1. Find the derivative of $\cos x$ as a limit.

2. Find the equation of the normal line to the curve $y = f(x) = (x^2 - x)^3$ at the point where x = 2.

3. A particle moves according the law of motion $s(t) = 2t^3 - 21t^2 + 60t$. Find the velocity function, determine when the particle is at rest and when it is moving forward. Find the average velocity from time t = 5 to t = 10 and find the total distance traveled from t = 0 to t = 10. Find the acceleration function and determine when the velocity is increasing and decreasing.

4. Find $f'(\frac{\pi}{4})$ if $f(x) = \frac{x}{\sin x}$.

5. Doctors estimate a person's body surface area S (in meters squared) by the formula $S = \sqrt{hm}/60$, where h is height in cm and m is mass in kg. Calculate the rate of change of S with respect to mass if h = 180 is constant. Find the rate at m = 60 and at m = 70.

6. Find F'(3) where $F(x) = (f \circ g)(x)$, g(3) = 5, g'(3) = 3, f'(3) = 1 and f'(5) = 4.

7. Find f'(x) and f''(x) where $f(x) = \cos^2(3x)$.

8. Find f'(3) and f''(3) where y = f(x), f(3) = 1 and $xy^3 + xy = 6$.

9. Find f'(x) and f''(x) where $f(x) = \frac{e^x}{e^x+1}$.

10. Find the second derivative of $f(x) = x^2 \ln x$.

11. Let $f(x) = x + \sqrt{x^3 + 1}$ (so f(2) = 5) and that g(x) is the inverse function of f(x). Find g'(5).

12. Use Logarithmic Differentiation to find f'(1) for

 $f(x) = e^{x^2}(x+3)^2/(2x-1).$

13. Find the tangent line to $y = \sin^{-1} x$ at $x = \frac{1}{2}$ and sketch with the curve.

14. A spherical balloon is inflated at a rate of 20 cc per second. How fast is the radius of the sphere increasing when the radius equals 5 cm.