Differential Equations Final Exam Solutions

(7) 1. Find the integrating factor μ and solve explicitly the linear differential equation

$$
d y / d x-\frac{2 y}{x}=x^{2} \cos x
$$

$P=-2 / x$ and $\mu=\exp \left(\int P\right)=e^{-2 \ln x}=x^{-2}$
$y=x^{2} \int \cos x=x^{2}[C+\sin x]=x^{2} \sin x+C x^{2}$.
Final Answer: $y=x^{2} \sin x+C x^{2}$.
(8) 2. Use the Test for Exactness to check the differential equation

$$
\left(2 x+y^{3} \sec ^{2} x\right) d x+\left(1+3 y^{2} \tan x\right) d y=0
$$

Then integrate to find the general (implicit) solution.
Finally, solve the initial value problem when $x_{0}=\pi$ and $y_{0}=2$.
$M_{y}=3 y^{2} \sec ^{2} x=N_{x}$ so the equation is exact.
Integrating, we have
$\left(x^{2}+y^{3} \tan x\right) \bigcup\left(y+y^{3} \tan x\right)=x^{2}+y^{3} \tan x+y=C$.
For $x_{0}=\pi$ and $y_{0}=2$, we have $\pi^{2}+8(0)+2=C$
Final Answer: $x^{2}+y^{3} \tan x+y=2+\pi^{2}$
(8)3. Find the steady-state solution y_{p} of a spring-mass system subject to the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+20 y=\sin 2 t
$$

(Hint: Use Undetermined Coefficients.)

$$
\begin{aligned}
& y_{p}=A \sin 2 t+B \cos 2 t \\
& y_{p}^{\prime \prime}+4 y_{p}^{\prime}+20 y_{p}=(16 A-8 B) \sin 2 t+(8 A+16 B) \cos 2 t=\sin 2 t . \\
& (\sin 2 t): \quad 16 A-8 B=1 \\
& (\cos 2 t): \quad 8 A+16 B=0 \\
& \text { Then } A=-2 B, \text { so }-40 B=1, \text { thus } B=-.025 \text { and } A=.05
\end{aligned}
$$

Final Answer: $y_{p}=.05 \sin 2 t-.025 \cos 2 t$.
(7) 4. Use Variation of Parameters to find a particular solution to

$$
y^{\prime \prime}+y=\sec t
$$

$y_{1}=\cos t$ and $y_{2}=\sin t$.
Wronskian $W\left[y_{1}, y_{2}\right]=1$.
$y_{p}=v_{1} y_{1}+v_{2} y_{2}$
$v_{1}^{\prime}=-\sin \operatorname{tsec} t=-\tan t$, so $v_{1}=\ln \cos t$
$v_{2}^{\prime}=\cos \operatorname{tsec} t=1$, so $v_{2}=t$.
Final Answer: $y_{p}=\cos t \ln \cos t+t \sin t$.
(8) 5. Use Laplace Transforms and Partial Fractions to solve

$$
y^{\prime \prime}+4 y=8 t ; \quad y(0)=3 ; \quad y^{\prime}(0)=0
$$

Transform: $s^{2} Y-3 s+4 Y=8 / s^{2}$
Solve: $Y=\frac{3 s^{3}+8}{s^{2}\left(s^{2}+4\right)}$.

Partial Fractions: $Y=A / s+B / s^{2}+(C s+D) /\left(s^{2}+4\right)$.
So $y=A+B t+C \cos 2 t+\frac{1}{2} D \sin 2 t$.
$3 s^{3}+8=A s\left(s^{2}+4\right)+B\left(s^{2}+4\right)+C s^{3}+D s^{2}$.
$\left(s^{3}\right): \quad 3=A+C$
$\left(s^{2}\right): \quad 0=B+D$
(s) : $\quad 0=4 A$, so $A=0$
(1) : $8=4 B$, so $B=2$

Then $C=3$ and $D=-2$.
Final Answer: $y=2 t+3 \cos 2 t-\sin 2 t$.
(7) 6. Use Laplace transforms to solve the differential equation

$$
y^{\prime}+5 y=10 \delta(t-3) ; \quad y(0)=100
$$

Express the solution using step functions.
Transform: $s Y-100+5 Y=10 e^{-3 s}$
Solve: $Y=\frac{100+10 e^{-3 s}}{s+5}=100 F(s)+10 e^{-3 s} F(s)$
where $F(s)=\frac{{ }^{s+5}}{s+5}$, so $f(t)=e^{-5 t}$
Now $y=100 f(t)+10 u(t-3) f(t-3)$
Final Answer: $y=100 e^{-5 t}+10 u(t-3) e^{-5(t-3)}$
For $t<3, y=10 e^{-5 t}$ and for $t>3, y=100 e^{-5 t}+10 e^{-5(t-3)}$
(8) 7. Use any method to find the first four nonzero terms in the Taylor polynomial approximation for the initial value problem

$$
x^{\prime}+(\sin t) x=0 ; \quad x(0)=1
$$

$$
\begin{aligned}
& x=a_{0}+a_{1} t+a_{2} t^{2}+\ldots \\
& a_{0}=x(0)=1 \\
& a_{1}=x^{\prime}(0)=-\sin 0 \cdot 0=0 \\
& x^{\prime \prime}=-x^{\prime} \sin t-x \cos t, \text { so } x^{\prime \prime}(0)=-1 \text { and } a_{2}=-\frac{1}{2} \\
& x^{\prime \prime \prime}=-x^{\prime \prime} \sin t-2 x^{\prime} \cos t+x \sin t, \text { so } x^{\prime \prime \prime}(0)=2 \text { and } a_{3}=2 / 6=1 / 3 \\
& x^{i v}=-x^{\prime \prime \prime} \sin t-3 x^{\prime \prime} \cos t+3 x^{\prime} \sin t+x \cos t, \text { so } x^{(i v)}(0)=4, \text { so } a_{4}=\frac{4}{24}
\end{aligned}
$$

Final Answer: $x=1-\frac{1}{2} t^{2}+\frac{1}{3} t^{3}+\frac{1}{6} t^{4}$.
(7) 8.Find the indicial equation and solve the Cauchy-Euler differential equation

$$
x^{2} y^{\prime \prime}+7 x y^{\prime}+8 y=0 ; \quad y(1)=3 \quad y^{\prime}(1)=5
$$

$r(r-1)+7 r+8=r^{2}+6 r+8$
Roots are $r=-2$ and $r=-4$.
Solution is $y=c_{1} x^{-2}+c_{2} x^{-4}$.
$3=y(1)=c_{1}+c_{2}$
$5=y^{\prime}(1)=-2 c_{1}-4 c_{2}$
So $c_{1}=17 / 2$ and $c_{2}=-11 / 2$.
Final Answer: $y=8.5 x^{-2}-5.5 x^{-4}$.

