1. Find the linear approximation to $f(x)=x^{f r a c 14}$ near the point $(16,2)$ and use use this to estimate $18^{\frac{1}{4}}$.
$f^{\prime}(x)=\frac{1}{4} x^{\frac{-3}{4}}$, so $f^{\prime}(16)=\frac{1}{32}$.
Then $L(x)=2+\frac{1}{32}(x-2)$.
Thus $L(18)=2+\frac{1}{16}$ is our estimate for $18^{\frac{1}{4}}$.
2. Find the absolute maximum and minimum of $f(x)=x+\cos x$ on $[0, \pi]$.
$f^{\prime}=1-\sin x$, so the critical point is $x=\pi / 2$.
$f(0)=1$ is the minimum, $f(\pi / 2)=\pi / 2$ and $f(\pi)=\pi-1$ is the maximum.
3. Given that $f(x)=\frac{2(x+1)^{2}}{x^{2}+1}, f^{\prime}(x)=\frac{-4\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}$, and $f^{\prime \prime}(x)=\frac{8 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}$, find the intercepts, asymptotes, critical and inflection points, and sketch the graph.

Note that $\sqrt{3} \simeq 1.73, f(-\sqrt{3}) \simeq 0.27$, and $f(\sqrt{3}) \simeq 3.73$.
$f(-1)=0, f(x) \geq 0 ;$ horizontal asymptote $y=2\left(\lim _{x \rightarrow \pm \infty} f(x)=2\right)$
Critical points $x= \pm 1, f$ is increasing on $(-1,1)$ and decreasing elsewhere.
$f(-1)=0$ is a min and $f(0)=2$ is a max.
Inflection points $x=0, x= \pm \sqrt{3}, f$ concave up on $(-\sqrt{3}, 0$ and $(\sqrt{3}, \infty)$, down elsewhere.

4. Let $f(x)=x-3 x^{2 / 3}$. Find the domain, intercepts, asymptotes, critical numbers, inflection points, intervals where increasing/decreasing and concave up/down. Sketch the graph.

Intercepts: $(0,0)$ and $(27,0)$; Domain: $(-\infty, \infty)$. No Asymptotes.
$f^{\prime}=1-2 x^{-1 / 3}$. Increasing on (0,8) and decreasing on $(-\infty, 0)$ and $(8, \infty)$.
Critical points: $x=0$-local max of $y=0$ and $x=8$-local min of $y=-4$.
$f^{\prime \prime}=\frac{2}{3} x^{-4 / 3}$ - always concave up.

5. Evaluate the following limits:
(a) $\lim _{x \rightarrow \infty} x^{3} / e^{x}$
(a) $\lim _{x \rightarrow \infty} x^{3} / e^{x}=\frac{\infty}{\infty}=\lim _{x \rightarrow \infty} 3 x^{2} / e^{x}[$ by L'Hopital'srule $]=\lim _{x \rightarrow \infty} 6 x / e^{x}=$ $\lim _{x \rightarrow \infty} 6 / e^{x}=0$.
(b) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$.
$\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=0 / 0$, by L'Hopital's rule, which equal $\lim _{x \rightarrow 0} \frac{\cos x-1}{3 x^{2}}$, which equals $\lim _{x \rightarrow 0} \frac{-\sin x}{6 x}=0 / 0=\lim _{x \rightarrow 0} \frac{-\cos x}{6}=-\frac{1}{6}$.
(c) $\lim _{x \rightarrow 1}\left(x^{2}-1\right)^{x-1}$
$\lim _{x \rightarrow 1}\left(x^{2}-1\right)^{x-1}=0^{0}=L$.
Then $\ln L=\lim _{x \rightarrow 1}(x-1) \ln \left(x^{2}-1\right)=(0)(-\infty)=\lim _{x \rightarrow 1} \ln \left(x^{2}-1\right) / \frac{1}{x-1}=$
[by L'Hopital's rule] $\lim _{x \rightarrow 1} \frac{2 x}{x^{2}-1} / \frac{-1}{(x-1)^{2}}=\lim _{x \rightarrow 1} \frac{-2 x(x-1)}{x+1}=0$.
Hence $L=e^{0}=1$.
6. A window has the shape of a rectangle with a semicircle on one end. Find the dimensions of the window with the largest area with a perimeter of 20 feet.
$P=20=2 r+2 s+\pi r$, so $s=10-r-\frac{\pi}{2} r$.
$A=\frac{\pi}{2} r^{2}+2 r s=20 r-2 r^{2}-\frac{\pi}{2} r^{2}$.
$A^{\prime}=20-4 r-\pi 4$, so the critical number is $r=\frac{20}{4+\pi}$.
Then $s=\frac{20}{4+\pi}$ and $A=\frac{200}{4+\pi}$.
7. Find the point on the line $y=2-x$ which is closest to the point $(1,0)$.

The distance from $(1,0)$ to $(x, 1 / x)$ is $\sqrt{(x-1)^{2}+(2-x)^{2}}$.
So we need to minimize $f(x)=x^{2}-2 x+1+x^{2}-4 x+4=2 x^{2}-6 x+5$.
$f^{\prime}(x)=4 x-6$, so $x=1.5$ and $y=2-x=.5$.
8. A ball is tossed into the air with initial velocity $24.5 \mathrm{~m} / \mathrm{sec}$ and subject to gravity, which is $-9.8 \mathrm{~m} / \sec ^{2}$. Find equations for the velocity $v(t)$ and height $s(t)$. Give the maximum height and the impact velocity.

$$
\begin{aligned}
& v=\int(-9.8) d t=-9.8 t+24.5 \\
& s=\int(-9.8 t+24.5) d t=-4.9 t^{2}+24.5 t
\end{aligned}
$$

Maximum height occurs when $v=0$, so $\mathrm{t}=24.5 / 9.8=2.5$ seconds. Then $s=-4.9(2.5)^{2}+24.5(2.5)=30.625$.

Impact occurs when $s=0$, so $t=5$ and $v=-9.8(5)+24.5=-24.5$.
9. A point moves along the x-axis with acceleration given by $a(t)=-1 / t^{2}$. If $v(1)=3$, find the distance it will travel between $t=1$ and $t=3$ seconds.

$$
v(t)=\int-1 / t^{2}=t^{-1}+c
$$

Since $v(1)=3=1+c$, we have $c=2$.
Now distance $s=\int\left(t^{-1}+2=\ln t+2 t+b\right.$.
Setting $s(1)=0$, we get $b=-2$.
Then $s(3)=\ln 3+6-2=4+\ln 3$.
10. Suppose that $f^{\prime}(x)=x^{2 / 3}+\sec x$ tan x and that $f(0)=2$. Find $f(x)$.
$f(x)=\int x^{2 / 3}+\sec x \tan x=\frac{3}{5} x^{5 / 3}+\sec x+C$.
Then $2=f(0)=0+1+C$, so $C=-1$.
Thus $f(x)=\frac{3}{5} x^{5 / 3}+\sec x-1$.
11. Find the following antiderivatives:
(a) $\int 7 x^{4 / 3}$
$3 x^{7 / 3}$.
(b) $\int\left(\frac{6}{x^{3}}+\frac{4}{x}\right)$
(c) $\int 10 e^{-5 x}$
$-2 e^{-5 x}$.
(d) $\int \cos (2 t+1)$.
$\frac{1}{2} \sin (2 t+1)$.

