Sample Problem Solutions for Exam Two

1. Use the limit definition of derivatives to find $\frac{d}{d x} \cos x$.
$\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos (x)}{h}=\lim _{h \rightarrow 0} \frac{\cos x \cos h-\sin x \sin h-\cos (x)}{h}=$
$\cos x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}-\sin x \lim _{h \rightarrow 0} \frac{\sin h}{h}=(\cos x)(0)-(\sin x)(1)=-\sin x$.
2. Find the equation of the normal line to the curve $y=f(x)=\left(x^{2}-x\right)^{3}$ at the point where $x=2$.

$$
f^{\prime}(x)=3\left(x^{2}-x\right)^{2}(2 x-1)=3(4-2)^{2}(4-1)=36 .
$$

The slope of the normal line is $-1 / 36$, and
$y_{0}=f(2)=8$ when $x+0=2$,
so the line has equation
$y=8-(x-2) / 36=\frac{290-x}{36}$.
3. A particle moves according the law of motion $s(t)=2 t^{3}-21 t^{2}+60 t$. Find the velocity function, determine when the particle is at rest and when it is moving forward. Find the average velocity from time $t=5$ to $t=10$ and find the total distance traveled from $t=0$ to $t=10$.
$v=d s / d t=6 t^{2}-42 t+60=6(t-2)(t-5)$.
The particle is at rest when $v=0$, which is $t=2$ and $t=5$.
$s(0)=0, s(2)=52, s(5)=25$ and $s(10)=500$.
Average velocity $=\frac{s(10)-s(5)}{10-5}=\frac{500-25}{5}=95$.
Total distance $=[s(2)-s(0)]+[s(2)-s(5)]+[s(10)-s(5)]=52+27+475=554$.
4. Find $f^{\prime}\left(\frac{\pi}{4}\right.$ if $f(x)=\frac{x}{\sin x}$.
$f^{\prime}(x)=\frac{\sin x-x \cos x}{\sin ^{2} x}=\frac{\sqrt{2} / 2-\frac{\pi}{4} \sqrt{2} / 2}{1 / 2}=\left(1-\frac{\pi}{4}\right) \sqrt{2}$.
5. Doctors estimate a person's body surface area S (in meters squared) by the formula $S=\sqrt{h m} / 60$, where h is height in cm and m is mass in kg . Calculate the rate of change of S with respect to mass if $h=180$ is constant. Find the rate at $m=60$ and at $m=80$.
$S=\sqrt{180 m} / 60=m^{1 / 2} / 2 \sqrt{5}$, so $d S / d m=m^{-\frac{1}{2}} / 4 \sqrt{5}$.
When $m=60$, this is $1 / 4 \sqrt{300}=1 / 40 \sqrt{3}$.
When $m=80$, this is $1 / 4 \sqrt{400}=1 / 80$.
6. Find $F^{\prime}(3)$ where $F(x)=(f \circ g)(x), g(3)=5, g^{\prime}(3)=3, f^{\prime}(3)=1$ and $f^{\prime}(5)=4$.
$F^{\prime}(3)=f^{\prime}\left(g(3) g^{\prime}(3)=f^{\prime}(5) g^{\prime}(3)=4 \cdot 3=12\right.$.
7. Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ where $f(x)=\cos ^{2}(3 x)$.
$f(x)=u^{2}$ where $u=\cos 3 x$. Then $u^{\prime}=-3 \sin 3 x$ and
$f^{\prime}(x)=2 u u^{\prime}=2 \cos 3 x(-3 \sin 3 x)=-6 \cos 3 x \sin 3 x$.
$f^{\prime}(x)=U V$, where $U=-6 \cos 3 x$ and $V=\sin 3 x$.
Then $U^{\prime}=18 \sin 3 x$ and $V^{\prime}=3 \cos 3 x$.
So $f^{\prime \prime}(x)=U^{\prime} V+U V^{\prime}=18 \sin ^{2} 3 x-18 \cos ^{2} 3 x$.
8. Find $f^{\prime}(3)$ and $f^{\prime \prime}(3)$ where $y=f(x), f(3)=1$ and $x y^{3}+x y=6$.
$y^{3}+3 x y^{2} y^{\prime}+y+x y^{\prime}=0$, so $y^{\prime}=\frac{-y^{3}-y}{3 x y^{2}+x}=\frac{-2}{12}=\frac{-1}{6}$.
Then
$y^{\prime \prime}=\frac{\left(-3 y^{2}-1\right) y^{\prime}\left(3 x y^{2}+x\right)+\left(y^{3}+y\right)\left(6 x y y^{\prime}+3 y^{2}+1\right)}{\left(3 x y^{2}+x\right)^{2}}=\frac{(-4)(-1 / 6)(12)+(2)(1)}{(12)^{2}}=\frac{10}{144}$.
9. Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ where $f(x)=\frac{e^{x}}{e^{x}+1}$.
$f^{\prime}(x)=\frac{e^{x}\left(e^{x}+1\right)-e^{x}\left(e^{x}\right)}{\left(e^{x}+1\right)^{2}}=\frac{e^{x}}{\left(e^{x}+1\right)^{2}}$.
$f^{\prime \prime}(x)=\frac{e^{x}\left(e^{x}+1\right)^{2}-e^{x} 2\left(e^{x}+1\right)\left(e^{x}\right)}{\left(e^{x}+1\right)^{4}}=\frac{e^{x}\left(e^{x}+1\right)-e^{x} 2 e^{x}}{\left(e^{x}+1\right)^{3}}=\frac{e^{x}-e^{2 x}}{\left(e^{x}+1\right)^{3}}$.
10. Find the second derivative of $f(x)=x^{2} \ln x$.
$f^{\prime}(x)=2 x \ln x+x$, and $f^{\prime \prime}(x)=2 \ln x+2+1=3+2 \ln x$.
11. Let $f(x)=x+\sqrt{x^{3}+1}$ (so $f(2)=5$) and that $g(x)$ is the inverse function of $f(x)$. Find $g^{\prime}(5)$.
$f^{\prime}=1+3 x^{2} / \sqrt{x^{3}+1}$, so $f^{\prime}(2)=3$ and then $g^{\prime}(5)=g^{\prime}(f(2))=1 / f^{\prime}(2)=1 / 3$.
12. Use Logarithmic Differentiation to find $f^{\prime}(1)$ for $f(x)=e^{x^{2}}(x+3)^{2} /(2 x-1)$.
$f(1)=16 e ; \quad \ln f(x)=x^{2}+2 \ln (x+3)-\ln (2 x-1)$;
$f^{\prime} / f=2 x+\frac{2}{x+3}-\frac{2}{2 x-1}=1 / 2 ; \quad f^{\prime}(1)=8 e$.
13. Find the tangent line to $y=\arcsin x$ at $x=\frac{1}{2}$ and sketch with the curve. $m=d y / d x=\frac{1}{1-x^{2}}=\frac{2}{\sqrt{3}} ; \quad y=\frac{\pi}{6}+\frac{2}{\sqrt{3}}\left(x-\frac{1}{2}\right)$.
14. A spherical balloon is inflated at a rate of 20 cc per second. How fast is the radius of the sphere increasing when the radius equals 5 cm .

$$
V=\frac{4}{3} \pi R^{3}, \text { so } d V / d R=4 \pi R^{2} .
$$

$20=d V / d t=d V / d R d R / d t=4 \pi R^{2} d R / d t$.
When $R=5,20=4 \pi(25) d R / d t$, so $d R / d t=\frac{1}{5 \pi} \mathrm{~cm}$ per second.

