1. Evaluate $\sum_{i=1}^{n} i^{3}-i^{2}$ in general and for $n=20$.
$n^{2}(n+1)^{2} / 4-n(n+1)(2 n+1) / 6 ; 41,230$.
2. Compute the area under $y=x^{2}$ from $x=0$ to $x=2$ as a limit of (right) Riemann sums.
$R_{n}=\sum_{i=1^{n}} \frac{2}{n}\left(\frac{2 i}{n}\right)^{2}=\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}=8 n(n+1)(2 n+1) / 6$.
$\lim _{n \rightarrow \infty} R_{n}=8 / 3$.
3. Find the (left) Riemann sum which approximates $\int_{1}^{3} 2^{x} d x$ with n subintervals of equal length, in general and for $n=4$.
$\sum_{i=0}^{n-1} \frac{2}{n} 2^{1+\frac{2 i}{n}}$.
4. If $\int_{0}^{3} f(x) d x=12$ and $\int_{0}^{6} f(x) d x=52$, find $\int_{3}^{6} f(x) d x$.
$\int_{3}^{6} f(x) d x=\int_{0}^{6} f(x) d x-\int_{0}^{3} f(x) d x=52-12=40$.
5. Let $f(x)=\int_{1}^{x^{1 / 3}} \frac{e^{t}}{t} d t$. Find $f^{\prime}(1)$.

Let $g(x)=\int_{1}^{x} \frac{e^{t}}{t} d t$, so $g^{\prime}(x)=\frac{e^{x}}{x}$.
$f(x)=g\left(x^{1 / 3}\right)$, so
$f^{\prime}(x)=g^{\prime}\left(x^{1 / 3}\right) \cdot \frac{1}{3} x^{-2 / 3}=\frac{e^{x^{1 / 3}}}{3 x}=e / 3$.
6. Let $f(x)=\int_{0}^{x} \frac{4-t^{2}}{1+\cos ^{2} t} d t$. Where does f have a local maximum?
$f^{\prime}(x)=\frac{4-x^{2}}{1+\cos ^{2} x}$ is >0 on $(-2,2)$ and <0 on $(-\infty,-2)$ and $(2, \infty)$.
So f is decreasing on $(-\infty,-2)$, then increasing on $(-2,2)$ and again decreasing on $(2, \infty)$.

This means that f has a local maximum at $x=2$.
7. Evaluate $\int_{0}^{1}(1+\sqrt{x})^{2}$.
$\int_{0}^{1}\left(1+2 x^{\frac{1}{2}}+x\right) d x=\left[x+\frac{4}{3} x^{\frac{3}{2}}+\frac{1}{2} x^{2}\right]_{0}^{1}=1+\frac{4}{3}+\frac{1}{2}=\frac{17}{6}$.
8.Evaluate $\int_{1}^{3} 12 x^{3}-4 x+2$.
$\left.3 x^{4}-2 x^{2}+2 x\right]_{1}^{3}=(243-18+6)-(3-2+2)=228$.
9. Evaluate $\int_{0}^{\frac{1}{2}} \frac{d x}{\sqrt{1-x^{2}}}$.
$\operatorname{Arcsin} x]_{0}^{1 / 2}=\operatorname{Arcsin}(1 / 2)-\operatorname{Arcsin}(0)=\pi / 6-0=\pi / 6$.
10. Evaluate $\int_{\sqrt{e}}^{e^{5}} \frac{d x}{x \ln x}$.

Let $u=\ln x$, so $d u=\frac{d x}{x}$. When $x=\sqrt{e}, u=.5$ and when $x=e^{5}, u=5$.
Then we have $\int_{.5}^{5} u^{-1} d u=[\ln u]_{.5}^{5}=\ln 5-\ln .5=\ln 10 \approx 2.3$.
11. Evaluate $\int \frac{e^{x}}{\left(e^{x}+2\right)^{2}} d x$.

Let $u=e^{x}+2$, so that $d u=e^{x} d x$. Then we have
$\int u^{-2} d u=-1 / u=-\frac{1}{e^{x}+2}$.
12. Evaluate $\int_{2}^{3} \frac{x}{x-1} d x$.

Let $u=x-1$ so $d u=d x, x=u+1$ and $\frac{x}{x-1}=\frac{u+1}{u}=1+u^{-1}$.
$x=2$ becomes $u=1$ and $x=3$ becomes $u=2$.
Then we have $\int_{1}^{2}\left(1+u^{-1}\right) d u=[u+\ln u]_{1}^{2}=(2+\ln 2)-(1+\ln 1)=1+\ln 2$.
13. Evaluate $\int_{-\pi}^{\frac{\pi}{3}} f(x) d x$, where $f(x)=-x$, if $x \leq 0$ and $=\sin 3 x$, if $x \geq 0-$ sketch the area.

$$
\begin{aligned}
& \int_{-\pi}^{0}-x d x+\int_{0}^{\pi / 3} \sin 3 x d x \\
& =\left[-x^{2} / 2\right]_{-\pi}^{0}+\left[-\frac{1}{3} \cos 3 x\right]_{0}^{\pi / 3} \\
& =\left(0+\pi^{2} / 2\right)+(1 / 3+1 / 3)=\pi^{2} / 2+2 / 3
\end{aligned}
$$

14. A ball is thrown upwards from the top of a 160 foot tall building with initial velocity $v_{0}=80$ feet per second and subject to gravity at -32 feet per second. Find the velocity $v(t)$ and position $s(t)$ after time t. Find the maximum height of the ball, the duration of the flight and the velocity at impact.
$a=-32$, so $v=-32 t+80$ and $s=-16 t^{2}+80 t+160$.
The max height is when $v=0$, so $t=2.5$ and $s=260$.
Impact is when $s=0$, so $t \approx 6.5$ and $v \approx-128$.
15. A point moves along the x-axis with acceleration given by $a(t)=1-1 / t^{2}$. If $v(1)=1$ and $s(1)=0$, find $v(t), s(t)$, and the net and total distance traveled between $t=1$ and $t=3$ seconds.
$v=t+t^{-1}+c ; 1=v(1)=1+1+c$, so $c=-1$ and $v=t+t^{-1}-1$.
$s=\frac{1}{2} t^{2}+\ln t-t+b ; 0=s(1)=\frac{1}{2}+0-1+b$, so $b=\frac{1}{2}$ and $s=\frac{1}{2} t^{2}+\ln t-t+\frac{1}{2}$.
Then $s(3)=\frac{9}{2}+\ln 3-3+\frac{1}{2}=2+\ln 3$.
16. A population $P(t)$ of bacteria doubles every 6 hours. Find the population $P(t)$ given that $P(0)=200$. Find the rate of growth k such that $P^{\prime}=k P$.
$P(t)=2002^{t / 6}=200 e^{t l n 2 / 6}$. Thus the rate $k=\frac{\ln 2}{6}$.
17. The element Gatrion decays subject to the differential equation $G^{\prime}=$ $-.002 P$. Find a formula for $P(t)$ given $P(0)=5 \mathrm{mg}$. Find the half-life for Gatrion. $P(t)=5 e^{-.002 t}$.
Half-life occurs when $e^{-.002 t}=1 / 2$, so that $t=500 \ln 2$.
