Two-to-One Structures

Douglas Cenzer, Department of Mathematics
University of Florida, Gainesville, FL 32611
email: cenzer@math.ufl.edu
Valentina Harizanov, Department of Mathematics
George Washington University, Washington, DC 20052
email: harizanv@gwu.edu
Jeffrey B. Remmel, Department of Mathematics
University of California-San Diego, La Jolla, CA 92093
email: jremmel@ucsd.edu

Abstract

We investigate computability-theoretic properties of computable structures with single unary functions f such that, for every x in the image, $f^{-1}(x)$ has exactly two elements, which we call $2: 1$ structures. We also investigate structures for which $f^{-1}(x)$ has either exactly two or zero elements, which we call $(2,0): 1$ structures. In particular, we are interested in the complexity of isomorphisms between these structures. We prove that a computable $2: 1$ structure \mathcal{A} is computably categorical if and only if \mathcal{A} has only finitely many \mathbb{Z}-chains. We show that every computable $2: 1$ structure is Δ_{2}^{0}-categorical. We further investigate computable and higher level categoricity of various natural subclasses of (2,0):1 structures, including highly computable and locally finite strufctures.

Keywords: computability theory, two-to-one functions, injections, effective categoricity, locally finite structures, trees, chains

1 Introduction and Preliminaries

Computable model theory uses the concepts and methods of computability theory to explore algorithmic content of constructions in various areas of classical mathematics. In this paper we are interested in the complexity of isomorphisms between a computable structure and its isomorphic copies. The main notion in this area of investigation is that of computable categoricity. We say that a computable structure \mathcal{A} is computably categorical if for every computable structure \mathcal{B} isomorphic to \mathcal{A}, there exists a computable isomorphism from \mathcal{A} onto \mathcal{B}. This

[^0]concept has been part of computable model theory since the mid-1950s. Here we continue our investigation of computable and higher level categoricity begun in $[4,5]$, where we investigated computable structures with single one-to-one functions. We first review some notation.

Let $\mathbb{N}=\{0,1,2, \ldots\}$ denote the natural numbers and $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ denote the integers. We let ω denote the order type of \mathbb{N} under the usual ordering and Z denote the order type of \mathbb{Z} under the usual ordering. In what follows, we restrict our attention to countable structures for computable languages. Hence, if a structure is infinite, we can assume that its universe is \mathbb{N}. We recall some basic definitions. If \mathcal{A} is a structure with universe A for a language \mathcal{L}, then \mathcal{L}^{A} is the language obtained by expanding \mathcal{L} by constants for all elements of A. The atomic diagram of \mathcal{A} is the set of all quantifier-free sentences of \mathcal{L}^{A} true in \mathcal{A}. A structure \mathcal{A} is computable if its atomic diagram is computable. We call two structures computably isomorphic if there is a computable function that is an isomorphism between them. A computable structure \mathcal{A} is relatively computably isomorphic to a possibly noncomputable structure \mathcal{B} if there is an isomorphism between them that is computable in the atomic diagram of \mathcal{B}. A computable structure \mathcal{A} is computably categorical if every computable structure that is isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A}. A computable structure \mathcal{A} is relatively computably categorical if every structure that is isomorphic to \mathcal{A} is relatively computably isomorphic to \mathcal{A}. A structure \mathcal{A} is relatively computably categorical if and only if \mathcal{A} has a c.e. Scott family consisting of only existential formulas. A Scott family for a structure \mathcal{A} is a countable family Ψ of $L_{\omega_{1} \omega^{-}}$ formulas with finitely many fixed parameters from A such that: (i) each finite tuple in \mathcal{A} satisfies some $\psi \in \Psi$; and (ii) if \bar{a}, \bar{b} are tuples in \mathcal{A}, of the same length, satisfying the same formula in Ψ, then there is an automorphism of \mathcal{A}, which maps \bar{a} to \bar{b}. See $[1]$ for details.

Similar definitions arise for other naturally definable classes of structures and their isomorphisms. For example, for any $n \in \omega$, a structure is Δ_{n}^{0} if its atomic diagram is Δ_{n}^{0}, two Δ_{n}^{0} structures are Δ_{n}^{0}-isomorphic if there is a Δ_{n}^{0} isomorphism between them, and a computable structure \mathcal{A} is Δ_{n}^{0}-categorical if every computable structure that is isomorphic to \mathcal{A} is Δ_{n}^{0} - isomorphic to \mathcal{A}. The notions and notation of computability theory are standard and as in Soare [11].

Among the simplest nontrivial structures are equivalence structures, i.e., structures of the form $\mathcal{A}=(\omega, E)$ where E is an equivalence relation. The study of the complexity of isomorphisms between computable equivalence structures was carried out by Calvert, Cenzer, Harizanov, and Morozov in [2] where they characterized computably categorical and also relatively Δ_{2}^{0}-categorical equivalence structures. Cenzer, LaForte, and Remmel [6] extended this work by investigating equivalence structures in the Ershov hierarchy. More recently, Cenzer, Harizanov and Remmel [3] studied Σ_{1}^{0} and Π_{1}^{0} equivalence structures.

For any equivalence structure \mathcal{A}, we let $\operatorname{Fin}(\mathcal{A})$ denote the set of elements of \mathcal{A} that lie in finite equivalence classes. For equivalence structures, it is natural to consider the different sizes of the equivalence classes of the elements in $F i n^{\mathcal{A}}$ since such sizes code information into the equivalence relation. The character
of an equivalence structure \mathcal{A} is the set
$\chi(\mathcal{A})=\{(k, n): n, k>0$ and \mathcal{A} has at least n equivalence classes of size $k\}$.
This set provides a kind of skeleton for $\operatorname{Fin}(\mathcal{A})$. Any set $K \subseteq(\omega-\{0\}) \times(\omega-\{0\})$ such that for all $n>0$ and $k,(k, n+1) \in K$ implies $(k, n) \in K$, is called a character. We say a character K is bounded if there is some finite k_{0} such that for all $(k, n) \in K, k<k_{0}$. Khisamiev [9] introduced the concepts of s-functions and s_{1}-functions as a means of computably approximating the characters of equivalence relations.

Definition 1.1. Let $f: \omega^{2} \rightarrow \omega$. The function f is an s-function if the following hold:

1. for every $i, s \in \omega, f(i, s) \leq f(i, s+1)$;
2. for every $i \in \omega$, the limit $m_{i}=\lim _{s} f(i, s)$ exists.

We say that f is an s_{1}-function if, in addition:
3 . for every $i \in \omega, m_{i}<m_{i+1}$.
Calvert, Cenzer, Harizanov and Morozov [2] gave conditions under which a given character K can be the character of a computable equivalence structure. In particular, they observed that if K is a bounded character and $\alpha \leq \omega$, then there is a computable equivalence structure with character K and exactly α infinite equivalence classes. To prove the existence of computable equivalence structures for unbounded characters K, they needed additional information given by s - and s_{1}-functions. They showed that if K is a Σ_{2}^{0} character, $r<\omega$, and either
(a) there is an s-function f such that

$$
(k, n) \in K \Leftrightarrow \operatorname{card}\left(\left\{i: k=\lim _{s \rightarrow \infty} f(i, s)\right\}\right) \geq n \text { or }
$$

(b) there is an s_{1}-function f such that for every $i \in \omega,\left(\lim _{s} f(i, s), 1\right) \in K$, then there is a computable equivalence structure with character K and exactly r infinite equivalence classes.

In [4] and [5], we studied injection structures. Here an injection is just a one-to-one (1:1) function and an injection structure $\mathcal{A}=(A, f)$ consists of a set A and an injection $f: A \rightarrow A . \mathcal{A}$ is a permutation structure if f is a permutation of A. Given $a \in A$, the orbit $\mathcal{O}_{f}(a)$ of a under f is

$$
\mathcal{O}_{f}(a)=\left\{b \in A:(\exists n \in \mathbb{N})\left(f^{n}(a)=b \vee f^{n}(b)=a\right)\right\} .
$$

The order $|a|_{f}$ of a under f is $\operatorname{card}\left(\mathcal{O}_{f}(a)\right)$. Clearly, the isomorphism type of a permutation structure \mathcal{A} is determined by the number of orbits of size k for $k=1,2, \ldots, \omega$. By analogy with characters of equivalence structures, we define the character $\chi(\mathcal{A})$ of an injection structure $\mathcal{A}=(A, f)$ by

$$
\chi(\mathcal{A})=\{(n, k): \mathcal{A} \text { has at least } n \text { orbits of size } k\} .
$$

Injection structures (A, f) may have two types of infinite orbits, \mathbb{Z}-orbits which are isomorphic to (\mathbb{Z}, S) in which every element is in the range of f, and ω-orbits,
which are isomorphic to (ω, S) and have the form $\mathcal{O}_{f}(a)=\left\{f^{n}(a): n \in \mathbb{N}\right\}$ for some $a \notin \operatorname{ran}(f)$. Thus injection structures are characterized by the number of orbits of size k for each finite k and by the number of orbits of types \mathbb{Z} and ω.

It is clear from the definitions above that any computable injection structure (A, f) will induce a Σ_{1}^{0} equivalence structure (A, E) in which the equivalence classes are simply the orbits of (A, f).

In [4], we investigated algorithmic properties of computable injection structures and their characters, characterized computably categorical injection structures, and showed that they are all relatively computably categorical. We proved that a computable injection structure \mathcal{A} is computably categorical if and only if it has finitely many infinite orbits. We also characterized Δ_{2}^{0}-categorical injection structures as those with finitely many orbits of type ω, or with finitely many orbits of type \mathbb{Z}. We showed that they coincide with the relatively Δ_{2}^{0}-categorical structures. Finally, we proved that every computable injection structure is relatively Δ_{3}^{0}-categorical.

In this paper, we consider structures of the form $\mathcal{A}=(A, f)$ where f : $A \rightarrow A$ is a function such that $\operatorname{card}\left(f^{-1}(x)\right)=2$ for all $x \in A$, which we call 2:1 structures or where $\operatorname{card}\left(f^{-1}(x)\right) \in\{0,2\}$ for all x, which we call $(2,0): 1$ structures.

We shall often identify a structure $\mathcal{A}=(A, f)$ with its directed graph $G(A, f)$ which has vertex set A and where the edge set consists of all pairs $(i, f(i))$ for $i \in A$. Given any $a \in A$, we let the orbit of $O_{\mathcal{A}}(a)$ consist of the set of all points in A which lie in the connected component of $G(A, f)$ containing a. Thus $O_{\mathcal{A}}(a)=\left\{y \in A:(\exists n)\left(f^{n}(y)=a\right) \vee(\exists m, n)\left(f^{n}(y)=f^{m}(a)\right)\right\}$.

Let B be the infinite complete binary tree with all edges directed toward the root. In fact, it will be useful for later proofs to have a canonical version of B in mind. We shall think of B as a directed graph on the vertex set $\mathbb{N}-\{0\}$. The root of B will be 1 and the nodes at the height n, will be $2^{n}, 2^{n}+1, \ldots, 2^{n+1}-1$. For $n \geq 1$, the $(2 k)$-th and $(2 k+1)$ st nodes at height n will have edges to the k-th element of height $n-1$. Thus the first few levels of the tree B are pictured in Figure 1.

Figure 1: The canonical infinite binary tree B.
It is easy to see that there are two types of orbits in a $2: 1$ structure $\mathcal{A}=$ (A, f). That is, there are \mathbb{Z}-chains as pictured in Figure 2 and there are cycles as pictured in Figure 3. Here a \mathbb{Z}-chain in a $2: 1$ structure consists of \mathbb{Z}-chain where there is a copy of the binary tree B attached to each point in the \mathbb{Z}-chain. A k-cycle consists of a directed cycle of size k where there is a copy of the binary
tree attached to each element in the cycle.

Figure 2: A \mathbb{Z}-chain of a 2:1 function.

Figure 3: A 4-cycle of a 2:1 function.
The orbits of $(2,0): 1$ structures are similar, except there are now three types of orbits. There are \mathbb{Z}-chains, like those pictured in Figure 4, except now a tree B_{i}, attached to a node of a \mathbb{Z}-chain, can be any binary tree with all edges directed to the root. There are k-cycles, like those pictured in Figure 5, except now a tree B_{i} can be any binary tree with all edges directed toward the root. Finally, there are ω-chains, like those pictured in Figure 6, each consisting of an ω-chain where all but the first element in each orbit has some binary tree B_{i} attached.

Figure 4: A \mathbb{Z}-chain of a $(2,0): 1$ function.

If $\mathcal{A}=(A, f)$ is a $2: 1$ structure or a $(2,0): 1$ structure and $a \in A$, then we let $\operatorname{tree}_{\mathcal{A}}(a)=\left\{y \in A:(\exists n)\left(f^{n}(y)=x\right)\right\}$ and $\operatorname{Tree}_{\mathcal{A}}(a)$ be the graph whose vertex set is $\operatorname{tree}_{\mathcal{A}}(a)$ and whose edge set consists of the set of $(x, f(x))$ such that both x and $f(x)$ are in $\operatorname{tree}_{\mathcal{A}}(a)$. We let $\operatorname{tree}_{\mathcal{A}}(a, m)=\left\{y \in A:(\exists n \leq m)\left(f^{n}(y)=x\right)\right\}$ and $\operatorname{Tree}_{\mathcal{A}}(a, m)$ denote the graph of $\operatorname{Tree}_{\mathcal{A}}(a)$ restricted to the vertex set $\operatorname{tree}_{\mathcal{A}}(a, m)$. In a $2: 1$ structure $\mathcal{A}=(A, f), \operatorname{Tree}_{\mathcal{A}}(a)$ is always isomorphic to the infinite complete binary tree B, unless a is an element of a k-cycle, in which

Figure 5: A cycle of a $(2,0): 1$ function.

Figure 6: A ω-chain of a $(2,0): 1$ function.
case $\operatorname{tree}_{\mathcal{A}}(a)=O_{\mathcal{A}}(a)$. It is clear from the definitions that if $\mathcal{A}=(A, f)$ is a computable structure, then $O_{\mathcal{A}}(a)$ and tree $_{\mathcal{A}}(a)$ are Σ_{1}^{0} sets.

We shall often identify finite sets $S \subseteq \mathbb{N}$ with their canonical indices $\operatorname{can}(S)$ where $\operatorname{can}(\emptyset)=0$ and $\operatorname{can}(S)=2^{x_{1}}+\cdots+2^{x_{k}}$ if $S=\left\{x_{1}<\cdots<x_{k}\right\}$. Thus when we write that $S=\operatorname{tree}_{\mathcal{A}}(a, n)$ is a $2: 1$ structure or a $(2,0): 1$ structure $\mathcal{A}=(A, f)$, we mean that $\operatorname{can}(S)=\operatorname{can}\left(\operatorname{tree}_{\mathcal{A}}(a, m)\right)$. In a computable 2:1 structure $\mathcal{A}=(A, f)$, the predicate $S=\operatorname{tree}_{\mathcal{A}}(a, m)$ is a computable predicate if S a finite set and $m \geq 1$. That is, in a $2: 1$ structure, $\operatorname{Tree}_{\mathcal{A}}(a, m)$ is always a complete binary tree of height m if a is not an element of a k-cycle where $k \leq m$, so that we can enumerate all the pairs $(i, f(i))$ with $i \in A$ until we find all the elements of $\operatorname{tree}_{\mathcal{A}}(a, m)$. If a is part of a k-cycle $\left(a, f(a), \ldots, f^{k-1}(a)\right)$ with $k \leq m$, then let d_{i} be the unique element which in not in the cycle such that $f\left(d_{i}\right)=f^{i}(a)$ for $i=0, \ldots, k-1$. Then $\operatorname{tree}(a, m)$ consists of the elements $a, f(a), \ldots, f_{k-1}(a)$ plus the elements the trees $\operatorname{Tree}\left(d_{0}, m-1\right)$, $\operatorname{Tree}\left(f^{k-1}, m-\right.$ $2)$, $\operatorname{Tree}\left(f^{k-2}, m-3\right), \ldots, \operatorname{Tree}(f(a), m-k)$. Thus the sets $\operatorname{tree}_{\mathcal{A}}(a, m)$ are uniformly computable. Hence we can effectively decide if $S=\operatorname{tree}_{\mathcal{A}}(a, m)$. However, in a computable $(2,0): 1$ structure, $S=\operatorname{tree}_{\mathcal{A}}(a, m)$ is a Π_{1}^{0} predicate. That is, $S=\operatorname{tree}(a, m)$ if and only if

$$
(\forall y \in S)(\exists n \leq m)\left(f^{n}(y)=a\right) \wedge(\forall y)(\forall n \leq m)\left(f^{n}(y)=a \Rightarrow y \in S\right)
$$

In Section 2, we characterize computably categorical 2:1 structures as those that have finitely many \mathbb{Z}-chains. We show that every computable $2: 1$ structure is Δ_{2}^{0}-categorical. In Section 3, we investigate natural classes of computable $(2,0): 1$ structures that are computably categorical. In Section 4, we investigate
those that are not computably categorical. We show that, while every computable locally finite $(2,0): 1$ structure is Δ_{3}^{0}-categorical, every such structure with only finitely many ω-chains is Δ_{2}^{0}-categorical.

2 Computable Categoricity of 2:1 Structures

Let $\mathcal{A}=(A, f)$ be a countably infinite $2: 1$ structure. The character $\chi(\mathcal{A})$ of (A, f) is the set of all (k, n) such that either $k=0$ and \mathcal{A} has $\geq n \mathbb{Z}$-orbits or $k \geq 1$, and \mathcal{A} has $\geq n$ orbits which are k-cycles.

Lemma 2.1. Let $\mathcal{A}=(A, f)$ be a computable 2:1 structure.

1. The predicate " $O_{\mathcal{A}}(a)$ is a k-cycle" is Σ_{1}^{0}. and
2. the predicate " $O_{\mathcal{A}}(a)$ is a \mathbb{Z}-chain" is Π_{1}^{0}.
3. $\chi(\mathcal{A})$ is a Σ_{1}^{0} set.

Proof. For (1), note that $O_{\mathcal{A}}(a)$ is a k-cycle if and only if there exists an $n \geq 0$ such that $f^{n+k}(a)=f^{n}(a)$ and $f^{n+j}(a) \neq f^{n}(a)$ for $1 \leq j<k$. Thus the predicate " $O_{\mathcal{A}}(a)$ is a k-cycle" is Σ_{1}^{0}.

For (2), note that $O_{\mathcal{A}}(a)$ is a \mathbb{Z}-chain if and only if it is not the case that there exists $n \geq 0$ and $k>0$ such that $f^{n+k}(a)=f^{n}(a)$. Thus the predicate " $O_{\mathcal{A}}(a)$ is a \mathbb{Z}-chain" is Π_{1}^{0}.

For (3), first note that $\{(0, n): \mathcal{A}$ has $\geq n \mathbb{Z}$ orbits $\}$ is either $\{0\} \times \omega$ or is $\{0\} \times\{0,1, \ldots, n\}$ for some finite n, and that this set is computable in either case.

For $k, n>0$, note that in any k-cycle there is a unique finite set $\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}$ such that $f\left(a_{i}\right)=a_{i+1}$ for $i<k-1$ and $f\left(a_{k-1}\right)=a_{0}$. Thus \mathcal{A} has at least n k-cycles provided that there exist $b_{1}, b_{2}, \ldots, b_{n}$ such that
(i) For each $i, f^{k}\left(b_{i}\right)=b_{i}$, and $f^{t}\left(b_{i}\right) \neq b_{i}$ for any $t<k$ and
(ii) For each $i \neq j$, and for any $t<k, f^{t}\left(b_{i}\right) \neq b_{j}$.

The existence of 2:1 structures with arbitrary Σ_{1}^{0} characters follows from the existence of injection structures with arbitrary Σ_{1}^{0} characters.
Theorem 2.2. For any Σ_{1}^{0} character K, there is a computable 2:1 structure with character K.

Proof. By results of [4], there is an injection structure $\mathcal{B}=(\omega, g)$ which has character K. Define a computable function $h: \omega \backslash\{0\} \rightarrow \omega$ by having $h(2 n+1)=$ $h(2 n+2)=n$ for all n. Let \mathcal{A} have universe $A=\omega \times \omega$ and define the two-to-one function f so that $f(b, 0)=(g(b), 0)$ for all b and $f(b, i)=(b, h(i))$ for all $i>0$. Then $\omega \times\{0\}$ will provide a copy of \mathcal{B} in \mathcal{A} and, for each $b,\{b\} \times \omega$ will be a full binary tree with root $(b, 0)$ where the map f takes any node to its predecessor.

Theorem 2.3. A computable 2:1 structure $\mathcal{A}=(A, f)$ is computably categorical if and only if \mathcal{A} has only finitely many \mathbb{Z}-chains.

Proof. Suppose that $\mathcal{A}=(A, f)$ is a computable $2: 1$ structure with only finitely many \mathbb{Z}-chains, and $\mathcal{B}=(B, g)$ is a computable $2: 1$ structure which is isomorphic to \mathcal{A}. Let $\operatorname{Fin}(\mathcal{A})$ be the union of all orbits which are k-cycles for some $k \geq 1$ in \mathcal{A}. Suppose that \mathcal{A} has $t \mathbb{Z}$-chains and $x_{1}<\cdots<x_{t}$ are representatives from these \mathbb{Z}-chains in \mathcal{A}. Similarly, let $\operatorname{Fin}(\mathcal{B})$ be the union of all orbits which are k-cycles for some $k \geq 1$ in \mathcal{B}, and let $y_{1}<\cdots<y_{t}$ be representatives from the $t \mathbb{Z}$-chains in \mathcal{B}. Note that since $\operatorname{Fin}(\mathcal{A})$ is c.e. and $A-\operatorname{Fin}(\mathcal{A})=\bigcup_{i=1}^{n} O_{\mathcal{A}}\left(x_{i}\right)$ is c.e., it follows that both $\operatorname{Fin}(\mathcal{A})$ and $A-\operatorname{Fin}(\mathcal{A})$ are computable. Similarly, both $\operatorname{Fin}(\mathcal{B})$ and $B-\operatorname{Fin}(\mathcal{B})$ are computable.

It is always the case that if $\mathcal{A}=(A, f)$ and $\mathcal{B}=(B, g)$ are computable 2:1 structures and $\operatorname{Fin}(\mathcal{A})$ and $\operatorname{Fin}(\mathcal{B})$ are isomorphic, then $\operatorname{Fin}(\mathcal{A})$ and $\operatorname{Fin}(\mathcal{B})$ are computably isomorphic. That is, let $a_{0}, a_{1}, a_{2}, \ldots$ be an enumeration of $\operatorname{Fin}(\mathcal{A})$ and $b_{0}, b_{1}, b_{2}, \ldots$ be an enumeration of $\operatorname{Fin}(\mathcal{B})$. We can then construct an isomorphism $h: \operatorname{Fin}(\mathcal{A}) \rightarrow \operatorname{Fin}(\mathcal{B})$ in stages by a standard back-and-forth argument.

The key is to observe that for any a_{i}, we can compute

$$
a_{i}=f^{0}\left(a_{i}\right), f\left(a_{i}\right), f^{2}\left(a_{i}\right), \ldots
$$

until we find the least n_{i} and k_{i} such that $f^{n_{i}+k_{i}}\left(a_{i}\right)=f^{n_{i}}\left(a_{i}\right)$. Then let $C_{i}=$ $\left(f^{n_{i}}\left(a_{i}\right), \ldots, f^{n_{i}+k_{i}-1}\left(a_{i}\right)\right.$. We shall cyclicly rearrange $C_{i}=\left(c_{0}^{i}, \ldots, c_{k_{i}-1}^{i}\right)$ so that c_{0}^{i} is the smallest element of C_{i}. We shall call C_{i} the cycle of \mathcal{A} associated with a_{i}. Thus $O_{\mathcal{A}}\left(a_{i}\right)$ will be a k_{i}-cycle. Then we can search a_{1}, a_{2}, \ldots until we find $u_{0}^{i}, \ldots, u_{k_{i}-1}^{i}$ which are not in C_{i} such that $f\left(u_{j}^{i}\right)=c_{j}^{i}$ for $j=0, \ldots, k_{i}-1$. It then follows that $\operatorname{Tree}_{\mathcal{A}}\left(u_{j}^{i}\right)$ is isomorphic to the complete binary tree B for $j=0, \ldots, k_{i}-1$. We shall call $\bar{C}_{i}=\left\langle\left(c_{1}^{i}, \ldots, c_{k_{i}-1}^{i}\right),\left(u_{1}^{i}, \ldots, u_{k_{i}-1}^{i}\right)\right\rangle$ the extended cycle of \mathcal{A} associated with a_{i}.

Similarly, for any b_{i}, we can compute $b_{i}=g^{0}\left(b_{i}\right), g\left(b_{i}\right), g^{2}\left(b_{i}\right), \ldots$ until we find the least m_{i} and ℓ_{i} such that $g^{m_{i}+\ell_{i}}\left(b_{i}\right)=g^{m_{i}}\left(b_{i}\right)$. Then let $D_{i}=$ $\left(g^{m_{i}}\left(b_{i}\right), \ldots, g^{m_{i}+\ell_{i}-1}\left(b_{i}\right)\right)$. We shall cyclicly rearrange $D_{i}=\left(d_{0}^{i}, \ldots, d_{\ell_{i}-1}^{i}\right)$ so that d_{0}^{i} is the smallest element of D_{i}. We shall call D_{i} the cycle of \mathcal{B} associated with b_{i}. Thus the orbit of b_{i} will be an ℓ_{i}-cycle. Then we can search b_{1}, b_{2}, \ldots until we find $v_{0}^{i}, \ldots, v_{\ell_{i}-1}^{i}$ which are not in D_{i} such that $g\left(v_{j}^{i}\right)=d_{j}^{i}$ for $j=0, \ldots, \ell_{i}-1$. It then follows that $\operatorname{Tree}_{\mathcal{B}}\left(v_{j}^{i}\right)$ is isomorphic to the complete binary tree B. We shall call $\bar{D}_{i}=\left\langle\left(d_{0}^{i}, \ldots, d_{\ell_{i}-1}^{i}\right),\left(v_{0}^{i}, \ldots, v_{\ell_{i}-1}^{i}\right)\right\rangle$ the extended cycle of \mathcal{B} associated with b_{i}.

If $a \in A$ and $b \in B$ and both $\operatorname{Tree}_{\mathcal{A}}(a)$ and $\operatorname{Tree}_{\mathcal{B}}(b)$ are isomorphic to the complete binary tree B, then for all $n \geq 0$, we can define a map what we will call the canonical map $\Theta_{a, b, n}: \operatorname{tree}_{\mathcal{A}}(a, n) \rightarrow \operatorname{tree}_{\mathcal{B}}(b, n)$ inductively as follows. For $n=0, \Theta_{a, b, 0}(a)=b$. Having defined $\Theta_{a, b, n}$, we then extend it to $\Theta_{a, b, n+1}$ so that for each leaf $\ell \in \operatorname{Tree}_{\mathcal{A}}(a, n)$, we find the two elements $\ell_{1}<\ell_{2}$ in A such that $f\left(\ell_{1}\right)=f\left(\ell_{2}\right)=\ell$ and we find the two elements $p_{1}<p_{2}$ in \mathcal{B} such that $g\left(p_{1}\right)=g\left(p_{2}\right)=\Theta_{a, b, n}(\ell)$, and then we define $\Theta_{a, b, n+1}\left(\ell_{1}\right)=p_{1}$ and $\Theta_{a, b, n+1}\left(\ell_{2}\right)=p_{2}$. We then let $\Theta_{a, b}=\bigcup_{n \geq 0} \Theta_{a, b, n}$ and call this the canonical map from $\operatorname{tree}_{\mathcal{A}}(a)$ onto $\operatorname{tree}_{\mathcal{B}}(b)$.

Stage 0. First compute the extended cycle $\bar{C}_{0}=\left\langle\left(c_{0}^{0}, \ldots, c_{k_{0}-1}^{0}\right),\left(u_{0}^{0}, \ldots, u_{k_{0}-1}^{0}\right)\right\rangle$ of \mathcal{A} associated with a_{0}. Then let q_{0} be the least j such that the cycle D_{j} associated with b_{j} in \mathcal{B} has size k_{0}, and let $\bar{D}_{q_{0}}=\left\langle\left(d_{0}^{q_{0}}, \ldots, d_{k_{0}-1}^{q_{0}}\right),\left(v_{0}^{q_{0}}, \ldots, v_{k_{0}-1}^{q_{0}}\right)\right\rangle$ be the extended cycle of \mathcal{B} associated with $b_{q_{0}}$. Then we define h so that $h\left(c_{j}^{0}\right)=d_{j}^{q_{0}}$ and $h\left(u_{j}^{0}\right)=v_{j}^{q_{0}}$ for $j=0, \ldots, k_{0}-1$. This ensures that h is the canonical bijection from $\operatorname{Tree}\left(u_{j}^{0}, 0\right)=\operatorname{Tree}\left(v_{j}^{q_{0}}, 0\right)$ for $j=0, \ldots, k_{0}-1$.

If $D_{0}=D_{q_{0}}$, then let $S_{0}=\{0\}$ and $T_{0}=\{0\}$ and define $\phi_{0}: S_{0} \rightarrow T_{0}$ by $\phi_{0}(0)=0$ and go onto stage 1 . Otherwise, compute the extended cycle $\bar{D}_{0}^{1}=\left\langle\left(d_{0}^{0}, \ldots, d_{\ell_{0}-1}^{0}\right),\left(v_{0}^{0}, \ldots, v_{\ell_{0}-1}^{0}\right)\right\rangle$ of \mathcal{B} associated with b_{0}. Then let p_{0} be the least $j>0$ such that the cycle C_{j} associated with a_{j} in \mathcal{A} has size ℓ_{1}. Let $\bar{C}_{1}^{p_{1}}=\left\langle\left(c_{0}^{p_{0}}, \ldots, c_{\ell_{0}-1}^{p_{0}}\right),\left(u_{0}^{p_{0}}, \ldots, u_{\ell_{0}-1}^{p_{0}}\right)\right\rangle$ be the extended cycle of \mathcal{A} associated with $a_{p_{0}}$. Then define h so that $h\left(c_{j}^{p_{0}}\right)=d_{j}^{0}$ and $h\left(u_{j}^{p_{0}}\right)=v_{j}^{0}$. This ensures that h is the canonical bijection from $\operatorname{Tree}\left(u_{j}^{p_{0}}, 0\right)=\operatorname{Tree}\left(v_{j}^{0}, 0\right)$ for $j=0, \ldots, \ell_{0}-1$. Then let $S_{0}=\left\{0, p_{0}\right\}, T_{0}=\left\{0, q_{0}\right\}$ and define $\phi_{0}: S_{0} \rightarrow T_{0}$ by $\phi_{0}(0)=q_{0}$ and $\phi_{0}\left(p_{0}\right)=0$.

Stage $\mathrm{s}+1$.

Assume that we have defined sets S_{s} and T_{s} and bijection $\phi_{s}: S_{s} \rightarrow T_{s}$ and a partial function $h: A \rightarrow B$ such that

1. for all $i \leq s$, the cycle C_{i} associated with a_{i} is equal to one of the cycles C_{j} for some $j \in S_{s}$,
2. for all $i \leq s$, the cycle D_{i} associated with b_{i} is equal to one of the cycles D_{j} for some $j \in T_{s}$,
3. for all $i, j \in S_{s}$, the cycles C_{i} and C_{j} are distinct if $i \neq j$,
4. for all $i, j \in T_{s}$, the cycles D_{i} and D_{j} are distinct if $i \neq j$,
5. for all $i \in S_{s}, C_{i}$ and $D_{\phi_{s}(i)}$ have the same size, and
6. for all $i \in S_{s}$, if $\phi_{s}(i)=j$, then h is defined so that if $\bar{C}_{i}=\left\langle\left(c_{0}^{i}, \ldots, c_{k_{i}-1}^{i}\right),\left(u_{0}^{i}, \ldots, u_{k_{i}-1}^{i}\right)\right\rangle$ is the extended cycle of \mathcal{A} associated with a_{i} and $\bar{D}_{j}=\left\langle\left(d_{0}^{j}, \ldots, d_{k_{i}-1}^{j}\right),\left(u_{0}^{j}, \ldots, u_{k_{i}-1}^{j}\right)\right\rangle$ is the extended cycle of \mathcal{B} associated with b_{j}, then $h\left(c_{r}^{i}\right)=d_{r}^{j}, h\left(u_{r}^{i}\right)=v_{r}^{j}$, and h restricted to $\operatorname{tree}_{\mathcal{A}}\left(u_{r}^{i}, s\right)$ is equal to the canonical map $\Theta_{u_{r}^{i}, v_{r}^{j}, s}$ for $r=0, \ldots, k_{i}-1$.

First we extend h so that for all $i \in S_{s}$, if $\phi_{s}(i)=j$, then h is defined so that if $\bar{C}_{i}=\left\langle\left(c_{1}^{i}, \ldots, c_{k_{i}}^{i}\right),\left(u_{1}^{i}, \ldots, u_{k_{i}}^{i}\right)\right\rangle$ is the extended cycle of \mathcal{A} associated with a_{i} and $\bar{D}_{j}=\left\langle\left(d_{0}^{j}, \ldots, d_{k_{i}-1}^{j}\right),\left(v_{0}^{j}, \ldots, v_{k_{i}-1}^{j}\right)\right\rangle$ is the extended cycle of \mathcal{B} associated with b_{j}, then $h\left(c_{r}^{i}\right)=d_{r}^{j}, h\left(u_{r}^{i}\right)=v_{r}^{j}$, and h restricted to $\operatorname{tree}_{\mathcal{A}}\left(u_{r}^{i}, s+1\right)$ is equal to the canonical map $\Theta_{u_{r}^{i}, v_{r}^{j}, s+1}$ for $r=0, \ldots, k_{i}-1$.

We then have 4 cases.
Case 1. C_{s+1} is equal to one of the cycles C_{i} for $i \in S_{s}$, and D_{s+1} is equal to one of the cycles D_{j} for $j \in T_{s}$.

Then let $S_{s+1}=S_{s}, T_{s+1}=T_{s}$, and $\phi_{s+1}=\phi_{s}$.
Case 2. C_{s+1} is not equal to one of the cycles C_{i} for $i \in S_{s}$, but D_{s+1} is equal to one of the cycles D_{j} for $j \in T_{s}$.
Then let $\bar{C}_{s+1}=\left\langle\left(c_{0}^{s+1}, \ldots, c_{k_{s+1}-1}^{s+1}\right),\left(u_{0}^{s+1}, \ldots, u_{k_{s+1}-1}^{s+1}\right)\right\rangle$ be the extended cycle of \mathcal{A} associated with a_{s+1}. Then let q_{s+1} be the least q such that D_{q} is not equal to one of the cycles D_{j} for $j \in T_{s}$ and D_{q} has size k_{s+1}. Let $\bar{D}_{q_{s+1}}=$ $\left\langle\left(d_{0}^{q_{s+1}}, \ldots, d_{k_{s+1}-1}^{q_{s+1}}\right),\left(v_{0}^{q_{s+1}}, \ldots, v_{k_{s+1}-1}^{q_{s+1}}\right)\right\rangle$ be the extended cycle of \mathcal{B} associated with $b_{q_{s+1}}$. Then extend h so that $h\left(c_{r}^{s+1}\right)=d_{r}^{q_{s+1}}, h\left(u_{r}^{s+1}\right)=v_{r}^{q_{s+1}}$, and h restricted to $\operatorname{tree}_{\mathcal{A}}\left(u_{r}^{s+1}, s+1\right)$ is equal to the canonical map $\Theta_{u_{r}^{s+1}, v_{r}^{q_{s+1}}, s+1}$ for $r=0, \ldots, k_{s+1}-1$.

Then let $S_{s+1}=S_{s} \cup\{s+1\}, T_{s+1}=T_{s} \cup\left\{q_{s+1}\right\}$, and extend ϕ_{s} to ϕ_{s+1} by letting $\phi_{s+1}(s+1)=q_{s+1}$.

Case 3. C_{s+1} is equal to one of the cycles C_{i} for $i \in S_{s}$, but D_{s+1} is not equal to one of the cycles D_{j} for $j \in T_{s}$.
Then let $\bar{D}_{s+1}=\left\langle\left(d_{0}^{s+1}, \ldots, d_{\ell_{s+1}-1}^{s+1}\right),\left(v_{0}^{s+1}, \ldots, v_{\ell_{s+1}-1}^{s+1}\right)\right\rangle$ be the extended cycle of \mathcal{B} associated with b_{s+1}. Then let p_{s+1} be the least p such that C_{p} is not equal to one of the cycles C_{i} for $i \in S_{s}$ and C_{p} has size ℓ_{s+1}. Let $\bar{C}_{p_{s+1}}=$ $\left\langle\left(c_{0}^{p_{s+1}}, \ldots, c_{\ell_{s+1}-1}^{p_{s+1}}\right),\left(u_{0}^{p_{s+1}}, \ldots, u_{\ell_{s+1}-1}^{p_{s+1}}\right)\right\rangle$ be the extended cycle of \mathcal{A} associated with $a_{p_{s+1}}$. Then extend h so that $h\left(c_{r}^{p_{s+1}}\right)=d_{r}^{s+1}, h\left(u_{r}^{p_{s+1}}\right)=v_{r}^{s+1}$, and h restricted to $\operatorname{tree}_{\mathcal{A}}\left(u_{r}^{p_{s+1}}, s+1\right)$ is equal to the canonical map $\Theta_{u_{r}^{p_{s+1}}, v_{r}^{s+1}, s+1}$ for $r=0, \ldots, \ell_{s+1}-1$.

Then let $S_{s+1}=S_{s} \cup\left\{p_{s+1}\right\}, T_{s+1}=T_{s} \cup\{s+1\}$, and extend ϕ_{s} to ϕ_{s+1} by letting $\phi_{s+1}\left(p_{s+1}\right)=s+1$.

Case 4. C_{s+1} is not equal to one of the cycles C_{i} for $i \in S_{s}$, and D_{s+1} is not equal to one of the cycles D_{j} for $j \in T_{s}$.
Then let $\bar{C}_{s+1}=\left\langle\left(c_{0}^{s+1}, \ldots, c_{k_{s+1}-1}^{s+1}\right),\left(u_{0}^{s+1}, \ldots, u_{k_{s+1}-1}^{s+1}\right)\right\rangle$ be the extended cycle of \mathcal{A} associated with a_{s+1}. Then let q_{s+1} be the least q such that D_{q} is not equal to one of the cycles D_{j} for $j \in T_{s}$ and D_{q} has size k_{s+1}. Let $\bar{D}_{q_{s+1}}=$ $\left\langle\left(d_{0}^{q_{s+1}}, \ldots, d_{k_{s+1}-1}^{q_{s+1}}\right),\left(v_{0}^{q_{s+1}}, \ldots, v_{k_{s+1}-1}^{q_{s+1}}\right)\right\rangle$ be the extended cycle of \mathcal{B} associated with $b_{q_{s+1}}$. Then extend h so that $h\left(c_{r}^{s+1}\right)=d_{r}^{q_{s+1}}, h\left(u_{r}^{s+1}\right)=v_{r}^{q_{s+1}}$, and h restricted to $\operatorname{tree}_{\mathcal{A}}\left(u_{r}^{s+1}, s+1\right)$ is equal to the canonical map $\Theta_{u_{r}^{s+1}, v_{r}^{q_{s+1}}, s+1}$ for $r=0, \ldots, k_{s+1}-1$.

If D_{s+1} is equal to $D_{q_{s+1}}$, then let $S_{s+1}=S_{s} \cup\{s+1\}, T_{s+1}=T_{s} \cup\left\{q_{s+1}\right\}$, and extend ϕ_{s} to ϕ_{s+1} by letting $\phi_{s+1}(s+1)=q_{s+1}$. Otherwise, let $\bar{D}_{s+1}=$ $\left\langle\left(d_{0}^{s+1}, \ldots, d_{e_{s+1}-1}^{s+1}\right),\left(v_{0}^{s+1}, \ldots, v_{\ell_{s+1}-1}^{s+1}\right)\right\rangle$ be the extended cycle of \mathcal{B} associated with b_{s+1}. Then let p_{s+1} be the least p such that C_{p} is not equal to one of the cycles C_{i} for $i \in S_{s}$ and is not equal to C_{s+1} and C_{p} has size ℓ_{s+1}. Let $\bar{C}_{p_{s+1}}=$ $\left\langle\left(c_{0}^{p_{s+1}}, \ldots, c_{\ell_{s+1}-1}^{p_{s+1}}\right),\left(u_{0}^{p_{s+1}}, \ldots, u_{\ell_{s+1}-1}^{p_{s+1}}\right)\right\rangle$ be the extended cycle of \mathcal{A} associated with $a_{p_{s+1}}$. Then extend h so that $h\left(c_{r}^{p_{s+1}}\right)=d_{r}^{s+1}, h\left(u_{r}^{p_{s+1}}\right)=v_{r}^{s+1}$, and h restricted to $\operatorname{tree}_{\mathcal{A}}\left(u_{r}^{p_{s+1}}, s+1\right)$ is equal to the canonical map $\Theta_{u_{r}^{p_{s+1}, v_{r}^{s+1}, s+1}}$ for $r=0, \ldots, \ell_{s+1}-1$.

Then let $S_{s+1}=S_{s} \cup\left\{s+1, p_{s+1}\right\}, T_{s+1}=T_{s} \cup\left\{s+1, q_{s+1}\right\}$, and extend ϕ_{s}
to ϕ_{s+1} by letting $\phi_{s+1}(s+1)=q_{s+1}$ and $\phi_{s+1}\left(p_{s+1}\right)=s+1$.
It is then easy to see that h will be an isomorphism from $\operatorname{Fin}(\mathcal{A})$ onto $\operatorname{Fin}(\mathcal{B})$.
Next we computably map $O_{\mathcal{A}}\left(x_{i}\right)$ onto $O_{\mathcal{A}}\left(y_{i}\right)$ as follows. Let $x_{i, 0}=x_{i}$ and $x_{i, n}=f^{n}\left(x_{i}\right)$ for $n \geq 1$. Then define $x_{i,-n}$ for $n \geq 1$ inductively as follows: $x_{i,-1}$ is the least element z such that $f(z)=x_{i}$. There are only two elements which map to x_{i} under f, and we can enumerate A until we find these two elements and then pick the least of these two elements to be $x_{i,-1}$. Then inductively for $n>1$, we define $x_{i,-n}$ to be the least element z that such that $f(z)=x_{i,-(n-1)}$. Let $X_{i}=\left\{x_{i, n}: n \in \mathbb{Z}\right\}$. Similarly, we let $y_{i, 0}=y_{i}$ and $y_{i, n}=g^{n}\left(y_{i}\right)$ for $n \geq 1$. We let $y_{i,-1}$ be the least element z such that $g(z)=y_{i}$ and, inductively, define $y_{i,-n}$ for $n>1$ to the least element z such that $g(z)=y_{i,-(n-1)}$. Let $Y_{i}=\left\{y_{i, n}: n \in \mathbb{Z}\right\}$. Next for all $n \in \mathbb{Z}$, let $u_{i, n}$ be the element which is not in X_{i} such that $f\left(u_{i, n}\right)=x_{i, n}$ and let $v_{i, n}$ be the element which is not in Y_{i} such that $g\left(v_{i, n}\right)=y_{i, n}$. Then we define h so that for all $1 \leq i \leq t$ and $n \in \mathbb{Z}, h\left(x_{i, n}\right)=y_{i, n}, h\left(u_{i, n}\right)=v_{i, n}$, and h restricted to $\operatorname{tree}\left(u_{i, n}\right)$ equal to the canonical map $\Theta_{u_{i, n}, v_{i, n}}$.

It follows that h will be a computable isomorphism from \mathcal{A} onto \mathcal{B} so that \mathcal{A} is computably categorical.

Next suppose that $\mathcal{A}=(A, f)$ is a computable $2: 1$ structure such that \mathcal{A} has infinitely many orbits which are \mathbb{Z}-chains. If $\operatorname{Fin}(\mathcal{A})$ is not a computable set, then partition \mathbb{N} into two infinite computable sets B and C. Let a_{1}, a_{2}, \ldots, be an effective enumeration of $\operatorname{Fin}(\mathcal{A})$ and let $B=\left\{b_{1}<b_{2}<\cdots\right\}$. Then we define the function $g: B \rightarrow B$ so that $g\left(b_{i}\right)=b_{j}$ if and only if $f\left(a_{i}\right)=a_{j}$, so that the map $f: \operatorname{Fin}(\mathcal{A}) \rightarrow B$ defined by $f\left(a_{i}\right)=b_{i}$ will be an isomorphism from $(\operatorname{Fin}(\mathcal{A}), f)$ onto (B, g). We can then extend g to C by effectively partitioning C into a uniform sequence of pairwise disjoint computable sets C_{0}, C_{1}, \ldots and define g so that each C_{i} is a g-orbit which is a \mathbb{Z}-chain of our $2: 1$ structure. It will follow that (\mathbb{N}, g) is a computable structure which is isomorphic to (A, f). Note that (\mathbb{N}, g) has the property that the predicate $\operatorname{SameOrbit}_{(\mathbb{N}, g)}(a, b)$, which holds if and only if a and b lie in the same orbit of (\mathbb{N}, g), is computable.

Instead of directly constructing a computable $2: 1$ structure which is not isomorphic to (\mathbb{N}, g), we will modify our construction so that given any c.e. set E which is both infinite and co-infinite, we will construct a computable 2:1 structure $\left(\mathbb{N}, g_{E}\right)$ such that the predicate $\operatorname{SameOrbit}_{(\mathbb{N}, g)}$ is Turing equivalent to E. The idea is to slightly modify our construction of (\mathbb{N}, g). That is, let $B, C, C_{0}, C_{1}, \ldots$ be as above. Then we let $g_{E}=g$ on B so that $\operatorname{Fin}(\mathcal{A})$ is computably isomorphic to $\left(B, g_{E}\right)$. Let c_{0}, c_{1}, \ldots be the least elements of C_{0}, C_{1}, \ldots, respectively. Fix some effective enumeration of E and let E^{s} be the finite set of elements enumerated in E at stage s. Assume that $E^{0}=\{0\}$ and that $\operatorname{card}\left(E^{s}-E^{s-1}\right)=1$ for all $s \geq 1$.

We construct g_{E} in stages. The basic idea is that at any stage s, we will be defining g_{E} so that the elements of C_{i} for $i \geq 1$ will form an orbit which will be a \mathbb{Z}-chain. That is, we let $c_{0}^{i}=c_{i}$. At any given stage s, as long as $i \notin E$, we construct what we call a partial \mathbb{Z}-chain of length $2 s+1$. That is, we will define a sequence $c_{-s}^{i}, c_{-(s-1)}^{i}, \ldots, c_{-1}^{i}, c_{0}^{i}, c_{1}^{i}, \ldots, c_{s}^{i}$ and a sequence
$d_{-s}^{i}, d_{-s-1}^{i}, \ldots, d_{-1}^{i}, d_{0}^{i}, d_{1}^{i}, \ldots, d_{s}^{i}$ such that $g_{E}\left(c_{k}^{i}\right)=c_{k+1}^{i}$ for $-s \leq k \leq s-1$ and $g_{E}\left(d_{k}^{i}\right)=c_{k}^{i}$ for $-s \leq k \leq s$. Moreover, for each k, we assume that g_{E} is defined on initial segment I_{s}^{i} of C_{i} so that in the graph of g_{E} restricted to I_{s}^{i}, d_{k}^{i} is the root of a complete binary tree of height s. See Figure 7 for a picture of a partial \mathbb{Z}-chain of length 5 . Thus I_{s}^{i} will be a set of size $(2 s+1) 2^{s+1}$. At the next stage, we first use the next 4 elements of C^{i} to define $c_{-(s+1)}^{i}, c_{s+1}^{i}, d_{(s+1)}^{i}, d_{s+1}^{i}$, then we will use then next $2\left(2^{s+2}-1\right)$ elements to construct the binary trees of height $s+1$ which have roots $d_{(s+1)}^{i}$ and d_{s+1}^{i}, and finally use the next $(2 s+1) 2^{s}$ to extend the binary trees with roots $d_{-s}^{i}, \ldots, d_{s}^{i}$ so that they have height $s+1$.

Figure 7: A partial \mathbb{Z}-chain of length 5.
For $i=0$, we perform a similar construction except that the partial \mathbb{Z}-chain will be of length $2 k_{s}+1$ for some integer k_{s}, which will be an initial segment of $\bigcup_{i \in E^{s}} C_{i}$. That is, we will define a sequence

$$
c_{-k_{s}}^{0}, c_{-\left(k_{s}-1\right)}^{0}, \ldots, c_{-1}^{0}, c_{0}^{0}, c_{1}^{0}, \ldots, c_{k_{s}}^{0}
$$

and a sequence

$$
d_{-k_{s}}^{0}, d_{-\left(k_{s}-1\right)}^{0}, \ldots, d_{-1}^{0}, d_{0}^{0}, d_{1}^{0}, \ldots, d_{k_{s}}^{0}
$$

such that $g_{E}\left(c_{k}^{0}\right)=c_{k+1}^{0}$ for $-k_{s} \leq k \leq k_{s}-1$ and $g_{E}\left(d_{j}^{0}\right)=c_{j}^{0}$ for $-k_{s} \leq j \leq k_{s}$. Moreover, for each j, we assume that g_{E} is defined on the initial segment I_{s}^{0} of $\bigcup_{\in E^{s}} C_{i}$ so that in the graph of g_{E} restricted to I_{s}^{0}, d_{j}^{i} is the root of a complete binary tree of height k_{s}. Then if $j \in E^{s+1}-E^{s}$, we will simply define $g_{E}\left(c_{k_{s}}^{0}\right)=c_{-s}^{j}$, which will have the effect of grafting the partial \mathbb{Z}-chain for C_{j} at stage s onto the front of the partial \mathbb{Z}-chain for 0 at stage s. We then simply have to add appropriate elements at the end of the partial \mathbb{Z}-chain for 0 and the corresponding binary trees at stage $s+1$, so that we have a \mathbb{Z}-chain of length $k_{s+1}=k_{s}+2 s+2$ for 0 .

It is then easy to see that this will construct a computable $2: 1$ structure $\mathcal{B}_{E}=\left(\mathbb{N}, g_{E}\right)$ which is isomorphic to \mathcal{A}. Next consider the question of the degree of predicate $\operatorname{Same} \operatorname{Orbit}(a, b)$ for \mathcal{B}_{E}. Note that $\operatorname{Fin}\left(\mathcal{B}_{E}\right)$ is a computable set so that given $a, b \in \mathbb{N}$, we first ask if both $a, b \in \operatorname{Fin}\left(\mathcal{B}_{E}\right)$. If so, then we can iterate g_{E} on a and b until we find the cycles $C y_{a}$ and $C y_{b}$ to which a and b are attached, respectively. Then a is in the same orbit as b if and only if $C y_{a}=C y_{b}$.

If both a and b are not in $\operatorname{Fin}\left(\mathcal{B}_{E}\right)$, then we can find i and j such that $a \in C_{i}$ and $b \in C_{j}$. If $i=j$, then a and b are in the same orbit and if $i \neq j$, then a and b are in the same orbit if and only if $i, j \in E$. Finally if it is not the case that either both a and b are in $\operatorname{Fin}\left(\mathcal{B}_{E}\right)$ or both a and b are not in $\operatorname{Fin}\left(\mathcal{B}_{E}\right)$, then a and b are not in the same orbit. This shows that SameOrbit $\leq_{T} E$. On the other hand, $c_{0}, c_{1} \in E$ if and only if c_{0} and c_{1} are in the same orbit so that $E \leq_{T}$ SameOrbit(,).

Clearly if E is a c.e. non-computable set, then (\mathbb{N}, g) is not computably isomorphic to $\left(\mathbb{N}, g_{E}\right)$. Thus if \mathcal{A} has infinitely many \mathbb{Z}-chains, then \mathcal{A} is not computably categorical.

We have the following corollaries of Theorem 2.3.
Corollary 2.4. Suppose that $\mathcal{A}=(A, f)$ and $\mathcal{B}=(B, g)$ are computable 2:1 structures such that $\operatorname{Fin}(\mathcal{A})$ and $\operatorname{Fin}(\mathcal{B})$ are computable and the predicate SameOrbit is computable in both \mathcal{A} and \mathcal{B}. Then \mathcal{A} is isomorphic to \mathcal{B} if and only if \mathcal{A} is computably isomorphic to \mathcal{B}.

Proof. Suppose that \mathcal{A} is isomorphic to \mathcal{B}. Then by our argument in the proof of Theorem 2.3, we know that $(\operatorname{Fin}(\mathcal{A}), f)$ is computably isomorphic to $\operatorname{Fin}(\mathcal{B}), g)$. Then let $A-\operatorname{Fin}(\mathcal{A})=\left\{a_{0}<a_{1}<\cdots\right\}$ and $A-\operatorname{Fin}(\mathcal{B})=\left\{b_{0}<b_{1}<\right.$ $\cdots\}$. Because SameOrbit is a computable predicate for \mathcal{A}, we can effectively determine if a_{i} is the smallest element in its orbit. That is, a_{i} is the smallest element in its orbit if and only if $\neg \operatorname{SameOrbit}\left(a_{j}, a_{i}\right)$ hold for all $j<i$. Thus we can effectively list as $a_{0}=a_{i_{0}}<a_{i_{1}}<\cdots$ all the elements of $A-\operatorname{Fin}(\mathcal{A})$ such that $a_{i_{j}}$ is the least element in its orbit. Similarly, we can effectively list as $b_{0}=b_{i_{0}}<b_{i_{1}}<\ldots$ all the elements of $B-\operatorname{Fin}(\mathcal{B})$ such that $b_{i_{j}}$ is the least element in its orbit. Then we can use the procedure described in Theorem 2.3 to computably map the \mathbb{Z}-chain $O_{\mathcal{A}}\left(a_{i_{j}}\right)$ onto the \mathbb{Z}-chain $O_{\mathcal{B}}\left(b_{i_{j}}\right)$. Thus \mathcal{A} is computably isomorphic to \mathcal{B}.

Clearly, if \mathcal{A} is computably isomorphic to \mathcal{B}, then \mathcal{A} is isomorphic to \mathcal{B}.
Corollary 2.5. Every computable 2:1 structure (A, f) is Δ_{2}^{0}-categorical.
Proof. Note that $\operatorname{Fin}(\mathcal{A})$ is c.e. and hence Δ_{2}^{0}, and $\operatorname{SameOrbit}(a, b)$ if and only if $O_{\mathcal{A}}(a) \cap C_{\mathcal{A}}(b) \neq \emptyset$, which is also a Δ_{2}^{0} predicate. Thus the corollary follows from a relativized version of Corollary 2.4.

3 Computably Categorical (2,0):1 Structures

Suppose that we are given a $(2,0): 1$ structure (A, f). If an orbit $O_{\mathcal{A}}(a)$ is a k-cycle, then its graph must consist of an extended cycle

$$
\bar{C}=\left\langle\left(c_{0}, \ldots, c_{k-1}\right),\left(d_{0}, \ldots, d_{k-1}\right)\right\rangle
$$

together with binary trees T_{0}, \ldots, T_{k-1} where $T_{i}=\operatorname{Tree}\left(d_{i}\right)$ for $i=0, \ldots, k-1$. In such a situation, if c_{0} is the least element of $\left\{c_{0}, \ldots, c_{k-1}\right\}$, then we shall say
that $O_{\mathcal{A}}(a)$ is of type $\left\langle\left(c_{0}, \ldots, c_{k-1}\right),\left(T_{0}, \ldots, T_{k-1}\right)\right\rangle$. Specifying the type of \mathbb{Z} chains and ω-chains is more problematic. That is, one way to specify the graph of a \mathbb{Z}-chain is to give two sequences

$$
\begin{aligned}
\vec{c} & =\left(c_{0}, c_{1}, c_{-1}, c_{2}, c_{-2}, \ldots\right) \text { and } \\
\vec{d} & =\left(d_{0}, d_{1}, d_{-1}, d_{2}, d_{-2}, \ldots\right)
\end{aligned}
$$

and a sequence of binary trees

$$
\vec{T}=\left(T_{0}, T_{1}, T_{-1}, T_{2}, T_{-2}, \ldots\right)
$$

such that for all $i \in \mathbb{Z}, f\left(c_{i}\right)=c_{i+1}, f\left(d_{i}\right)=c_{i}$, and $\operatorname{Tree}\left(d_{i}\right)=T_{i}$. Similarly, one way to specify the graph of an ω-chain is to give two sequences

$$
\begin{aligned}
\vec{c} & =\left(c_{0}, c_{1}, c_{2}, c_{3}, \ldots\right) \text { and } \\
\vec{d} & =\left(d_{1}, d_{2}, d_{3}, \ldots\right)
\end{aligned}
$$

and a sequence of binary trees

$$
\vec{T}=\left(T_{1}, T_{2}, \ldots\right)
$$

such that for all $i \in \omega, f\left(c_{i}\right)=c_{i+1}$, for all $i \geq 1, f\left(d_{i}\right)=c_{i}$, and $\operatorname{Tree}\left(d_{i}\right)=T_{i}$.

Figure 8: An ω-chain where all the attached trees are three element binary trees.
Unfortunately, the sequences of trees \vec{T} depend on how we pick \vec{c}. For example, suppose we have an orbit which is the ω-chain pictured at the top of Figure 8. That is, the tree T_{i} are all three element binary trees. Then at the bottom of Figure 8, we have pictured another way to represent that ω-chain, which clearly gives rise to a different sequence of trees. Nevertheless, whenever
we have two such equivalent descriptions

$$
\begin{aligned}
\vec{c} & =\left(c_{0}, c_{1}, c_{2}, c_{3}, \ldots\right) \\
\vec{d} & =\left(d_{1}, d_{2}, d_{3}, \ldots\right), \text { and } \\
\vec{T} & =\left(T_{1}, T_{2}, \ldots\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\overrightarrow{c^{\prime}} & =\left(c_{0}^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}, \ldots\right), \\
\overrightarrow{d^{\prime}} & =\left(d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, \ldots\right), \text { and } \\
\overrightarrow{T^{\prime}} & =\left(T_{1}^{\prime}, T_{2}^{\prime}, \ldots\right),
\end{aligned}
$$

there will be an n large enough so that $c_{i}=c_{i}^{\prime}, d_{i}=d_{i}^{\prime}$, and $T_{i}=T_{i}^{\prime}$ for all $i \geq n$ and, hence, $\operatorname{tree}\left(c_{n}\right)=\operatorname{tree}\left(c_{n}^{\prime}\right)$.

Figure 9: A \mathbb{Z}-chain.
A similar situation happens for \mathbb{Z}-chains. That is, suppose that we have the \mathbb{Z}-chain pictured in Figure 9. That is, the \mathbb{Z}-chain corresponds to the sequences

$$
\begin{aligned}
\vec{c} & =\left(c_{0}, c_{1}, c_{-1}, c_{2}, c_{-2}, \ldots\right), \\
\vec{d} & =\left(d_{0}, d_{1}, d_{-1}, d_{2}, d_{-2}, \ldots\right), \text { and } \\
\vec{T} & =\left(T_{0}, T_{1}, T_{-1}, T_{2}, T_{-2}, \ldots\right)
\end{aligned}
$$

where T_{0} is isomorphic to the complete infinite binary tree B and T_{i} and T_{-i} are one element trees for $i>0$. Then it is clear that, if we represent the same \mathbb{Z}-chain as

$$
\begin{aligned}
\vec{c} & =\left(c_{0}, c_{1}, c_{-1}^{\prime}, c_{2}, c_{-2}^{\prime}, \ldots\right), \\
\vec{d} & =\left(d_{0}^{\prime}, d_{1}, d_{-1}^{\prime}, d_{2}, d_{-2}^{\prime}, \ldots\right), \text { and } \\
\vec{T} & =\left(T_{0}^{\prime}, T_{1}, T_{-1}^{\prime}, T_{2}, T_{-2}^{\prime}, \ldots\right)
\end{aligned}
$$

where $c_{-1}^{\prime}=d_{0}$, and $c_{-2}^{\prime}, c_{-3}^{\prime}, \ldots$ is some infinite path through the binary tree T_{0}, then T_{-i}^{\prime} will be isomorphic to the complete binary tree of $i \geq 1$ and T_{0}^{\prime} is isomorphic to $\operatorname{Tree}_{\mathcal{A}}\left(c_{1}\right)$. What is worse, it is also clear that we could represent
the same \mathbb{Z}-chain as an ω-chain starting at the d_{1}. Nevertheless, just as the case with ω-chains, there will be an n large enough so that $c_{i}=c_{i}^{\prime}, d_{i}=d_{i}^{\prime}$, and $T_{i}=T_{i}^{\prime}$ for all $i \geq n$ and, hence, $\operatorname{tree}\left(c_{n}\right)=\operatorname{tree}\left(c_{n}^{\prime}\right)$.

We say that a $(2,0): 1$ structure (A, f) is locally finite if $\operatorname{tree}_{\mathcal{A}}(a)$ is finite for all $a \in A$. Locally finite (2,0):1 structures are much simpler than general $(2,0): 1$ structures. That is, in locally finite $(2,0): 1$ structures, all orbits which are k-cycles are finite and there are no \mathbb{Z}-chains. We say that a computable (2,0):1 structure (\mathcal{A}, f) is highly computable if the range of $f, \operatorname{ran}(f)$, is computable. It is easy to see that in a locally finite computable $(2,0): 1$ structure (\mathcal{A}, f), one can effectively find the finite set $\operatorname{tree}_{\mathcal{A}}(a)$ for any $a \in A$.

Theorem 3.1. Suppose that $\mathcal{A}=(A, f)$ and $\mathcal{B}=(B, g)$ are isomorphic highly computable locally finite (2,0):1 structures which have only finitely many ω chains, then \mathcal{A} is computably isomorphic to \mathcal{B}.

Proof. In such a case, we know that $\operatorname{Fin}(\mathcal{A})$ and $\operatorname{Fin}(\mathcal{B})$ are computable. It is easy to construct an isomorphism h_{0} from $(\operatorname{Fin}(\mathcal{A}), f)$ to $\left.\operatorname{Fin}(\mathcal{B}), g\right)$ by a standard back-and-forth argument. The key is that, since \mathcal{A} is highly computable and locally finite, it follows that given any $a \in \operatorname{Fin}(\mathcal{A})$, we can effectively compute the entire orbit of a. That is, as in Theorem 2, we can effectively find the extended cycle $\left\langle\left(c_{0}, \ldots, c_{k-1}\right),\left(d_{0}, \ldots, d_{k-1}\right)\right\rangle$ in $O_{\mathcal{A}}(a)$. Then we can effectively find $\left(T_{0}, \ldots, T_{k-1}\right)$ such that $\operatorname{Tree}_{\mathcal{A}}\left(d_{i}\right)=T_{i}$ for $i=0, \ldots, k-1$. Given such an orbit $O_{\mathcal{A}}(a)$, we can then search through the elements of B until we find a b whose orbit is isomorphic to $O_{\mathcal{A}}(a)$. That is, we can find a b whose extended cycle is $\left\langle\left(c_{0}^{\prime}, \ldots, c_{k-1}^{\prime}\right),\left(d_{0}^{\prime}, \ldots, d_{k-1}^{\prime}\right)\right\rangle$ and binary trees $\left(T_{0}^{\prime}, \ldots, T_{k-1}^{\prime}\right)$ such that $\operatorname{Tree}_{\mathcal{B}}\left(d_{i}^{\prime}\right)=T_{i}^{\prime}$ for $i=0, \ldots, k-1$ such that there is an s with $0 \leq s \leq k-1$ where T_{j} is isomorphic to $T_{s+j} \bmod k$ for $j=0, \ldots, k-1$. Then we can easily construct an isomorphism from $O_{\mathcal{A}}(a)$ to $O_{\mathcal{B}}(b)$.

Moreover, there must exist representatives a_{1}, \ldots, a_{r} of the ω-chains in \mathcal{A} and representatives b_{1}, \ldots, b_{r} of the ω-chains in \mathcal{B} with the following properties. Let $A_{i}=\left\{a_{i, 0}, a_{i, 1}, \ldots\right\}$ where $a_{i, 0}=a_{i}$ and $a_{i, n}=f^{n}\left(a_{i}\right)$ for $n \geq 1$. For each $n \geq 1$, let $c_{i, n}$ be the element of A such that $c_{i, n} \in A_{i}$ and $f\left(c_{i, n}\right)=a_{i, n}$ and let $T_{i, n}=\operatorname{Tree}_{\mathcal{A}}\left(c_{i, n}\right)$. Similarly, let $B_{i}=\left\{b_{i, 0}, b_{i, 1}, \ldots\right\}$ where $b_{i, 0}=b_{i}$ and $b_{i, n}=g^{n}\left(b_{i}\right)$ for $n \geq 1$. For each $n \geq 1$, let $d_{i, n}$ be the element of A such that $d_{i, n} \in A_{i}$ and $g\left(d_{i, n}\right)=b_{i, n}$, and let $S_{i, n}=\operatorname{Tree}_{\mathcal{B}}\left(b_{i, n}\right)$. Then we assume that for $1 \leq i \leq r, \operatorname{Tree}_{\mathcal{A}}\left(a_{i}\right)$ is isomorphic to $\operatorname{Tree}_{\mathcal{B}}\left(b_{i}\right)$ and $T_{i, n}$ is isomorphic to $S_{i, n}$ for all $n \geq 1$.

Finally, note that, for any $a \in A$ and $b \in B$ such that $\operatorname{Tree}_{\mathcal{A}}(a)$ is isomorphic
 $\operatorname{Tree}_{\mathcal{B}}(b)$ as follows.

Stage 0. Set $\phi(a)=b$.
Stage s+1. Assume that we have defined ϕ on $\operatorname{tree}_{\mathcal{A}}(a, s)$ so that ϕ is an isomorphism from $\operatorname{Tree}_{\mathcal{A}}(a, s)$ onto $\operatorname{Tree}_{\mathcal{B}}(b, s)$, and for all $x \in \operatorname{tree}_{\mathcal{A}}(a, s)$, $\operatorname{Tree}_{\mathcal{A}}(x)$ is isomorphic to $\operatorname{Tree}_{\mathcal{B}}(\phi(x))$. Then extend ϕ to an isomorphism from $\operatorname{Tree}_{\mathcal{A}}(a, s+1)$ onto $\operatorname{Tree}_{\mathcal{B}}(b, s+1)$ as follows. For each $x \in \operatorname{tree}_{\mathcal{A}}(a, s)$
which is in the range of f, find $x_{0}<x_{1}$ in A such that $f\left(x_{0}\right)=f\left(x_{1}\right)=x$ and find $y_{0}<y_{1}$ in B such that $g\left(y_{0}\right)=g\left(y_{1}\right)=\phi(x)$. By assumption, Tree $_{\mathcal{A}}(x)$ is isomorphic to $\operatorname{Tree}_{\mathcal{B}}(\phi(x))$. Then if $\operatorname{Tree}_{\mathcal{A}}\left(x_{0}\right)$ is isomorphic to ${\operatorname{Tr} e e_{\mathcal{A}}\left(x_{1}\right), ~}_{\text {, }}$ we know that $\operatorname{Tree}_{\mathcal{B}}\left(y_{i}\right)$ is isomorphic to $\operatorname{Tree}_{\mathcal{A}}\left(x_{0}\right)$ for $i=0,1$ so that we let $\phi\left(x_{0}\right)=y_{0}$ and $\phi\left(x_{1}\right)=y_{1}$. If $\operatorname{Tree}_{\mathcal{A}}\left(x_{0}\right)$ is not isomorphic to $\operatorname{Tree}_{\mathcal{A}}\left(x_{1}\right)$, then there is some $s \in\{0,1\}$ such that $\operatorname{Tree}_{\mathcal{A}}\left(x_{0}\right)$ is isomorphic to $\operatorname{Tree}_{\mathcal{B}}\left(y_{s}\right)$ and $\operatorname{Tree}_{\mathcal{A}}\left(x_{1}\right)$ is isomorphic to $\operatorname{Tree}_{\mathcal{B}}\left(y_{1-s}\right)$. In that case, we let $\phi\left(x_{0}\right)=y_{s}$ and $\phi\left(x_{1}\right)=y_{1-s}$.

It follows that for each $1 \leq i \leq r$, we can define a computable isomorphism $h_{i}: O_{\mathcal{A}}\left(a_{i}\right) \rightarrow O_{\mathcal{B}}\left(b_{i}\right)$ by setting $h_{i}\left(a_{i, n}\right)=b_{i, n}$ for $n \geq 0, h_{i}\left(c_{i, n}\right)=d_{i, n}$ for $n \geq 1$, and ensuring that h_{i} restricted to $\operatorname{tree}_{\mathcal{A}}\left(a_{i}\right)$ is the canonical isomorphism from $\operatorname{Tree}_{\mathcal{A}}\left(a_{i}\right)$ onto $\operatorname{Tree}_{\mathcal{B}}\left(b_{i}\right)$, and h_{i} restricted to $\operatorname{tree}_{\mathcal{A}}\left(c_{i, n}\right)$ is the canonical isomorphism from $\operatorname{Tree}_{\mathcal{A}}\left(c_{i, n}\right)$ onto $\operatorname{Tree}_{\mathcal{B}}\left(d_{i, n}\right)$ for $n \geq 1$.

Thus $\bigcup_{i=0}^{r} h_{i}$ is a computable isomorphism from \mathcal{A} onto \mathcal{B}.
Now suppose that $\mathcal{A}=(A, f)$ is a highly computable locally finite $(2,0): 1$ structure such that $\operatorname{Fin}(\mathcal{A})=A$. In this case, the type of k-cycle is of the form $\left\langle\left(c_{0}, \ldots, c_{k-1}\right),\left(T_{0}, \ldots, T_{k-1}\right)\right\rangle$ where each T_{i} is a finite binary tree. There is a natural order on the set of finite binary trees determined by embeddability. That is, if T and S are finite binary trees with roots s and t, respectively, then we can think of T and S as directed graphs with all edges directed toward the root. Then we write $T \sqsubseteq S$ if there is map ϕ from the nodes of T into the nodes of S such that $\phi(r)=s$ and for any nodes x and y in $T,(x, y)$ is a directed edge in T if and only if $(\phi(x), \phi(y))$ is a directed edge in S. Alternatively, $T \sqsubseteq S$ if and only if the directed graph S can be constructed by taking a directed graph T and replacing each leaf $\ell \in T$ with a binary tree T_{ℓ} with all edges directed toward the root. For example, the complete binary tree T_{k} of height k is embeddable in the complete binary tree of T_{r} of height r for all $r \geq k$. We also say that every binary tree T is embeddable in the complete binary tree B. We can then extend \sqsubseteq to orbits in \mathcal{A} by saying that $\mathcal{O}_{\mathcal{A}}(a) \sqsubseteq \mathcal{O}_{\mathcal{A}}(b)$ if and only if there is some $k \geq 1$ such that the type of $\mathcal{O}_{\mathcal{A}}(a)$ is $\left\langle\left(c_{0}, \ldots, c_{k-1}\right),\left(T_{0}, \ldots, T_{k-1}\right)\right\rangle$, the type of $\mathcal{O}_{\mathcal{A}}(b)$ is $\left\langle\left(d_{0}, \ldots, d_{k-1}\right),\left(S_{0}, \ldots, S_{k-1}\right)\right\rangle$, and there is some $0 \leq p \leq k-1$ such that $T_{i} \sqsubseteq S_{p+i} \bmod k$ for $i=0, \ldots, k-1$.

We say that a computable $(2,0): 1$ structure $\mathcal{A}=(A, f)$ has an explicitly computable cycle structure if \mathcal{A} is locally finite, $\operatorname{Fin}(\mathcal{A})=A$, and there is a computable function h such that for all $k \geq 1, h(k)$ is equal to the code of a list $\left(\left(D_{1}, d_{1}\right), \ldots,\left(D_{\ell_{k}}, d_{\ell_{k}}\right)\right.$ where any orbit $O_{\mathcal{A}}(a)$ which is a k-cycle is isomorphic to one of $D_{1}, \ldots, D_{\ell_{k}}$ and there are exactly $d_{i} k$-cycles in \mathcal{A} which are isomorphic to D_{i} for $i=1, \ldots, \ell_{r}$. In addition, we assume that the poset $\mathcal{P}_{k}=\left(\left\{D_{1}, \ldots, D_{\ell_{k}}\right\}, \sqsubseteq\right)$, where \sqsubseteq is the embeddability relation has the property that d_{i} is finite if D_{i} is not a minimal element in \mathcal{P}_{k} and $d_{i} \in \mathbb{N} \cup\{\omega\}$ if D_{i} is a minimal element of \mathcal{P}_{k}.

We claim that if $\mathcal{A}=(A, f)$ has an explicitly computable cycle structure, then \mathcal{A} is highly computable. Clearly, it is enough to show that we can
effectively compute the \mathcal{A}-orbit of a for any $a \in A$. Given an element $a \in A$, we can first compute $a, f(a), f^{2}(a), \ldots$ until we find the k such that $O_{\mathcal{A}}(a)$ is a k-cycle. At that point, we start enumerating A and computing f until we find the required number of copies of D_{i} for all non-minimal elements of \mathcal{P}_{k}. If $O_{\mathcal{A}}(a)$ is one of those k-cycles, then we have explicitly computed the $O_{\mathcal{A}}(a)$. If not, $O_{\mathcal{A}}(a)$ is isomorphic to a minimal element of \mathcal{P}_{k}. We know that none of the minimal elements of \mathcal{P}_{k} are embeddable in each other, which means that we can compute long enough until we see enough of the partial structure of $O_{\mathcal{A}}(a)$ to distinguish it from the other minimal elements of \mathcal{P}_{k}. At that point, we will know the isomorphism type of $O_{\mathcal{A}}(a)$ so that we can continue to enumerate A and compute f until we have found all the elements of $O_{\mathcal{A}}(a)$.

Thus we have the following corollary of Theorem 3.1.
Corollary 3.2. If $\mathcal{A}=(A, f)$ is a computable (2,0):1 structure which has an explicitly computable cycle structure, then \mathcal{A} is computably categorical. Furthermore, the argument above relativizes to show that the indicated structures are in fact relatively computably categorical.

Next we consider the special case of locally finite structures $\mathcal{A}=(\omega, f)$ such that for some fixed k, \mathcal{A} consists exactly of an infinite number of orbits each containing a k-cycle. Following the notation of Lempp, McCoy, R. Miller and Solomon [10], we say that \mathcal{A} is strongly finite if there exists a finite set $\left\{D_{1}, \ldots, D_{\ell}\right\}$ such that every orbit is isomorphic to D_{i} for some $i \leq \ell$ and, furthermore, there do not exist $D_{i} \neq D_{j}$ such that there are infinitely many orbits of type D_{i} and infinitely many orbits of type j such that D_{i} is embeddable into D_{j}. Then we have the following corollary of Theorem 3.1

Proposition 3.3. Suppose that, for a fixed finite $k, \mathcal{A}=(A, f)$ consists of an infinite number of orbits, each containing a k-cycle, and is strongly finite. Then \mathcal{A} is relatively computably categorical.

Proof. We prove this by describing the Scott formulas. First we observe that the relation " $\mathcal{O}(x)=\mathcal{O}(y)$ " is c.e., since x and y are in the same orbit if and only if, for some natural numbers m and $n, f^{m}(x)=f^{n}(y)$. Furthermore, if we have a bound M on the size of the orbits, as we do here, then this relation is in fact Δ_{1}^{0}, since we can bound m and n by M.

For each type D_{j} which occurs only finitely often, choose a member of each orbit of type D_{j} as a parameter. Then $\mathcal{O}(x)$ has type D_{j} for such a j if and only if it is the same orbit as one of the parameters. If x is in one of the remaining orbits, let $\mathcal{O}^{t}(x)=\left\{y:(\exists m<t)(\exists n<t)\left(f^{m}(x)=f^{n}(y)\right)\right\}$. Then $\mathcal{O}(x)$ is of type D_{j} if and only if for some $t, \mathcal{O}^{t}(x)$ is of type D_{i}. That is, once the orbit of x looks like D_{i} and is known not be one of the orbits of type D_{j} where D_{i} is embeddable into D_{j}, then $\mathcal{O}^{t}(x)=\mathcal{O}(x)$ since it cannot grow into anything else. Then the condition that $\mathcal{O}(x)$ has type D_{i} is a c. e.formula consisting of a disjunction over natural numbers t of a c. e.formula which describes the condition that $\left\{y:(\exists m<t)(\exists n<t)\left(f^{m}(x)=f^{n}(y)\right)\right\}$ is isomorphic to D_{i}. Now for every i, we have a canonical copy of D_{i} and we can find a particular
subset $S(x)$ of D_{i} and specify that $d \in S$ if and only if there is an isomorphism taking $\mathcal{O}(x)$ to D_{i} which maps x to d. Then the c.e. Scott formula of x first states the orbit type of $\mathcal{O}(x)$ and then indicates the set $S(x)$.

For a tuple $\left(x_{1}, \ldots, x_{m}\right)$ of elements, the Scott formula consists of the individual Scott formulas for x_{1}, \ldots, x_{m} together with, for each pair x_{i} and x_{j}, either the statement that $\mathcal{O}\left(x_{i}\right)=\mathcal{O}\left(x_{j}\right)$, or the statement that $\mathcal{O}\left(x_{i}\right) \neq \mathcal{O}\left(x_{j}\right)$, and finally a statement that specifies for each tuple y_{1}, \ldots, y_{n} taken from x_{1}, \ldots, x_{m} which belong to the same orbit of type D_{i}, which tuples d_{1}, \ldots, d_{n} could be the images of y_{1}, \ldots, y_{n} under an isomorphism of $\mathcal{O}\left(x_{i}\right)$ with D_{i}.

Unlike the case of computable $2: 1$ structures, we cannot characterize the computably categorical, locally finite, highly computable (2,0):1 structures as those which have only finitely many ω-chains. We can construct a computably categorical, locally finite, highly computable $(2,0): 1$ structure $\mathcal{A}=(A, f)$ with infinitely many ω-chains as follows. First we assume that there is a fixed $r \geq$ 0 such that any k-cycle in \mathcal{A} has type $\left\langle\left(c_{0}, \ldots, c_{k-1}\right),\left(T_{0}, \ldots, T_{k-1}\right)\right\rangle$ where $T_{0}, T_{1}, \ldots, T_{k-1}$ are all binary trees of height $\leq r$. Next assume that for all $t>r$, there is a unique ω-chain C_{t} in \mathcal{A}

$$
\left\langle\left(a_{0}, a_{1}, a_{2}, \ldots\right),\left(T_{1}, T_{2}, \ldots\right)\right\rangle
$$

such that T_{i} is a complete binary tree of height t. The key thing to observe about the ω-chain C_{t} is that the only ways to represent it as an ω-chain

$$
\left\langle\left(a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots\right),\left(T_{1}^{\prime}, T_{2}^{\prime}, \ldots\right)\right\rangle,
$$

which is different from $\left\langle\left(a_{0}, a_{1}, a_{2} \ldots\right),\left(T_{1}, T_{2}, \ldots\right)\right\rangle$ is to have a_{0}^{\prime} correspond to a leaf in one of the trees T_{n}. In such a situation, T_{i}^{\prime} will be a complete binary tree of height i for $i=1, \ldots, t, T_{t+1}^{\prime}=\operatorname{Tree}_{\mathcal{A}}\left(a_{i, n-1}\right)$, and T_{i}^{\prime} is the complete binary tree of size t for $i \geq r_{2}$. It follows that we can recognize the type of any element x which is in ω-chain in \mathcal{A} by simply starting at a and computing x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots where $x_{i}=f^{i}(x), y_{i}$ is an element which is not equal to x_{i-1} such that $f\left(y_{i}\right)=x_{i}$ and $S_{i}=\operatorname{Tree}_{\mathcal{A}}\left(y_{i}\right)$ until we see a j such that S_{j} and S_{j+1} are both complete binary trees of size t. Then we know that a belongs to an ω-chain of the form

$$
\left\langle\left(a_{0}, a_{1}, a_{2}, \ldots\right),\left(T_{1}, T_{2}, \ldots\right)\right\rangle,
$$

where T_{i} is a complete binary tree of height $t>r$. Moreover, we can find the corresponding a_{0} in the tree S_{t+1}.

It follows that we can effectively determine whether an element in $a \in A$ is in $\operatorname{Fin}(\mathcal{A})$, since its orbit will not have any elements c such that $\operatorname{Tree}_{\mathcal{A}}(c)$ is a complete binary tree of size $t>r$ if $c \notin \operatorname{Fin}(\mathcal{A})$, in which case we can effectively find a_{0}^{t} such that $O_{\mathcal{A}}(c)$ is of type

$$
\left\langle\left(a_{0}^{t}, a_{1}^{t}, a_{2}^{t}, \ldots\right),\left(T_{1}^{t}, T_{2}^{t}, \ldots\right)\right\rangle,
$$

where T_{i}^{t} is a complete binary tree of height $t>r$. Thus if $\mathcal{B}=(B, g)$ is a highly computable locally finite $(2,0): 1$ structure which is isomorphic to \mathcal{A},
then $\operatorname{Fin}(\mathcal{B})$ is computable and hence, by our argument in Theorem 3.1, we can construct a computable isomorphism h_{0} mapping $(\operatorname{Fin}(\mathcal{A}), f)$ onto $(\operatorname{Fin}(\mathcal{B}), g)$. Moreover, for any $t>r$, we can effectively find b_{0}^{t} such that the orbit of b_{0}^{t} is an ω-chain

$$
\left\langle\left(b_{0}^{t}, b_{1}^{t}, b_{2}^{t}, \ldots\right),\left(T_{1}^{t}, T_{2}^{t}, \ldots\right)\right\rangle
$$

where $b_{i}^{t}=g^{i}\left(b_{0}^{t}\right)$ and T_{i}^{t} is a complete binary tree of height $t>r$ for all $i \geq 1$. We can then define a bijection h_{t} from the orbit of a_{0}^{t} in \mathcal{A} to the orbit of b_{0}^{t} in \mathcal{B} by finding $c_{i}^{t} \in A$ and d_{i}^{t} in B for $i \geq 1$ such that $c_{i}^{t} \neq a_{i-1}^{t}$ and $f\left(c_{i}^{t}\right)=a_{i}^{t}$ and $d_{i}^{t} \neq b_{i-1}^{t}$ and $g\left(d_{i}^{t}\right)=b_{i}^{t}$ for $i \geq 1$ and defining h_{t} so that $h\left(a_{i}^{t}\right)=b_{i}^{t}$ for $i \geq 0$, $h\left(c_{i}^{t}\right)=d_{i}^{t}$ for $i \geq 1$, and ensuring that h_{t} restricted to $\operatorname{tree}_{\mathcal{A}}\left(c_{i}^{t}\right)$ is the canonical isomorphism from $\operatorname{Tree}_{\mathcal{A}}\left(c_{i}^{t}\right)$ onto $\operatorname{Tree}_{\mathcal{B}}\left(d_{i}^{t}\right)$. It follows that $h=\bigcup_{t>0} h_{t}$ is a computable isomorphism from \mathcal{A} onto \mathcal{B} so that \mathcal{A} is computably categorical relative to the highly computable locally finite $(2,0): 1$ structures.

It should be clear that we can construct infinitely many such examples by picking r, any computable set $S \subseteq\{r+1, r+2, \ldots\}$ and constructing a highly computable locally finite $(2,0): 1$ structure $\mathcal{A}=(A, f)$ such that:

1. the only k-chains of \mathcal{A} are of type $\left\langle\left(c_{0}, \ldots, c_{k-1}\right),\left(T_{0}, \ldots, T_{k-1}\right)\right\rangle$ where the height of T_{i} is $\leq r$,
2. the only ω-chains of \mathcal{A} are of the form

$$
\left\langle\left(a_{0}, a_{1}, a_{2}, \ldots\right),\left(T_{1}, T_{2}, \ldots\right)\right\rangle
$$

where T_{i} is a complete binary tree of height $t \in S$, and
3. for each $t \in S, \mathcal{A}$ has $s_{r} \omega$-chains of type

$$
\left\langle\left(a_{0}, a_{1}, a_{2}, \ldots\right),\left(T_{1}, T_{2}, \ldots\right)\right\rangle
$$

where T_{i} is a complete binary tree of height t such that $s_{r} \in(\mathbb{N}-\{0\}) \cup\{\omega\}$.

4 Non-Computably Categorical (2,0):1 Structures

In this section, we shall show that if we drop the hypothesis that a locally finite $(2,0): 1$ structure $\mathcal{A}=(A, f)$ is highly computable or has explicitly computable cycle structure, then there are many examples of computable (2,0):1 structures which are not computably categorical structures even in the case where $\operatorname{Fin}(\mathcal{A})=A$. For example, we have the following theorem.

Theorem 4.1. Suppose that $\mathcal{A}=(A, f)$ is a computable locally finite (2,0):1 structure such that $\operatorname{Fin}(\mathcal{A})=A$ and there exist two distinct types of orbits which are k-cycles,
$D_{1}=\left\langle\left(d_{0}, \ldots, d_{k-1}\right),\left(T_{0}, \ldots, T_{k-1}\right)\right\rangle$ and $D_{2}=\left\langle\left(e_{0}, \ldots, e_{k-1}\right),\left(S_{0}, \ldots, S_{k-1}\right)\right\rangle$, such that \mathcal{A} has infinitely many k-cycles which are isomorphic to D_{i} for $i=1,2$ and D_{1} is embeddable into D_{2}. Then there exists a computable (2,0):1 structure $\mathcal{B}=(\mathbb{N}, g)$ which is isomorphic to \mathcal{A} but is not computably isomorphic to \mathcal{A}.

Proof. First let ϕ be a 1:1 computable function which maps A onto the set of odd numbers O in \mathbb{N}. Define h on 0 so that ϕ is an isomorphism. Next on the even numbers E define h so that we create infinitely many copies

$$
\left\langle\left(c_{0}^{m}, \ldots, c_{k-1}^{m}\right),\left(T_{0}^{m}, \ldots, T_{k-1}^{m}\right)\right\rangle_{m \geq 0}
$$

of C_{1} such that $c_{0}^{0}<c_{0}^{1}<c_{0}^{2}<\cdots$ is a computable sequence. If $\mathcal{C}=(\mathbb{N}, h)$ is not computably isomorphic to \mathcal{A}, then we are done. Otherwise, we construct, in stages, a computable $(2,0): 1$ structure $\mathcal{B}=(\mathbb{N}, g)$ which is isomorphic to \mathcal{A} but not computably isomorphic to \mathcal{C}.

Let ϕ_{e} denote the partial computable function computed by the e-th Turing machine M_{e} and let $\phi_{e, s}(x)$ denote the result, if any, of carrying out the computation of M_{e} on input x for s steps. If this computation has not returned a value, then we write $\phi_{e, s}(x) \uparrow$ and if it has returned a value, then we write $\phi_{e, s}(x) \downarrow$.

Note that for any $a \in \mathbb{N}$, we can compute the sequence $a, h(a), h^{2}(a), \ldots$ long enough until we find the cycle $C_{a}=\left(z_{0}^{a}, \ldots, z_{k_{a}-1}^{a}\right)$ corresponding to the orbit of a where z_{0}^{a} is the smallest element of $\left\{z_{0}^{a}, \ldots, z_{k_{a}-1}^{a}\right\}$. It follows that we can compute the sequence $y_{0}<y_{1}<\cdots$ such that $Y=\left\{y_{i}: i \geq 0\right\}=\left\{z_{0}^{a}: a \in \mathbb{N}\right\}$. It follows that $c_{0}^{0}<c_{0}^{1}<\cdots$ is a computable subsequence of y_{0}, y_{1}, \ldots That is, there is a computable increasing function q such that $y_{q(i)}=c_{0}^{i}$ for all $i \geq 0$.

For any $j \notin \operatorname{ran}(q)$, we let $O_{\mathcal{C}, s}\left(y_{j}\right)$ denote the set of $x \leq s$ such that either x is in the cycle $C\left(y_{j}\right)=\left(y_{j}=y_{j, 0}, \ldots, y_{j, k_{j}-1}\right)$ of h determined by y_{j} or $h^{k}(x) \in\left\{y_{j, 0}, \ldots y_{j, k_{j}-1}\right\}$. For any $y_{j} \in \operatorname{ran}(q)$, we let $O_{\mathcal{C}, s}\left(y_{j}\right)$ denote $O_{\mathcal{C}}\left(y_{j}\right)$. Note that, by the construction, we can compute $O_{\mathcal{C}}\left(y_{j}\right)$ if $j \in \operatorname{ran}(q)$. In either case, we shall call $O_{\mathcal{C}, s}\left(y_{j}\right)$ the partial orbit of y_{j} at stage s.

We will use a finite injury priority argument to define a Δ_{2}^{0} function $\psi: \mathbb{N} \rightarrow$ \mathbb{N} which is the limit of computable functions $\psi^{(s)}$ and the computable function g on \mathbb{N} in stages so that at any stage s, if $j \leq s$ and $j \notin \operatorname{ran}(q)$, then $\psi^{(s)}$ maps the partial orbit of y_{j} at stage $s, O_{\mathcal{C}, s}\left(y_{j}\right)$, onto a partial orbit of g which is isomorphic to the orbit $O_{\mathcal{C}, s}\left(y_{j}\right)$. On the elements of the form $y_{q(i)}$ where $q(i) \leq s$, we will define $\psi^{(s)}$ and g so that $\psi^{(s)}$ maps the orbit $O_{\mathcal{C}, s}\left(y_{q(i)}\right)$ into an orbit which is either isomorphic to D_{1} or D_{2}. This way we will ensure that $\mathcal{B}=(\mathbb{N}, g)$ is isomorphic to \mathcal{A}. At each stage s, we will place Γ_{j} markers on the partial g-orbits which are isomorphic to the partial orbits $O_{\mathcal{C}, s}\left(y_{j}\right)$ under $\phi^{(s)}$ for $j \leq s$ such that $j \notin \operatorname{ran}(q)$.

We will have two sets of requirements that we must meet.
$N_{e}: \lim _{s} \psi^{(s)}(x)$ exists for all $x \in O_{\mathcal{C}}\left(y_{e}\right)$ and ψ maps $O_{\mathcal{C}}\left(y_{e}\right)$ onto a \mathcal{B}-orbit which is isomorphic to $O_{\mathcal{C}}\left(y_{e}\right)$ if $e \notin \operatorname{ran}(q)$ or is not a \mathcal{B}-orbit which is isomorphic to either D_{1} and D_{2} if $e \in \operatorname{ran}(q)$.
P_{e} : Either

1. ϕ_{e} is not $1: 1$ on its domain,
2. there exists i such that ϕ_{e} is not defined on $O_{\mathcal{C}}\left(y_{q(i)}\right)$, or
3. there exists i such that ϕ_{e} is defined on $O_{\mathcal{C}}\left(y_{q(i)}\right)$, but $O_{\mathcal{C}}\left(y_{q(i)}\right)$ is not isomorphic to $O_{\mathcal{B}}\left(\phi_{e}\left(y_{q(i)}\right)\right)$.

Our basic strategy for meeting a requirement P_{e} is to simply compute $\phi_{e, s}\left(y_{q(0)}\right), \ldots, \phi_{e, s}\left(y_{q(s)}\right)$ until we find an i such that the partial orbit of $\phi_{e, s}\left(y_{q(s)}\right)$ under g as defined at stage s is not in the union of the partial orbits that are used to meet the requirements N_{a} for $a \leq e$ or P_{b} for $b<e$. That is, none of the elements of the partial orbit of $\phi_{e, s}\left(y_{q(s)}\right)$ under g as defined at stage s have either Γ_{j} markers on them for $j \leq e$ or Δ_{j} markers on them for $j<e$. At this point, if the partial orbit of $\phi_{e, s}\left(y_{q(s)}\right)$ is consistent with being isomorphic to D_{1}, then we extend g by using new elements of \mathbb{N} so that the g-orbit $\phi_{e, s}\left(y_{q(s)}\right)$ is isomorphic to D_{2}. We then put Δ_{e} markers on the elements of this orbit. If the g-orbit of $\phi_{e, s}\left(y_{q(s)}\right)$ was being used to ensure that ψ is an isomorphism to some orbit y_{j} where $j>e$, then we simply use new elements to create a partial g-orbit which is isomorphic to the partial orbit $O_{\mathcal{C}, s}\left(y_{j}\right)$.

Stage 0. Find the cycle $C\left(y_{0}\right)=\left(y_{0}=y_{0}^{0}, y_{1}^{0}, \ldots, y_{k_{0}-1}^{0}\right)$. Then define g so that $g(0)=1, g(1)=2, \ldots, g\left(k_{0}-2\right)=k_{0}-1, g\left(k_{0}-1\right)=0$ and define $\psi^{(0)}$ so that $\psi^{(0)}\left(y_{j, 0}\right)=j$ for $0 \leq j \leq k_{0}-1$. Put Γ_{0} markers on $0, \ldots, k_{0}-1$.

Stage $\mathbf{s}+\mathbf{1}$. Assume we have defined $\psi^{(s)}$ on the union of the partial orbits at stage s of all y_{j} for $j \leq s$ and g is defined on a finite subset I_{s} of \mathbb{N} so that:

1. $\psi^{(s)}$ is a 1:1 function onto I_{s},
2. for all y_{j} with $j \leq s$ and y_{j} not in the range of $q, \psi^{(s)}\left(O_{\mathcal{C}, s}\left(y_{j}\right)\right)$ is a g-orbit in $\left(I_{s}, g\right)$ and $\left(\psi^{(s)}\left(O_{\mathcal{C}, s}\left(y_{j}\right)\right), g\right)$ is isomorphic to $\left(O_{\mathcal{C}, s}\left(y_{j}\right), h\right)$ and there are Γ_{j} markers on the elements of $\psi^{(s)}\left(O_{\mathcal{C}, s}\left(y_{j}\right)\right)$,
3. for all y_{j} with $j \leq s$ and y_{j} in the range of $q, \psi^{(s)}\left(O_{\mathcal{C}}\left(y_{j}\right)\right)$ is contained in a g-orbit which is isomorphic to either D_{1} or D_{2}.
First look for an $e \leq s+1$ such that $\phi_{e, s}$ is $1: 1$ on its domain, there currently are no elements with Δ_{e} markers, and there is a $j \leq s$ such that $j \in \operatorname{ran}(q)$ and either $\phi_{e, s}\left(y_{j}\right)$ maps to an element outside of I_{s} or to an element of I_{s} which does not have a Γ_{i} marker on it or a Δ_{i} marker on it for any $i<j$. If no such e exists, then use elements from an initial segment of elements of $\mathbb{N}-I_{s}$ and define g on those elements to create a g-orbit which is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{s+1}\right)$. Then define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{s+1}\right)$ so that it is an isomorphism which sends y_{s+1} to the least element of the cycle of the orbit and the map from any tree that feed into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{s+1}\right)$. Put Γ_{s+1} markers on the elements of this new g-orbit if $s+1 \notin \operatorname{ran}(q)$. Then let $\psi^{(s+1)}=\psi^{(s)}$ on $\bigcup_{j \leq s} O_{\mathcal{C}, s}\left(y_{j}\right)$. Finally, for all $j \leq s, j \notin \operatorname{ran}(q)$, use elements from an initial segment of $\mathbb{N}-\left(I_{s} \cup\right.$ $\left.\psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{s+1}\right)\right)\right)$ and define g on those elements so that the g-orbit of $\psi^{(s)}\left(y_{j}\right)$ is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$. Put Γ_{j} markers on the new elements in image of $\psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{j}\right)\right)$ and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{j}\right)-O_{\mathcal{C}, s}\left(y_{j}\right)$ so that $\psi^{(s+1)}$ restricted to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$ is an isomorphism to the g-orbit of $\psi^{(s)}\left(y_{j}\right)$.

$$
\text { If such an } e \text { exists, then let } e_{s+1} \text { be the least such } e \text {. Then we have two cases. }
$$

Case 1. $\phi_{e, s}\left(y_{e_{s+1}}\right) \notin I_{s}$.
Then use an initial segment of elements in $\mathbb{N}-I_{s}-\left\{\phi_{e, s}\left(y_{e_{s+1}}\right)\right\}$ and define g on those elements and $\phi_{e, s}\left(y_{e_{s+1}}\right)$ to create a g-orbit which is isomorphic to D_{2} where $\phi_{e, s}\left(y_{e_{s+1}}\right)$ plays the role of the least element in the cycle of D_{2}. Define $\psi^{(s+1)}$ on $O_{\mathcal{C}}\left(y_{e_{s+1}}\right)$ so that it is an isomorphism which sends $y_{e_{s+1}}$ to the least element of the cycle of the orbit, and the map from any tree that feeds into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{e_{s+1}}\right)$. Put $\Delta_{e_{s+1}}$ markers on the g-orbit of $\psi^{(s+1)}\left(y_{e_{s+1}}\right)$. In addition, create a g-orbit which is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{s+1}\right)$. Then define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{s+1}\right)$ so that it is an isomorphism which sends the y_{s+1} to the least element of the cycle of the orbit, and the map from any tree that feeds into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{s+1}\right)$. Put Γ_{s+1} markers on the elements of this new g-orbit if y_{s+1} is not in the range of q. Then let $\psi^{(s+1)}=\psi^{(s)}$ on $\bigcup_{j \leq s, y_{j}} O_{\mathcal{C}, s}\left(y_{j}\right)$. Finally, for all $j \notin \operatorname{ran}(q)$ for $j \leq s$, take elements from an initial segment of the elements of \mathbb{N} which have not been used in the construction up to this point and define g on those elements so that the g-orbit of $\psi^{(s)}\left(y_{j}\right)$ is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$. Put Γ_{j} markers on the new elements in the image $\psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{j}\right)\right)$ and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{j}\right)-O_{\mathcal{C}, s}\left(y_{j}\right)$ so that $\psi^{(s+1)}$ restricted to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$ is an isomorphism to the g-orbit of $\psi^{(s)}\left(y_{j}\right)$.

Case 2. $\phi_{e, s}\left(y_{e_{s+1}}\right) \in I_{s}$.
Consider the current g-orbit O of $\phi_{e, s}\left(y_{e_{s+1}}\right)$. If $\psi^{(s)}$ induces an embedding of O into D_{1}, then use elements from an initial segment of $\mathbb{N}-I_{s}$ and define g on those elements so that we extend O to an orbit which is isomorphic to D_{2}. Put $\Delta_{e_{s+1}}$ markers on all the elements of this new D_{2}-orbit. Now suppose that the elements of O had Γ_{r} markers on them for some r, where $e_{s+1}<r \leq s$. Then we remove all those Γ_{r} markers and take an initial segment of the elements of \mathbb{N} that have not been used up to this point and define g to create a new copy of $O_{\mathcal{C}, s+1}\left(y_{j}\right)$. Then define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{j}\right)$ so that it is an isomorphism which sends the y_{j} to the least element of the cycle of the new g-orbit, and the the map from any tree that feeds into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{j}\right)$. Similarly, define $\psi^{(s+1)}$ on $O_{\mathcal{C}}\left(y_{e_{s+1}}\right)$ so that it is an isomorphism which sends $y_{e_{s+1}}$ to the least element of the cycle of the new g-orbit which is isomorphic to D_{2}, and the map from any tree that feeds into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{e_{s+1}}\right)$. In addition, create a g-orbit which is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{s+1}\right)$, and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{s+1}\right)$ so that it is an isomorphism which sends y_{s+1} to the least element of the cycle of the orbit and the the map from any tree that feeds into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{s+1}\right)$. Put Γ_{s+1} markers on the elements of this new g-orbit if y_{s+1} is not in the range of q. Then let $\psi^{(s+1)}=\psi^{(s)}$ on $\bigcup_{j \in\{0, \ldots, s\}-\{r\}} O_{\mathcal{C}, s}\left(y_{j}\right)$. Finally, for all $j \notin \operatorname{ran}(q)$ for $j \leq s$,
take elements from an initial segment of elements that have not currently been used in the construction and define g on those elements so that the g-orbit of $\psi^{(s)}\left(y_{j}\right)$ is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$. Put Γ_{j} markers on the new elements in the image $\psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{j}\right)\right)$ and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{j}\right)-O_{\mathcal{C}, s}\left(y_{j}\right)$ so that $\psi^{(s+1}$ restricted to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$ is an isomorphism to the g-orbit of $\psi^{(s)}\left(y_{j}\right)$.

If $\psi^{(s)}$ does not induce an embedding of O into D_{1}, then O is inconsistent with having its pre-image under $\psi^{(s)}$ isomorphic to D_{1}. In this case, put $\Delta_{e_{s+1}}$ markers on all the elements of O. Then use elements from an initial segment of elements of $\mathbb{N}-I_{s}$ and define g on those elements to create a g-orbit which is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{s+1}\right)$, and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{s+1}\right)$ so that it is an isomorphism which sends y_{s+1} to the least element of the cycle of the orbit, and the map from any tree that feeds into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{s+1}\right)$. Put Γ_{s+1} markers on the elements of this new g-orbit if y_{s+1} is not in the range of q. Then let $\psi^{(s+1)}=\psi^{(s)}$ on $\bigcup_{j \leq s} O_{\mathcal{C}, s}\left(y_{j}\right)$. Finally, for all $j \notin \operatorname{ran}(q)$ for $j \leq s$, use elements from an initial segment of $\mathbb{N}-\left(I_{s} \cup \psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{s+1}\right)\right)\right)$, and define g on those elements so that the g-orbit of $\psi^{(s)}\left(y_{j}\right)$ is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$. Put Γ_{j} markers on the new elements in the image $\psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{j}\right)\right)$ and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{j}\right)-O_{\mathcal{C}, s}\left(y_{j}\right)$ so that $\psi^{(s+1)}$ restricted to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$ is an isomorphism to the g-orbit of $\psi^{(s)}\left(y_{j}\right)$.

This completes the construction. It is easy to see that each step is effective and, hence, g is computable since we never change the value of $g(x)$ for any x.

Next observe that if e_{s+1} is defined, then there is a $e_{s+1} \in \operatorname{ran}(q)$ and our action ensures that $\phi_{e_{s+1}}\left(y_{e_{s+1}}\right)$ has \mathcal{B}-orbit which is not isomorphic to D_{1}. Thus ϕ_{e} can not be an isomorphism from \mathcal{C} onto \mathcal{B}. Moreover, we will never remove the $\Delta_{e_{s+1}}$ markers that we placed at stage $s+1$ which means that we will never take an action to meet the requirement $P_{e_{s+1}}$ after stage $s+1$.

It is a straightforward induction to show that for each $j \notin \operatorname{ran}(q)$, the $\lim _{s \rightarrow \infty} \psi^{(s)}(x)=\psi(x)$ exists for $x \in O_{\mathcal{C}}\left(y_{j}\right)$ and that ψ restricted to $\left(O_{\mathcal{C}}\left(y_{j}\right), h\right)$ is an isomorphism onto $\left(O_{\mathcal{B}}\left(\phi\left(y_{j}\right)\right), g\right)$. That is, we can only be forced to have $\psi^{(s)}(x) \neq \psi^{(s+1)}(x)$ for any $x \in O_{\mathcal{C}, s}\left(y_{j}\right)$ for an $s \geq j$ if we are taking an action to meet a requirement P_{e} for $e \leq j$. Since we can only take an action for P_{e} once, it follows that there will be a t large enough so that $O_{\mathcal{C}, t}\left(y_{j}\right)=O_{\mathcal{C}}\left(y_{j}\right)$ and $\psi^{(t)}(x)=\psi^{(s)}(x)$ for all $s \geq t$ and $x \in O_{\mathcal{C}}\left(y_{j}\right)$. By the construction, at each stage $s \geq j, \psi^{(s)}$ is an isomorphism from $\left(O_{\mathcal{C}, s}\left(y_{j}\right), h\right)$ to $\left(\psi^{(s)}\left(O_{\mathcal{C}, s}\left(y_{j}\right)\right), g\right)$. Thus ψ is an isomorphism from $\left(O_{\mathcal{C}}\left(y_{j}\right), h\right)$ onto $\left.\psi\left(O_{\mathcal{C}}\left(y_{j}\right)\right), g\right)$. A similar argument will show that for each $j \notin \operatorname{ran}(q)$, the $\lim _{s \rightarrow \infty} \psi^{(s)}(x)=\psi(x)$ exists for $x \in$ $O_{\mathcal{C}}\left(y_{j}\right)$ and that ψ restricted to $\left(O_{\mathcal{C}}\left(y_{j}\right), h\right)$ either maps it into a g-orbit which is isomorphic to either D_{1} or D_{2}. It then follows that $\mathcal{B}=(\mathbb{N}, g)$ is isomorphic to \mathcal{C}.

Thus the only thing that we have to do to show that \mathcal{B} is not computably isomorphic to \mathcal{C} is to show that we satisfy all the requirements P_{e}. Suppose for a contradiction, that ϕ_{e} is an isomorphism from \mathcal{B} into \mathcal{C}. Then there will be a
stage t large enough so that:
(i) we never take any action for a requirement P_{i} with $i<e$ after stage t,
(ii) $O_{\mathcal{C}, t}\left(y_{j}\right)=O_{\mathcal{C}}\left(y_{j}\right)$ for all $j \leq e$ such that $j \notin \operatorname{ran}(q)$,
(iii) for all $j<e, \psi^{(s)}(x)=\psi^{(t)}(x)$ for all $x \in O_{\mathcal{C}}\left(y_{j}\right)$, and
(iv) $\phi_{e, t}\left(y_{r}\right)$ is defined for all $r \leq 1+\sum_{j \leq e} \operatorname{card}\left(O_{\mathcal{C}}\left(y_{j}\right)\right)$.

Since we are assuming that ϕ_{e} is an isomorphism from \mathcal{C} to \mathcal{B}, there must be y_{j} in the range of q such that $\phi_{e}\left(y_{j}\right)$ maps to an element which does not have a Γ_{r} marker on it for any $r<e$. But then y_{j} could be used to satisfy the requirement P_{e} at stage $t+1$. Thus either $e_{t+1}=e$ in which case we take an action at stage $s+1$ to ensure that $O_{\mathcal{B}}\left(\phi_{e}\left(y_{j}\right)\right)$ is not isomorphic to D_{1} or there is an $s \leq t$ such that $e_{s}=e$. In either case, our construction ensures that $O_{\mathcal{B}}\left(\phi_{e}\left(y_{j}\right)\right)$ is isomorphic to D_{1}. Thus there can be no such e and, hence, \mathcal{B} is not computably isomorphic to \mathcal{C}.

Another simple condition which ensures that a computable locally finite $(2,0): 1$ structure $\mathcal{A}=(A, f)$ is not computably categorical is that there is an computable increasing chain of orbits which are k-cycles. That is, we say that $\mathcal{A}=(A, f)$ has a highly computable ascending chain of k-cycles if there is a computable sequence of elements $a_{0}^{0}, a_{0}^{1}, \ldots$ and a computable function z such that for each $i \geq 0$:

1. $O_{\mathcal{A}}\left(a_{0}^{i}\right)$ is a k-cycle $D_{i}=\left\langle\left(a_{0}^{i}, \ldots, a_{k-1}^{i}\right),\left(T_{0}^{i}, \ldots, T_{k-1}^{i}\right)\right\rangle$,
2. $z(i)$ is the canonical index of $O_{\mathcal{A}}\left(a_{0}^{i}\right)$, and
3. D_{i} is embeddable into D_{i+1}.

Then we have the following theorem
Theorem 4.2. Suppose that $\mathcal{A}=(A, f)$ is a computable (2,0):1 structure and \mathcal{A} has a highly computable ascending chain of k-cycles for some k. Then there is a computable (2,0):1 structure $\mathcal{B}=(\mathbb{N}, g)$ such that \mathcal{B} is isomorphic but not computably isomorphic to \mathcal{A}.

Proof. Our proof is a slight modification of the proof of Theorem 4.1. That is, if $A \neq \mathbb{N}$, then let $A=\left\{a_{0}<a_{1}<\cdots\right\}$. Then let $\theta\left(a_{i}\right)=i$ and define g on \mathbb{N} so that θ is an isomorphism from \mathcal{A} onto $\mathcal{C}=(\mathbb{N}, g)$. Then, as in the proof of Theorem 4.1, we let $y_{0}<y_{1}<\cdots$ be the set of the least elements that appear in the cycles of \mathcal{C}. Because \mathcal{A} has a highly computable ascending chain of k-cycles, there is an increasing computable function q such that $y_{q(0)}<y_{q(1)}<\cdots$ and $O_{y_{q(i)}}$ is a k-cycle $D_{i}=\left\langle\left(y_{q(i)}=y_{0}^{q(i)}, \ldots y_{k-1}^{q(i)}\right),\left(T_{0}^{q(i)}, \ldots, T_{k-1}^{q(i)}\right)\right\rangle$ such that D_{i} is embeddable in D_{i+1} and we can uniformly compute a canonical index of $O_{\mathcal{C}}\left(y_{q(i)}\right)$.

For any $j \notin \operatorname{ran}(q)$, we let $O_{\mathcal{C}, s}\left(y_{j}\right)$ denote the set of $x \leq s$ such that either x is in the cycle $C\left(y_{j}\right)=\left(y_{j}=y_{j, 0}, \ldots, y_{j, k_{j}-1}\right)$ of h determined by y_{j} or
$h^{k}(x) \in\left\{y_{j, 0}, \ldots, y_{j, k_{j}-1}\right\}$. For any $j \in \operatorname{ran}(q)$, we let $O_{\mathcal{C}, s}\left(y_{j}\right)$ denote $O_{\mathcal{C}}\left(y_{j}\right)$. Note that, by the construction, we can compute $O_{\mathcal{C}}\left(y_{j}\right)$ if $j \in \operatorname{ran}(q)$. In either case, we shall call $O_{\mathcal{C}, s}\left(y_{j}\right)$ the partial orbit of y_{j} at stage s.

We will use a finite injury priority argument to define a Δ_{2}^{0} function ψ : $\mathbb{N} \rightarrow \mathbb{N}$ which is the limit of a computable sequence of functions $\psi^{(s)}$, and a computable function g on \mathbb{N} in stages so that at any stage s, if $j \leq s$, then $\psi^{(s)}$ maps the partial orbit of y_{j} at stage $s, O_{\mathcal{C}, s}\left(y_{j}\right)$, onto a partial orbit of g which is isomorphic to the orbit $O_{\mathcal{C}, s}\left(y_{j}\right)$. At each stage s, we will place Γ_{j} markers on on the partial g-orbits which are isomorphic to the partial orbits $O_{\mathcal{C}, s}\left(y_{j}\right)$ under $\phi^{(s)}$.

We will have two sets of requirements that we must meet.
$N_{e}: \lim _{s} \psi^{(s)}(x)$ exists for all $x \in O_{\mathcal{C}}\left(y_{e}\right)$ and ψ maps $O_{\mathcal{C}}\left(y_{e}\right)$ onto a \mathcal{B}-orbit which is isomorphic to $O_{\mathcal{C}}\left(y_{e}\right)$.

P_{e} : Either

1. ϕ_{e} is not $1: 1$ on its domain,
2. there exists i such that ϕ_{e} is not defined on $O_{\mathcal{C}}\left(y_{q(i)}\right)$, or
3. there exists i such that ϕ_{e} is defined on $O_{\mathcal{C}}\left(y_{q(i)}\right)$, but $O_{\mathcal{C}}\left(y_{q(i)}\right)$ is not isomorphic to $O_{\mathcal{B}}\left(\phi_{e}\left(y_{q(i)}\right)\right)$.
Our basic strategy for meeting a requirement P_{e} is to simply compute $\phi_{e, s}\left(y_{q(0)}\right), \ldots, \phi_{e, s}\left(y_{q(s)}\right)$ until we find an i such that the partial orbit of $\phi_{e, s}\left(y_{q(s)}\right)$ under g as defined at stage s is not in the union of the partial orbits that are used to meet the requirements N_{a} for $a \leq e$ or P_{b} for $b<e$. That is, none of the elements of the partial orbit of $\phi_{e, s}\left(y_{q(s)}\right)$ under g as defined at stage s have either Γ_{j} markers on them for $j \leq e$ or Δ_{j} markers on them for $j<e$. At this point, if the partial orbit of $\phi_{e, s}\left(y_{q(s)}\right)$ is consistent with being isomorphic to D_{i}, then we extend g by using new elements of \mathbb{N} so that the g-orbit $\phi_{e, s}\left(y_{q(s)}\right)$ is isomorphic to D_{j} for some $j>q(s)$. We then put Δ_{e} markers on the elements of this orbit. If the g-orbit $\phi_{e, s}\left(y_{q(s)}\right)$ was being used to ensure that ψ is an isomorphism to some orbit y_{j} where $j>e$, then we simply use new elements to create a partial g-orbit which is isomorphic to the partial orbit $O_{\mathcal{C}, s}\left(y_{j}\right)$.

Stage 0. Find the cycle $C\left(y_{0}\right)=\left(y_{0}=y_{0}^{0}, y_{1}^{0}, \ldots, y_{k_{0}-1}^{0}\right)$. Then define g so that $g(0)=1, g(1)=2, \ldots, g\left(k_{0}-2\right)=k_{0}-1, g\left(k_{0}-1\right)=0$ and define $\phi^{(0)}$ so that $\phi^{(0)}\left(y_{j, 0}\right)=j$ for $0 \leq j \leq k_{0}-1$. Put Γ_{0} markers on $0, \ldots, k_{0}-1$. Let $\ell_{0}=0$.

Stage s+1. Assume we have defined $\psi^{(s)}$ on the union of the partial orbits at stage s of all y_{j} for $j \leq \ell_{s}$ where $\ell_{s} \geq s$ and g is defined on a finite subset I_{s} of \mathbb{N} so that $\psi^{(s)}$ is $1: 1$ function onto I_{s} and for all $j \leq \ell_{s},\left(\mathcal{O}_{C, s}\left(y_{j}\right), h\right)$ is isomorphic to $\left(\psi^{(s)}\left(\mathcal{O}_{C, s}\left(y_{j}\right)\right), g\right)$.

First look for an $e \leq s+1$ such that $\phi_{e, s}$ is 1:1 on its domain, there currently are no elements with Δ_{e} markers, and there is a $j \leq s$ such that $j \in \operatorname{ran}(q)$
and either $\phi_{e, s}\left(y_{j}\right)$ maps to an element outside of I_{s} or to an element of I_{s} which does not have a Γ_{i} marker on it or a Δ_{i} marker on it for some $i<j$. If no such e exists, then set $\ell_{s+1}=1+\ell_{s}$ and use elements from an initial segment of elements of $\mathbb{N}-I_{s}$ and define g on those elements to create a g orbit which is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{\ell_{s}+1}\right)$. Define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{\ell_{s}+1}\right)$ so that it is an isomorphism which sends $y_{\ell_{s}+1}$ to the least element of the cycle of that orbit, and the map from any trees that feed into the cycle of $y_{\ell_{s}+1}$ is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{\ell_{s}+1}\right)$. Put $\Gamma_{\ell_{s}+1}$ markers on the elements of this new g-orbit. Then let $\psi^{(s+1)}=\psi^{(s)}$ on $\bigcup_{j \leq s} O_{\mathcal{C}, s}\left(y_{j}\right)$. Finally, for all $j \leq \ell_{s}$, use elements from an initial segment of $\mathbb{N}-\left(I_{s} \cup \psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{s+1}\right)\right)\right)$ and define g on those elements so that the g-orbit of $\psi^{(s)}\left(y_{j}\right)$ is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$. Put Γ_{j} markers on these new elements in the image $\psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{j}\right)\right)$ and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{j}\right)-O_{\mathcal{C}, s}\left(y_{j}\right)$ so that $\psi^{(s+1)}$ restricted to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$ is an isomorphism to the g-orbit of $\psi^{(s)}\left(y_{j}\right)$.

If such an e exists, then let e_{s+1} be the least such e. Then we have two cases.
Case 1. $\phi_{e, s}\left(y_{e_{s+1}}\right) \notin I_{s}$.
In this case, we use an initial segment of elements in $\mathbb{N}-I_{s}-\left\{\phi_{e, s}\left(y_{e_{s+1}}\right)\right\}$ and define g on those elements and $\phi_{e, s}\left(y_{e_{s+1}}\right)$ to create an g-orbit which is isomorphic to $D_{q\left(\ell_{s}+1\right)}$ where $\phi_{e, s}\left(y_{e_{s+1}}\right)$ plays the role of the least element in the cycle of $D_{q\left(\ell_{s}+1\right)}$. Put $\Delta_{\ell_{s}+1}$ markers on this orbit. Let $\ell_{s+1}=1+q\left(\ell_{s}+1\right)$. Similarly, for each j where $\ell_{s}<j<\ell_{s+1}$, we use new elements from an initial segment of elements which have not been used up to this point and define g on those elements to create g-orbits which are isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$ and put Γ_{j} markers on these new elements. Define $\psi^{(s+1)}$ on $O_{\mathcal{C}}\left(y_{\ell_{s+1}}\right)$ so that it is an isomorphism which sends $y_{\ell_{s+1}}$ to $\phi_{e, s}\left(y_{e_{s+1}}\right)$, and the map from any tree that feeds into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{e_{s+1}}\right)$. Put $\Delta_{e_{s+1}}$ markers on the elements of the g-orbit of $\psi^{(s+1)}\left(y_{e_{s+1}}\right)$. Similarly, for $\ell_{s}<j<\ell_{s+1}$, define $\phi^{(s+1)}\left(y_{j}\right)$ to be the least element in the cycle of the new g-orbit we created to be isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$, and the map from any tree that feeds into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of the g-orbit that we created to be isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$. Then let $\psi^{(s+1)}=\psi^{(s)}$ on $\bigcup_{j \leq s} O_{\mathcal{C}, s}\left(y_{j}\right)$. Finally, for all $j \leq \ell_{s}$, take elements from an initial segment of \mathbb{N} which have not been used up to this point and define g on those elements so that the g-orbit of $\psi^{(s)}\left(y_{j}\right)$ is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$. Put Γ_{j} markers on the new elements in the image $\psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{j}\right)\right)$ and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{j}\right)-O_{\mathcal{C}, s}\left(y_{j}\right)$ so that $\psi^{(s+1)}$ restricted to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$ is an isomorphism to the g-orbit of $\psi^{(s)}\left(y_{j}\right)$.

Case 2. $\phi_{e, s}\left(y_{e_{s+1}}\right) \in I_{s}$.
Consider the current g-orbit O of $\phi_{e, s}\left(y_{e_{s+1}}\right)$. If $\psi^{(s)}$ induces an embedding of O into $D_{e_{s+1}}$, then use an initial segment of $\mathbb{N}-I_{s}$ to add new elements and define g to extend O to an orbit which is isomorphic to $D_{q\left(\ell_{s}+1\right)}$. Put $\Delta_{e_{s+1}}$ markers on all elements of this new $D_{q\left(\ell_{s}+1\right)}$-orbit. Define $\psi^{(s+1)}$ on
$\mathcal{O}_{\mathcal{C}}\left(y_{q\left(\ell_{s}+1\right)}\right)$ so that it is an isomorphism from $\left(\mathcal{O}_{\mathcal{C}}\left(y_{q\left(\ell_{s}+1\right)}\right), h\right)$ onto this new g-orbit of $\phi_{e, s}\left(y_{e_{s+1}}\right)$. Now if the elements of O had Γ_{r} markers on them for some r where $e_{s+1}<r \leq \ell_{s}$, then remove all those Γ_{r} markers. Then use these now unmarked elements for initial segments of those elements that have currently not been used in the construction, and define g on those elements to create a new copy of $O_{\mathcal{C}, s+1}\left(y_{r}\right)$. Then define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{r}\right)$ so that it is an isomorphism which sends y_{r} to the least element of the cycle of the new g-orbit, and the map from any tree that feeds into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{r}\right)$. Set $\ell_{s+1}=q\left(\ell_{s}+1\right)$. Also use an initial segment of those elements that have currently not been used in the construction up to this point and define g on those elements to create a new copy of $O_{\mathcal{C}, s+1}\left(y_{i}\right)$ for all i such that $\ell_{s}<i<\ell_{s+1}$. Define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{i}\right)$ so that it is an isomorphism which sends y_{i} to the least element of the cycle of the new g-orbit isomorphic to $O_{\mathcal{C}, s+1}\left(y_{i}\right)$, such that the map from any tree that feeds into the cycle of y_{i} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{i}\right)$. Also put Γ_{i} markers on the new g-orbit of $\psi^{(s+1)}\left(y_{i}\right)$. Then let $\psi^{(s+1)}=\psi^{(s)}$ on $\bigcup_{j \in\{0, \ldots, s\}-\{r\}} O_{\mathcal{C}, s}\left(y_{j}\right)$. Finally, for all $j \leq s, j \notin \operatorname{ran}(q)$, take elements from an initial segment of elements that have not currently been used in the construction and define g on those elements so that the g-orbit of $\psi^{(s)}\left(y_{j}\right)$ is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$. Put Γ_{j} markers on the new elements in the image $\psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{j}\right)\right)$ and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{j}\right)-O_{\mathcal{C}, s}\left(y_{j}\right)$ so that $\psi^{(s+1)}$ restricted to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$ is an isomorphism to the g-orbit of $\psi^{(s)}\left(y_{j}\right)$.

If $\psi^{(s)}$ does not induce an embedding of O into $D_{e_{s+1}}$, then O is inconsistent with having its pre-image under $\psi^{(s)}$ isomorphic to $D_{e_{s+1}}$. In this case, put $\Delta_{e_{s+1}}$ markers on all the elements of O. Then set $\ell_{s+1}=\ell_{s}+1$. Next use elements from an initial segment of elements of $\mathbb{N}-I_{s}$ and define g on those elements to create a g-orbit which is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{\ell_{s}+1}\right)$ and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{\ell_{s}+1}\right)$ so that it is an isomorphism which sends $y_{\ell_{s}+1}$ to the least element of the cycle of the orbit. and the map from any tree that feeds into the cycle of y_{j} is the canonical map to the corresponding tree in the cycle of $\psi^{(s+1)}\left(y_{s+1}\right)$. Put $\Gamma_{\ell_{s}+1}$ markers on the elements of this new g-orbit. Then let $\psi^{(s+1)}=\psi^{(s)}$ on $\bigcup_{j \leq s} O_{\mathcal{C}, s}\left(y_{j}\right)$. Finally, for all $j \leq s, j \notin \operatorname{ran}(q)$, use elements from an initial segment of $\mathbb{N}-\left(I_{s} \cup \psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{s+1}\right)\right)\right)$ and define g on those elements so that the g-orbit of $\psi^{(s)}\left(y_{j}\right)$ is isomorphic to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$. Put Γ_{j} markers on the new elements in image of $\psi^{(s+1)}\left(O_{\mathcal{C}, s+1}\left(y_{j}\right)\right)$ and define $\psi^{(s+1)}$ on $O_{\mathcal{C}, s+1}\left(y_{j}\right)-O_{\mathcal{C}, s}\left(y_{j}\right)$ so that $\psi^{(s+1)}$ restricted to $O_{\mathcal{C}, s+1}\left(y_{j}\right)$ is an isomorphism to the g-orbit of $\psi^{(s)}\left(y_{j}\right)$.

This completes the construction. It is easy to see that each step is effective and, hence, g is computable since we never change the value of $g(x)$ for any x.

Next observe that if e_{s+1} is defined, then $e_{s+1} \in \operatorname{ran}(q)$ and our action ensures that $\phi_{e_{s+1}}\left(y_{e_{s+1}}\right)$ has a \mathcal{B}-orbit which is not isomorphic to $D_{e_{s+1}}$. Thus ϕ_{e} can not be an isomorphism from \mathcal{C} onto \mathcal{B}. Moreover, we will never remove the $\Delta_{e_{s+1}}$ markers that we placed at stage $s+1$, which means that we will never
take an action to meet the requirement $P_{e_{s+1}}$ after stage $s+1$.
It is a straightforward induction to show that for each y_{j} such that $j \geq 0$, the $\lim _{s \rightarrow \infty} \psi^{(s)}(x)=\psi(x)$ exists for $x \in O_{\mathcal{C}}\left(y_{j}\right)$ and that ψ restricted to $\left(O_{\mathcal{C}}\left(y_{j}\right), h\right)$ is an isomorphism on $O_{\mathcal{B}}\left(\phi\left(y_{j}\right)\right)$. That is, we can only be forced to have $\psi^{(s)}(x) \neq \psi^{(s+1)}(x)$ for any $x \in O_{\mathcal{C}, s}\left(y_{j}\right)$ for an $s \geq j$ if we are taking an action to meet a requirement P_{e} for $e \leq j$. Since we can only take an action for P_{e} once, it follows that there will be a t large enough so that $O_{\mathcal{C}, t}\left(y_{j}\right)=O_{\mathcal{C}}\left(y_{j}\right)$ and $\psi^{(t)}(x)=\psi^{(s)}(x)$ for all $s \geq t$ and $x \in O_{\mathcal{C}}\left(y_{j}\right)$. By the construction, at each stage $s \geq j, \psi^{(s)}$ is an isomorphism from $\left(O_{\mathcal{C}, s}\left(y_{j}\right), h\right)$ to $\left(\psi^{(s)}\left(O_{\mathcal{C}, s}\left(y_{j}\right)\right), g\right)$. Thus ψ is an isomorphism form $\left(O_{\mathcal{C}}\left(y_{j}\right), h\right)$ onto $\psi\left(\left(O_{\mathcal{C}}\left(y_{j}\right)\right), g\right)$.

Thus the only thing that we need to do to show that \mathcal{B} is not computably isomorphic to \mathcal{C} is to show that we satisfy all the requirements P_{e}. Suppose for a contradiction, that ϕ_{e} is an isomorphism from \mathcal{B} into \mathcal{C}. Then there will be a stage t large enough so that: (i) we never take any action for a requirement P_{i} with $i<e$ after stage t, (ii) $O_{\mathcal{C}, t}\left(y_{j}\right)=O_{\mathcal{C}}\left(y_{j}\right)$ for all $j<e$, (iii) for all $j<e, \psi^{(s)}(x)=\psi^{(t)}(x)$ for all $x \in O_{\mathcal{C}}\left(y_{j}\right)$, and (iv) $\phi_{e, t}\left(y_{r}\right)$ is defined for all $r \leq 1+\sum_{j \leq e} \operatorname{card}\left(O_{\mathcal{C}}\left(y_{j}\right)\right)$. Since we are assuming that ϕ_{e} is an isomorphism from \mathcal{C} to \mathcal{B}, there must be y_{j} in the range of q such that $\phi_{e}\left(y_{j}\right)$ maps to an element which does not have a Γ_{r} marker on it for any $r<e$. But then y_{j} could be used to satisfy the requirement P_{e} at stage $t+1$. Thus either $e_{t+1}=e$, in which case we take an action at stage $s+1$ to ensure that $O_{\mathcal{B}}\left(\phi_{e}\left(y_{j}\right)\right)$ is not isomorphic to $\mathcal{O}_{\mathcal{C}}\left(y_{j}\right)$, or there is an $s \leq t$ such that $e_{s}=e$. In either case, our construction ensures that $O_{\mathcal{B}}\left(\phi_{e}\left(y_{j}\right)\right)$ is isomorphic to $\mathcal{O}_{\mathcal{C}}\left(y_{j}\right)$. Thus there can be no such e and, hence, \mathcal{B} is not computably isomorphic to \mathcal{C}.

Next we give two simple examples where, even though we are given quite a bit of information about the possible isomorphism types of k-cycles in a computable $(2,0): 1$ structure \mathcal{A}, there still exists a computable $(2,0): 1$ structure which is isomorphic to \mathcal{A} but is not computably isomorphic to \mathcal{A}.

For the first example, we construct locally finite computable (2,0):1 structures $\mathcal{A}=(\mathbb{N}, f)$ and $\mathcal{B}=(\mathbb{N}, g)$ such that: (i) $\operatorname{Fin}(\mathcal{A})=\operatorname{Fin}(\mathcal{B})=\mathbb{N}$, (ii) \mathcal{A} and \mathcal{B} are isomorphic but not computably isomorphic, and (iii) for any $k \geq 1$, there are only two types of k-cycles $\left\langle\left(c_{0}, \ldots, c_{k-1}\right),\left(T_{0}, \ldots, T_{k-1}\right)\right\rangle$, one, which we shall call E_{k}, where all the T_{i} are one-element binary trees and one, which we shall call F_{k}, where all the trees T_{i} are three-element binary trees. Thus, for example, E_{4} and F_{4} are pictured in Figure 10.

In fact, we can construct $\mathcal{A}=(\mathbb{N}, f)$ and $\mathcal{B}=(\mathbb{N}, g)$ so that for each $k \geq 1$, \mathcal{A} and \mathcal{B} have exactly one k-cycle isomorphic to E_{k}, and either 1 or $2 k$-cycles which are isomorphic to F_{k} such that \mathcal{A} and \mathcal{B} are not computably isomorphic.

The construction of \mathcal{A} and \mathcal{B} is quite easy. That is, on the even numbers E, define f and g so that we have computable (2,0):1 structures which have exactly one copy of $E_{k}=\left\langle\left(c_{0}^{k}, \ldots, c_{k-1}^{k}\right),\left(T_{0}^{k}, \ldots, T_{k-1}^{k}\right)\right\rangle$ and one copy of $F_{k}=\left\langle\left(d_{0}^{k}, \ldots, d_{k-1}^{k}\right),\left(S_{0}^{k}, \ldots, S_{k-1}^{k}\right)\right\rangle$ for each $k \geq 1$. Thus each T_{i}^{j} is a one-element tree and each S_{i}^{j} is a three element binary tree. Then for each k, attempt to compute $\phi_{k}\left(c_{0}^{k}\right)$. We then have two cases.

Figure 10: The cycle types E_{4} and F_{4}.

Case 1. $\phi_{k}\left(c_{0}^{k}\right) \downarrow$ and $\phi_{k}\left(c_{0}^{k}\right) \in\left\{c_{0}^{k}, \ldots, c_{k-1}^{k}\right\}$.
In this case, we will use new elements from the odd numbers and define f on these odd numbers to extend $\left\langle\left(c_{0}^{k}, \ldots, c_{k-1}^{k}\right),\left(T_{0}^{k}, \ldots, T_{k-1}^{k}\right)\right\rangle$ to a cycle of type F_{k}. We shall then use new odd numbers and define f on these numbers to create a new cycle of type E_{k} in \mathcal{A}. We will also use new odd numbers and define g on those numbers to create a new cycle of type F_{k}. This will ensure that ϕ_{e} cannot be an isomorphism from \mathcal{A} onto \mathcal{B} since ϕ_{k} will map an element of a k-cycle of type F_{k} into a k-cycle of type E_{k}. Thus in this case, \mathcal{A} and \mathcal{B} will have one k-cycle of type E_{k} and two k-cycles of type F_{k}.

Case 2. $\phi_{k}\left(c_{0}^{k}\right) \uparrow$, or $\phi_{k}\left(c_{0}^{k}\right) \downarrow$ and $\phi_{k}\left(c_{0}^{k}\right) \notin\left\{c_{0}^{k}, \ldots, c_{k-1}^{k}\right\}$.
In this case, we do nothing to the k-cycles in \mathcal{A} or \mathcal{B}. Then we know that ϕ_{k} cannot be an isomorphism from \mathcal{A} onto \mathcal{B}. In this case, both \mathcal{A} and \mathcal{B} will have one k-cycle of type E_{k} and one k-cycle of type F_{k}.

Note that there are infinitely many k such that ϕ_{k} is the identity so that we will be in Case 1 infinitely often and, hence, f and g will be defined on all of \mathbb{N}. It is easy to see that $\mathcal{A}=(\mathbb{N}, f)$ and $\mathcal{B}=(\mathbb{N}, g)$ are computable (2,0):1 structures such that \mathcal{A} and \mathcal{B} are isomorphic but not computably isomorphic.

Next we construct similar examples of locally finite (2,0):1 structures $\mathcal{A}=$ (\mathbb{N}, f) and $\mathcal{B}=(\mathbb{N}, g)$ such that: (i) $\operatorname{Fin}(\mathcal{A})=\operatorname{Fin}(\mathcal{B})=\mathbb{N}$, (ii) \mathcal{A} and \mathcal{B} are isomorphic but not computably isomorphic, and (iii) for any $k \geq 1$, there are exactly two types of k-cycles where either the two cycle types are E_{k} and F_{k} or the cycle types are F_{k} and $G_{k}=\left\langle\left(b_{0}^{k}, \ldots, b_{k-1}^{k}\right),\left(R_{0}^{k}, \ldots, R_{k-1}^{k}\right)\right\rangle$, where each R_{i}^{k} is a complete binary tree of height 2. For example, G_{4} is pictured in Figure 11.

Figure 11: The cycle type G_{4}.

The construction of \mathcal{A} and \mathcal{B} is very similar. That is, on the even numbers E, define f and g so that we have computable (2,0):1 structures which have exactly one copy of $E_{k}=\left\langle\left(c_{0}^{k}, \ldots, c_{k-1}^{k}\right),\left(T_{0}^{k}, \ldots, T_{k-1}^{k}\right)\right\rangle$ and one copy of $F_{k}=\left\langle\left(d_{0}^{k}, \ldots, d_{k-1}^{k}\right),\left(S_{0}^{k}, \ldots, S_{k-1}^{k}\right)\right\rangle$ for each $k \geq 1$. Thus each T_{i}^{j} is a one-element tree and each S_{i}^{j} is al three-element binary tree. Then for each k, attempt to compute $\phi_{k}\left(c_{0}^{k}\right)$. We then have two cases.

Case 1. $\phi_{k}\left(c_{0}^{k}\right) \downarrow$ and $\phi_{k}\left(c_{0}^{k}\right) \in\left\{c_{0}^{k}, \ldots, c_{k-1}^{k}\right\}$.
In this case, we will use new elements from the odd numbers and define f on these odd numbers to extend $\left\langle\left(c_{0}^{k}, \ldots, c_{k-1}^{k}\right),\left(T_{0}^{k}, \ldots, T_{k-1}^{k}\right)\right\rangle$ to a cycle of type G_{k}. We will also use new odd numbers and define g on those numbers to extend the cycle type of E_{k} to F_{k} and the cycle type of F_{k} to G_{k}. This will ensure that ϕ_{k} cannot be an isomorphism from \mathcal{A} onto \mathcal{B} since ϕ_{k} will map an element of a k-cycle of type G_{k} into a k-cycle of type F_{k}. Thus in this case, \mathcal{A} and \mathcal{B} will have one k-cycle of type F_{k} and one k-cycle of type G_{k}.

Case 2. $\phi_{k}\left(c_{0}^{k}\right) \uparrow$, or $\phi_{k}\left(c_{0}^{k}\right) \downarrow$ and $\phi_{k}\left(c_{0}^{k}\right) \notin\left\{c_{0}^{k}, \ldots, c_{k-1}^{k}\right\}$.
In this case, we do nothing to the k-cycles in \mathcal{A} or \mathcal{B}. Then we know that ϕ_{k} cannot be an isomorphism from \mathcal{A} onto \mathcal{B}. In this case, both \mathcal{A} and \mathcal{B} will have one k-cycle of type E_{k} and one k-cycle of type F_{k}.

Note that there are infinitely many k such that ϕ_{k} is the identity so that we will be in Case 1 infinitely often and, hence, f and g will be defined on all of \mathbb{N}. It is easy to see that $\mathcal{A}=(\mathbb{N}, f)$ and $\mathcal{B}=(\mathbb{N}, g)$ are computable $(2,0): 1$ structures such that \mathcal{A} and \mathcal{B} are isomorphic but not computably isomorphic.

Next, we will briefly consider Δ_{2}^{0} - and Δ_{3}^{0}-categoricity of $(2,0): 1$ structures. We have the following corollary to the proof of Theorem 3.1.

Theorem 4.3. Any computable locally finite (2,0):1 structure with only finitely many ω-chains is Δ_{2}^{0}-categorical.

Proof. Observe that $\operatorname{ran}(f)$ is a c.e. set. Thus the isomorphism constructed as in the proof of Theorem 3.1 will be computable in an $\mathbf{0}^{\prime}$ oracle and is therefore Δ_{2}^{0}.

Next we consider structures which are not Δ_{2}^{0}-categorical.
Theorem 4.4. There is a computable locally finite (2,0):1 structure \mathcal{A}, consisting of infinitely many ω-chains with attached finite trees, which is not Δ_{2}^{0} categorical.

Proof. Let T_{0} be the one-element binary tree and T_{1} be the three-element binary tree. We let $\mathcal{A}_{k}=(\mathbb{N}, f)$ be a computable $(2,0): 1$ structure that consists a single ω chain that starts at a_{0}, has $a_{i}=f^{i}\left(a_{0}\right)$ for $i \geq 1$ and elements $\left\{b_{1}, b_{2}, \ldots\right\}$ disjoint from $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ such that $f\left(b_{i}\right)=a_{i}$ where $\operatorname{Tree}_{\mathcal{A}_{k}}\left(b_{i}\right)$ is isomorphic to T_{1} if $1 \leq i \leq k$ and is isomorphic to T_{0} if $i>k$. For example, the graphs of \mathcal{A}_{0} and \mathcal{A}_{3} are pictured in rows 1 and 2, respectively, in Figure 12. We let $\mathcal{A}_{\infty}=(\mathbb{N}, f)$ be a computable $(2,0): 1$ structure that consists a single ω-chain that starts at a_{0}, has $a_{i}=f^{i}\left(a_{0}\right)$ for $i \geq 1$ and elements $\left\{b_{1}, b_{2}, \ldots\right\}$ disjoint from $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ such that $f\left(b_{i}\right)=a_{i}$ where $\operatorname{Tree}_{\mathcal{A}_{k}}\left(b_{i}\right)$ is isomorphic to T_{1} for all $i \geq 1$. The graph of \mathcal{A}_{∞} is pictured at the bottom of Figure 12.

Figure 12: The ω-chains $\mathcal{A}_{0}, \mathcal{A}_{3}$ and \mathcal{A}_{∞}.
The desired computable structure \mathcal{A} will consist of infinitely many copies of \mathcal{A}_{n}, for each n, and infinitely many copies of \mathcal{A}_{∞}. Clearly,+ there is a computable copy $\mathcal{A}=(E, f)$ where E is the set of even numbers such that for each n, the orbit of $4\langle n, k+1\rangle$ is of the form \mathcal{A}_{k} if $k \geq 0$ and is of the form \mathcal{A}_{∞} if $k=0$. In this case, the set of n such that $\mathcal{O}_{\mathcal{A}}(4 n)$ is isomorphic to \mathcal{A}_{∞} is computable.

Now we can build a computable $(2,0): 1$ structure $\mathcal{B}=(\mathbb{N}, g)$ which is isomorphic to \mathcal{A} such that the representatives of the orbits of \mathcal{B} are $\{4\langle n, k\rangle: n, k \geq 0\}$
but for which the set of

$$
\left\{4\langle n, k\rangle: \mathcal{O}_{\mathcal{B}}(4\langle n, k\rangle) \text { is isomorphic to } \mathcal{A}_{\infty}\right\}
$$

is a Π_{2}^{0}-complete set, as follows. Let $\operatorname{In} f=\left\{e: W_{e}\right.$ is infinite $\}$ be the usual Π_{2}^{0}-complete set. Let $g=f$ on the even numbers E. If $\langle n, k\rangle$ is not of the form $\langle e, 1\rangle$, then $\mathcal{O}_{\mathcal{A}}(4\langle n, k\rangle)=\mathcal{O}_{\mathcal{B}}(4\langle n, k\rangle)$. We then use odd numbers to define the orbits $\mathcal{O}_{\mathcal{B}}(4\langle e, 1\rangle)$. Originally, the orbit $\mathcal{O}_{\mathcal{A}}(4\langle e, 1\rangle)$ looks like \mathcal{A}_{0} so assume that \mathcal{A} is defined such that the chain starts at $a_{0}^{e}=4\langle e, 1\rangle$ and $f^{i}\left(a_{0}^{e}\right)=a_{i}^{e}$ and b_{i}^{e} is the element in the orbit different from a_{i-1}^{e} such that $f\left(b_{i}^{e}\right)=a_{i}^{e}$. Then whenever a new element appears in W_{e} at stage s, extend $\operatorname{tree}\left(b_{i}^{e}\right)$ from T_{0} to T_{1}, if necessary, for each $i<s$. If W_{e} is infinite, then it is clear that $\mathcal{O}_{\mathcal{B}}(4\langle e, 1\rangle)$ will be isomorphic to \mathcal{A}_{∞}. If W_{e} is empty, then $\mathcal{O}_{\mathcal{B}}(4\langle e, 1\rangle)$ will be isomorphic to \mathcal{A}_{0}. Finally, if W_{e} is finite, then $\mathcal{O}_{\mathcal{B}}(4\langle e, 1\rangle)$ will be isomorphic to \mathcal{A}_{s} for some $s \geq 1$. Since there are infinitely many e such that W_{e} is empty, there will be infinitely many e such that $\mathcal{O}_{\mathcal{B}}(4\langle e, 1\rangle)$ is isomorphic to \mathcal{A}_{0}. Moreover, $e \in \operatorname{Inf}$ if and only if $\mathcal{O}_{\mathcal{B}}(4\langle e, 1\rangle)$ is isomorphic to \mathcal{A}_{∞}. Hence, the set of $4\langle n, k\rangle$ such that $\mathcal{O}_{\mathcal{B}}(4\langle n, k\rangle)$ is isomorphic to \mathcal{A}_{∞} is a Π_{2}^{0}-complete set.

We claim that \mathcal{B} cannot be Δ_{2}^{0}-isomorphic to \mathcal{A}. That is, if ϕ is a Δ_{2}^{0} isomorphism from \mathcal{A} onto \mathcal{B}, then we can decide whether $\mathcal{O}_{\mathcal{B}}(4\langle n, k\rangle)$ is isomorphic to \mathcal{A}_{∞} by finding $x=\phi^{-1}(4\langle n, k\rangle)$ and then computing f until we find that $x \in \mathcal{O}_{\mathcal{A}}(4\langle r, s\rangle)$. It would then follow that the set of $4\langle n, k\rangle$ such that $\mathcal{O}_{\mathcal{B}}(4\langle n, k\rangle)$ is isomorphic to \mathcal{A}_{∞} is a Δ_{2}^{0} set. Thus the two computable structures \mathcal{A} and \mathcal{B} are isomorphic, but not Δ_{2}^{0}-isomorphic.

For our final result, we first need to consider the isomorphism problem for orbits.

Proposition 4.5. Let \mathcal{A} be a computable locally finite (2,0):1 structure. Then

1. $\{(a, b): \mathcal{O}(a)$ is isomorphic to $\mathcal{O}(b)\}$ is Σ_{3}^{0}, and
2. $\{(a, b): \mathcal{O}(a)$ is isomorphic to $\mathcal{O}(b)$ where the isomorphism maps a to $b\}$ is Π_{2}^{0}.

Proof. First note that $\mathcal{O}(a)$ is finite if and only if $f^{m+k}(a)=f^{m}(a)$ for some a, so that this is a Σ_{1}^{0} relation. Given that \mathcal{A} is locally finite, we can then use $\mathbf{0}^{\prime}$ as an oracle to test whether $\mathcal{O}(a)$ is finite and, if it is finite, then we can again use $\mathbf{0}^{\prime}$ as an oracle to compute $\mathcal{O}(a)$. Then given two such orbits $\mathcal{O}(a)$ and $\mathcal{O}(b)$, we can simply inspect them to see whether they are isomorphic.

Given a and b such that $\mathcal{O}(a)$ and $\mathcal{O}(b)$ are infinite, we can use an oracle for $\mathbf{0}^{\prime}$ to compute the sequences $\operatorname{tree}\left(f^{i}(a)\right)$ and $\operatorname{tree}\left(f^{i}(b)\right)$. Then there is an isomorphism from $\mathcal{O}(a)$ to $\mathcal{O}(b)$ mapping a to b if and only if tree $\left(f^{i}(a)\right)$ and $\operatorname{tree}\left(f^{i}(b)\right)$ are isomorphic for each i. So this is a Π_{2}^{0} question. Then $\mathcal{O}(a)$ is isomorphic to $\mathcal{O}(b)$ if and only if there exist $x \in \mathcal{O}(a)$ and $y \in \mathcal{O}(b)$ such that there is an isomorphism mapping x to y.

Theorem 4.6. Every computable locally finite (2,0):1 structure is Δ_{3}^{0}-categorical.

Proof. Let \mathcal{A} and \mathcal{B} be two isomorphic computable locally finite (2,0):1 structures. We can use $\mathbf{0}^{\prime \prime}$ as an oracle to compute an isomorphism H from \mathcal{A} onto \mathcal{B} as follows. First enumerate a sequence of representatives of the orbits of \mathcal{A}, starting with $a_{0}=0$ and letting a_{n+1} be the least element of \mathcal{A} not in the orbit of a_{i} for any $i \leq n$, and we can similarly compute b_{0}, b_{1}, \ldots so that $\mathcal{B}=\bigcup_{i} \mathcal{O}\left(b_{i}\right)$. Since we know that \mathcal{B} contains an orbit isomorphic to $\mathcal{O}\left(a_{0}\right)$, we can compute using $\mathbf{0}^{\prime \prime}$ an element $b=H\left(a_{0}\right)$ such that there is an isomorphism of $\mathcal{O}\left(a_{0}\right)$ to $\mathcal{O}(b)$ mapping a_{0} to b. Now let $A_{0}=\mathcal{O}\left(a_{0}\right)$ and let $B_{0}=\mathcal{O}(b)$. The construction of H continues by a back-and-forth argument. At stage $2 s$, we will have a partial isomorphism H_{s} from a subset $A_{2 s}$ of \mathcal{A} onto a subset $B_{2 s}$ of \mathcal{B}, so that for all $i<s, a_{i} \in A_{2 s}$ and $b_{i} \in B_{2 s}$. Now at stage $2 s+1$, we check to see whether $a_{2 s+1} \in A_{2 s}$ and if not, we find the least b not in $B_{2 s}$ such that there is an isomorphism h mapping $\mathcal{O}\left(a_{2 s+1}\right)$ to $\mathcal{O}(b)$. Then we let $A_{2 s+1}=A_{2 s} \cup \mathcal{O}\left(a_{2 s+1}\right)$ and let $B_{2 s+1}=B_{2 s} \cup \mathcal{O}(b)$ and extend the mapping $H_{2 s}$ to $H_{2 s+1}$ by adding this isomorphism h to $H_{2 s}$. Similarly, at stage $2 s+1$, we check to see whether $b_{2 s+1} \in B_{2 s}$ and if not, we find the least a not in $A_{2 s}$ such that there is an isomorphism h mapping $\mathcal{O}\left(b_{2 s+1}\right)$ to $\mathcal{O}(a)$ and extend the isomorphism as above.

For any $k \geq 3$, we define a $k: 1$ structure $\mathcal{A}=(A, f)$ to consist of a function f where for all $x \in A, f^{-1}(x)$ is a size k and $(k, 0): 1$ structure $\mathcal{A}=(A, f)$ to consist of function f where for all $x \in A, f^{-1}(x)$ is either of size k or empty. It should be clear that we can prove analogues of all our results for $k: 1$ and $(k, 0): 1$ structures.

References

[1] C. Ash and J. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam, 2000.
[2] W. Calvert, D. Cenzer, V. Harizanov, and A. Morozov, Effective categoricity of equivalence structures, Annals of Pure and Applied Logic 141 (2006), pp. 61-78.
[3] D. Cenzer, V. Harizanov and J.B. Remmel, Σ_{1}^{0} and Π_{1}^{0} equivalence structures, Ann. Pure and Applied Logic 162 (2011), pp. 490-503.
[4] D. Cenzer, V. Harizanov, and J.B. Remmel, Effective categoricity of injection structures, in Models of Computation in Context, CIE 2011, B. Loewe, D. Normann, I. Soskov, A. Soskova, editors, Springer Lecture Notes in Computer Science 6735 (2011), pp. 51-60
[5] D. Cenzer, V. Harizanov, and J.B. Remmel, Computability-theoretic properties of injection structures, to appear in Algebra and Logic.
[6] D. Cenzer, G. LaForte, and J.B. Remmel, Equivalence structures and isomorphisms in the difference hierarchy, Journal of Symbolic Logic 74 (2009), pp. 535-556.
[7] D. Cenzer, V. Harizanov and J.B. Remmel, Σ_{1}^{0} and Π_{1}^{0} equivalence structures, in Mathematical Theory and Computational Practice, CIE 2009, K. Ambos-Spies, B. Loewe and W. Merkle, editors, Springer Lecture Notes in Computer Science, vol. 5635 (2009), pp. 99-108.
[8] D. Cenzer and J.B. Remmel, Feasibly categorical abelian groups, Feasible Math II, Proceedings 1992 Cornell Workshop, eds. P. Clote and J.B. Remmel, Birkhauser (1995), pp. 91-153.
[9] N.G. Khisamiev, Constructive Abelian groups, in: Yu. L. Ershov, S.S. Goncharov, A. Nerode, and J.B. Remmel, editors, Handbook of Recursive Mathematics, vol. 2 (North-Holland, Amsterdam, 1998), pp. 1177-1231.
[10] S. Lempp, C. McCoy, R. Miller and R. Solomon, Computable categoricity of trees of finite height, J. Symbolic Logic 70 (2005), pp. 151-215.
[11] R.I. Soare, Recursively Enumerable Sets and Degrees, (Springer, Berlin, 1987).

[^0]: * Cenzer was partially supported by the NSF grant DMS-1101123, Harizanov by the NSF grant DMS-1202328 and by the GWU Columbian College Facilitating Fund.

