Two-to-One Structures

Douglas Cenzer, Department of Mathematics
University of Florida, Gainesville, FL 32611
email: cenzer@math.ufl.edu

Valentina Harizanov, Department of Mathematics
George Washington University, Washington, DC 20052
email: harizanv@gwu.edu

Jeffrey B. Remmel, Department of Mathematics
University of California-San Diego, La Jolla, CA 92093
email: jremmel@ucsd.edu

Abstract

We investigate computability-theoretic properties of computable struc-
tures with single unary functions f such that, for every x in the image,
f7 () has exactly two elements, which we call 2:1 structures. We also
investigate structures for which f 71(x) has either exactly two or zero ele-
ments, which we call (2,0):1 structures. In particular, we are interested in
the complexity of isomorphisms between these structures. We prove that a
computable 2:1 structure A is computably categorical if and only if A has
only finitely many Z-chains. We show that every computable 2:1 struc-
ture is AY-categorical. We further investigate computable and higher level
categoricity of various natural subclasses of (2,0):1 structures, including
highly computable and locally finite strufctures.

Keywords: computability theory, two-to-one functions, injections,
effective categoricity, locally finite structures, trees, chains

1 Introduction and Preliminaries

Computable model theory uses the concepts and methods of computability the-
ory to explore algorithmic content of constructions in various areas of classical
mathematics. In this paper we are interested in the complexity of isomorphisms
between a computable structure and its isomorphic copies. The main notion in
this area of investigation is that of computable categoricity. We say that a com-
putable structure A is computably categorical if for every computable structure
B isomorphic to A, there exists a computable isomorphism from A onto B. This

* Cenzer was partially supported by the NSF grant DMS-1101123, Harizanov by the NSF
grant DMS-1202328 and by the GWU Columbian College Facilitating Fund.

concept has been part of computable model theory since the mid-1950s. Here
we continue our investigation of computable and higher level categoricity begun
in [4, 5], where we investigated computable structures with single one-to-one
functions. We first review some notation.

Let N = {0,1,2,...} denote the natural numbers and Z = {0,£1,+2,...}
denote the integers. We let w denote the order type of N under the usual ordering
and Z denote the order type of Z under the usual ordering. In what follows, we
restrict our attention to countable structures for computable languages. Hence,
if a structure is infinite, we can assume that its universe is N. We recall some
basic definitions. If A is a structure with universe A for a language L, then
L4 is the language obtained by expanding £ by constants for all elements of
A. The atomic diagram of A is the set of all quantifier-free sentences of £4
true in A. A structure A is computable if its atomic diagram is computable.
We call two structures computably isomorphic if there is a computable function
that is an isomorphism between them. A computable structure A is relatively
computably isomorphic to a possibly noncomputable structure B if there is an
isomorphism between them that is computable in the atomic diagram of B. A
computable structure A is computably categorical if every computable structure
that is isomorphic to A is computably isomorphic to A. A computable structure
A is relatively computably categorical if every structure that is isomorphic to A is
relatively computably isomorphic to A. A structure A is relatively computably
categorical if and only if 4 has a c.e. Scott family consisting of only existential
formulas. A Scott family for a structure A is a countable family ¥ of L, .-
formulas with finitely many fixed parameters from A such that: (i) each finite
tuple in A satisfies some ¢ € ¥; and (i4) if @, b are tuples in A, of the same
length, satisfying the same formula in ¥, then there is an automorphism of A,
which maps @ to b. See [1] for details.

Similar definitions arise for other naturally definable classes of structures
and their isomorphisms. For example, for any n € w, a structure is AY if its
atomic diagram is AY, two AY structures are A%-isomorphic if there is a AY
isomorphism between them, and a computable structure A is A%-categorical if
every computable structure that is isomorphic to A is AY- isomorphic to A.
The notions and notation of computability theory are standard and as in Soare
[11].

Among the simplest nontrivial structures are equivalence structures, i.e.,
structures of the form A = (w, F) where E is an equivalence relation. The
study of the complexity of isomorphisms between computable equivalence struc-
tures was carried out by Calvert, Cenzer, Harizanov, and Morozov in [2] where
they characterized computably categorical and also relatively ASY-categorical
equivalence structures. Cenzer, LaForte, and Remmel [6] extended this work
by investigating equivalence structures in the Ershov hierarchy. More recently,
Cenzer, Harizanov and Remmel [3] studied %9 and 119 equivalence structures.

For any equivalence structure A, we let F'in(A) denote the set of elements of
A that lie in finite equivalence classes. For equivalence structures, it is natural
to consider the different sizes of the equivalence classes of the elements in Fin*
since such sizes code information into the equivalence relation. The character

of an equivalence structure A is the set
X(A) = {(k,n) : n,k > 0 and A has at least n equivalence classes of size k}.

This set provides a kind of skeleton for Fiin(A). Any set K C (w—{0})x(w—{0})
such that for all n > 0 and k, (k,n 4+ 1) € K implies (k,n) € K, is called a
character. We say a character K is bounded if there is some finite kg such that
for all (k,n) € K, k < ko. Khisamiev [9] introduced the concepts of s-functions
and si-functions as a means of computably approximating the characters of
equivalence relations.

Definition 1.1. Let f :w? — w. The function f is an s-function if the follow-
ing hold:

1. for every i,s € w, f(i,8) < f(i,s + 1);

2. for every i € w, the limit m; = limgf(i, s) exists.

We say that f is an si-function if, in addition:
3. for every i € w, m; < mjy1.

Calvert, Cenzer, Harizanov and Morozov [2] gave conditions under which a
given character K can be the character of a computable equivalence structure. In
particular, they observed that if K is a bounded character and o < w, then there
is a computable equivalence structure with character K and exactly « infinite
equivalence classes. To prove the existence of computable equivalence structures
for unbounded characters K, they needed additional information given by s- and
s1-functions. They showed that if K is a 39 character, r < w, and either
(a) there is an s-function f such that

(k,n) € K < card({i: k= lim f(i,s)}) >nor
S5— 00
(b) there is an s;-function f such that for every i € w, (lim, f(i,5),1) € K,
then there is a computable equivalence structure with character K and exactly
r infinite equivalence classes.

In [4] and [5], we studied injection structures. Here an injection is just a one-

to-one (1:1) function and an injection structure A = (A, f) consists of a set A

and an injection f: A — A. A is a permutation structure if f is a permutation
of A. Given a € A, the orbit Of(a) of a under f is

Opa)={beA:(@neN)(f"a)=b Vv f(b) =a)}.

The order |a|s of @ under f is card(Oy(a)). Clearly, the isomorphism type of
a permutation structure A is determined by the number of orbits of size k for
k=1,2,...,w. By analogy with characters of equivalence structures, we define
the character x(A) of an injection structure A = (A4, f) by

X(A) = {(n,k) : A has at least n orbits of size k}.

Injection structures (A4, f) may have two types of infinite orbits, Z-orbits which
are isomorphic to (Z, S) in which every element is in the range of f, and w-orbits,

which are isomorphic to (w, S) and have the form Of(a) = {f"(a) : n € N} for
some a ¢ ran(f). Thus injection structures are characterized by the number of
orbits of size k for each finite k and by the number of orbits of types Z and w.

It is clear from the definitions above that any computable injection structure
(A, f) will induce a X¢ equivalence structure (A4, E) in which the equivalence
classes are simply the orbits of (A4, f).

In [4], we investigated algorithmic properties of computable injection struc-
tures and their characters, characterized computably categorical injection struc-
tures, and showed that they are all relatively computably categorical. We proved
that a computable injection structure A is computably categorical if and only if
it has finitely many infinite orbits. We also characterized AJ-categorical injec-
tion structures as those with finitely many orbits of type w, or with finitely many
orbits of type Z. We showed that they coincide with the relatively AY-categorical
structures. Finally, we proved that every computable injection structure is rel-
atively A3-categorical.

In this paper, we consider structures of the form A = (A, f) where f :
A — A is a function such that card(f~1(z)) = 2 for all x € A, which we call
2:1 structures or where card(f~'(z)) € {0,2} for all x, which we call (2,0):1
structures.

We shall often identify a structure A = (A, f) with its directed graph G(A, f)
which has vertex set A and where the edge set consists of all pairs (i, f(4)) for
i € A. Given any a € A, we let the orbit of O4(a) consist of the set of all
points in A which lie in the connected component of G(A, f) containing a.
Thus O(a) = {y € A (3n)(f"(y) = a) vV Gm,n)(f"(y) = f™(a))}.

Let B be the infinite complete binary tree with all edges directed toward the
root. In fact, it will be useful for later proofs to have a canonical version of B in
mind. We shall think of B as a directed graph on the vertex set N — {0}. The
root of B will be 1 and the nodes at the height n, will be 27,27 +1,... 2"+t 1,
For n > 1, the (2k)-th and (2k + 1)st nodes at height n will have edges to the
k-th element of height n — 1. Thus the first few levels of the tree B are pictured
in Figure 1.

8 9 10 11 12 13 14 15
Figure 1: The canonical infinite binary tree B.

It is easy to see that there are two types of orbits in a 2:1 structure A =
(4, f). That is, there are Z-chains as pictured in Figure 2 and there are cycles
as pictured in Figure 3. Here a Z-chain in a 2:1 structure consists of Z-chain
where there is a copy of the binary tree B attached to each point in the Z-chain.
A k-cycle consists of a directed cycle of size k where there is a copy of the binary

tree attached to each element in the cycle.

T

Figure 2: A Z-chain of a 2:1 function.

Figure 3: A 4-cycle of a 2:1 function.

The orbits of (2,0):1 structures are similar, except there are now three types
of orbits. There are Z-chains, like those pictured in Figure 4, except now a
tree B;, attached to a node of a Z-chain, can be any binary tree with all edges
directed to the root. There are k-cycles, like those pictured in Figure 5, except
now a tree B; can be any binary tree with all edges directed toward the root.
Finally, there are w-chains, like those pictured in Figure 6, each consisting of
an w-chain where all but the first element in each orbit has some binary tree B;

attached.

Figure 4: A Z-chain of a (2,0):1 function.

If A= (A, f)isa 2:1 structure or a (2,0):1 structure and a € A, then we let
treeq(a) ={y € A: (In)(f"(y) = x)} and Tree4(a) be the graph whose vertex
set is tree 4 (a) and whose edge set consists of the set of (z, f(z)) such that both x
and f(x) are in tree4(a). We let treea(a,m) ={y € A: (In <m)(f"(y) = =)}
and Tree4(a,m) denote the graph of Tree(a) restricted to the vertex set
treea(a,m). In a 2:1 structure A = (A4, f), Treea(a) is always isomorphic to
the infinite complete binary tree B, unless a is an element of a k-cycle, in which

Figure 5: A cycle of a (2,0):1 function.

Liiin

Figure 6: A w-chain of a (2,0):1 function.

case tree(a) = O4(a). It is clear from the definitions that if A = (4, f) is a
computable structure, then O 4(a) and tree4(a) are X9 sets.

We shall often identify finite sets S C N with their canonical indices can(.S)
where can(f) = 0 and can(S) = 2%t +--- + 2% if § = {z; < -+ < zx}. Thus
when we write that S = tree4(a,n) is a 2:1 structure or a (2,0):1 structure
A = (A, f), we mean that can(S) = can(tree4(a,m)). In a computable 2:1
structure A = (A, f), the predicate S = tree4(a, m) is a computable predicate
if S a finite set and m > 1. That is, in a 2:1 structure, Tree4(a,m) is always
a complete binary tree of height m if a is not an element of a k-cycle where
k < m, so that we can enumerate all the pairs (4, f(¢)) with ¢ € A until we find
all the elements of tree4(a,m). If a is part of a k-cycle (a, f(a),..., f¥=1(a))
with k& < m, then let d; be the unique element which in not in the cycle such
that f(d;) = fi(a) for i = 0,...,k—1. Then tree(a, m) consists of the elements
a, f(a),..., fr_1(a) plus the elements the trees Tree(dy, m—1), Tree(f*=1, m—
2), Tree(f*=2,m — 3),...,Tree(f(a),m — k). Thus the sets tree4(a,m) are
uniformly computable. Hence we can effectively decide if S = tree4(a,m).
However, in a computable (2,0):1 structure, S = tree4(a, m) is a I1J predicate.
That is, S = tree(a,m) if and only if

(Vy € S)(3n <m)(f"(y) =a) A (Vy)(Vn <m)(f"(y) =a=y € S).

In Section 2, we characterize computably categorical 2:1 structures as those
that have finitely many Z-chains. We show that every computable 2:1 structure
is AY-categorical. In Section 3, we investigate natural classes of computable
(2,0):1 structures that are computably categorical. In Section 4, we investigate

those that are not computably categorical. We show that, while every com-
putable locally finite (2,0):1 structure is A$-categorical, every such structure
with only finitely many w-chains is AJ-categorical.

2 Computable Categoricity of 2:1 Structures

Let A = (4, f) be a countably infinite 2:1 structure. The character x(A) of
(A4, f) is the set of all (k,n) such that either k = 0 and A has > n Z-orbits or
k > 1, and A has > n orbits which are k-cycles.

Lemma 2.1. Let A= (A, f) be a computable 2:1 structure.
1. The predicate “O4(a) is a k-cycle” is X. and
2. the predicate “O(a) is a Z-chain” is I1Y.
3. x(A) is a X set.

Proof. For (1), note that O 4(a) is a k-cycle if and only if there exists an n > 0
such that f"**(a) = f"(a) and f"*(a) # f"(a) for 1 < j < k. Thus the
predicate “O4(a) is a k-cycle 7 is 9.

For (2), note that O(a) is a Z-chain if and only if it is not the case that
there exists n > 0 and k& > 0 such that f"**(a) = f"(a). Thus the predicate
“O4(a) is a Z-chain” is I1Y.

For (3), first note that {(0,n) : A has > n Z orbits} is either {0} x w or is
{0} x {0,1,...,n} for some finite n, and that this set is computable in either
case.

For k,n > 0, note that in any k-cycle there is a unique finite set {ag, a1, ..., ar—1}
such that f(a;) = a;41 for i <k —1 and f(ag—1) = ag. Thus A has at least n
k-cycles provided that there exist by, bs, ..., b, such that

(i) For each i, f*(b;) = b;, and ft(b;) # b; for any t < k and

(ii) For each i # j, and for any ¢ < k, f*(b;) # b;. O

The existence of 2:1 structures with arbitrary 39 characters follows from the
existence of injection structures with arbitrary ¥ characters.

Theorem 2.2. For any XY character K, there is a computable 2:1 structure
with character K.

Proof. By results of [4], there is an injection structure B = (w,g) which has
character K. Define a computable function h : w\{0} — w by having h(2n+1) =
h(2n + 2) = n for all n. Let A have universe A = w x w and define the two-
to-one function f so that f(b,0) = (g(b),0) for all b and f(b,i) = (b, h(i)) for
all ¢ > 0. Then w x {0} will provide a copy of B in A and, for each b, {b} x w
will be a full binary tree with root (b,0) where the map f takes any node to its
predecessor. O

Theorem 2.3. A computable 2:1 structure A = (A, f) is computably categorical
if and only if A has only finitely many Z-chains.

Proof. Suppose that A = (A, f) is a computable 2:1 structure with only finitely
many Z-chains, and B = (B, g) is a computable 2:1 structure which is isomorphic
to A. Let Fin(A) be the union of all orbits which are k-cycles for some k > 1
in A. Suppose that A has t Z-chains and x; < --- < x; are representatives from
these Z-chains in A. Similarly, let Fin(B) be the union of all orbits which are
k-cycles for some k > 1 in B, and let y; < --- < y; be representatives from the
t Z-chains in B. Note that since Fin(A) is c.e. and A— Fin(A) =, Oa(z;)
is c.e., it follows that both Fin(A) and A — Fin(A) are computable. Similarly,
both Fin(B) and B — Fin(B) are computable.

It is always the case that if A = (A, f) and B = (B, g) are computable 2:1
structures and Fin(A) and Fin(B) are isomorphic, then Fin(A) and Fin(B)

are computably isomorphic. That is, let ag,a1,ao,... be an enumeration of
Fin(A) and b, by, ba, ... be an enumeration of Fin(B). We can then construct
an isomorphism h : Fin(A) — Fin(B) in stages by a standard back-and-forth
argument.

The key is to observe that for any a;, we can compute

a; = fo(ai)’f(ai)a f2(ai)7 s

until we find the least n; and k; such that f"*%i(a;) = f(a;). Then let C; =
(f"(ai),..., frt*=1(a;). We shall cyclicly rearrange C; = (cf,.. ., Ch_1) 8O
that ¢} is the smallest element of C;. We shall call C; the cycle of A associated
with a;. Thus O 4(a;) will be a k;-cycle. Then we can search a1, aq, ... until we
find u, ... »U;ﬂ—1 which are not in C; such that f(u;) = cé forj=0,...,k—1.
It then follows that Tree A(ué) is isomorphic to the complete binary tree B
for j = 0,...,k —1. We shall call C; = ((c},..., ¢, _q), (ul,...,uf,_y)) the
extended cycle of A associated with q;.

Similarly, for any b;, we can compute b; = g¢%(b;),g(b;),g?(b;),... until
we find the least m; and ¢; such that g™ (b;) = ¢g™i(b;). Then let D; =
(g™ (bi), .., g™ 7 (b;)). We shall cyclicly rearrange D; = (dj, ..., dj _;) so
that df is the smallest element of D;. We shall call D; the cycle of B asso-
ciated with b;. Thus the orbit of b; will be an ¢;-cycle. Then we can search
bi, by, ... until we find vj, ..., v}, _; which are not in D; such that g(v}) = d} for
j=0,...,6;—1. It then follows that Treel;(v;) is isomorphic to the complete bi-
nary tree B. We shall call D; = ((dj), ..., d}), (v},...,vj _;)) the extended
cycle of B associated with b;.

If a € Aand b € B and both Trees(a) and Treep(b) are isomorphic to
the complete binary tree B, then for all n > 0, we can define a map what we
will call the canonical map Ogp., : treea(a,n) — treep(b,n) inductively as
follows. For n = 0, O44,0(a) = b. Having defined O, 4, we then extend it to
O4.b,n+1 so that for each leaf £ € Tree4(a,n), we find the two elements 1 < {5
in A such that f(¢1) = f(¢2) = ¢ and we find the two elements p; < py in B
such that g(p1) = g(p2) = O p.n(¥), and then we define Oy p ny1(¢1) = p1 and
Oab,n+1(l2) = p2. We then let ©4 = |J,,> Oa,p,n and call this the canonical
map from tree4(a) onto treep(b).

Stage 0. First compute the extended cycle Co = ((c, ..., cp _), (ug, ..., ug, 1))
of A associated with ag. Then let gy be the least j such that the cycle D; asso-
ciated with b; in B has size ko, and let Dy, = ((d§°, ..., d}° _), (v(’,...,v2_))
be the extended cycle of B associated with by,. Then we define h so that
hc}) = df* and h(u}) = v{° for j = 0,...,ko — 1. This ensures that & is the
canonical bijection from Tree(u‘;7 0) = Tree(vgo, 0) for 5 =0,...,ky — 1.

If Dy = Dy, then let Sy = {0} and Ty = {0} and define ¢9 : So — To
by ¢0(0) = 0 and go onto stage 1. Otherwise, compute the extended cycle
ﬁé = ((dg, ..., dp, 1), (v, .., vp,_1)) of B associated with by. Then let py be
the least 7 > 0 such that the cycle C; associated with a; in A has size ¢;. Let
Cl = ((cr, ... s Coo_q)s (ug’, s up_y)) be the extended cycle of A associated
with ap,. Then define h so that h(c}°) = d} and h(u}°) = v. This ensures that
h is the canonical bijection from Tree(u}’,0) = Tree(v?, 0) forj=0,...,4—1.
Then let So = {0,po}, To = {0, o} and define ¢ : So — Ty by ¢o(0) = go and
¢o(po) = 0.

Stage s+1.
Assume that we have defined sets Sy and T and bijection ¢, : Ss — Ts and a
partial function h : A — B such that

1. for all i < s, the cycle C; associated with a; is equal to one of the cycles
C; for some j € S,

2. for all ¢ < s, the cycle D; associated with b; is equal to one of the cycles
D; for some j € T,

©w

for all 4,5 € S, the cycles C; and Cj are distinct if ¢ # j,

e

for all ¢, j € Ty, the cycles D; and D; are distinct if 4 # j,
5. for all i € S5, C; and Dy_(;) have the same size, and

6. for all i € S, if ¢5(i) = 7, then h is defined so that if
Ci=((cty--+s ¢k, 1), (ug, ..., up, 1)) is the extended cycle of A associated
with a; and D; = ((d), ..., dii_l), (ud, ..., u{ci_l» is the extended cycle
of B associated with b;, then h(c.) = dZ, h(u®) = v, and h restricted to
tree4(ut, s) is equal to the canonical map © , ; forr=20,...,k — 1.

i, vl,s

First we extend h so that for all ¢ € S, if ¢5(i) = j, then h is defined so that
if s = ((c1,..,¢p,)s (Ul ..., uy,)) is the extended cycle of A associated with a;
and D; = ((d),..., dii_l)7 W), ... ,vii_l» is the extended cycle of B associated
with b;, then h(cl) = dZ, h(ul) = vl, and h restricted to treea(ul,s + 1) is
equal to the canonical map © forr=0,...,k — 1.

We then have 4 cases.

ul,vi,s+1

Case 1. C,yq is equal to one of the cycles C; for i € S, and Dsy1 is equal to
one of the cycles D; for j € Ts.

Then let S5y = S5, Ts41 =T, and @511 = ds.

Case 2. (41 is not equal to one of the cycles C; for i € S, but Dgyq is
equal to one of the cycles D; for j € Ts.

Then let Cs+1. = <(CS.+1’ cee ci::ll_l), (ug™, ... ,uiﬁl_l)) be the extende.d cy-
cle of A associated with as41. Then let ¢;11 be the least ¢ such that D, is not

equal to one of the cycles D; for j € Ty and D, has size ksyq. Let D,

ds+1
((d&+ ..., dZ‘:rlrl), (viet .. ,inLJ) be the extended cycle of B associated
with by, ,. Then extend h so that h(ci™') = d¥*', h(ui™) = v**', and h
restricted to tree4(ust!, s+1) is equal to the canonical map O s+1 yast1 4 for

T:07...,k5+1 — 1.
Then let Sg11 = SsU{s+ 1}, Ts41 = Ts U{gs+1}, and extend ¢ to ¢s11 by
letting ¢s+1(s+ 1) = gst1-

Case 3. (i1 is equal to one of the cycles C; for i € S, but Dgyq is not
equal to one of the cycles D; for j € T5.

Then let DS+.1 = ((dsﬂ, ... ,d;:}rl), (USH, ... >UZ:,1171)> be the extende'd cy-
cle of B associated with bsy1. Then let psy1 be the least p such that C), is not

equal to one of the cycles C; for i € Sy and C), has size 511. Let Cp, =

(e, 5::11_1), (ubst, ... ,ugzr’ll_l)) be the extended cycle of A associated
with ap,,,. Then ex}tﬁrrlld h so that h(cr*™) = dstt h(ul™) = v+, and h

restricted to treeq(ur""',s + 1) is equal to the canonical map @uf.é,ﬂv
forr=0,...,0541 — 1.

Then let Ss41 = Ss U{pst+1}, Ts+1 = Ts U {s + 1}, and extend ¢4 to ¢si1
by letting ¢s41(ps+1) = s+ 1.

vt 41

Case 4. (s is not equal to one of the cycles C; for i € S, and Dgyq is
not equal to one of the cycles D; for j € Ts.

Then let Cy1 = <(ca+1, e ,cij:rl), (ugt, ... ,uij:tl» be the extended cy-
cle of A associated with as11. Then let gs41 be the least g such that DJ is not
equal to one of the cycles D; for j € Ty and D, has size ksy1. Let D

qs+1
(g, ..., dZ‘:ll_l), (gt ... 702:1_1» be the extended cycle of B associated
with by, ,. Then extend h so that h(ci™h) = &', h(ui™) = v**', and h
restricted to tree4(ust1, s+ 1) is equal to the canonical map O st1 yast1 4 for

7':0,...,]{35+1 —1.

If Dyyy is equal to Dy, then let S, = S, U{s+ 1}, Tsy1 = T U{qs11},

and extend @5 to ¢si1 by letting dsr1(s + 1) = qsp1. Otherwise, let Dy g =

(gt dstt) (st vs Tt) be the extended cycle of B associated
s+1 s+1

with bs41. Then let psy1 be the least p such that C), is not equal to one of the

cycles C; for ¢ € Ss and is not equal to Csy1 and Cp, has size £441. Let C

Ps+1
Ps+1 Ps+1 Ps+1 Ps+1 ;
(0™ ooie 1) (g™, uy "7) be the extended cycle of A associated

with a,,,,. Then extend h so that h(ci*™) = di™!, h(ur*™') = v3*!, and h
restricted to treey(ub ™', s + 1) is equal to the canonical map O et st
forr=0,...,0s41 — 1.

Then let Sg11 = SsU{s+1,pst1}, Ts41 = Ts U{s+1,¢s11}, and extend ¢,

s+1

10

to ¢s41 by letting dsi1(s +1) = gst1 and o1 (pst1) = s+ 1.

It is then easy to see that h will be an isomorphism from Fin(A) onto Fin(B).

Next we computably map O 4(x;) onto O 4(y;) as follows. Let z; o = z; and
Zin = f"(x;) forn > 1. Then define z; _,, for n > 1 inductively as follows: z; 1
is the least element z such that f(z) = z;. There are only two elements which
map to z; under f, and we can enumerate A until we find these two elements
and then pick the least of these two elements to be z; _;. Then inductively for
n > 1, we define z; _,, to be the least element z that such that f(2) = z; _(n_1)-
Let X; = {z;, : n € Z}. Similarly, we let y;0 = v; and y;, = ¢"(y;) for
n > 1. We let y; _1 be the least element z such that g(z) = y; and, inductively,
define y; _,, for n > 1 to the least element z such that g(z) = y; _(n—1). Let
Y = {yin : n € Z}. Next for all n € Z, let u;, be the element which is
not in X; such that f(w;,) = z;, and let v;, be the element which is not in
Y; such that g(v;n) = yin. Then we define h so that for all 1 < ¢ < ¢ and
n € Z, h(Tin) = Yin, M(Uin) = vin, and h restricted to tree(u;) equal to the
canonical map Oy, ,, v, .-

It follows that h will be a computable isomorphism from A onto B so that
A is computably categorical.

Next suppose that A = (A4, f) is a computable 2:1 structure such that A
has infinitely many orbits which are Z-chains. If Fin(A) is not a computable
set, then partition N into two infinite computable sets B and C. Let a1, aq, ...,
be an effective enumeration of Fin(A) and let B = {b; < by < ---}. Then we
define the function g : B — B so that g(b;) = b; if and only if f(a;) = a;, so that
the map f : Fin(A) — B defined by f(a;) = b; will be an isomorphism from
(Fin(A), f) onto (B, g). We can then extend g to C by effectively partitioning
C into a uniform sequence of pairwise disjoint computable sets Cy, Cq, ... and
define g so that each C; is a g-orbit which is a Z-chain of our 2:1 structure. It
will follow that (N, g) is a computable structure which is isomorphic to (4, f).
Note that (N, g) has the property that the predicate SameOrbit 4 (a,b), which
holds if and only if a and b lie in the same orbit of (N, g), is computable.

Instead of directly constructing a computable 2:1 structure which is not iso-
morphic to (N, g), we will modify our construction so that given any c.e. set
FE which is both infinite and co-infinite, we will construct a computable 2:1
structure (N, gg) such that the predicate SameOrbit(y gy is Turing equivalent
to E. The idea is to slightly modify our construction of (N, g). That is, let
B,C,Cy,C4,... be as above. Then we let gg = g on B so that Fin(A) is com-
putably isomorphic to (B, gg). Let ¢g, c1, ... be the least elements of Cy, C1, . . .,
respectively. Fix some effective enumeration of E and let E® be the finite set
of elements enumerated in E at stage s. Assume that E° = {0} and that
card(E* — E*7Y) =1 for all s > 1.

We construct gg in stages. The basic idea is that at any stage s, we will
be defining gg so that the elements of C; for i > 1 will form an orbit which
will be a Z-chain. That is, we let ¢ = ¢;. At any given stage s, as long as
1 € E, we construct what we call a partial Z-chain of length 2s + 1. That
is, we will define a sequence ci_s,ci_(s_l), sy ctychiets . cb and a sequence

11

dis,disfi, . .,dihdé,di, ..., d% such that gp(c)) = ¢}, for —s <k <s—1
and gg(d},) = ¢}, for —s < k < s. Moreover, for each k, we assume that gg is
defined on initial segment I’ of C; so that in the graph of gg restricted to I?, di,
is the root of a complete binary tree of height s. See Figure 7 for a picture of a
partial Z-chain of length 5. Thus I’ will be a set of size (25+1)25+1. At the next

stage, we first use the next 4 elements of C* to define ci(sﬂ), Cor1s dfs+1)v diH,

then we will use then next 2(2°2 — 1) elements to construct the binary trees of
height s+ 1 which have roots d§s+1) and d’, ;, and finally use the next (2s+1)2°

to extend the binary trees with roots d’ ..., d’ so that they have height s+ 1.

Figure 7: A partial Z-chain of length 5.

For i = 0, we perform a similar construction except that the partial Z-chain
will be of length 2k, + 1 for some integer ks, which will be an initial segment of
Uicg- Ci- That is, we will define a sequence

0 0 0 0 0 0
C—ks’c—(ks—l)’ .. .7C_1,Co7cl, .. .,Cks

and a sequence
0 0 0 40 40 0
A g dZ 1) - - -, d21, oy dy, - dy

such that gE(cg) = 62+1 for ks <k <kys—1and gE(d?-) = c? for -k, < j < ks.
Moreover, for each j, we assume that gg is defined on the initial segment I
of (Jcg: Ci so that in the graph of gg restricted to 19 dé» is the root of a
complete binary tree of height k. Then if j € ET! — E*, we will simply define
9e(cy,) = ¢, which will have the effect of grafting the partial Z-chain for C;
at stage s onto the front of the partial Z-chain for 0 at stage s. We then simply
have to add appropriate elements at the end of the partial Z-chain for 0 and the
corresponding binary trees at stage s 4+ 1, so that we have a Z-chain of length
ksy1 = ks +2s + 2 for 0.

It is then easy to see that this will construct a computable 2:1 structure
Br = (N, gg) which is isomorphic to A. Next consider the question of the degree
of predicate SameOrbit(a,b) for Bg. Note that Fin(Bg) is a computable set
so that given a,b € N, we first ask if both a,b € Fin(Bg). If so, then we can
iterate g on a and b until we find the cycles C'y, and Cy, to which a and b are
attached, respectively. Then a is in the same orbit as b if and only if Cy, = C'ys.

12

If both a and b are not in F'in(Bg), then we can find ¢ and j such that a € C;
and b € C;. If i = j, then a and b are in the same orbit and if i # j, then a
and b are in the same orbit if and only if 4,5 € E. Finally if it is not the case
that either both a and b are in Fin(Bg) or both a and b are not in Fin(Bg),
then a and b are not in the same orbit. This shows that SameOrbit < E. On
the other hand, cg,c; € E if and only if ¢y and ¢; are in the same orbit so that
E <7 SameOrbit(,).

Clearly if FE is a c.e. non-computable set, then (N, g) is not computably
isomorphic to (N, gg). Thus if A has infinitely many Z-chains, then A is not
computably categorical. O

We have the following corollaries of Theorem 2.3.

Corollary 2.4. Suppose that A = (A, f) and B = (B,g) are computable
2:1 structures such that Fin(A) and Fin(B) are computable and the predicate
SameOrbit is computable in both A and B. Then A is isomorphic to B if and
only if A is computably isomorphic to B.

Proof. Suppose that A is isomorphic to B. Then by our argument in the proof of
Theorem 2.3, we know that (Fin(A), f) is computably isomorphic to Fin(B), g).
Then let A — Fin(A) = {ap < a1 < ---} and A — Fin(B) = {byp < b1 <
-+ }. Because SameOrbit is a computable predicate for A, we can effectively
determine if a; is the smallest element in its orbit. That is, a; is the smallest
element in its orbit if and only if =SameOrbit(a;,a;) hold for all j < i. Thus
we can effectively list as ag = a;, < a;; < --- all the elements of A — Fin(.A)
such that a;; is the least element in its orbit. Similarly, we can effectively list
as by = by, < b;; < ... all the elements of B — F'in(B) such that b;, is the least
element in its orbit. Then we can use the procedure described in Theorem 2.3
to computably map the Z-chain O4(a;;) onto the Z-chain Op(b;,;). Thus A is
computably isomorphic to B.

Clearly, if A is computably isomorphic to B, then A is isomorphic to B. [

Corollary 2.5. Every computable 2:1 structure (A, f) is AY-categorical.

Proof. Note that Fin(A) is c.e. and hence AY, and SameOrbit(a,b) if and only
if Oa(a) N C4(b) # 0, which is also a A predicate. Thus the corollary follows
from a relativized version of Corollary 2.4. O

3 Computably Categorical (2,0):1 Structures

Suppose that we are given a (2,0):1 structure (A4, f). If an orbit O4(a) is a
k-cycle, then its graph must consist of an extended cycle

C = {(coy---yck-1),(do,...,dx—1))

together with binary trees Ty, ..., Ti—1 where T; = Tree(d;) fori =0,...,k—1.
In such a situation, if ¢g is the least element of {cy,...,ck—1}, then we shall say

13

that O4(a) is of type ((co,-.-,ck-1), (To,-..,Tk—1)). Specifying the type of Z-
chains and w-chains is more problematic. That is, one way to specify the graph
of a Z-chain is to give two sequences

= (00’015C71;02,072, ..) and
(d07d17d—1’d2,d_2, ..)

Q‘l [@]]
I

and a sequence of binary trees

—

T = (T07T17T717T2;T727 ..)

such that for all i € Z, f(¢;) = ciy1, f(d;) = ¢;, and Tree(d;) = T;. Similarly,
one way to specify the graph of an w-chain is to give two sequences

c = (00701702703,...) and
d = (di,da,ds,...)
and a sequence of binary trees

T=(T\,T,...)

such that for all ¢ € w, f(¢;) = ¢i41, for all i > 1, f(d;) = ¢;, and Tree(d;) = T;.

Figure 8: An w-chain where all the attached trees are three element binary trees.

Unfortunately, the sequences of trees T depend on how we pick ¢. For
example, suppose we have an orbit which is the w-chain pictured at the top of
Figure 8. That is, the tree T; are all three element binary trees. Then at the
bottom of Figure 8, we have pictured another way to represent that w-chain,
which clearly gives rise to a different sequence of trees. Nevertheless, whenever

14

we have two such equivalent descriptions

c (007017027037"')7
J == (dl,dg,dg,...>7 and
T = (Iy,Ty,...)
and
d = (ch, syl
d = (d},dy, ds,...), and
T = (TllaTQIa"')a

there will be an n large enough so that ¢; = ¢, d; = d}, and T; = T/ for all

i > n and, hence, tree(cy,) = tree(c,,).

Figure 9: A Z-chain.

A similar situation happens for Z-chains. That is, suppose that we have the
Z-chain pictured in Figure 9. That is, the Z-chain corresponds to the sequences

(00,01,0—1,02,0—% s),
= (d07d1,d,1,d27d,2,...), and
= (To, 11, T-1,15,T_5,...)

'ﬂl ST

where T} is isomorphic to the complete infinite binary tree B and T; and T_;
are one element trees for ¢ > 0. Then it is clear that, if we represent the same

Z~chain as

= (COaclac/_l,CQ,C/_Q,...),
(do,d1,d_1,dz,d _5,...), and
= (T0/7T17Ti1aT2;T/_2,.-.)

N ST
Il

where ¢/_; = dy, and ¢’_,,c_5, ... is some infinite path through the binary tree
Tp, then 7", will be isomorphic to the complete binary tree of ¢ > 1 and T is
isomorphic to Tree4(c1). What is worse, it is also clear that we could represent

15

the same Z-chain as an w-chain starting at the dy. Nevertheless, just as the
case with w-chains, there will be an n large enough so that ¢; = ¢}, d; = d}, and
T; = T/ for all i > n and, hence, tree(c,) = tree(c),).

We say that a (2,0):1 structure (A4, f) is locally finite if tree4(a) is finite
for all @ € A. Locally finite (2,0):1 structures are much simpler than general
(2,0):1 structures. That is, in locally finite (2,0):1 structures, all orbits which are
k-cycles are finite and there are no Z-chains. We say that a computable (2,0):1
structure (A, f) is highly computable if the range of f, ran(f), is computable.
Tt is easy to see that in a locally finite computable (2,0):1 structure (A, f), one
can effectively find the finite set tree4(a) for any a € A.

Theorem 3.1. Suppose that A = (A, f) and B = (B, g) are isomorphic highly
computable locally finite (2,0):1 structures which have only finitely many w-
chains, then A is computably isomorphic to B.

Proof. In such a case, we know that Fin(A) and Fin(B) are computable. It is
easy to construct an isomorphism hg from (F'in(.A), f) to Fin(B), g) by a stan-
dard back-and-forth argument. The key is that, since A is highly computable
and locally finite, it follows that given any a € Fin(A), we can effectively com-
pute the entire orbit of a. That is, as in Theorem 2, we can effectively find the
extended cycle ((co, ..., cx-1),(do,...,dr—1)) in O 4(a). Then we can effectively
find (7o, ..,Tk—1) such that Trees(d;) = T; for i = 0,...,k — 1. Given such
an orbit O4(a), we can then search through the elements of B until we find a
b whose orbit is isomorphic to O 4(a). That is, we can find a b whose extended
cycleis ((ch, -5 ¢h_1), (d, - - ., di_;)) and binary trees (1}, ..., T},_,) such that
Treep(d}) =T} for i = 0,...,k — 1 such that there is an s with 0 < s < k —1

where T is isomorphic to Tsy; moa & for j = 0,...,k — 1. Then we can easily
construct an isomorphism from O 4(a) to Op(b).

Moreover, there must exist representatives ai,...,a, of the w-chains in A
and representatives by, ..., b, of the w-chains in B with the following properties.

Let A; = {a;0,ai1,...} where a;o = a; and a;,, = f"(a;) for n > 1. For each
n > 1, let ¢; , be the element of A such that ¢; , € A; and f(¢;n) = a;,, and
let T; , = Treea(c;). Similarly, let B; = {b;0,bi1,...} where b; o = b; and
bin = g™ (b;) for n > 1. For each n > 1, let d; ,, be the element of A such that
din € A; and g(d;n) = b, and let S;,, = Treeg(b;,). Then we assume that
for 1 <4 <r, Treea(a;) is isomorphic to Treeg(b;) and T; ,, is isomorphic to
Sin forall n > 1.

Finally, note that, for any a € A and b € B such that T'ree 4(a) is isomorphic
to Treep(b), we can construct a canonical isomorphism ¢, ; from Tree4(a) onto
Treep(b) as follows.

Stage 0. Set ¢(a) = b.
Stage s+1. Assume that we have defined ¢ on tree(a,s) so that ¢ is an
isomorphism from Tree4(a,s) onto Treeg(b,s), and for all z € treey(a,s),

Tree(x) is isomorphic to Treeg(¢p(x)). Then extend ¢ to an isomorphism
from Tree4(a,s + 1) onto Treeg(b, s + 1) as follows. For each x € tree4(a,s)

16

which is in the range of f, find zg < z7 in A such that f(zo) = f(z1) = = and
find yo < y1 in B such that ¢g(yo) = g(y1) = ¢(z). By assumption, Tree(x)
is isomorphic to Treeg(¢(x)). Then if Tree4(xp) is isomorphic to Tree(z1),
we know that Treep(y;) is isomorphic to Trees(xg) for i = 0,1 so that we let
d(x0) = yo and ¢(z1) = y1. If Tree4(xo) is not isomorphic to Tree4(x1), then
there is some s € {0,1} such that Trees(zo) is isomorphic to Treeg(ys) and
Tree4(xy1) is isomorphic to Treeg(yi—s). In that case, we let ¢(xo) = ys and

¢($1) =Yi-s-

It follows that for each 1 < i < r, we can define a computable isomorphism
hi : Oa(a;) — Op(b;) by setting hi(a;n) = b;p for n > 0, hi(c;pn) = diy for
n > 1, and ensuring that h; restricted to tree 4(a;) is the canonical isomorphism
from T'ree 4(a;) onto Treeg(b;), and h; restricted to tree 4(c;) is the canonical
isomorphism from T'ree4(c;) onto Treeg(d;) for n > 1.

Thus (J;_, hi is a computable isomorphism from A onto B. O

Now suppose that A = (A, f) is a highly computable locally finite (2,0):1
structure such that F'in(A) = A. In this case, the type of k-cycle is of the form
((eoy--yek—1), (To,...,Tp—1)) where each T; is a finite binary tree. There is
a natural order on the set of finite binary trees determined by embeddability.
That is, if T and S are finite binary trees with roots s and ¢, respectively, then
we can think of 7" and S as directed graphs with all edges directed toward the
root. Then we write T' C S if there is map ¢ from the nodes of T' into the nodes
of S such that ¢(r) = s and for any nodes x and y in T, (x,y) is a directed edge
in T if and only if (¢(z), ¢(y)) is a directed edge in S. Alternatively, T C S if
and only if the directed graph S can be constructed by taking a directed graph T'
and replacing each leaf £ € T with a binary tree T, with all edges directed toward
the root. For example, the complete binary tree T}, of height k is embeddable in
the complete binary tree of T,. of height r for all » > k. We also say that every
binary tree T is embeddable in the complete binary tree B. We can then extend
C to orbits in A4 by saying that O4(a) C O4(b) if and only if there is some
k > 1 such that the type of O 4(a) is {(co, ..., ck—1), (To,-.-,Tk—1)), the type of
OA(b) is ((do, - ..,dk—1),(S0,--.,5%k—1)), and there is some 0 < p < k — 1 such
that T; © Sp4i mod k for i =0,...,k— 1.

We say that a computable (2,0):1 structure A = (A4, f) has an explicitly
computable cycle structure if A is locally finite, Fin(A) = A, and there
is a computable function h such that for all k¥ > 1, h(k) is equal to the code
of a list ((D1,d1),...,(De,,de,) where any orbit O4(a) which is a k-cycle is
isomorphic to one of D,..., Dy, and there are exactly d; k-cycles in A which
are isomorphic to D; for ¢ = 1,...,¢,.. In addition, we assume that the poset
Pr = ({D1,...,Dy,},C), where C is the embeddability relation has the property
that d; is finite if D; is not a minimal element in Py and d; € NU {w} if D; is
a minimal element of Py.

We claim that if 4 = (A, f) has an explicitly computable cycle struc-
ture, then A is highly computable. Clearly, it is enough to show that we can

17

effectively compute the A-orbit of a for any a € A. Given an element a € A,
we can first compute a, f(a), f2(a),... until we find the k such that O4(a) is
a k-cycle. At that point, we start enumerating A and computing f until we
find the required number of copies of D; for all non-minimal elements of Py. If
O 4(a) is one of those k-cycles, then we have explicitly computed the O 4(a). If
not, O 4(a) is isomorphic to a minimal element of P,. We know that none of
the minimal elements of P are embeddable in each other, which means that we
can compute long enough until we see enough of the partial structure of O 4(a)
to distinguish it from the other minimal elements of Py. At that point, we will
know the isomorphism type of O 4(a) so that we can continue to enumerate A
and compute f until we have found all the elements of O4(a).
Thus we have the following corollary of Theorem 3.1.

Corollary 3.2. If A = (A, f) is a computable (2,0):1 structure which has an
explicitly computable cycle structure, then A is computably categorical. Further-
more, the argument above relativizes to show that the indicated structures are in
fact relatively computably categorical.

Next we consider the special case of locally finite structures A = (w, f)
such that for some fixed k, A consists exactly of an infinite number of orbits
each containing a k-cycle. Following the notation of Lempp, McCoy, R. Miller
and Solomon [10], we say that A is strongly finite if there exists a finite set
{D1,..., Dy} such that every orbit is isomorphic to D; for some ¢ < ¢ and,
furthermore, there do not exist D; # D; such that there are infinitely many
orbits of type D; and infinitely many orbits of type j such that D; is embeddable
into D;. Then we have the following corollary of Theorem 3.1

Proposition 3.3. Suppose that, for a fized finite k, A = (A, f) consists of an
infinite number of orbits, each containing a k-cycle, and is strongly finite. Then
A is relatively computably categorical.

Proof. We prove this by describing the Scott formulas. First we observe that
the relation “O(x) = O(y)” is c.e., since x and y are in the same orbit if and
only if, for some natural numbers m and n, f™(x) = f™(y). Furthermore, if we
have a bound M on the size of the orbits, as we do here, then this relation is in
fact A, since we can bound m and n by M.

For each type D; which occurs only finitely often, choose a member of each
orbit of type D; as a parameter. Then O(x) has type D; for such a j if and only
if it is the same orbit as one of the parameters. If z is in one of the remaining
orbits, let O'(z) = {y : (Im < t)(In < t)(f™(z) = f™(y))}. Then O(z) is of
type D; if and only if for some ¢, O'(z) is of type D,. That is, once the orbit
of x looks like D; and is known not be one of the orbits of type D; where D;
is embeddable into D;, then O'(z) = O(x) since it cannot grow into anything
else. Then the condition that O(x) has type D; is a c. e.formula consisting
of a disjunction over natural numbers ¢ of a c. e.formula which describes the
condition that {y : (Im < t)(Fn < t)(f™(z) = f™(y))} is isomorphic to D;.
Now for every i, we have a canonical copy of D; and we can find a particular

18

subset S(x) of D; and specify that d € S if and only if there is an isomorphism
taking O(z) to D; which maps x to d. Then the c.e. Scott formula of x first
states the orbit type of O(z) and then indicates the set S(z).

For a tuple (x1, ...,z) of elements, the Scott formula consists of the indi-
vidual Scott formulas for x1, ...,z together with, for each pair x; and z;, either
the statement that O(x;) = O(z;), or the statement that O(x;) # O(x;), and
finally a statement that specifies for each tuple y1, ..., y, taken from x1,...,x,,
which belong to the same orbit of type D;, which tuples di, ..., d, could be the
images of y1,...,y, under an isomorphism of O(xz;) with D;. O

Unlike the case of computable 2:1 structures, we cannot characterize the
computably categorical, locally finite, highly computable (2,0):1 structures as
those which have only finitely many w-chains. We can construct a computably
categorical, locally finite, highly computable (2,0):1 structure A = (A, f) with
infinitely many w-chains as follows. First we assume that there is a fixed r» >
0 such that any k-cycle in A has type {((co,...,ck—1),(T0,-..,Tk—1)) where
To,T1,...,Tx—1 are all binary trees of height < r. Next assume that for all
t > r, there is a unique w-chain C; in A

<<a0,a1,a2, . .), (Tl,TQ, ..)>

such that T; is a complete binary tree of height ¢t. The key thing to observe
about the w-chain C} is that the only ways to represent it as an w-chain

((ag,d’,ay,...), (11, Ty, ...)),

which is different from ((ag, a1, a2...), (11,15, ...)) is to have af, correspond to
a leaf in one of the trees T,,. In such a situation, T/ will be a complete binary
tree of height ¢ for i = 1,....,t, T/, | = Tree4(ain—1), and T} is the complete
binary tree of size t for ¢ > ro. It follows that we can recognize the type of
any element x which is in w-chain in A by simply starting at a and computing
T1,T2,...and yi,ys,... where z; = fi(x), y; is an element which is not equal to
x;—1 such that f(y;) = z; and S; = T'ree4(y;) until we see a j such that S; and
Sj41 are both complete binary trees of size ¢. Then we know that a belongs to
an w-chain of the form

<(a0, ai,as, .. .), (Tl,TQ, ..)>,

where T; is a complete binary tree of height ¢ > r. Moreover, we can find the
corresponding ag in the tree S;11.

It follows that we can effectively determine whether an element in a € A is
in Fin(A), since its orbit will not have any elements ¢ such that Tree4(c) is a
complete binary tree of size t > r if ¢ € Fin(A), in which case we can effectively
find af, such that O 4(c) is of type

((ab,a%,ab,...), (T}, T%,...)),

where T is a complete binary tree of height ¢ > r. Thus if B = (B,g) is
a highly computable locally finite (2,0):1 structure which is isomorphic to A,

19

then F'in(B) is computable and hence, by our argument in Theorem 3.1, we can
construct a computable isomorphism hg mapping (Fin(A), f) onto (Fin(B), g).
Moreover, for any ¢ > r, we can effectively find b} such that the orbit of b} is
an w-chain

<(b87 btl? bt?? M ')7 (Tlt7T2t’ M ')>

where bl = ¢*(bf) and T} is a complete binary tree of height ¢ > r for all i > 1.
We can then define a bijection h; from the orbit of af in A to the orbit of b in
B by finding ¢! € A and d} in B for ¢ > 1 such that ¢! # a!_; and f(c}) = a! and
di # bt_, and g(df) = bl for i > 1 and defining h; so that h(al) = bt for i > 0,
h(ct) = dt for i > 1, and ensuring that h; restricted to tree4(ct) is the canonical
isomorphism from Tree4(ct) onto Treeg(dt). It follows that h = (J,5q he is a
computable isomorphism from A onto B so that A is computably categorical
relative to the highly computable locally finite (2,0):1 structures.

It should be clear that we can construct infinitely many such examples by
picking r, any computable set S C {r + 1,7+ 2,...} and constructing a highly
computable locally finite (2,0):1 structure A = (A, f) such that:

1. the only k-chains of A are of type ((co,...,ck-1),(T0,...,Tk—1)) where
the height of T; is < r,

2. the only w-chains of A are of the form

<(a0,a1,a2, .. .), (Tl,Tg, ..)>

where T; is a complete binary tree of height ¢ € S, and

3. for each t € S, A has s, w-chains of type

<((l(),(11,(127 .. .), (Tl,TQ, ..)>

where T; is a complete binary tree of height ¢ such that s, € (N—{0})U{w}.

4 Non-Computably Categorical (2,0):1 Structures

In this section, we shall show that if we drop the hypothesis that a locally
finite (2,0):1 structure A = (A, f) is highly computable or has explicitly com-
putable cycle structure, then there are many examples of computable (2,0):1
structures which are not computably categorical structures even in the case
where Fin(A) = A. For example, we have the following theorem.

Theorem 4.1. Suppose that A = (A, f) is a computable locally finite (2,0):1
structure such that Fin(A) = A and there exist two distinct types of orbits which
are k-cycles,

D1 = <(Cl07 ey dk}—l), (To, ce 7T‘]€_1)> and D2 = <(€07 [N ,ek_l), (So, ey Sk:—l)>7
such that A has infinitely many k-cycles which are isomorphic to D; fori=1,2
and D1 is embeddable into Dy. Then there exists a computable (2,0):1 structure
B = (N, g) which is isomorphic to A but is not computably isomorphic to A.

20

Proof. First let ¢ be a 1:1 computable function which maps A onto the set of
odd numbers O in N. Define h on 0 so that ¢ is an isomorphism. Next on the
even numbers E define h so that we create infinitely many copies

<(C(7Jn7 R C;cnfl)’ (T(;nv e "T£1)>m20

of Oy such that ¢ < ¢} < ¢ < --- is a computable sequence. If C = (N, h) is
not computably isomorphic to A, then we are done. Otherwise, we construct,
in stages, a computable (2,0):1 structure B = (N, g) which is isomorphic to .4
but not computably isomorphic to C.

Let ¢, denote the partial computable function computed by the e-th Turing
machine M, and let ¢e () denote the result, if any, of carrying out the com-
putation of M, on input z for s steps. If this computation has not returned
a value, then we write ¢, s(x) T and if it has returned a value, then we write
bers () 1.

Note that for any a € N, we can compute the sequence a, h(a), h%(a), ... long
enough until we find the cycle C, = (2, ..., 2} _;) corresponding to the orbit
of a where 2§ is the smallest element of {2§,..., 23 _,}. It follows that we can
compute the sequence yo < y1 < --- such that Y = {y; : i > 0} = {2§ : a € N}.
It follows that ¢J < ¢ < -+ is a computable subsequence of Yo, y1, That is,
there is a computable increasing function ¢ such that y,;) = cb for all i > 0.

For any j & ran(q), we let O¢ s(y,) denote the set of x < s such that either
x is in the cycle C(y;) = (y; = ¥j,0,---,Yjk,—1) of h determined by y; or
h¥(x) € {yj.0.---Yjk,~1}- For any y; € ran(q), we let Oc s(y;) denote Oc(y;).
Note that, by the construction, we can compute O¢(y;) if j € ran(q). In either
case, we shall call O¢ s(y;) the partial orbit of y; at stage s.

We will use a finite injury priority argument to define a AY function ¢ : N —
N which is the limit of computable functions ¥(*) and the computable function
g on N in stages so that at any stage s, if j < s and j ¢ ran(q), then (%)
maps the partial orbit of y; at stage s, O¢ s(y;), onto a partial orbit of g which
is isomorphic to the orbit O¢ s(y;). On the elements of the form y,;) where
q(i) < s, we will define 1/(*) and g so that ¢(*) maps the orbit Oc s(y4;)) into
an orbit which is either isomorphic to Dy or Dy. This way we will ensure that
B = (N, g) is isomorphic to A. At each stage s, we will place I'; markers on the
partial g-orbits which are isomorphic to the partial orbits O¢ s(y;) under)
for j < s such that j & ran(q).

We will have two sets of requirements that we must meet.

N.: limgp®) (x) exists for all x € O¢(y.) and 1 maps Oc(y.) onto a B-orbit
which is isomorphic to O¢(y.) if e & ran(q) or is not a B-orbit which is isomor-
phic to either D and Dy if e € ran(q).

P,: Either
1. ¢¢ is not 1:1 on its domain,

2. there exists 4 such that ¢ is not defined on O¢(yy(s)), or

21

3. there exists ¢ such that ¢, is defined on Oc(yy(;)), but Oc(yqx;y) is not
isomorphic to Op(¢e(Yq(i)))-

Our basic strategy for meeting a requirement P, is to simply compute
be,s(Yq(0))s - - - » Pe,s (Yq(s)) until we find an 7 such that the partial orbit of ¢ s (y4(s))
under g as defined at stage s is not in the union of the partial orbits that are
used to meet the requirements N, for a < e or P, for b < e. That is, none of
the elements of the partial orbit of ¢, s(y4(s)) under g as defined at stage s have
either I'; markers on them for j < e or A; markers on them for j < e. At this
point, if the partial orbit of ¢, (y4(s)) is consistent with being isomorphic to
Dy, then we extend g by using new elements of N so that the g-orbit ¢ (y4(s))
is isomorphic to Ds. We then put A, markers on the elements of this orbit. If
the g-orbit of ¢, s(yq(s)) Was being used to ensure that ¢ is an isomorphism to
some orbit y; where j > e, then we simply use new elements to create a partial
g-orbit which is isomorphic to the partial orbit O¢ s(y;).

Stage 0. Find the cycle C(yo) = (vo = 0, 4%s---,YR,—1)- Then define g
so that g(0) =1,9(1) =2,...,9(ko — 2) = ko — 1, g(ko — 1) = 0 and define (*)
so that w(o)(yj_ro) =jfor 0<j<ky—1. Put'g markerson0,..., ks — 1.

Stage s+1. Assume we have defined ¥(*) on the union of the partial orbits at
stage s of all y; for j < s and g is defined on a finite subset I; of N so that:

1. ¢®) is a 1:1 function onto I,

2. for all y; with j < s and y; not in the range of ¢, ¥*)(O¢ (y;)) is a g-orbit
in (I,,9) and (¥)(O¢.s(y;)),g) is isomorphic to (O¢ s(y;),h) and there
are T'; markers on the elements of 1(*)(O¢ 4(y;)),

3. for all y; with j < s and y; in the range of ¢, 1/(*)(Oc(y;)) is contained in
a g-orbit which is isomorphic to either Dy or Ds.

First look for an e < s+1 such that ¢. s is 1:1 on its domain, there currently
are no elements with A, markers, and there is a j < s such that j € ran(q)
and either ¢, s(y;) maps to an element outside of I, or to an element of I,
which does not have a I'; marker on it or a A; marker on it for any i < j.
If no such e exists, then use elements from an initial segment of elements of
N — I, and define g on those elements to create a g-orbit which is isomorphic to
Oc¢.s+1(Ys+1). Then define T on Oc.s+1(ys+1) so that it is an isomorphism
which sends ys41 to the least element of the cycle of the orbit and the map from
any tree that feed into the cycle of y; is the canonical map to the corresponding
tree in the cycle of Y5+ (y,,). Put T'y; 1 markers on the elements of this new
g-orbit if s + 1 ¢ ran(g). Then let &+ = () on Uj<s Oc,s(y;). Finally,
for all j < s, j & ran(q), use elements from an initial segment of N — (I, U
YTV (Oc 411(ys41))) and define g on those elements so that the g-orbit of
P(®) (y;j) is isomorphic to O¢ s41(y;). Put I'; markers on the new elements in
image of Y+ (O¢ s41(y;)) and define ¥+1 on Oc 511(y;) — Oc,s(y;) so that
Y+ restricted to Oc o1 1(y;) is an isomorphism to the g-orbit of ¢(*)(y;).

22

If such an e exists, then let 511 be the least such e. Then we have two cases.

Case 1. ¢ s(Ye, 1) & Ls.

Then use an initial segment of elements in N — Iy — {¢¢ s(ye,,,)} and define g
on those elements and ¢ s(ye,,,) to create a g-orbit which is isomorphic to Dy
where ¢c s(ye,,,) plays the role of the least element in the cycle of D,. Define
P+ on Oc(ye.,,) so that it is an isomorphism which sends y._,, to the least
element of the cycle of the orbit, and the map from any tree that feeds into
the cycle of y; is the canonical map to the corresponding tree in the cycle of
P+ (y,,). Put A, ,, markers on the g-orbit of ¥/**V(y, .). In addition,
create a g-orbit which is isomorphic to O¢ s4+1(ys+1). Then define 5+t on
Oc,s+1(ys+1) so that it is an isomorphism which sends the ys41 to the least
element of the cycle of the orbit, and the map from any tree that feeds into
the cycle of y; is the canonical map to the corresponding tree in the cycle of
YT (y). Put T'yyq markers on the elements of this new g-orbit if y,; is
not in the range of ¢. Then let (51 = () on Ung,yj Oc,s(y;). Finally, for
all j & ran(q) for j < s, take elements from an initial segment of the elements
of N which have not been used in the construction up to this point and define
g on those elements so that the g-orbit of w(s)(yj) is isomorphic to O¢ s41(y;)-
Put T'; markers on the new elements in the image ¢)**1)(O¢ 541 (y;)) and define
Y on Oc sy1(yj) — Oc.s(y;) so that (51 restricted to Oc s11(y;) is an
isomorphism to the g-orbit of w(s)(yj).

Case 2. ¢ s(Ye,) € Ls.

Consider the current g-orbit O of ¢ s(ye.,,). If %) induces an embedding of
O into Dy, then use elements from an initial segment of N — I, and define g on
those elements so that we extend O to an orbit which is isomorphic to Dy. Put
A, ., markers on all the elements of this new D,-orbit. Now suppose that the
elements of O had T', markers on them for some r, where e;11 < r < s. Then
we remove all those I', markers and take an initial segment of the elements of
N that have not been used up to this point and define g to create a new copy
of Oc s+1(y;). Then define 1»**) on O¢ s41(y;) so that it is an isomorphism
which sends the y; to the least element of the cycle of the new g-orbit, and the
the map from any tree that feeds into the cycle of y; is the canonical map to
the corresponding tree in the cycle of ¥*T1(y;). Similarly, define 1+ on
Oc(Ye,.,) so that it is an isomorphism which sends g, , to the least element
of the cycle of the new g-orbit which is isomorphic to Dy, and the map from
any tree that feeds into the cycle of y; is the canonical map to the correspond-
ing tree in the cycle of z/J(Hl)(yesﬂ). In addition, create a g-orbit which is
isomorphic to O¢ s41(ys+1), and define P+t on Oc¢,s+1(Ys+1) so that it is an
isomorphism which sends ys41 to the least element of the cycle of the orbit
and the the map from any tree that feeds into the cycle of y; is the canonical
map to the corresponding tree in the cycle of zb(s*l)(ys_s_l). Put T's41 markers
on the elements of this new g-orbit if ysy1 is not in the range of q. Then let

Pt = () on Ujeto.....s1— () Oc,s(y;). Finally, for all j & ran(q) for j < s,

23

take elements from an initial segment of elements that have not currently been
used in the construction and define g on those elements so that the g-orbit of
¥()(y;) is isomorphic to O¢ sy1(y;). Put T'; markers on the new elements in
the image 1t (O¢ s11(y;)) and define ¥ on O¢ 541 (y;) — Oc.s(y;) so that
5+ restricted to Oc,s+1(y;) is an isomorphism to the g-orbit of 1/1(5)(%-).

If 1)) does not induce an embedding of O into Dy, then O is inconsistent
with having its pre-image under 1(*) isomorphic to D;. In this case, put AV
markers on all the elements of O. Then use elements from an initial segment
of elements of N — I, and define ¢ on those elements to create a g-orbit which
is isomorphic to O¢ s41(ys+1), and define T on Oc¢,s+1(ys+1) so that it is
an isomorphism which sends ys41 to the least element of the cycle of the or-
bit, and the map from any tree that feeds into the cycle of y; is the canonical
map to the corresponding tree in the cycle of 1tV (y,,1). Put I'y,; markers
on the elements of this new g-orbit if ysy1 is not in the range of q. Then let
P+ = (5) on Uj<s Oc,s(y;). Finally, for all j & ran(q) for j < s, use el-
ements from an initial segment of N — (I, U+ (Oc 411(ys41))), and define
g on those elements so that the g-orbit of w(s)(yj) is isomorphic to O¢ s+1(y;)-
Put T'; markers on the new elements in the image ¢ *71(O¢ 541 (y;)) and define
P+t on Oc s41(yj) — Oc.s(y;) so that ¥(5TY restricted to Oc s41(y;) is an
isomorphism to the g-orbit of 1(*)(y;).

This completes the construction. It is easy to see that each step is effective
and, hence, g is computable since we never change the value of g(z) for any z.

Next observe that if esy is defined, then there is a es11 € ran(q) and our
action ensures that ¢c ., (ye,,,) has B-orbit which is not isomorphic to D;.
Thus ¢, can not be an isomorphism from C onto . Moreover, we will never
remove the A, , markers that we placed at stage s + 1 which means that we
will never take an action to meet the requirement P, . after stage s + 1.

It is a straightforward induction to show that for each j ¢ ran(q), the
limg o0 ¥ () = ¢ () exists for 2 € Oc(y;) and that 1 restricted to (Oc(y;), h)
is an isomorphism onto (Op(¢(y;)), g). That is, we can only be forced to have
) (2) # T () for any = € Oc 4(y;) for an s > j if we are taking an action
to meet a requirement P, for e < j. Since we can only take an action for P,
once, it follows that there will be a t large enough so that O¢ ¢+(y;) = Oc(y;) and
YO (z) =) (z) forall s > t and = € O¢(y;). By the construction, at each stage
s > 7,) is an isomorphism from (Oc s(y;), k) to (¥ (Oc s(y;)),g). Thus 2
is an isomorphism from (Oc¢(y;),h) onto ¥(Oc¢(y;)),g). A similar argument
will show that for each j & ran(q), the lim, o 1) (2) = 9 (x) exists for = €
Oc(y;) and that ® restricted to (O¢(y;), h) either maps it into a g-orbit which
is isomorphic to either Dy or Ds. It then follows that B = (N, g) is isomorphic
to C.

Thus the only thing that we have to do to show that B is not computably
isomorphic to C is to show that we satisfy all the requirements P,. Suppose for
a contradiction, that ¢, is an isomorphism from B into C. Then there will be a

24

stage t large enough so that:

(i) we never take any action for a requirement P; with i < e after stage t,
(i

) Oc.+(y;) = Oc(y;) for all j < e such that j & ran(q),
(iii) for all j < e, ¥®)(z) = @ (z) for all z € O¢(y;), and
)

(iv) @et(yr) is defined for all r <1+ 37, card(Oc(y;))-

Since we are assuming that ¢, is an isomorphism from C to B, there must be y;
in the range of ¢ such that ¢.(y;) maps to an element which does not have a I',.
marker on it for any r < e. But then y; could be used to satisfy the requirement
P, at stage t 4+ 1. Thus either e;; = e in which case we take an action at stage
s + 1 to ensure that Og(¢.(y;)) is not isomorphic to D; or there is an s <t
such that e; = e. In either case, our construction ensures that Og(¢.(y;)) is
isomorphic to D;. Thus there can be no such e and, hence, B is not computably
isomorphic to C. O

Another simple condition which ensures that a computable locally finite
(2,0):1 structure A = (A4, f) is not computably categorical is that there is an
computable increasing chain of orbits which are k-cycles. That is, we say that
A = (A, f) has a highly computable ascending chain of k-cycles if there
is a computable sequence of elements af,a},... and a computable function z
such that for each 7 > 0:

1. Oa(a}) is a k-cycle D; = ((ad,...,ak_), (T¢, ..., Ti_,)),
2. z(i) is the canonical index of O 4(a}), and

3. D; is embeddable into D, 1.

Then we have the following theorem.

Theorem 4.2. Suppose that A= (A, f) is a computable (2,0):1 structure and
A has a highly computable ascending chain of k-cycles for some k. Then there
is a computable (2,0):1 structure B = (N, g) such that B is isomorphic but not
computably isomorphic to A.

Proof. Our proof is a slight modification of the proof of Theorem 4.1. That is,
if A#N, then let A ={ap < ay <---}. Then let 6(a;) = i and define g on N
so that # is an isomorphism from A onto C = (N, g). Then, as in the proof of
Theorem 4.1, we let yg < y1 < - -- be the set of the least elements that appear in
the cycles of C. Because A has a highly computable ascending chain of k-cycles,
there is an increasing computable function ¢ such that yq) < y41) < -+ and
Oy, 18 a k-cycle D; = ((y,i) = yg(z), . yg(_z)l), (Tg(z), e ,T,Z(_q)) such that
D; is embeddable in D;;; and we can uniformly compute a canonical index of
Oc(Yq(a)-

For any j & ran(q), we let O¢ s(y,) denote the set of x < s such that either
x is in the cycle C(y;) = (y; = ¥j,0,---5Yjk,—1) of h determined by y; or

25

h¥(x) € {Yj0.---Yjk,—1}. For any j € ran(q), we let Oc s(y;) denote Oc(y;).
Note that, by the construction, we can compute Oc¢(y;) if j € ran(g). In either
case, we shall call O¢ s(y;) the partial orbit of y; at stage s.

We will use a finite injury priority argument to define a A9 function ¢ :
N — N which is the limit of a computable sequence of functions (*), and a
computable function ¢ on N in stages so that at any stage s, if j < s, then (%)
maps the partial orbit of y; at stage s, O¢ s(y;), onto a partial orbit of g which
is isomorphic to the orbit O¢ s(y;). At each stage s, we will place I'; markers
on on the partial g-orbits which are isomorphic to the partial orbits O¢ s(y;)
under ¢(%).

We will have two sets of requirements that we must meet.

N.: limgp®) (x) exists for all z € O¢(y.) and ¢ maps O¢(y.) onto a B-orbit
which is isomorphic to Oc¢(ye).

P,.: Either
1. ¢¢ is not 1:1 on its domain,
2. there exists i such that ¢ is not defined on Oc¢(y4(s)), or

3. there exists i such that ¢. is defined on Oc¢(yy(;)), but Oc(yqe)) is not
isomorphic to Op(¢e(Yqe:)))-

Our basic strategy for meeting a requirement P, is to simply compute
be,s(Yq(0))s - - - » Pe,s (Yq(s)) until we find an 7 such that the partial orbit of ¢ s (yq(s))
under g as defined at stage s is not in the union of the partial orbits that are
used to meet the requirements N, for a < e or P, for b < e. That is, none of
the elements of the partial orbit of ¢, s(y4(s)) under g as defined at stage s have
either I'; markers on them for j < e or A; markers on them for j < e. At this
point, if the partial orbit of ¢, (y,(s)) is consistent with being isomorphic to
D;, then we extend g by using new elements of N so that the g-orbit ¢c s(1/q(s))
is isomorphic to D; for some j > ¢(s). We then put A, markers on the elements
of this orbit. If the g-orbit ¢c s(y4(s)) was being used to ensure that ¢ is an
isomorphism to some orbit y; where j > e, then we simply use new elements to
create a partial g-orbit which is isomorphic to the partial orbit O¢ +(y;).

Stage 0. Find the cycle C(yo) = (yo = 0, 4%,...,yp,_1). Then define g
so that g(0) =1,9(1) = 2,...,9(ko — 2) = ko — 1,g9(ko — 1) = 0 and define ¢
so that ¢(®) (yj0) =7 for 0 < j < kg — 1. Put I'g markers on 0,...,ky — 1. Let
£y =0.

Stage s+1. Assume we have defined ¢(*) on the union of the partial orbits
at stage s of all y; for j < £, where {4 > s and g is defined on a finite subset
I, of N so that (®) is 1:1 function onto I and for all j < £, (Oc s(y;), k) is
isomorphic to (¥ (Oc s (y;)), 9)-

First look for an e < s+1 such that ¢, s is 1:1 on its domain, there currently
are no elements with A, markers, and there is a j < s such that j € ran(q)

26

and either ¢, s(y;) maps to an element outside of I, or to an element of I,
which does not have a I'; marker on it or a A; marker on it for some i < j.
If no such e exists, then set f,41 = 1 + £5 and use elements from an initial
segment of elements of N — Iy and define g on those elements to create a g-
orbit which is isomorphic to O¢ s11(ye,+1). Define T on Oc¢,s+1(Ye +1) so
that it is an isomorphism which sends y, 41 to the least element of the cycle
of that orbit, and the map from any trees that feed into the cycle of yp, 41 is
the canonical map to the corresponding tree in the cycle of 1+ (y, ;). Put
['s. 11 markers on the elements of this new g-orbit. Then let 1)(5T1) = (%) on
U i<s Oc s(y;). Finally, for all j < £, use elements from an initial segment of

N—(I,upt(Oc s11(yst1))) and define g on those elements so that the g-orbit
of 9(*)(y;) is isomorphic to O¢ s41(y;). Put T'; markers on these new elements
in the image ¥*TY(O¢ s+1(y;)) and define ¥**Y on O¢ s11(y;) — Oc.s(y;) s0
that 1(*+1 restricted to O s+1(y;) is an isomorphism to the g-orbit of ¥(*)(y;).

If such an e exists, then let e511 be the least such e. Then we have two cases.

Case 1. ¢¢ s(Ye,,,) & Ls.

In this case, we use an initial segment of elements in N — Iy — {¢e s(¥e,,,)}
and define g on those elements and ¢e s(ye,,,) to create an g-orbit which is
isomorphic to Dy, 1) where ¢ s(ye,,) plays the role of the least element in
the cycle of Dy(g, +1). Put A, 41 markers on this orbit. Let £,41 = 1+q(4s+1).
Similarly, for each j where /5, < j < f541, we use new elements from an initial
segment of elements which have not been used up to this point and define g
on those elements to create g-orbits which are isomorphic to O¢ s41(y;) and
put I'; markers on these new elements. Define 1/**1) on Oc(ye,,,) so that it
is an isomorphism which sends y¢, ., t0 ¢e s(Ve,), and the map from any tree
that feeds into the cycle of y; is the canonical map to the corresponding tree in
the cycle of Y+ (y._,). Put A, , markers on the elements of the g-orbit of
PEY (ye . ,). Similarly, for £, < j < £y41, define ¢*TV(y;) to be the least ele-
ment in the cycle of the new g-orbit we created to be isomorphic to O¢ s41(y;),
and the map from any tree that feeds into the cycle of y; is the canonical map
to the corresponding tree in the cycle of the g-orbit that we created to be iso-
morphic to O¢ s4+1(y;). Then let P+ = () on Uj<s Oc s(y;). Finally, for
all j </, take elements from an initial segment of N which have not been used
up to this point and define g on those elements so that the g-orbit of w(s)(yj)
is isomorphic to O¢ s41(y;). Put I'; markers on the new elements in the image
(O s41(y;)) and define ¢CF on O s41(y;) — Oc,s(y;) so that ¢p(+D
restricted to O¢_s41(y;) is an isomorphism to the g-orbit of (%) (y;).

Case 2. ¢ s(Ye,) € Is.
Consider the current g-orbit O of ¢ s(ye,.,). If ¥(®) induces an embedding
of O into D, ,, then use an initial segment of N — I to add new elements
and define g to extend O to an orbit which is isomorphic to Dy, 41). Put
A

esy; Mmarkers on all elements of this new Dg y1)-orbit. Define P+ on

27

Oc(Yq(,+1)) so that it is an isomorphism from (O¢(yg(s,+1)), h) onto this new
g-orbit of ¢e s(ye,,). Now if the elements of O had I, markers on them for some
r where esy1 < r < {4, then remove all those I', markers. Then use these now
unmarked elements for initial segments of those elements that have currently
not been used in the construction, and define g on those elements to create
a new copy of O¢ s+1(yr). Then define Pt on Oc¢,s+1(yr) so that it is an
isomorphism which sends y, to the least element of the cycle of the new g-orbit,
and the map from any tree that feeds into the cycle of y; is the canonical map
to the corresponding tree in the cycle of 1tV (y,.). Set 411 = q(fs + 1). Also
use an initial segment of those elements that have currently not been used in
the construction up to this point and define g on those elements to create a new
copy of Oc s+1(y;) for all i such that ¢, < ¢ < €441. Define D on Oc s+1(¥:)
so that it is an isomorphism which sends y; to the least element of the cycle of
the new g-orbit isomorphic to O¢ s+1(y;), such that the map from any tree that
feeds into the cycle of y; is the canonical map to the corresponding tree in the
cycle of 51 (y;). Also put T'; markers on the new g-orbit of 15+ (y;). Then
let (5t = 4)() on Uje{o sh—{r} Oc,s(y;). Finally, for all j <s, j & ran(q),
take elements from an initial segment of elements that have not currently been
used in the construction and define g on those elements so that the g-orbit of
¥ (y;) is isomorphic to O¢ sy1(y;). Put T'; markers on the new elements in
the image 1**Y (O¢ s11(y;)) and define ¥ on O¢ 41 (y;) — Oc.s(y;) so that
5+ restricted to Oc,s+1(y;) is an isomorphism to the g-orbit of qp(s)(yj).

If ¢(*) does not induce an embedding of O into D, ,, then O is inconsistent
with having its pre-image under ¢(*) isomorphic to De,,,. In this case, put
A, ., markers on all the elements of O. Then set £,y = {5 + 1. Next use
elements from an initial segment of elements of N — Iy and define g on those
elements to create a g-orbit which is isomorphic to Oc¢ sy1(ye,+1) and define
1/)(5+1) on Oc¢ s+1(ye,+1) so that it is an isomorphism which sends yg, 11 to the
least element of the cycle of the orbit. and the map from any tree that feeds
into the cycle of y; is the canonical map to the corresponding tree in the cycle
of ¥+ (ysy1). Put Ty, 41 markers on the elements of this new g-orbit. Then
let G+ = () on Ujgs Oc s(y;). Finally, for all j <'s, j & ran(q), use ele-
ments from an initial segment of N — (I, U+ (Oc s11(ys41))) and define g
on those elements so that the g-orbit of (%) (y;) is isomorphic to Oc s+1(y;)-
Put I'; markers on the new elements in image of ¥**Y(O¢ 51 (y;)) and define
P+t on Oc s41(yj) — Oc.s(y;) so that ¥(5TY restricted to Oc si1(y;) is an
isomorphism to the g-orbit of 1) (y;).

This completes the construction. It is easy to see that each step is effective
and, hence, g is computable since we never change the value of g(z) for any z.
Next observe that if esyq is defined, then es11 € ran(g) and our action
ensures that ¢c_ ., (Ye,,,) has a B-orbit which is not isomorphic to D,_, . Thus
¢ can not be an isomorphism from C onto . Moreover, we will never remove

the A._,, markers that we placed at stage s+ 1, which means that we will never

28

take an action to meet the requirement P, , after stage s + 1.

It is a straightforward induction to show that for each y; such that j > 0,
the limy_,o 1) (z) = 9(x) exists for * € Oc(y;) and that 1 restricted to
(Oc(y;), h) is an isomorphism on Op(¢(y;)). That is, we can only be forced to
have ¥(®) (z) # 1+ (z) for any = € Oc s(y;) for an s > j if we are taking an
action to meet a requirement P, for e < j. Since we can only take an action for
P, once, it follows that there will be a ¢ large enough so that O¢ +(y;) = Oc(y;)
and) (x) =) () for all s >t and = € Oc(y;). By the construction, at each
stage s > 7, () is an isomorphism from (Oc s(y;),h) to () (Oc.s(y;)),9)-
Thus 9 is an isomorphism form (O¢(y;), k) onto ¥((Oc¢(y;)), g)-

Thus the only thing that we need to do to show that B is not computably
isomorphic to C is to show that we satisfy all the requirements P.. Suppose for
a contradiction, that ¢, is an isomorphism from B into C. Then there will be
a stage t large enough so that: (i) we never take any action for a requirement
P; with ¢ < e after stage t, (ii) Oc+(y;) = Oc(y;) for all j < e, (iii) for all
j < e,) (x) = O (x) for all 2 € O¢(y;), and (iv) det(y,) is defined for all
r<1+3 .. card(Oc(y;)). Since we are assuming that ¢ is an isomorphism
from C to B, there must be y; in the range of ¢ such that ¢.(y;) maps to an
element which does not have a I', marker on it for any r < e. But then y; could
be used to satisfy the requirement P, at stage t + 1. Thus either e;11 = e, in
which case we take an action at stage s + 1 to ensure that Op(¢.(y;)) is not
isomorphic to O¢(y;), or there is an s < ¢ such that e; = e. In either case, our
construction ensures that Og(¢e(y;)) is isomorphic to O¢(y;). Thus there can
be no such e and, hence, B is not computably isomorphic to C.

O

Next we give two simple examples where, even though we are given quite a bit
of information about the possible isomorphism types of k-cycles in a computable
(2,0):1 structure A, there still exists a computable (2,0):1 structure which is
isomorphic to A but is not computably isomorphic to A.

For the first example, we construct locally finite computable (2,0):1 struc-
tures A = (N, f) and B = (N, g) such that: (i) Fin(A) = Fin(B) = N, (ii) A
and B are isomorphic but not computably isomorphic, and (iii) for any k > 1,
there are only two types of k-cycles ((co,...,ck—1), (To,-..,Tk—1)), one, which
we shall call Ej, where all the T; are one-element binary trees and one, which
we shall call Fj, where all the trees T; are three-element binary trees. Thus, for
example, F4 and F, are pictured in Figure 10.

In fact, we can construct A = (N, f) and B = (N, g) so that for each k¥ > 1,
A and B have exactly one k-cycle isomorphic to Ej, and either 1 or 2 k-cycles
which are isomorphic to Fj such that 4 and B are not computably isomorphic.

The construction of A and B is quite easy. That is, on the even num-
bers E, define f and g so that we have computable (2,0):1 structures which

have exactly one copy of Ex = ((c&,...,cf), (T&,...,TF |)) and one copy

of Fy = ((dk,...,d%), (Sk,...,SE_|)) for each k > 1. Thus each T/ is a
one-element tree and each S7 is a three element binary tree. Then for each k,
attempt to compute ¢y, (ck). We then have two cases.

29

K

Figure 10: The cycle types E4 and Fj.

Case 1. ¢p(ck) | and ¢p(ck) € {ck, ..., |}

In this case, we will use new elements from the odd numbers and define f on
these odd numbers to extend ((cf,...,ck), (TF,...,TF |)) to a cycle of type
F.. We shall then use new odd numbers and define f on these numbers to create
a new cycle of type Ej in A. We will also use new odd numbers and define g on
those numbers to create a new cycle of type Fj. This will ensure that ¢. cannot
be an isomorphism from 4 onto B since ¢ will map an element of a k-cycle of
type F}j into a k-cycle of type Ej. Thus in this case, A and B will have one
k-cycle of type Ej and two k-cycles of type Fj.

Case 2. ¢i(ck) 1, or ¢r(ck) | and ¢p(ck) & {ck,...,cF_}.

In this case, we do nothing to the k-cycles in A or B. Then we know that ¢y
cannot be an isomorphism from A onto 5. In this case, both A and B will have
one k-cycle of type Ei and one k-cycle of type F.

Note that there are infinitely many k such that ¢ is the identity so that
we will be in Case 1 infinitely often and, hence, f and g will be defined on all
of N. It is easy to see that A = (N, f) and B = (N, g) are computable (2,0):1
structures such that A and B are isomorphic but not computably isomorphic.

Next we construct similar examples of locally finite (2,0):1 structures A =
(N, f) and B = (N, g) such that: (i) Fin(A) = Fin(B) = N, (ii) A and B are
isomorphic but not computably isomorphic, and (iii) for any k > 1, there are
exactly two types of k-cycles where either the two cycle types are Fy and Fj
or the cycle types are Fj, and Gy = ((bf,...,b%), (RE,...,RF_)), where each
Rf is a complete binary tree of height 2. For example, G4 is pictured in Figure
11.

30

G,

Figure 11: The cycle type Gy4.

The construction of A and B is very similar. That is, on the even num-
bers E, define f and g so that we have computable (2,0):1 structures which
have exactly one copy of Ex = ((c&,...,cf 1), (T&,...,TF |)) and one copy
of Fy = ((d,...,d¥_,),(Sk,..., Sk |)) for each k > 1. Thus each TV is a
one-element tree and each Sf is al three-element binary tree. Then for each k,
attempt to compute ¢y, (cf). We then have two cases.

Case 1. ¢i(ck) | and ¢y (ck) € {ck, ... cF_}.

In this case, we will use new elements from the odd numbers and define f on
these odd numbers to extend ((cf,...,ck), (TF,...,TF |)) to a cycle of type
G,. We will also use new odd numbers and define g on those numbers to extend
the cycle type of Ej to Fy and the cycle type of Fj, to Gj. This will ensure that
¢ cannot be an isomorphism from .4 onto B since ¢ will map an element of
a k-cycle of type G into a k-cycle of type Fj. Thus in this case, A and B will
have one k-cycle of type F} and one k-cycle of type Gj.

Case 2. ¢p(ck) 1, or ¢r(ck) | and ¢p(ck) & {ck,...,cF_}.

In this case, we do nothing to the k-cycles in A or B. Then we know that ¢y
cannot be an isomorphism from A onto B. In this case, both A and B will have
one k-cycle of type Ei and one k-cycle of type Fj.

Note that there are infinitely many k such that ¢ is the identity so that
we will be in Case 1 infinitely often and, hence, f and g will be defined on all
of N. It is easy to see that A = (N, f) and B = (N, g) are computable (2,0):1
structures such that A and B are isomorphic but not computably isomorphic.

Next, we will briefly consider A9- and AY-categoricity of (2,0) : 1 structures.
We have the following corollary to the proof of Theorem 3.1.

Theorem 4.3. Any computable locally finite (2,0):1 structure with only finitely
many w-chains is AY-categorical.

31

Proof. Observe that ran(f) is a c.e. set. Thus the isomorphism constructed as

in the proof of Theorem 3.1 will be computable in an 0’ oracle and is therefore
AY. O

Next we consider structures which are not AY-categorical.

Theorem 4.4. There is a computable locally finite (2,0):1 structure A, con-
sisting of infinitely many w-chains with attached finite trees, which is not AY-
categorical.

Proof. Let Ty be the one-element binary tree and 77 be the three-element binary
tree. We let Ay = (N, f) be a computable (2,0):1 structure that consists a single
w chain that starts at ag, has a; = f(ag) for i > 1 and elements {by,bs,...}
disjoint from {ag, a1, as,...} such that f(b;) = a; where Tree, (b;) is isomor-
phic to T if 1 <4 < k and is isomorphic to Tj if ¢ > k. For example, the graphs
of Ag and Ajs are pictured in rows 1 and 2, respectively, in Figure 12. We let
As = (N, f) be a computable (2,0):1 structure that consists a single w-chain
that starts at ag, has a; = f%(ag) for i > 1 and elements {b;,bs,...} disjoint
from {ag, a1, as,...} such that f(b;) = a; where Tree4, (b;) is isomorphic to T}
for all ¢ > 1. The graph of A, is pictured at the bottom of Figure 12.

Figure 12: The w-chains Ag, A3z and A.

The desired computable structure A will consist of infinitely many copies
of A,, for each n, and infinitely many copies of A,,. Clearly,+ there is a
computable copy A = (E, f) where E is the set of even numbers such that for
each n, the orbit of 4(n,k + 1) is of the form Ay if k¥ > 0 and is of the form
A if k = 0. In this case, the set of n such that O 4(4n) is isomorphic to A
is computable.

Now we can build a computable (2,0):1 structure B = (N, g) which is isomor-
phic to A such that the representatives of the orbits of B are {4(n, k) : n,k > 0}

32

but for which the set of
{4(n, k) : Op(4(n, k)) is isomorphic to A}

is a I19-complete set, as follows. Let Inf = {e : W, is infinite} be the usual
[9-complete set. Let g = f on the even numbers E. If (n, k) is not of the form
(e, 1), then O4(4(n,k)) = Op(4(n,k)). We then use odd numbers to define the
orbits Op(4(e,1)). Originally, the orbit O.(4(e, 1)) looks like Ay so assume
that A is defined such that the chain starts at a§ = 4(e, 1) and f%(a§) = a¢ and
b¢ is the element in the orbit different from a$_; such that f(bS) = af. Then
whenever a new element appears in W, at stage s, extend tree(b$) from Ty to
T3, if necessary, for each ¢ < s. If W, is infinite, then it is clear that Op(4(e, 1))
will be isomorphic to As. If W, is empty, then Op(4(e, 1)) will be isomorphic
to Ap. Finally, if W, is finite, then Op(4(e, 1)) will be isomorphic to A for some
s > 1. Since there are infinitely many e such that W, is empty, there will be
infinitely many e such that Op(4{e, 1)) is isomorphic to Ag. Moreover, e € Inf
if and only if Op(4(e, 1)) is isomorphic to A. Hence, the set of 4(n, k) such
that Og(4(n, k)) is isomorphic to A, is a II3-complete set.

We claim that B cannot be AY-isomorphic to A. That is, if ¢ is a AY
isomorphism from A onto B, then we can decide whether Og(4(n,k)) is iso-
morphic to Ay by finding = ¢~1(4(n,k)) and then computing f until we
find that x € O4(4(r,s)). It would then follow that the set of 4(n,k) such
that Op(4(n,k)) is isomorphic to A is a AJ set. Thus the two computable
structures A and B are isomorphic, but not AY-isomorphic. O

For our final result, we first need to consider the isomorphism problem for
orbits.

Proposition 4.5. Let A be a computable locally finite (2,0):1 structure. Then
1. {(a,b) : O(a) is isomorphic to O(b)} is £, and

2. {(a,b) : O(a) is isomorphic to O(b) where the isomorphism maps a to b}
is 119.

Proof. First note that O(a) is finite if and only if f™**(a) = f™(a) for some a,
so that this is a X9 relation. Given that A is locally finite, we can then use 0 as
an oracle to test whether O(a) is finite and, if it is finite, then we can again use
0’ as an oracle to compute O(a). Then given two such orbits O(a) and O(b),
we can simply inspect them to see whether they are isomorphic.

Given a and b such that O(a) and O(b) are infinite, we can use an oracle
for 0’ to compute the sequences tree(f*(a)) and tree(f*(b)). Then there is an
isomorphism from O(a) to O(b) mapping a to b if and only if tree(f*(a)) and
tree(fi(b)) are isomorphic for each i. So this is a I question. Then O(a) is
isomorphic to O(b) if and only if there exist x € O(a) and y € O(b) such that
there is an isomorphism mapping z to y. O

Theorem 4.6. Every computable locally finite (2,0):1 structure is A-categorical.

33

Proof. Let A and B be two isomorphic computable locally finite (2,0):1 struc-
tures. We can use 0” as an oracle to compute an isomorphism H from A onto
B as follows. First enumerate a sequence of representatives of the orbits of
A, starting with ap = 0 and letting a,4+1 be the least element of A not in
the orbit of a; for any ¢ < n, and we can similarly compute by, b1,... so that
B =J; O(b;). Since we know that B contains an orbit isomorphic to O(ap), we
can compute using 0” an element b = H(ag) such that there is an isomorphism
of O(ap) to O(b) mapping ag to b. Now let Ag = O(ag) and let By = O(b).
The construction of H continues by a back-and-forth argument. At stage 2s,
we will have a partial isomorphism Hg from a subset Ass of A onto a subset
B of B, so that for all i < s, a; € Ass and b; € Bys. Now at stage 2s + 1,
we check to see whether ass41 € Ags and if not, we find the least b not in Bag
such that there is an isomorphism h mapping O(ags+1) to O(b). Then we let
Agsy1 = Ags U O(agsy1) and let Bagy1 = Bag U O(b) and extend the mapping
Hsys to Hasy1 by adding this isomorphism h to Hos. Similarly, at stage 2s + 1,
we check to see whether bys1 1 € Bos and if not, we find the least a not in Ay
such that there is an isomorphism h mapping O(bes 1) to O(a) and extend the
isomorphism as above. O

For any k > 3, we define a k : 1 structure A = (A4, f) to consist of a function
f where for all z € A, f~1(z) is a size k and (k,0) : 1 structure A = (A, f) to
consist of function f where for all x € A, f~!(z) is either of size k or empty.
It should be clear that we can prove analogues of all our results for k£ : 1 and
(k,0) : 1 structures.

References

[1] C. Ash and J. Knight, Computable Structures and the Hyperarithmetical
Hierarchy, Elsevier, Amsterdam, 2000.

[2] W. Calvert, D. Cenzer, V. Harizanov, and A. Morozov, Effective categoric-
ity of equivalence structures, Annals of Pure and Applied Logic 141 (2006),
pp. 61-78.

[3] D. Cenzer, V. Harizanov and J.B. Remmel, ¥¢ and IIY equivalence struc-
tures, Ann. Pure and Applied Logic 162 (2011), pp. 490-503.

[4] D. Cenzer, V. Harizanov, and J.B. Remmel, Effective categoricity of in-
jection structures, in Models of Computation in Context, CIE 2011, B.
Loewe, D. Normann, I. Soskov, A. Soskova, editors, Springer Lecture Notes
in Computer Science 6735 (2011), pp. 51-60

[5] D. Cenzer, V. Harizanov, and J.B. Remmel, Computability-theoretic prop-
erties of injection structures, to appear in Algebra and Logic.

[6] D. Cenzer, G. LaForte, and J.B. Remmel, Equivalence structures and iso-
morphisms in the difference hierarchy, Journal of Symbolic Logic 74 (2009),
pp- 535-556.

34

[7]

D. Cenzer, V. Harizanov and J.B. Remmel, ¥¢ and I1{ equivalence struc-
tures, in Mathematical Theory and Computational Practice, CIE 2009, K.
Ambos-Spies, B. Loewe and W. Merkle, editors, Springer Lecture Notes in
Computer Science, vol. 5635 (2009), pp. 99-108.

D. Cenzer and J.B. Remmel, Feasibly categorical abelian groups, Feasi-
ble Math II, Proceedings 1992 Cornell Workshop, eds. P. Clote and J.B.
Remmel, Birkhauser (1995), pp. 91-153.

N.G. Khisamiev, Constructive Abelian groups, in: Yu. L. Ershov, S.S. Gon-
charov, A. Nerode, and J.B. Remmel, editors, Handbook of Recursive Math-
ematics, vol. 2 (North-Holland, Amsterdam, 1998), pp. 1177-1231.

S. Lempp, C. McCoy, R. Miller and R. Solomon, Computable categoricity
of trees of finite height, J. Symbolic Logic 70 (2005), pp. 151-215.

R.I. Soare, Recursively Enumerable Sets and Degrees, (Springer, Berlin,
1987).

35

