sketch with the curve.
14. A spherical balloon is inflated at a rate of 20 cc per second. How fast is the radius of the sphere increasing when the radius equals 5 cm .
