1. Find the linear approximation to $f(x) = x^{frac14}$ near the point (16,2) and use use this to estimate $18^{\frac{1}{4}}$.

 $f'(x) = \frac{1}{4}x^{\frac{-3}{4}}$, so $f'(16) = \frac{1}{32}$. Then $L(x) = 2 + \frac{1}{32}(x-2)$.

Thus $L(18) = 2 + \frac{1}{16}$ is our estimate for $18^{\frac{1}{4}}$.

2. Find the absolute maximum and minimum of $f(x) = x + \cos x$ on $[0, \pi]$.

 $f' = 1 - \sin x$, so the critical point is $x = \pi/2$.

f(0) = 1 is the minimum, $f(\pi/2) = \pi/2$ and $f(\pi) = \pi - 1$ is the maximum.

3. Given that $f(x) = \frac{2(x+1)^2}{x^2+1}$, $f'(x) = \frac{-4(x^2-1)}{(x^2+1)^2}$, and $f''(x) = \frac{8x(x^2-3)}{(x^2+1)^3}$, find the intercepts, asymptotes, critical and inflection points, and sketch the graph. Note that $\sqrt{3} \simeq 1.73$, $f(-\sqrt{3}) \simeq 0.27$, and $f(\sqrt{3}) \simeq 3.73$.

 $f(-1) = 0, f(x) \ge 0$; horizontal asymptote y = 2 $(lim_{x \to \pm \infty} f(x) = 2)$

Critical points $x = \pm 1$, f is increasing on (-1, 1) and decreasing elsewhere. $f(-1) \equiv 0$ is a min and f(0) = 2 is a max.

Inflection points x = 0, $x = \pm\sqrt{3}$, f concave up on $(-\sqrt{3}, 0 \text{ and } (\sqrt{3}, \infty))$, down elsewhere.

4. Let $f(x) = x - 3x^{2/3}$. Find the domain, intercepts, asymptotes, critical numbers, inflection points, intervals where increasing/decreasing and concave up/down. Sketch the graph.

Intercepts: (0,0) and (27,0); Domain: $(-\infty,\infty)$. No Asymptotes. $f' = 1 - 2x^{-1/3}$. Increasing on (0,8) and decreasing on $(-\infty, 0)$ and $(8, \infty)$. Critical points: x = 0-local max of y = 0 and x = 8-local min of y = -4. $f'' = \frac{2}{3} x^{-4/3}$ – always concave up. 20 10 1 T

5. Evaluate the following limits:

(a) $\lim_{x\to\infty} x^3/e^x$

(a) $\lim_{x\to\infty} x^3/e^x = \frac{\infty}{\infty} = \lim_{x\to\infty} 3x^2/e^x [byL'Hopital'srule] = \lim_{x\to\infty} 6x/e^x = 10^{-10}$ $\lim_{x \to \infty} 6/e^x = 0.$

(b) $\lim_{x\to 0} \frac{\sin x - x}{r^3}$.

 $\lim_{x\to 0} \frac{\sin x - x}{r^3} = 0/0$, by L'Hopital's rule, which equal $\lim_{x\to 0} \frac{\cos x - 1}{3r^2}$, which equals $\lim_{x \to 0} \frac{-\sin x}{6x} = 0/0 = \lim_{x \to 0} \frac{-\cos x}{6} = -\frac{1}{6}$.

(c) $\lim_{x \to 1} (x^2 - 1)^{x-1}$ $\lim_{x \to 1} (x^2 - 1)^{x - 1} = 0^0 = L.$ Then $\ln L = \lim_{x \to 1} (x - 1) \ln(x^2 - 1) = (0)(-\infty) = \lim_{x \to 1} \ln(x^2 - 1) / \frac{1}{x - 1} = 0$ [by L'Hopital's rule] $\lim_{x \to 1} \frac{2x}{x^2 - 1} / \frac{-1}{(x-1)^2} = \lim_{x \to 1} \frac{-2x(x-1)}{x+1} = 0.$ Hence $L = e^0 = 1$.

6. A window has the shape of a rectangle with a semicircle on one end. Find the dimensions of the window with the largest area with a perimeter of 20 feet.

 $P = 20 = 2r + 2s + \pi r$, so $s = 10 - r - \frac{\pi}{2}r$. $A = \frac{\pi}{2}r^2 + 2rs = 20r - 2r^2 - \frac{\pi}{2}r^2.$ $A' = 20 - 4r - \pi 4$, so the critical number is $r = \frac{20}{4+\pi}$. Then $s = \frac{20}{4+\pi}$ and $A = \frac{200}{4+\pi}$.

7. Find the point on the line y = 2 - x which is closest to the point (1, 0).

The distance from (1,0) to (x, 1/x) is $\sqrt{(x-1)^2 + (2-x)^2}$. So we need to minimize $f(x) = x^2 - 2x + 1 + x^2 - 4x + 4 = 2x^2 - 6x + 5$. f'(x) = 4x - 6, so x = 1.5 and y = 2 - x = .5.

8. A ball is tossed into the air with initial velocity 24.5 m/sec and subject to gravity, which is $-9.8m/sec^2$. Find equations for the velocity v(t) and height s(t). Give the maximum height and the impact velocity.

 $v = \int (-9.8)dt = -9.8t + 24.5$ s = $\int (-9.8t + 24.5)dt = -4.9t^2 + 24.5t.$

Maximum height occurs when v = 0, so t = 24.5/9.8 = 2.5 seconds. Then $s = -4.9(2.5)^2 + 24.5(2.5) = 30.625.$

Impact occurs when s = 0, so t = 5 and v = -9.8(5) + 24.5 = -24.5.

9. A point moves along the x-axis with acceleration given by $a(t) = -1/t^2$. If v(1) = 3, find the distance it will travel between t = 1 and t = 3 seconds.

 $v(t) = \int -1/t^2 = t^{-1} + c.$ Since v(1) = 3 = 1 + c, we have c = 2. Now distance $s = \int (t^{-1} + 2) = \ln t + 2t + b$. Setting s(1) = 0, we get b = -2. Then $s(3) = ln \ 3 + 6 - 2 = 4 + ln \ 3$.

10. Suppose that $f'(x) = x^{2/3} + \sec x \tan x$ and that f(0) = 2. Find f(x). $f(x) = \int x^{2/3} + \sec x \tan x = \frac{3}{5}x^{5/3} + \sec x + C$. Then 2 = f(0) = 0 + 1 + C, so C = -1. Thus $f(x) = \frac{3}{5}x^{5/3} + \sec x - 1$. 11. Find the following antiderivatives: (a) $\int 7x^{4/3}$ $3x^{7/3}$. (b) $\int (\frac{6}{x^3} + \frac{4}{x})$ (c) $\int 10e^{-5x}$ $-2e^{-5x}$. (d) $\int \cos(2t+1)$. $\frac{1}{2}\sin(2t+1)$.