
Two-to-One Structures

Douglas Cenzer, Department of Mathematics
University of Florida, Gainesville, FL 32611

email: cenzer@math.ufl.edu

Valentina Harizanov, Department of Mathematics
George Washington University, Washington, DC 20052

email: harizanv@gwu.edu

Jeffrey B. Remmel, Department of Mathematics
University of California-San Diego, La Jolla, CA 92093

email: jremmel@ucsd.edu

Abstract

We investigate computability-theoretic properties of computable struc-
tures with single unary functions f such that, for every x in the image,
f−1(x) has exactly two elements, which we call 2:1 structures. We also
investigate structures for which f−1(x) has either exactly two or zero ele-
ments, which we call (2,0):1 structures. In particular, we are interested in
the complexity of isomorphisms between these structures. We prove that a
computable 2:1 structure A is computably categorical if and only if A has
only finitely many Z-chains. We show that every computable 2:1 struc-
ture is ∆0

2-categorical. We further investigate computable and higher level
categoricity of various natural subclasses of (2,0):1 structures, including
highly computable and locally finite strufctures.

Keywords: computability theory, two-to-one functions, injections,
effective categoricity, locally finite structures, trees, chains

1 Introduction and Preliminaries

Computable model theory uses the concepts and methods of computability the-
ory to explore algorithmic content of constructions in various areas of classical
mathematics. In this paper we are interested in the complexity of isomorphisms
between a computable structure and its isomorphic copies. The main notion in
this area of investigation is that of computable categoricity. We say that a com-
putable structure A is computably categorical if for every computable structure
B isomorphic to A, there exists a computable isomorphism from A onto B. This
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grant DMS-1202328 and by the GWU Columbian College Facilitating Fund.
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concept has been part of computable model theory since the mid-1950s. Here
we continue our investigation of computable and higher level categoricity begun
in [4, 5], where we investigated computable structures with single one-to-one
functions. We first review some notation.

Let N = {0, 1, 2, . . .} denote the natural numbers and Z = {0,±1,±2, . . .}
denote the integers. We let ω denote the order type of N under the usual ordering
and Z denote the order type of Z under the usual ordering. In what follows, we
restrict our attention to countable structures for computable languages. Hence,
if a structure is infinite, we can assume that its universe is N. We recall some
basic definitions. If A is a structure with universe A for a language L, then
LA is the language obtained by expanding L by constants for all elements of
A. The atomic diagram of A is the set of all quantifier-free sentences of LA

true in A. A structure A is computable if its atomic diagram is computable.
We call two structures computably isomorphic if there is a computable function
that is an isomorphism between them. A computable structure A is relatively
computably isomorphic to a possibly noncomputable structure B if there is an
isomorphism between them that is computable in the atomic diagram of B. A
computable structure A is computably categorical if every computable structure
that is isomorphic to A is computably isomorphic to A. A computable structure
A is relatively computably categorical if every structure that is isomorphic to A is
relatively computably isomorphic to A. A structure A is relatively computably
categorical if and only if A has a c.e. Scott family consisting of only existential
formulas. A Scott family for a structure A is a countable family Ψ of Lω1ω-
formulas with finitely many fixed parameters from A such that: (i) each finite
tuple in A satisfies some ψ ∈ Ψ; and (ii) if a, b are tuples in A, of the same
length, satisfying the same formula in Ψ, then there is an automorphism of A,
which maps a to b. See [1] for details.

Similar definitions arise for other naturally definable classes of structures
and their isomorphisms. For example, for any n ∈ ω, a structure is ∆0

n if its
atomic diagram is ∆0

n, two ∆0
n structures are ∆0

n-isomorphic if there is a ∆0
n

isomorphism between them, and a computable structure A is ∆0
n-categorical if

every computable structure that is isomorphic to A is ∆0
n- isomorphic to A.

The notions and notation of computability theory are standard and as in Soare
[11].

Among the simplest nontrivial structures are equivalence structures, i.e.,
structures of the form A = (ω,E) where E is an equivalence relation. The
study of the complexity of isomorphisms between computable equivalence struc-
tures was carried out by Calvert, Cenzer, Harizanov, and Morozov in [2] where
they characterized computably categorical and also relatively ∆0

2-categorical
equivalence structures. Cenzer, LaForte, and Remmel [6] extended this work
by investigating equivalence structures in the Ershov hierarchy. More recently,
Cenzer, Harizanov and Remmel [3] studied Σ0

1 and Π0
1 equivalence structures.

For any equivalence structure A, we let Fin(A) denote the set of elements of
A that lie in finite equivalence classes. For equivalence structures, it is natural
to consider the different sizes of the equivalence classes of the elements in FinA

since such sizes code information into the equivalence relation. The character
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of an equivalence structure A is the set

χ(A) = {(k, n) : n, k > 0 and A has at least n equivalence classes of size k}.

This set provides a kind of skeleton for Fin(A). Any setK ⊆ (ω−{0})×(ω−{0})
such that for all n > 0 and k, (k, n + 1) ∈ K implies (k, n) ∈ K, is called a
character. We say a character K is bounded if there is some finite k0 such that
for all (k, n) ∈ K, k < k0. Khisamiev [9] introduced the concepts of s-functions
and s1-functions as a means of computably approximating the characters of
equivalence relations.

Definition 1.1. Let f : ω2 → ω. The function f is an s-function if the follow-
ing hold:
1. for every i, s ∈ ω, f(i, s) ≤ f(i, s+ 1);
2. for every i ∈ ω, the limit mi = limsf(i, s) exists.

We say that f is an s1-function if, in addition:
3. for every i ∈ ω, mi < mi+1.

Calvert, Cenzer, Harizanov and Morozov [2] gave conditions under which a
given characterK can be the character of a computable equivalence structure. In
particular, they observed that ifK is a bounded character and α ≤ ω, then there
is a computable equivalence structure with character K and exactly α infinite
equivalence classes. To prove the existence of computable equivalence structures
for unbounded charactersK, they needed additional information given by s- and
s1-functions. They showed that if K is a Σ0

2 character, r < ω, and either
(a) there is an s-function f such that

(k, n) ∈ K ⇔ card({i : k = lim
s→∞

f(i, s)}) ≥ n or

(b) there is an s1-function f such that for every i ∈ ω, (lims f(i, s), 1) ∈ K,
then there is a computable equivalence structure with character K and exactly
r infinite equivalence classes.

In [4] and [5], we studied injection structures. Here an injection is just a one-
to-one (1:1) function and an injection structure A = (A, f) consists of a set A
and an injection f : A→ A. A is a permutation structure if f is a permutation
of A. Given a ∈ A, the orbit Of (a) of a under f is

Of (a) = {b ∈ A : (∃n ∈ N)(fn(a) = b ∨ fn(b) = a)}.

The order |a|f of a under f is card(Of (a)). Clearly, the isomorphism type of
a permutation structure A is determined by the number of orbits of size k for
k = 1, 2, . . . , ω. By analogy with characters of equivalence structures, we define
the character χ(A) of an injection structure A = (A, f) by

χ(A) = {(n, k) : A has at least n orbits of size k}.

Injection structures (A, f) may have two types of infinite orbits, Z-orbits which
are isomorphic to (Z, S) in which every element is in the range of f , and ω-orbits,
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which are isomorphic to (ω, S) and have the form Of (a) = {fn(a) : n ∈ N} for
some a /∈ ran(f). Thus injection structures are characterized by the number of
orbits of size k for each finite k and by the number of orbits of types Z and ω.

It is clear from the definitions above that any computable injection structure
(A, f) will induce a Σ0

1 equivalence structure (A,E) in which the equivalence
classes are simply the orbits of (A, f).

In [4], we investigated algorithmic properties of computable injection struc-
tures and their characters, characterized computably categorical injection struc-
tures, and showed that they are all relatively computably categorical. We proved
that a computable injection structure A is computably categorical if and only if
it has finitely many infinite orbits. We also characterized ∆0

2-categorical injec-
tion structures as those with finitely many orbits of type ω, or with finitely many
orbits of type Z. We showed that they coincide with the relatively ∆0

2-categorical
structures. Finally, we proved that every computable injection structure is rel-
atively ∆0

3-categorical.
In this paper, we consider structures of the form A = (A, f) where f :

A → A is a function such that card(f−1(x)) = 2 for all x ∈ A, which we call
2:1 structures or where card(f−1(x)) ∈ {0, 2} for all x, which we call (2,0):1
structures.

We shall often identify a structureA = (A, f) with its directed graphG(A, f)
which has vertex set A and where the edge set consists of all pairs (i, f(i)) for
i ∈ A. Given any a ∈ A, we let the orbit of OA(a) consist of the set of all
points in A which lie in the connected component of G(A, f) containing a.
Thus OA(a) = {y ∈ A : (∃n)(fn(y) = a) ∨ (∃m,n)(fn(y) = fm(a))}.

Let B be the infinite complete binary tree with all edges directed toward the
root. In fact, it will be useful for later proofs to have a canonical version of B in
mind. We shall think of B as a directed graph on the vertex set N− {0}. The
root of B will be 1 and the nodes at the height n, will be 2n, 2n+1, . . . , 2n+1−1.
For n ≥ 1, the (2k)-th and (2k + 1)st nodes at height n will have edges to the
k-th element of height n− 1. Thus the first few levels of the tree B are pictured
in Figure 1.

1

2 3

4 5 6 7

1098 11 12 13 14 15

Figure 1: The canonical infinite binary tree B.

It is easy to see that there are two types of orbits in a 2:1 structure A =
(A, f). That is, there are Z-chains as pictured in Figure 2 and there are cycles
as pictured in Figure 3. Here a Z-chain in a 2:1 structure consists of Z-chain
where there is a copy of the binary tree B attached to each point in the Z-chain.
A k-cycle consists of a directed cycle of size k where there is a copy of the binary
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tree attached to each element in the cycle.

B B B BB

. . . . . .

Figure 2: A Z-chain of a 2:1 function.

B
B

B

B

Figure 3: A 4-cycle of a 2:1 function.

The orbits of (2,0):1 structures are similar, except there are now three types
of orbits. There are Z-chains, like those pictured in Figure 4, except now a
tree Bi, attached to a node of a Z-chain, can be any binary tree with all edges
directed to the root. There are k-cycles, like those pictured in Figure 5, except
now a tree Bi can be any binary tree with all edges directed toward the root.
Finally, there are ω-chains, like those pictured in Figure 6, each consisting of
an ω-chain where all but the first element in each orbit has some binary tree Bi

attached.

B B B BB

. . . . . .

−2 −1 0 1 2

Figure 4: A Z-chain of a (2,0):1 function.

If A = (A, f) is a 2:1 structure or a (2,0):1 structure and a ∈ A, then we let
treeA(a) = {y ∈ A : (∃n)(fn(y) = x)} and TreeA(a) be the graph whose vertex
set is treeA(a) and whose edge set consists of the set of (x, f(x)) such that both x
and f(x) are in treeA(a). We let treeA(a,m) = {y ∈ A : (∃n ≤ m)(fn(y) = x)}
and TreeA(a,m) denote the graph of TreeA(a) restricted to the vertex set
treeA(a,m). In a 2:1 structure A = (A, f), TreeA(a) is always isomorphic to
the infinite complete binary tree B, unless a is an element of a k-cycle, in which
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B

B

B

B

1

3

2

4

Figure 5: A cycle of a (2,0):1 function.

B B B BB

. . .

2 3 4 51

Figure 6: A ω-chain of a (2,0):1 function.

case treeA(a) = OA(a). It is clear from the definitions that if A = (A, f) is a
computable structure, then OA(a) and treeA(a) are Σ0

1 sets.
We shall often identify finite sets S ⊆ N with their canonical indices can(S)

where can(∅) = 0 and can(S) = 2x1 + · · · + 2xk if S = {x1 < · · · < xk}. Thus
when we write that S = treeA(a, n) is a 2:1 structure or a (2,0):1 structure
A = (A, f), we mean that can(S) = can(treeA(a,m)). In a computable 2:1
structure A = (A, f), the predicate S = treeA(a,m) is a computable predicate
if S a finite set and m ≥ 1. That is, in a 2:1 structure, TreeA(a,m) is always
a complete binary tree of height m if a is not an element of a k-cycle where
k ≤ m, so that we can enumerate all the pairs (i, f(i)) with i ∈ A until we find
all the elements of treeA(a,m). If a is part of a k-cycle (a, f(a), . . . , fk−1(a))
with k ≤ m, then let di be the unique element which in not in the cycle such
that f(di) = f i(a) for i = 0, . . . , k− 1. Then tree(a,m) consists of the elements
a, f(a), . . . , fk−1(a) plus the elements the trees Tree(d0,m−1), T ree(fk−1,m−
2), T ree(fk−2,m − 3), . . . , T ree(f(a),m − k). Thus the sets treeA(a,m) are
uniformly computable. Hence we can effectively decide if S = treeA(a,m).
However, in a computable (2,0):1 structure, S = treeA(a,m) is a Π0

1 predicate.
That is, S = tree(a,m) if and only if

(∀y ∈ S)(∃n ≤ m)(fn(y) = a) ∧ (∀y)(∀n ≤ m)(fn(y) = a⇒ y ∈ S).

In Section 2, we characterize computably categorical 2:1 structures as those
that have finitely many Z-chains. We show that every computable 2:1 structure
is ∆0

2-categorical. In Section 3, we investigate natural classes of computable
(2,0):1 structures that are computably categorical. In Section 4, we investigate
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those that are not computably categorical. We show that, while every com-
putable locally finite (2,0):1 structure is ∆0

3-categorical, every such structure
with only finitely many ω-chains is ∆0

2-categorical.

2 Computable Categoricity of 2:1 Structures

Let A = (A, f) be a countably infinite 2:1 structure. The character χ(A) of
(A, f) is the set of all (k, n) such that either k = 0 and A has ≥ n Z-orbits or
k ≥ 1, and A has ≥ n orbits which are k-cycles.

Lemma 2.1. Let A = (A, f) be a computable 2:1 structure.

1. The predicate “OA(a) is a k-cycle” is Σ0
1. and

2. the predicate “OA(a) is a Z-chain” is Π0
1.

3. χ(A) is a Σ0
1 set.

Proof. For (1), note that OA(a) is a k-cycle if and only if there exists an n ≥ 0
such that fn+k(a) = fn(a) and fn+j(a) ̸= fn(a) for 1 ≤ j < k. Thus the
predicate “OA(a) is a k-cycle ” is Σ0

1.
For (2), note that OA(a) is a Z-chain if and only if it is not the case that

there exists n ≥ 0 and k > 0 such that fn+k(a) = fn(a). Thus the predicate
“OA(a) is a Z-chain” is Π0

1.
For (3), first note that {(0, n) : A has ≥ n Z orbits} is either {0} × ω or is

{0} × {0, 1, . . . , n} for some finite n, and that this set is computable in either
case.

For k, n > 0, note that in any k-cycle there is a unique finite set {a0, a1, . . . , ak−1}
such that f(ai) = ai+1 for i < k − 1 and f(ak−1) = a0. Thus A has at least n
k-cycles provided that there exist b1, b2, . . . , bn such that

(i) For each i, fk(bi) = bi, and f
t(bi) ̸= bi for any t < k and

(ii) For each i ̸= j, and for any t < k, f t(bi) ̸= bj .

The existence of 2:1 structures with arbitrary Σ0
1 characters follows from the

existence of injection structures with arbitrary Σ0
1 characters.

Theorem 2.2. For any Σ0
1 character K, there is a computable 2:1 structure

with character K.

Proof. By results of [4], there is an injection structure B = (ω, g) which has
characterK. Define a computable function h : ω\{0} → ω by having h(2n+1) =
h(2n + 2) = n for all n. Let A have universe A = ω × ω and define the two-
to-one function f so that f(b, 0) = (g(b), 0) for all b and f(b, i) = (b, h(i)) for
all i > 0. Then ω × {0} will provide a copy of B in A and, for each b, {b} × ω
will be a full binary tree with root (b, 0) where the map f takes any node to its
predecessor.

Theorem 2.3. A computable 2:1 structure A = (A, f) is computably categorical
if and only if A has only finitely many Z-chains.
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Proof. Suppose that A = (A, f) is a computable 2:1 structure with only finitely
many Z-chains, and B = (B, g) is a computable 2:1 structure which is isomorphic
to A. Let Fin(A) be the union of all orbits which are k-cycles for some k ≥ 1
in A. Suppose that A has t Z-chains and x1 < · · · < xt are representatives from
these Z-chains in A. Similarly, let Fin(B) be the union of all orbits which are
k-cycles for some k ≥ 1 in B, and let y1 < · · · < yt be representatives from the
t Z-chains in B. Note that since Fin(A) is c.e. and A−Fin(A) =

∪n
i=1OA(xi)

is c.e., it follows that both Fin(A) and A− Fin(A) are computable. Similarly,
both Fin(B) and B − Fin(B) are computable.

It is always the case that if A = (A, f) and B = (B, g) are computable 2:1
structures and Fin(A) and Fin(B) are isomorphic, then Fin(A) and Fin(B)
are computably isomorphic. That is, let a0, a1, a2, . . . be an enumeration of
Fin(A) and b0, b1, b2, . . . be an enumeration of Fin(B). We can then construct
an isomorphism h : Fin(A) → Fin(B) in stages by a standard back-and-forth
argument.

The key is to observe that for any ai, we can compute

ai = f0(ai), f(ai), f
2(ai), . . .

until we find the least ni and ki such that fni+ki(ai) = fni(ai). Then let Ci =
(fni(ai), . . . , f

ni+ki−1(ai). We shall cyclicly rearrange Ci = (ci0, . . . , c
i
ki−1) so

that ci0 is the smallest element of Ci. We shall call Ci the cycle of A associated
with ai. Thus OA(ai) will be a ki-cycle. Then we can search a1, a2, . . . until we
find ui0, . . . , u

i
ki−1 which are not in Ci such that f(uij) = cij for j = 0, . . . , ki−1.

It then follows that TreeA(u
i
j) is isomorphic to the complete binary tree B

for j = 0, . . . , ki − 1. We shall call Ci = ⟨(ci1, . . . , ciki−1), (u
i
1, . . . , u

i
ki−1)⟩ the

extended cycle of A associated with ai.
Similarly, for any bi, we can compute bi = g0(bi), g(bi), g

2(bi), . . . until
we find the least mi and ℓi such that gmi+ℓi(bi) = gmi(bi). Then let Di =
(gmi(bi), . . . , g

mi+ℓi−1(bi)). We shall cyclicly rearrange Di = (di0, . . . , d
i
ℓi−1) so

that di0 is the smallest element of Di. We shall call Di the cycle of B asso-
ciated with bi. Thus the orbit of bi will be an ℓi-cycle. Then we can search
b1, b2, . . . until we find v

i
0, . . . , v

i
ℓi−1 which are not in Di such that g(vij) = dij for

j = 0, . . . , ℓi−1. It then follows that TreeB(v
i
j) is isomorphic to the complete bi-

nary tree B. We shall call Di = ⟨(di0, . . . , diℓi−1), (v
i
0, . . . , v

i
ℓi−1)⟩ the extended

cycle of B associated with bi.
If a ∈ A and b ∈ B and both TreeA(a) and TreeB(b) are isomorphic to

the complete binary tree B, then for all n ≥ 0, we can define a map what we
will call the canonical map Θa,b,n : treeA(a, n) → treeB(b, n) inductively as
follows. For n = 0, Θa,b,0(a) = b. Having defined Θa,b,n, we then extend it to
Θa,b,n+1 so that for each leaf ℓ ∈ TreeA(a, n), we find the two elements ℓ1 < ℓ2
in A such that f(ℓ1) = f(ℓ2) = ℓ and we find the two elements p1 < p2 in B
such that g(p1) = g(p2) = Θa,b,n(ℓ), and then we define Θa,b,n+1(ℓ1) = p1 and
Θa,b,n+1(ℓ2) = p2. We then let Θa,b =

∪
n≥0 Θa,b,n and call this the canonical

map from treeA(a) onto treeB(b).
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Stage 0. First compute the extended cycle C0 = ⟨(c00, . . . , c0k0−1), (u
0
0, . . . , u

0
k0−1)⟩

of A associated with a0. Then let q0 be the least j such that the cycle Dj asso-
ciated with bj in B has size k0, and let Dq0 = ⟨(dq00 , . . . , d

q0
k0−1), (v

q0
0 , . . . , v

q0
k0−1)⟩

be the extended cycle of B associated with bq0 . Then we define h so that
h(c0j ) = dq0j and h(u0j ) = vq0j for j = 0, . . . , k0 − 1. This ensures that h is the

canonical bijection from Tree(u0j , 0) = Tree(vq0j , 0) for j = 0, . . . , k0 − 1.
If D0 = Dq0 , then let S0 = {0} and T0 = {0} and define ϕ0 : S0 → T0

by ϕ0(0) = 0 and go onto stage 1. Otherwise, compute the extended cycle

D
1

0 = ⟨(d00, . . . , d0ℓ0−1), (v
0
0 , . . . , v

0
ℓ0−1)⟩ of B associated with b0. Then let p0 be

the least j > 0 such that the cycle Cj associated with aj in A has size ℓ1. Let

C
p1

1 = ⟨(cp0

0 , . . . , c
p0

ℓ0−1), (u
p0

0 , . . . , u
p0

ℓ0−1)⟩ be the extended cycle of A associated

with ap0 . Then define h so that h(cp0

j ) = d0j and h(up0

j ) = v0j . This ensures that

h is the canonical bijection from Tree(up0

j , 0) = Tree(v0j , 0) for j = 0, . . . , ℓ0−1.
Then let S0 = {0, p0}, T0 = {0, q0} and define ϕ0 : S0 → T0 by ϕ0(0) = q0 and
ϕ0(p0) = 0.

Stage s+1.
Assume that we have defined sets Ss and Ts and bijection ϕs : Ss → Ts and a
partial function h : A→ B such that

1. for all i ≤ s, the cycle Ci associated with ai is equal to one of the cycles
Cj for some j ∈ Ss,

2. for all i ≤ s, the cycle Di associated with bi is equal to one of the cycles
Dj for some j ∈ Ts,

3. for all i, j ∈ Ss, the cycles Ci and Cj are distinct if i ̸= j,

4. for all i, j ∈ Ts, the cycles Di and Dj are distinct if i ̸= j,

5. for all i ∈ Ss, Ci and Dϕs(i) have the same size, and

6. for all i ∈ Ss, if ϕs(i) = j, then h is defined so that if
Ci = ⟨(ci0, . . . , ciki−1), (u

i
0, . . . , u

i
ki−1)⟩ is the extended cycle ofA associated

with ai and Dj = ⟨(dj0, . . . , d
j
ki−1), (u

j
0, . . . , u

j
ki−1)⟩ is the extended cycle

of B associated with bj , then h(c
i
r) = djr, h(u

i
r) = vjr , and h restricted to

treeA(u
i
r, s) is equal to the canonical map Θui

r,v
j
r,s

for r = 0, . . . , ki − 1.

First we extend h so that for all i ∈ Ss, if ϕs(i) = j, then h is defined so that
if Ci = ⟨(ci1, . . . , ciki

), (ui1, . . . , u
i
ki
)⟩ is the extended cycle of A associated with ai

and Dj = ⟨(dj0, . . . , d
j
ki−1), (v

j
0, . . . , v

j
ki−1)⟩ is the extended cycle of B associated

with bj , then h(cir) = djr, h(u
i
r) = vjr , and h restricted to treeA(u

i
r, s + 1) is

equal to the canonical map Θui
r,v

j
r,s+1 for r = 0, . . . , ki − 1.

We then have 4 cases.

Case 1. Cs+1 is equal to one of the cycles Ci for i ∈ Ss, and Ds+1 is equal to
one of the cycles Dj for j ∈ Ts.
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Then let Ss+1 = Ss, Ts+1 = Ts, and ϕs+1 = ϕs.

Case 2. Cs+1 is not equal to one of the cycles Ci for i ∈ Ss, but Ds+1 is
equal to one of the cycles Dj for j ∈ Ts.
Then let Cs+1 = ⟨(cs+1

0 , . . . , cs+1
ks+1−1), (u

s+1
0 , . . . , us+1

ks+1−1)⟩ be the extended cy-
cle of A associated with as+1. Then let qs+1 be the least q such that Dq is not
equal to one of the cycles Dj for j ∈ Ts and Dq has size ks+1. Let Dqs+1 =
⟨(dqs+1

0 , . . . , d
qs+1

ks+1−1), (v
qs+1

0 , . . . , v
qs+1

ks+1−1)⟩ be the extended cycle of B associated

with bqs+1 . Then extend h so that h(cs+1
r ) = d

qs+1
r , h(us+1

r ) = v
qs+1
r , and h

restricted to treeA(u
s+1
r , s+1) is equal to the canonical map Θ

us+1
r ,v

qs+1
r ,s+1

for
r = 0, . . . , ks+1 − 1.

Then let Ss+1 = Ss ∪{s+1}, Ts+1 = Ts ∪{qs+1}, and extend ϕs to ϕs+1 by
letting ϕs+1(s+ 1) = qs+1.

Case 3. Cs+1 is equal to one of the cycles Ci for i ∈ Ss, but Ds+1 is not
equal to one of the cycles Dj for j ∈ Ts.
Then let Ds+1 = ⟨(ds+1

0 , . . . , ds+1
ℓs+1−1), (v

s+1
0 , . . . , vs+1

ℓs+1−1)⟩ be the extended cy-
cle of B associated with bs+1. Then let ps+1 be the least p such that Cp is not
equal to one of the cycles Ci for i ∈ Ss and Cp has size ℓs+1. Let Cps+1 =
⟨(cps+1

0 , . . . , c
ps+1

ℓs+1−1), (u
ps+1

0 , . . . , u
ps+1

ℓs+1−1)⟩ be the extended cycle of A associated

with aps+1 . Then extend h so that h(c
ps+1
r ) = ds+1

r , h(u
ps+1
r ) = vs+1

r , and h
restricted to treeA(u

ps+1
r , s + 1) is equal to the canonical map Θ

u
ps+1
r ,vs+1

r ,s+1
for r = 0, . . . , ℓs+1 − 1.

Then let Ss+1 = Ss ∪ {ps+1}, Ts+1 = Ts ∪ {s+ 1}, and extend ϕs to ϕs+1

by letting ϕs+1(ps+1) = s+ 1.

Case 4. Cs+1 is not equal to one of the cycles Ci for i ∈ Ss, and Ds+1 is
not equal to one of the cycles Dj for j ∈ Ts.
Then let Cs+1 = ⟨(cs+1

0 , . . . , cs+1
ks+1−1), (u

s+1
0 , . . . , us+1

ks+1−1)⟩ be the extended cy-
cle of A associated with as+1. Then let qs+1 be the least q such that Dq is not
equal to one of the cycles Dj for j ∈ Ts and Dq has size ks+1. Let Dqs+1 =
⟨(dqs+1

0 , . . . , d
qs+1

ks+1−1), (v
qs+1

0 , . . . , v
qs+1

ks+1−1)⟩ be the extended cycle of B associated

with bqs+1 . Then extend h so that h(cs+1
r ) = d

qs+1
r , h(us+1

r ) = v
qs+1
r , and h

restricted to treeA(u
s+1
r , s+1) is equal to the canonical map Θ

us+1
r ,v

qs+1
r ,s+1

for
r = 0, . . . , ks+1 − 1.

If Ds+1 is equal to Dqs+1 , then let Ss+1 = Ss ∪ {s+ 1}, Ts+1 = Ts ∪ {qs+1},
and extend ϕs to ϕs+1 by letting ϕs+1(s + 1) = qs+1. Otherwise, let Ds+1 =
⟨(ds+1

0 , . . . , ds+1
ℓs+1−1), (v

s+1
0 , . . . , vs+1

ℓs+1−1)⟩ be the extended cycle of B associated
with bs+1. Then let ps+1 be the least p such that Cp is not equal to one of the
cycles Ci for i ∈ Ss and is not equal to Cs+1 and Cp has size ℓs+1. Let Cps+1 =
⟨(cps+1

0 , . . . , c
ps+1

ℓs+1−1), (u
ps+1

0 , . . . , u
ps+1

ℓs+1−1)⟩ be the extended cycle of A associated

with aps+1 . Then extend h so that h(c
ps+1
r ) = ds+1

r , h(u
ps+1
r ) = vs+1

r , and h
restricted to treeA(u

ps+1
r , s + 1) is equal to the canonical map Θ

u
ps+1
r ,vs+1

r ,s+1
for r = 0, . . . , ℓs+1 − 1.

Then let Ss+1 = Ss ∪{s+1, ps+1}, Ts+1 = Ts ∪{s+1, qs+1}, and extend ϕs
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to ϕs+1 by letting ϕs+1(s+ 1) = qs+1 and ϕs+1(ps+1) = s+ 1.

It is then easy to see that h will be an isomorphism from Fin(A) onto Fin(B).
Next we computably map OA(xi) onto OA(yi) as follows. Let xi,0 = xi and

xi,n = fn(xi) for n ≥ 1. Then define xi,−n for n ≥ 1 inductively as follows: xi,−1

is the least element z such that f(z) = xi. There are only two elements which
map to xi under f , and we can enumerate A until we find these two elements
and then pick the least of these two elements to be xi,−1. Then inductively for
n > 1, we define xi,−n to be the least element z that such that f(z) = xi,−(n−1).
Let Xi = {xi,n : n ∈ Z}. Similarly, we let yi,0 = yi and yi,n = gn(yi) for
n ≥ 1. We let yi,−1 be the least element z such that g(z) = yi and, inductively,
define yi,−n for n > 1 to the least element z such that g(z) = yi,−(n−1). Let
Yi = {yi,n : n ∈ Z}. Next for all n ∈ Z, let ui,n be the element which is
not in Xi such that f(ui,n) = xi,n and let vi,n be the element which is not in
Yi such that g(vi,n) = yi,n. Then we define h so that for all 1 ≤ i ≤ t and
n ∈ Z, h(xi,n) = yi,n, h(ui,n) = vi,n, and h restricted to tree(ui,n) equal to the
canonical map Θui,n,vi,n .

It follows that h will be a computable isomorphism from A onto B so that
A is computably categorical.

Next suppose that A = (A, f) is a computable 2:1 structure such that A
has infinitely many orbits which are Z-chains. If Fin(A) is not a computable
set, then partition N into two infinite computable sets B and C. Let a1, a2, . . . ,
be an effective enumeration of Fin(A) and let B = {b1 < b2 < · · · }. Then we
define the function g : B → B so that g(bi) = bj if and only if f(ai) = aj , so that
the map f : Fin(A) → B defined by f(ai) = bi will be an isomorphism from
(Fin(A), f) onto (B, g). We can then extend g to C by effectively partitioning
C into a uniform sequence of pairwise disjoint computable sets C0, C1, . . . and
define g so that each Ci is a g-orbit which is a Z-chain of our 2:1 structure. It
will follow that (N, g) is a computable structure which is isomorphic to (A, f).
Note that (N, g) has the property that the predicate SameOrbit(N,g)(a, b), which
holds if and only if a and b lie in the same orbit of (N, g), is computable.

Instead of directly constructing a computable 2:1 structure which is not iso-
morphic to (N, g), we will modify our construction so that given any c.e. set
E which is both infinite and co-infinite, we will construct a computable 2:1
structure (N, gE) such that the predicate SameOrbit(N,g) is Turing equivalent
to E. The idea is to slightly modify our construction of (N, g). That is, let
B,C,C0, C1, . . . be as above. Then we let gE = g on B so that Fin(A) is com-
putably isomorphic to (B, gE). Let c0, c1, . . . be the least elements of C0, C1, . . .,
respectively. Fix some effective enumeration of E and let Es be the finite set
of elements enumerated in E at stage s. Assume that E0 = {0} and that
card(Es − Es−1) = 1 for all s ≥ 1.

We construct gE in stages. The basic idea is that at any stage s, we will
be defining gE so that the elements of Ci for i ≥ 1 will form an orbit which
will be a Z-chain. That is, we let ci0 = ci. At any given stage s, as long as
i ̸∈ E, we construct what we call a partial Z-chain of length 2s + 1. That
is, we will define a sequence ci−s, c

i
−(s−1), . . . , c

i
−1, c

i
0, c

i
1, . . . , c

i
s and a sequence
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di−s, d
i
−s−1, . . . , d

i
−1, d

i
0, d

i
1, . . . , d

i
s such that gE(c

i
k) = cik+1 for −s ≤ k ≤ s − 1

and gE(d
i
k) = cik for −s ≤ k ≤ s. Moreover, for each k, we assume that gE is

defined on initial segment Iis of Ci so that in the graph of gE restricted to Iis, d
i
k

is the root of a complete binary tree of height s. See Figure 7 for a picture of a
partial Z-chain of length 5. Thus Iis will be a set of size (2s+1)2s+1. At the next
stage, we first use the next 4 elements of Ci to define ci−(s+1), c

i
s+1, d

i
(s+1), d

i
s+1,

then we will use then next 2(2s+2 − 1) elements to construct the binary trees of
height s+1 which have roots di

(s+1) and d
i
s+1, and finally use the next (2s+1)2s

to extend the binary trees with roots di−s, . . . , d
i
s so that they have height s+1.

B 2B 2 B 2 B 2 B 2

c c c c

d d d d d1 2−2 −1 0

−2 −1 c 0 1 2

i

i i i i

iiiii

i

Figure 7: A partial Z-chain of length 5.

For i = 0, we perform a similar construction except that the partial Z-chain
will be of length 2ks +1 for some integer ks, which will be an initial segment of∪

i∈Es Ci. That is, we will define a sequence

c0−ks
, c0−(ks−1), . . . , c

0
−1, c

0
0, c

0
1, . . . , c

0
ks

and a sequence
d0−ks

, d0−(ks−1), . . . , d
0
−1, d

0
0, d

0
1, . . . , d

0
ks

such that gE(c
0
k) = c0k+1 for −ks ≤ k ≤ ks−1 and gE(d

0
j ) = c0j for −ks ≤ j ≤ ks.

Moreover, for each j, we assume that gE is defined on the initial segment I0s
of

∪
∈Es Ci so that in the graph of gE restricted to I0s , d

i
j is the root of a

complete binary tree of height ks. Then if j ∈ Es+1 −Es, we will simply define
gE(c

0
ks
) = cj−s, which will have the effect of grafting the partial Z-chain for Cj

at stage s onto the front of the partial Z-chain for 0 at stage s. We then simply
have to add appropriate elements at the end of the partial Z-chain for 0 and the
corresponding binary trees at stage s + 1, so that we have a Z-chain of length
ks+1 = ks + 2s+ 2 for 0.

It is then easy to see that this will construct a computable 2:1 structure
BE = (N, gE) which is isomorphic to A. Next consider the question of the degree
of predicate SameOrbit(a, b) for BE . Note that Fin(BE) is a computable set
so that given a, b ∈ N, we first ask if both a, b ∈ Fin(BE). If so, then we can
iterate gE on a and b until we find the cycles Cya and Cyb to which a and b are
attached, respectively. Then a is in the same orbit as b if and only if Cya = Cyb.
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If both a and b are not in Fin(BE), then we can find i and j such that a ∈ Ci

and b ∈ Cj . If i = j, then a and b are in the same orbit and if i ̸= j, then a
and b are in the same orbit if and only if i, j ∈ E. Finally if it is not the case
that either both a and b are in Fin(BE) or both a and b are not in Fin(BE),
then a and b are not in the same orbit. This shows that SameOrbit ≤T E. On
the other hand, c0, c1 ∈ E if and only if c0 and c1 are in the same orbit so that
E ≤T SameOrbit(, ).

Clearly if E is a c.e. non-computable set, then (N, g) is not computably
isomorphic to (N, gE). Thus if A has infinitely many Z-chains, then A is not
computably categorical.

We have the following corollaries of Theorem 2.3.

Corollary 2.4. Suppose that A = (A, f) and B = (B, g) are computable
2:1 structures such that Fin(A) and Fin(B) are computable and the predicate
SameOrbit is computable in both A and B. Then A is isomorphic to B if and
only if A is computably isomorphic to B.

Proof. Suppose that A is isomorphic to B. Then by our argument in the proof of
Theorem 2.3, we know that (Fin(A), f) is computably isomorphic to Fin(B), g).
Then let A − Fin(A) = {a0 < a1 < · · · } and A − Fin(B) = {b0 < b1 <
· · · }. Because SameOrbit is a computable predicate for A, we can effectively
determine if ai is the smallest element in its orbit. That is, ai is the smallest
element in its orbit if and only if ¬SameOrbit(aj , ai) hold for all j < i. Thus
we can effectively list as a0 = ai0 < ai1 < · · · all the elements of A − Fin(A)
such that aij is the least element in its orbit. Similarly, we can effectively list
as b0 = bi0 < bi1 < . . . all the elements of B − Fin(B) such that bij is the least
element in its orbit. Then we can use the procedure described in Theorem 2.3
to computably map the Z-chain OA(aij ) onto the Z-chain OB(bij ). Thus A is
computably isomorphic to B.

Clearly, if A is computably isomorphic to B, then A is isomorphic to B.

Corollary 2.5. Every computable 2:1 structure (A, f) is ∆0
2-categorical.

Proof. Note that Fin(A) is c.e. and hence ∆0
2, and SameOrbit(a, b) if and only

if OA(a) ∩ CA(b) ̸= ∅, which is also a ∆0
2 predicate. Thus the corollary follows

from a relativized version of Corollary 2.4.

3 Computably Categorical (2,0):1 Structures

Suppose that we are given a (2,0):1 structure (A, f). If an orbit OA(a) is a
k-cycle, then its graph must consist of an extended cycle

C = ⟨(c0, . . . , ck−1), (d0, . . . , dk−1)⟩

together with binary trees T0, . . . , Tk−1 where Ti = Tree(di) for i = 0, . . . , k−1.
In such a situation, if c0 is the least element of {c0, . . . , ck−1}, then we shall say
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that OA(a) is of type ⟨(c0, . . . , ck−1), (T0, . . . , Tk−1)⟩. Specifying the type of Z-
chains and ω-chains is more problematic. That is, one way to specify the graph
of a Z-chain is to give two sequences

c⃗ = (c0, c1, c−1, c2, c−2, . . . ) and

d⃗ = (d0, d1, d−1, d2, d−2, . . . )

and a sequence of binary trees

T⃗ = (T0, T1, T−1, T2, T−2, . . . )

such that for all i ∈ Z, f(ci) = ci+1, f(di) = ci, and Tree(di) = Ti. Similarly,
one way to specify the graph of an ω-chain is to give two sequences

c⃗ = (c0, c1, c2, c3, . . . ) and

d⃗ = (d1, d2, d3, . . . )

and a sequence of binary trees

T⃗ = (T1, T2, . . . )

such that for all i ∈ ω, f(ci) = ci+1, for all i ≥ 1, f(di) = ci, and Tree(di) = Ti.

a 3 b3 a 4 b4

c 2 c 3 c 4

d3 d4

a 2 d2

c 0

b2 c 1

d1c 0

a 1 b1

c c c c

dddd

1 2 3 4

1 2 3 4

a b a b a b a b1 1 2 2 3 3 4 4

Figure 8: An ω-chain where all the attached trees are three element binary trees.

Unfortunately, the sequences of trees T⃗ depend on how we pick c⃗. For
example, suppose we have an orbit which is the ω-chain pictured at the top of
Figure 8. That is, the tree Ti are all three element binary trees. Then at the
bottom of Figure 8, we have pictured another way to represent that ω-chain,
which clearly gives rise to a different sequence of trees. Nevertheless, whenever
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we have two such equivalent descriptions

c⃗ = (c0, c1, c2, c3, . . . ),

d⃗ = (d1, d2, d3, . . . ), and

T⃗ = (T1, T2, . . . )

and

c⃗′ = (c′0, c
′
1, c

′
2, c

′
3, . . . ),

d⃗′ = (d′1, d
′
2, d

′
3, . . . ), and

T⃗ ′ = (T ′
1, T

′
2, . . . ),

there will be an n large enough so that ci = c′i, di = d′i, and Ti = T ′
i for all

i ≥ n and, hence, tree(cn) = tree(c′n).

c 0

d d d d d2−2 −1 0 1

c c cc −2 −1 1 2

0T

Figure 9: A Z-chain.

A similar situation happens for Z-chains. That is, suppose that we have the
Z-chain pictured in Figure 9. That is, the Z-chain corresponds to the sequences

c⃗ = (c0, c1, c−1, c2, c−2, . . . ),

d⃗ = (d0, d1, d−1, d2, d−2, . . . ), and

T⃗ = (T0, T1, T−1, T2, T−2, . . . )

where T0 is isomorphic to the complete infinite binary tree B and Ti and T−i

are one element trees for i > 0. Then it is clear that, if we represent the same
Z-chain as

c⃗ = (c0, c1, c
′
−1, c2, c

′
−2, . . . ),

d⃗ = (d′0, d1, d
′
−1, d2, d

′
−2, . . . ), and

T⃗ = (T ′
0, T1, T

′
−1, T2, T

′
−2, . . . )

where c′−1 = d0, and c
′
−2, c

′
−3, . . . is some infinite path through the binary tree

T0, then T
′
−i will be isomorphic to the complete binary tree of i ≥ 1 and T ′

0 is
isomorphic to TreeA(c1). What is worse, it is also clear that we could represent
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the same Z-chain as an ω-chain starting at the d1. Nevertheless, just as the
case with ω-chains, there will be an n large enough so that ci = c′i, di = d′i, and
Ti = T ′

i for all i ≥ n and, hence, tree(cn) = tree(c′n).
We say that a (2,0):1 structure (A, f) is locally finite if treeA(a) is finite

for all a ∈ A. Locally finite (2,0):1 structures are much simpler than general
(2,0):1 structures. That is, in locally finite (2,0):1 structures, all orbits which are
k-cycles are finite and there are no Z-chains. We say that a computable (2,0):1
structure (A, f) is highly computable if the range of f , ran(f), is computable.
It is easy to see that in a locally finite computable (2,0):1 structure (A, f), one
can effectively find the finite set treeA(a) for any a ∈ A.

Theorem 3.1. Suppose that A = (A, f) and B = (B, g) are isomorphic highly
computable locally finite (2,0):1 structures which have only finitely many ω-
chains, then A is computably isomorphic to B.

Proof. In such a case, we know that Fin(A) and Fin(B) are computable. It is
easy to construct an isomorphism h0 from (Fin(A), f) to Fin(B), g) by a stan-
dard back-and-forth argument. The key is that, since A is highly computable
and locally finite, it follows that given any a ∈ Fin(A), we can effectively com-
pute the entire orbit of a. That is, as in Theorem 2, we can effectively find the
extended cycle ⟨(c0, . . . , ck−1), (d0, . . . , dk−1)⟩ in OA(a). Then we can effectively
find (T0, . . . , Tk−1) such that TreeA(di) = Ti for i = 0, . . . , k − 1. Given such
an orbit OA(a), we can then search through the elements of B until we find a
b whose orbit is isomorphic to OA(a). That is, we can find a b whose extended
cycle is ⟨(c′0, . . . , c′k−1), (d

′
0, . . . , d

′
k−1)⟩ and binary trees (T ′

0, . . . , T
′
k−1) such that

TreeB(d
′
i) = T ′

i for i = 0, . . . , k − 1 such that there is an s with 0 ≤ s ≤ k − 1
where Tj is isomorphic to Ts+j mod k for j = 0, . . . , k − 1. Then we can easily
construct an isomorphism from OA(a) to OB(b).

Moreover, there must exist representatives a1, . . . , ar of the ω-chains in A
and representatives b1, . . . , br of the ω-chains in B with the following properties.
Let Ai = {ai,0, ai,1, . . .} where ai,0 = ai and ai,n = fn(ai) for n ≥ 1. For each
n ≥ 1, let ci,n be the element of A such that ci,n ∈ Ai and f(ci,n) = ai,n and
let Ti,n = TreeA(ci,n). Similarly, let Bi = {bi,0, bi,1, . . .} where bi,0 = bi and
bi,n = gn(bi) for n ≥ 1. For each n ≥ 1, let di,n be the element of A such that
di,n ∈ Ai and g(di,n) = bi,n, and let Si,n = TreeB(bi,n). Then we assume that
for 1 ≤ i ≤ r, TreeA(ai) is isomorphic to TreeB(bi) and Ti,n is isomorphic to
Si,n for all n ≥ 1.

Finally, note that, for any a ∈ A and b ∈ B such that TreeA(a) is isomorphic
to TreeB(b), we can construct a canonical isomorphism ϕa,b from TreeA(a) onto
TreeB(b) as follows.

Stage 0. Set ϕ(a) = b.

Stage s+1. Assume that we have defined ϕ on treeA(a, s) so that ϕ is an
isomorphism from TreeA(a, s) onto TreeB(b, s), and for all x ∈ treeA(a, s),
TreeA(x) is isomorphic to TreeB(ϕ(x)). Then extend ϕ to an isomorphism
from TreeA(a, s + 1) onto TreeB(b, s + 1) as follows. For each x ∈ treeA(a, s)
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which is in the range of f , find x0 < x1 in A such that f(x0) = f(x1) = x and
find y0 < y1 in B such that g(y0) = g(y1) = ϕ(x). By assumption, TreeA(x)
is isomorphic to TreeB(ϕ(x)). Then if TreeA(x0) is isomorphic to TreeA(x1),
we know that TreeB(yi) is isomorphic to TreeA(x0) for i = 0, 1 so that we let
ϕ(x0) = y0 and ϕ(x1) = y1. If TreeA(x0) is not isomorphic to TreeA(x1), then
there is some s ∈ {0, 1} such that TreeA(x0) is isomorphic to TreeB(ys) and
TreeA(x1) is isomorphic to TreeB(y1−s). In that case, we let ϕ(x0) = ys and
ϕ(x1) = y1−s.

It follows that for each 1 ≤ i ≤ r, we can define a computable isomorphism
hi : OA(ai) → OB(bi) by setting hi(ai,n) = bi,n for n ≥ 0, hi(ci,n) = di,n for
n ≥ 1, and ensuring that hi restricted to treeA(ai) is the canonical isomorphism
from TreeA(ai) onto TreeB(bi), and hi restricted to treeA(ci,n) is the canonical
isomorphism from TreeA(ci,n) onto TreeB(di,n) for n ≥ 1.

Thus
∪r

i=0 hi is a computable isomorphism from A onto B.

Now suppose that A = (A, f) is a highly computable locally finite (2,0):1
structure such that Fin(A) = A. In this case, the type of k-cycle is of the form
⟨(c0, . . . , ck−1), (T0, . . . , Tk−1)⟩ where each Ti is a finite binary tree. There is
a natural order on the set of finite binary trees determined by embeddability.
That is, if T and S are finite binary trees with roots s and t, respectively, then
we can think of T and S as directed graphs with all edges directed toward the
root. Then we write T ⊑ S if there is map ϕ from the nodes of T into the nodes
of S such that ϕ(r) = s and for any nodes x and y in T , (x, y) is a directed edge
in T if and only if (ϕ(x), ϕ(y)) is a directed edge in S. Alternatively, T ⊑ S if
and only if the directed graph S can be constructed by taking a directed graph T
and replacing each leaf ℓ ∈ T with a binary tree Tℓ with all edges directed toward
the root. For example, the complete binary tree Tk of height k is embeddable in
the complete binary tree of Tr of height r for all r ≥ k. We also say that every
binary tree T is embeddable in the complete binary tree B. We can then extend
⊑ to orbits in A by saying that OA(a) ⊑ OA(b) if and only if there is some
k ≥ 1 such that the type of OA(a) is ⟨(c0, . . . , ck−1), (T0, . . . , Tk−1)⟩, the type of
OA(b) is ⟨(d0, . . . , dk−1), (S0, . . . , Sk−1)⟩, and there is some 0 ≤ p ≤ k − 1 such
that Ti ⊑ Sp+i mod k for i = 0, . . . , k − 1.

We say that a computable (2,0):1 structure A = (A, f) has an explicitly
computable cycle structure if A is locally finite, Fin(A) = A, and there
is a computable function h such that for all k ≥ 1, h(k) is equal to the code
of a list ((D1, d1), . . . , (Dℓk , dℓk) where any orbit OA(a) which is a k-cycle is
isomorphic to one of D1, . . . , Dℓk and there are exactly di k-cycles in A which
are isomorphic to Di for i = 1, . . . , ℓr. In addition, we assume that the poset
Pk = ({D1, . . . , Dℓk},⊑), where⊑ is the embeddability relation has the property
that di is finite if Di is not a minimal element in Pk and di ∈ N ∪ {ω} if Di is
a minimal element of Pk.

We claim that if A = (A, f) has an explicitly computable cycle struc-
ture, then A is highly computable. Clearly, it is enough to show that we can
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effectively compute the A-orbit of a for any a ∈ A. Given an element a ∈ A,
we can first compute a, f(a), f2(a), . . . until we find the k such that OA(a) is
a k-cycle. At that point, we start enumerating A and computing f until we
find the required number of copies of Di for all non-minimal elements of Pk. If
OA(a) is one of those k-cycles, then we have explicitly computed the OA(a). If
not, OA(a) is isomorphic to a minimal element of Pk. We know that none of
the minimal elements of Pk are embeddable in each other, which means that we
can compute long enough until we see enough of the partial structure of OA(a)
to distinguish it from the other minimal elements of Pk. At that point, we will
know the isomorphism type of OA(a) so that we can continue to enumerate A
and compute f until we have found all the elements of OA(a).

Thus we have the following corollary of Theorem 3.1.

Corollary 3.2. If A = (A, f) is a computable (2,0):1 structure which has an
explicitly computable cycle structure, then A is computably categorical. Further-
more, the argument above relativizes to show that the indicated structures are in
fact relatively computably categorical.

Next we consider the special case of locally finite structures A = (ω, f)
such that for some fixed k, A consists exactly of an infinite number of orbits
each containing a k-cycle. Following the notation of Lempp, McCoy, R. Miller
and Solomon [10], we say that A is strongly finite if there exists a finite set
{D1, . . . , Dℓ} such that every orbit is isomorphic to Di for some i ≤ ℓ and,
furthermore, there do not exist Di ̸= Dj such that there are infinitely many
orbits of type Di and infinitely many orbits of type j such that Di is embeddable
into Dj . Then we have the following corollary of Theorem 3.1

Proposition 3.3. Suppose that, for a fixed finite k, A = (A, f) consists of an
infinite number of orbits, each containing a k-cycle, and is strongly finite. Then
A is relatively computably categorical.

Proof. We prove this by describing the Scott formulas. First we observe that
the relation “O(x) = O(y)” is c.e., since x and y are in the same orbit if and
only if, for some natural numbers m and n, fm(x) = fn(y). Furthermore, if we
have a bound M on the size of the orbits, as we do here, then this relation is in
fact ∆0

1, since we can bound m and n by M .
For each type Dj which occurs only finitely often, choose a member of each

orbit of type Dj as a parameter. Then O(x) has type Dj for such a j if and only
if it is the same orbit as one of the parameters. If x is in one of the remaining
orbits, let Ot(x) = {y : (∃m < t)(∃n < t)(fm(x) = fn(y))}. Then O(x) is of
type Dj if and only if for some t, Ot(x) is of type Di. That is, once the orbit
of x looks like Di and is known not be one of the orbits of type Dj where Di

is embeddable into Dj , then Ot(x) = O(x) since it cannot grow into anything
else. Then the condition that O(x) has type Di is a c. e.formula consisting
of a disjunction over natural numbers t of a c. e.formula which describes the
condition that {y : (∃m < t)(∃n < t)(fm(x) = fn(y))} is isomorphic to Di.
Now for every i, we have a canonical copy of Di and we can find a particular
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subset S(x) of Di and specify that d ∈ S if and only if there is an isomorphism
taking O(x) to Di which maps x to d. Then the c.e. Scott formula of x first
states the orbit type of O(x) and then indicates the set S(x).

For a tuple (x1, . . . , xm) of elements, the Scott formula consists of the indi-
vidual Scott formulas for x1, . . . , xm together with, for each pair xi and xj , either
the statement that O(xi) = O(xj), or the statement that O(xi) ̸= O(xj), and
finally a statement that specifies for each tuple y1, . . . , yn taken from x1, . . . , xm
which belong to the same orbit of type Di, which tuples d1, . . . , dn could be the
images of y1, . . . , yn under an isomorphism of O(xi) with Di.

Unlike the case of computable 2:1 structures, we cannot characterize the
computably categorical, locally finite, highly computable (2,0):1 structures as
those which have only finitely many ω-chains. We can construct a computably
categorical, locally finite, highly computable (2,0):1 structure A = (A, f) with
infinitely many ω-chains as follows. First we assume that there is a fixed r ≥
0 such that any k-cycle in A has type ⟨(c0, . . . , ck−1), (T0, . . . , Tk−1)⟩ where
T0, T1, . . . , Tk−1 are all binary trees of height ≤ r. Next assume that for all
t > r, there is a unique ω-chain Ct in A

⟨(a0, a1, a2, . . .), (T1, T2, . . .)⟩

such that Ti is a complete binary tree of height t. The key thing to observe
about the ω-chain Ct is that the only ways to represent it as an ω-chain

⟨(a′0, a′1, a′2, . . .), (T ′
1, T

′
2, . . .)⟩,

which is different from ⟨(a0, a1, a2 . . .), (T1, T2, . . .)⟩ is to have a′0 correspond to
a leaf in one of the trees Tn. In such a situation, T ′

i will be a complete binary
tree of height i for i = 1, . . . , t, T ′

t+1 = TreeA(ai,n−1), and T
′
i is the complete

binary tree of size t for i ≥ r2. It follows that we can recognize the type of
any element x which is in ω-chain in A by simply starting at a and computing
x1, x2, . . . and y1, y2, . . . where xi = f i(x), yi is an element which is not equal to
xi−1 such that f(yi) = xi and Si = TreeA(yi) until we see a j such that Sj and
Sj+1 are both complete binary trees of size t. Then we know that a belongs to
an ω-chain of the form

⟨(a0, a1, a2, . . .), (T1, T2, . . .)⟩,

where Ti is a complete binary tree of height t > r. Moreover, we can find the
corresponding a0 in the tree St+1.

It follows that we can effectively determine whether an element in a ∈ A is
in Fin(A), since its orbit will not have any elements c such that TreeA(c) is a
complete binary tree of size t > r if c ̸∈ Fin(A), in which case we can effectively
find at0 such that OA(c) is of type

⟨(at0, at1, at2, . . .), (T t
1 , T

t
2 , . . .)⟩,

where T t
i is a complete binary tree of height t > r. Thus if B = (B, g) is

a highly computable locally finite (2,0):1 structure which is isomorphic to A,
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then Fin(B) is computable and hence, by our argument in Theorem 3.1, we can
construct a computable isomorphism h0 mapping (Fin(A), f) onto (Fin(B), g).
Moreover, for any t > r, we can effectively find bt0 such that the orbit of bt0 is
an ω-chain

⟨(bt0, bt1, bt2, . . .), (T t
1 , T

t
2 , . . .)⟩

where bti = gi(bt0) and T
t
i is a complete binary tree of height t > r for all i ≥ 1.

We can then define a bijection ht from the orbit of at0 in A to the orbit of bt0 in
B by finding cti ∈ A and dti in B for i ≥ 1 such that cti ̸= ati−1 and f(cti) = ati and
dti ̸= bti−1 and g(dti) = bti for i ≥ 1 and defining ht so that h(ati) = bti for i ≥ 0,
h(cti) = dti for i ≥ 1, and ensuring that ht restricted to treeA(c

t
i) is the canonical

isomorphism from TreeA(c
t
i) onto TreeB(d

t
i). It follows that h =

∪
t≥0 ht is a

computable isomorphism from A onto B so that A is computably categorical
relative to the highly computable locally finite (2,0):1 structures.

It should be clear that we can construct infinitely many such examples by
picking r, any computable set S ⊆ {r + 1, r + 2, . . .} and constructing a highly
computable locally finite (2,0):1 structure A = (A, f) such that:

1. the only k-chains of A are of type ⟨(c0, . . . , ck−1), (T0, . . . , Tk−1)⟩ where
the height of Ti is ≤ r,

2. the only ω-chains of A are of the form

⟨(a0, a1, a2, . . .), (T1, T2, . . .)⟩

where Ti is a complete binary tree of height t ∈ S, and

3. for each t ∈ S, A has sr ω-chains of type

⟨(a0, a1, a2, . . .), (T1, T2, . . .)⟩

where Ti is a complete binary tree of height t such that sr ∈ (N−{0})∪{ω}.

4 Non-Computably Categorical (2,0):1 Structures

In this section, we shall show that if we drop the hypothesis that a locally
finite (2,0):1 structure A = (A, f) is highly computable or has explicitly com-
putable cycle structure, then there are many examples of computable (2,0):1
structures which are not computably categorical structures even in the case
where Fin(A) = A. For example, we have the following theorem.

Theorem 4.1. Suppose that A = (A, f) is a computable locally finite (2,0):1
structure such that Fin(A) = A and there exist two distinct types of orbits which
are k-cycles,
D1 = ⟨(d0, . . . , dk−1), (T0, . . . , Tk−1)⟩ and D2 = ⟨(e0, . . . , ek−1), (S0, . . . , Sk−1)⟩,
such that A has infinitely many k-cycles which are isomorphic to Di for i = 1, 2
and D1 is embeddable into D2. Then there exists a computable (2,0):1 structure
B = (N, g) which is isomorphic to A but is not computably isomorphic to A.

20



Proof. First let ϕ be a 1:1 computable function which maps A onto the set of
odd numbers O in N. Define h on 0 so that ϕ is an isomorphism. Next on the
even numbers E define h so that we create infinitely many copies

⟨(cm0 , . . . , cmk−1), (T
m
0 , . . . , T

m
k−1)⟩m≥0

of C1 such that c00 < c10 < c20 < · · · is a computable sequence. If C = (N, h) is
not computably isomorphic to A, then we are done. Otherwise, we construct,
in stages, a computable (2,0):1 structure B = (N, g) which is isomorphic to A
but not computably isomorphic to C.

Let ϕe denote the partial computable function computed by the e-th Turing
machine Me and let ϕe,s(x) denote the result, if any, of carrying out the com-
putation of Me on input x for s steps. If this computation has not returned
a value, then we write ϕe,s(x) ↑ and if it has returned a value, then we write
ϕe,s(x) ↓.

Note that for any a ∈ N, we can compute the sequence a, h(a), h2(a), . . . long
enough until we find the cycle Ca = (za0 , . . . , z

a
ka−1) corresponding to the orbit

of a where za0 is the smallest element of {za0 , . . . , zaka−1}. It follows that we can
compute the sequence y0 < y1 < · · · such that Y = {yi : i ≥ 0} = {za0 : a ∈ N}.
It follows that c00 < c10 < · · · is a computable subsequence of y0, y1, . . .. That is,
there is a computable increasing function q such that yq(i) = ci0 for all i ≥ 0.

For any j ̸∈ ran(q), we let OC,s(yj) denote the set of x ≤ s such that either
x is in the cycle C(yj) = (yj = yj,0, . . . , yj,kj−1) of h determined by yj or
hk(x) ∈ {yj,0, . . . yj,kj−1}. For any yj ∈ ran(q), we let OC,s(yj) denote OC(yj).
Note that, by the construction, we can compute OC(yj) if j ∈ ran(q). In either
case, we shall call OC,s(yj) the partial orbit of yj at stage s.

We will use a finite injury priority argument to define a ∆0
2 function ψ : N →

N which is the limit of computable functions ψ(s) and the computable function
g on N in stages so that at any stage s, if j ≤ s and j ̸∈ ran(q), then ψ(s)

maps the partial orbit of yj at stage s, OC,s(yj), onto a partial orbit of g which
is isomorphic to the orbit OC,s(yj). On the elements of the form yq(i) where

q(i) ≤ s, we will define ψ(s) and g so that ψ(s) maps the orbit OC,s(yq(i)) into
an orbit which is either isomorphic to D1 or D2. This way we will ensure that
B = (N, g) is isomorphic to A. At each stage s, we will place Γj markers on the
partial g-orbits which are isomorphic to the partial orbits OC,s(yj) under ϕ(s)

for j ≤ s such that j ̸∈ ran(q).
We will have two sets of requirements that we must meet.

Ne: limsψ
(s)(x) exists for all x ∈ OC(ye) and ψ maps OC(ye) onto a B-orbit

which is isomorphic to OC(ye) if e ̸∈ ran(q) or is not a B-orbit which is isomor-
phic to either D1 and D2 if e ∈ ran(q).

Pe: Either

1. ϕe is not 1:1 on its domain,

2. there exists i such that ϕe is not defined on OC(yq(i)), or
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3. there exists i such that ϕe is defined on OC(yq(i)), but OC(yq(i)) is not
isomorphic to OB(ϕe(yq(i))).

Our basic strategy for meeting a requirement Pe is to simply compute
ϕe,s(yq(0)), . . . , ϕe,s(yq(s)) until we find an i such that the partial orbit of ϕe,s(yq(s))
under g as defined at stage s is not in the union of the partial orbits that are
used to meet the requirements Na for a ≤ e or Pb for b < e. That is, none of
the elements of the partial orbit of ϕe,s(yq(s)) under g as defined at stage s have
either Γj markers on them for j ≤ e or ∆j markers on them for j < e. At this
point, if the partial orbit of ϕe,s(yq(s)) is consistent with being isomorphic to
D1, then we extend g by using new elements of N so that the g-orbit ϕe,s(yq(s))
is isomorphic to D2. We then put ∆e markers on the elements of this orbit. If
the g-orbit of ϕe,s(yq(s)) was being used to ensure that ψ is an isomorphism to
some orbit yj where j > e, then we simply use new elements to create a partial
g-orbit which is isomorphic to the partial orbit OC,s(yj).

Stage 0. Find the cycle C(y0) = (y0 = y00 , y
0
1 , . . . , y

0
k0−1). Then define g

so that g(0) = 1, g(1) = 2, . . . , g(k0 − 2) = k0 − 1, g(k0 − 1) = 0 and define ψ(0)

so that ψ(0)(yj,0) = j for 0 ≤ j ≤ k0 − 1. Put Γ0 markers on 0, . . . , k0 − 1.

Stage s+1. Assume we have defined ψ(s) on the union of the partial orbits at
stage s of all yj for j ≤ s and g is defined on a finite subset Is of N so that:

1. ψ(s) is a 1:1 function onto Is,

2. for all yj with j ≤ s and yj not in the range of q, ψ(s)(OC,s(yj)) is a g-orbit
in (Is, g) and (ψ(s)(OC,s(yj)), g) is isomorphic to (OC,s(yj), h) and there
are Γj markers on the elements of ψ(s)(OC,s(yj)),

3. for all yj with j ≤ s and yj in the range of q, ψ(s)(OC(yj)) is contained in
a g-orbit which is isomorphic to either D1 or D2.

First look for an e ≤ s+1 such that ϕe,s is 1:1 on its domain, there currently
are no elements with ∆e markers, and there is a j ≤ s such that j ∈ ran(q)
and either ϕe,s(yj) maps to an element outside of Is or to an element of Is
which does not have a Γi marker on it or a ∆i marker on it for any i < j.
If no such e exists, then use elements from an initial segment of elements of
N− Is and define g on those elements to create a g-orbit which is isomorphic to
OC,s+1(ys+1). Then define ψ(s+1) on OC,s+1(ys+1) so that it is an isomorphism
which sends ys+1 to the least element of the cycle of the orbit and the map from
any tree that feed into the cycle of yj is the canonical map to the corresponding
tree in the cycle of ψ(s+1)(ys+1). Put Γs+1 markers on the elements of this new
g-orbit if s + 1 /∈ ran(q). Then let ψ(s+1) = ψ(s) on

∪
j≤sOC,s(yj). Finally,

for all j ≤ s, j ̸∈ ran(q), use elements from an initial segment of N − (Is ∪
ψ(s+1)(OC,s+1(ys+1))) and define g on those elements so that the g-orbit of
ψ(s)(yj) is isomorphic to OC,s+1(yj). Put Γj markers on the new elements in
image of ψ(s+1)(OC,s+1(yj)) and define ψ(s+1) on OC,s+1(yj)−OC,s(yj) so that
ψ(s+1) restricted to OC,s+1(yj) is an isomorphism to the g-orbit of ψ(s)(yj).
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If such an e exists, then let es+1 be the least such e. Then we have two cases.

Case 1. ϕe,s(yes+1
) ̸∈ Is.

Then use an initial segment of elements in N − Is − {ϕe,s(yes+1)} and define g
on those elements and ϕe,s(yes+1) to create a g-orbit which is isomorphic to D2

where ϕe,s(yes+1) plays the role of the least element in the cycle of D2. Define

ψ(s+1) on OC(yes+1) so that it is an isomorphism which sends yes+1 to the least
element of the cycle of the orbit, and the map from any tree that feeds into
the cycle of yj is the canonical map to the corresponding tree in the cycle of
ψ(s+1)(yes+1). Put ∆es+1 markers on the g-orbit of ψ(s+1)(yes+1). In addition,

create a g-orbit which is isomorphic to OC,s+1(ys+1). Then define ψ(s+1) on
OC,s+1(ys+1) so that it is an isomorphism which sends the ys+1 to the least
element of the cycle of the orbit, and the map from any tree that feeds into
the cycle of yj is the canonical map to the corresponding tree in the cycle of
ψ(s+1)(ys+1). Put Γs+1 markers on the elements of this new g-orbit if ys+1 is
not in the range of q. Then let ψ(s+1) = ψ(s) on

∪
j≤s,yj

OC,s(yj). Finally, for

all j ̸∈ ran(q) for j ≤ s, take elements from an initial segment of the elements
of N which have not been used in the construction up to this point and define
g on those elements so that the g-orbit of ψ(s)(yj) is isomorphic to OC,s+1(yj).
Put Γj markers on the new elements in the image ψ(s+1)(OC,s+1(yj)) and define
ψ(s+1) on OC,s+1(yj) − OC,s(yj) so that ψ(s+1) restricted to OC,s+1(yj) is an
isomorphism to the g-orbit of ψ(s)(yj).

Case 2. ϕe,s(yes+1) ∈ Is.

Consider the current g-orbit O of ϕe,s(yes+1). If ψ(s) induces an embedding of
O into D1, then use elements from an initial segment of N− Is and define g on
those elements so that we extend O to an orbit which is isomorphic to D2. Put
∆es+1 markers on all the elements of this new D2-orbit. Now suppose that the
elements of O had Γr markers on them for some r, where es+1 < r ≤ s. Then
we remove all those Γr markers and take an initial segment of the elements of
N that have not been used up to this point and define g to create a new copy
of OC,s+1(yj). Then define ψ(s+1) on OC,s+1(yj) so that it is an isomorphism
which sends the yj to the least element of the cycle of the new g-orbit, and the
the map from any tree that feeds into the cycle of yj is the canonical map to
the corresponding tree in the cycle of ψ(s+1)(yj). Similarly, define ψ(s+1) on
OC(yes+1) so that it is an isomorphism which sends yes+1 to the least element
of the cycle of the new g-orbit which is isomorphic to D2, and the map from
any tree that feeds into the cycle of yj is the canonical map to the correspond-
ing tree in the cycle of ψ(s+1)(yes+1). In addition, create a g-orbit which is

isomorphic to OC,s+1(ys+1), and define ψ(s+1) on OC,s+1(ys+1) so that it is an
isomorphism which sends ys+1 to the least element of the cycle of the orbit
and the the map from any tree that feeds into the cycle of yj is the canonical
map to the corresponding tree in the cycle of ψ(s+1)(ys+1). Put Γs+1 markers
on the elements of this new g-orbit if ys+1 is not in the range of q. Then let
ψ(s+1) = ψ(s) on

∪
j∈{0,...,s}−{r}OC,s(yj). Finally, for all j ̸∈ ran(q) for j ≤ s,

23



take elements from an initial segment of elements that have not currently been
used in the construction and define g on those elements so that the g-orbit of
ψ(s)(yj) is isomorphic to OC,s+1(yj). Put Γj markers on the new elements in
the image ψ(s+1)(OC,s+1(yj)) and define ψ(s+1) on OC,s+1(yj)−OC,s(yj) so that
ψ(s+1 restricted to OC,s+1(yj) is an isomorphism to the g-orbit of ψ(s)(yj).

If ψ(s) does not induce an embedding of O into D1, then O is inconsistent
with having its pre-image under ψ(s) isomorphic to D1. In this case, put ∆es+1

markers on all the elements of O. Then use elements from an initial segment
of elements of N − Is and define g on those elements to create a g-orbit which
is isomorphic to OC,s+1(ys+1), and define ψ(s+1) on OC,s+1(ys+1) so that it is
an isomorphism which sends ys+1 to the least element of the cycle of the or-
bit, and the map from any tree that feeds into the cycle of yj is the canonical
map to the corresponding tree in the cycle of ψ(s+1)(ys+1). Put Γs+1 markers
on the elements of this new g-orbit if ys+1 is not in the range of q. Then let
ψ(s+1) = ψ(s) on

∪
j≤sOC,s(yj). Finally, for all j ̸∈ ran(q) for j ≤ s, use el-

ements from an initial segment of N − (Is ∪ ψ(s+1)(OC,s+1(ys+1))), and define
g on those elements so that the g-orbit of ψ(s)(yj) is isomorphic to OC,s+1(yj).
Put Γj markers on the new elements in the image ψ(s+1)(OC,s+1(yj)) and define
ψ(s+1) on OC,s+1(yj) − OC,s(yj) so that ψ(s+1) restricted to OC,s+1(yj) is an
isomorphism to the g-orbit of ψ(s)(yj).

This completes the construction. It is easy to see that each step is effective
and, hence, g is computable since we never change the value of g(x) for any x.

Next observe that if es+1 is defined, then there is a es+1 ∈ ran(q) and our
action ensures that ϕes+1(yes+1) has B-orbit which is not isomorphic to D1.
Thus ϕe can not be an isomorphism from C onto B. Moreover, we will never
remove the ∆es+1 markers that we placed at stage s + 1 which means that we
will never take an action to meet the requirement Pes+1 after stage s+ 1.

It is a straightforward induction to show that for each j ̸∈ ran(q), the
lims→∞ ψ(s)(x) = ψ(x) exists for x ∈ OC(yj) and that ψ restricted to (OC(yj), h)
is an isomorphism onto (OB(ϕ(yj)), g). That is, we can only be forced to have
ψ(s)(x) ̸= ψ(s+1)(x) for any x ∈ OC,s(yj) for an s ≥ j if we are taking an action
to meet a requirement Pe for e ≤ j. Since we can only take an action for Pe

once, it follows that there will be a t large enough so that OC,t(yj) = OC(yj) and
ψ(t)(x) = ψ(s)(x) for all s ≥ t and x ∈ OC(yj). By the construction, at each stage
s ≥ j, ψ(s) is an isomorphism from (OC,s(yj), h) to (ψ(s)(OC,s(yj)), g). Thus ψ
is an isomorphism from (OC(yj), h) onto ψ(OC(yj)), g). A similar argument
will show that for each j ̸∈ ran(q), the lims→∞ ψ(s)(x) = ψ(x) exists for x ∈
OC(yj) and that ψ restricted to (OC(yj), h) either maps it into a g-orbit which
is isomorphic to either D1 or D2. It then follows that B = (N, g) is isomorphic
to C.

Thus the only thing that we have to do to show that B is not computably
isomorphic to C is to show that we satisfy all the requirements Pe. Suppose for
a contradiction, that ϕe is an isomorphism from B into C. Then there will be a
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stage t large enough so that:

(i) we never take any action for a requirement Pi with i < e after stage t,

(ii) OC,t(yj) = OC(yj) for all j ≤ e such that j ̸∈ ran(q),

(iii) for all j < e, ψ(s)(x) = ψ(t)(x) for all x ∈ OC(yj), and

(iv) ϕe,t(yr) is defined for all r ≤ 1 +
∑

j≤e card(OC(yj)).

Since we are assuming that ϕe is an isomorphism from C to B, there must be yj
in the range of q such that ϕe(yj) maps to an element which does not have a Γr

marker on it for any r < e. But then yj could be used to satisfy the requirement
Pe at stage t+1. Thus either et+1 = e in which case we take an action at stage
s + 1 to ensure that OB(ϕe(yj)) is not isomorphic to D1 or there is an s ≤ t
such that es = e. In either case, our construction ensures that OB(ϕe(yj)) is
isomorphic to D1. Thus there can be no such e and, hence, B is not computably
isomorphic to C.

Another simple condition which ensures that a computable locally finite
(2,0):1 structure A = (A, f) is not computably categorical is that there is an
computable increasing chain of orbits which are k-cycles. That is, we say that
A = (A, f) has a highly computable ascending chain of k-cycles if there
is a computable sequence of elements a00, a

1
0, . . . and a computable function z

such that for each i ≥ 0:

1. OA(a
i
0) is a k-cycle Di = ⟨(ai0, . . . , aik−1), (T

i
0, . . . , T

i
k−1)⟩,

2. z(i) is the canonical index of OA(a
i
0), and

3. Di is embeddable into Di+1.

Then we have the following theorem.

Theorem 4.2. Suppose that A = (A, f) is a computable (2,0):1 structure and
A has a highly computable ascending chain of k-cycles for some k. Then there
is a computable (2,0):1 structure B = (N, g) such that B is isomorphic but not
computably isomorphic to A.

Proof. Our proof is a slight modification of the proof of Theorem 4.1. That is,
if A ̸= N, then let A = {a0 < a1 < · · · }. Then let θ(ai) = i and define g on N
so that θ is an isomorphism from A onto C = (N, g). Then, as in the proof of
Theorem 4.1, we let y0 < y1 < · · · be the set of the least elements that appear in
the cycles of C. Because A has a highly computable ascending chain of k-cycles,
there is an increasing computable function q such that yq(0) < yq(1) < · · · and

Oyq(i)
is a k-cycle Di = ⟨(yq(i) = y

q(i)
0 , . . . y

q(i)
k−1), (T

q(i)
0 , . . . , T

q(i)
k−1)⟩ such that

Di is embeddable in Di+1 and we can uniformly compute a canonical index of
OC(yq(i)).

For any j ̸∈ ran(q), we let OC,s(yj) denote the set of x ≤ s such that either
x is in the cycle C(yj) = (yj = yj,0, . . . , yj,kj−1) of h determined by yj or
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hk(x) ∈ {yj,0, . . . , yj,kj−1}. For any j ∈ ran(q), we let OC,s(yj) denote OC(yj).
Note that, by the construction, we can compute OC(yj) if j ∈ ran(q). In either
case, we shall call OC,s(yj) the partial orbit of yj at stage s.

We will use a finite injury priority argument to define a ∆0
2 function ψ :

N → N which is the limit of a computable sequence of functions ψ(s), and a
computable function g on N in stages so that at any stage s, if j ≤ s, then ψ(s)

maps the partial orbit of yj at stage s, OC,s(yj), onto a partial orbit of g which
is isomorphic to the orbit OC,s(yj). At each stage s, we will place Γj markers
on on the partial g-orbits which are isomorphic to the partial orbits OC,s(yj)
under ϕ(s).

We will have two sets of requirements that we must meet.

Ne: limsψ
(s)(x) exists for all x ∈ OC(ye) and ψ maps OC(ye) onto a B-orbit

which is isomorphic to OC(ye).

Pe: Either

1. ϕe is not 1:1 on its domain,

2. there exists i such that ϕe is not defined on OC(yq(i)), or

3. there exists i such that ϕe is defined on OC(yq(i)), but OC(yq(i)) is not
isomorphic to OB(ϕe(yq(i))).

Our basic strategy for meeting a requirement Pe is to simply compute
ϕe,s(yq(0)), . . . , ϕe,s(yq(s)) until we find an i such that the partial orbit of ϕe,s(yq(s))
under g as defined at stage s is not in the union of the partial orbits that are
used to meet the requirements Na for a ≤ e or Pb for b < e. That is, none of
the elements of the partial orbit of ϕe,s(yq(s)) under g as defined at stage s have
either Γj markers on them for j ≤ e or ∆j markers on them for j < e. At this
point, if the partial orbit of ϕe,s(yq(s)) is consistent with being isomorphic to
Di, then we extend g by using new elements of N so that the g-orbit ϕe,s(yq(s))
is isomorphic to Dj for some j > q(s). We then put ∆e markers on the elements
of this orbit. If the g-orbit ϕe,s(yq(s)) was being used to ensure that ψ is an
isomorphism to some orbit yj where j > e, then we simply use new elements to
create a partial g-orbit which is isomorphic to the partial orbit OC,s(yj).

Stage 0. Find the cycle C(y0) = (y0 = y00 , y
0
1 , . . . , y

0
k0−1). Then define g

so that g(0) = 1, g(1) = 2, . . . , g(k0 − 2) = k0 − 1, g(k0 − 1) = 0 and define ϕ(0)

so that ϕ(0)(yj,0) = j for 0 ≤ j ≤ k0 − 1. Put Γ0 markers on 0, . . . , k0 − 1. Let
ℓ0 = 0.

Stage s+1. Assume we have defined ψ(s) on the union of the partial orbits
at stage s of all yj for j ≤ ℓs where ℓs ≥ s and g is defined on a finite subset
Is of N so that ψ(s) is 1:1 function onto Is and for all j ≤ ℓs, (OC,s(yj), h) is
isomorphic to (ψ(s)(OC,s(yj)), g).

First look for an e ≤ s+1 such that ϕe,s is 1:1 on its domain, there currently
are no elements with ∆e markers, and there is a j ≤ s such that j ∈ ran(q)

26



and either ϕe,s(yj) maps to an element outside of Is or to an element of Is
which does not have a Γi marker on it or a ∆i marker on it for some i < j.
If no such e exists, then set ℓs+1 = 1 + ℓs and use elements from an initial
segment of elements of N − Is and define g on those elements to create a g-
orbit which is isomorphic to OC,s+1(yℓs+1). Define ψ(s+1) on OC,s+1(yℓs+1) so
that it is an isomorphism which sends yℓs+1 to the least element of the cycle
of that orbit, and the map from any trees that feed into the cycle of yℓs+1 is
the canonical map to the corresponding tree in the cycle of ψ(s+1)(yℓs+1). Put
Γℓs+1 markers on the elements of this new g-orbit. Then let ψ(s+1) = ψ(s) on∪

j≤sOC,s(yj). Finally, for all j ≤ ℓs, use elements from an initial segment of

N−(Is∪ψ(s+1)(OC,s+1(ys+1))) and define g on those elements so that the g-orbit
of ψ(s)(yj) is isomorphic to OC,s+1(yj). Put Γj markers on these new elements
in the image ψ(s+1)(OC,s+1(yj)) and define ψ(s+1) on OC,s+1(yj) − OC,s(yj) so
that ψ(s+1) restricted to OC,s+1(yj) is an isomorphism to the g-orbit of ψ(s)(yj).

If such an e exists, then let es+1 be the least such e. Then we have two cases.

Case 1. ϕe,s(yes+1) ̸∈ Is.
In this case, we use an initial segment of elements in N − Is − {ϕe,s(yes+1)}
and define g on those elements and ϕe,s(yes+1) to create an g-orbit which is
isomorphic to Dq(ℓs+1) where ϕe,s(yes+1

) plays the role of the least element in
the cycle of Dq(ℓs+1). Put ∆ℓs+1 markers on this orbit. Let ℓs+1 = 1+q(ℓs+1).
Similarly, for each j where ℓs < j < ℓs+1, we use new elements from an initial
segment of elements which have not been used up to this point and define g
on those elements to create g-orbits which are isomorphic to OC,s+1(yj) and
put Γj markers on these new elements. Define ψ(s+1) on OC(yℓs+1) so that it
is an isomorphism which sends yℓs+1 to ϕe,s(yes+1), and the map from any tree
that feeds into the cycle of yj is the canonical map to the corresponding tree in
the cycle of ψ(s+1)(yes+1). Put ∆es+1 markers on the elements of the g-orbit of

ψ(s+1)(yes+1). Similarly, for ℓs < j < ℓs+1, define ϕ
(s+1)(yj) to be the least ele-

ment in the cycle of the new g-orbit we created to be isomorphic to OC,s+1(yj),
and the map from any tree that feeds into the cycle of yj is the canonical map
to the corresponding tree in the cycle of the g-orbit that we created to be iso-
morphic to OC,s+1(yj). Then let ψ(s+1) = ψ(s) on

∪
j≤sOC,s(yj). Finally, for

all j ≤ ℓs, take elements from an initial segment of N which have not been used
up to this point and define g on those elements so that the g-orbit of ψ(s)(yj)
is isomorphic to OC,s+1(yj). Put Γj markers on the new elements in the image
ψ(s+1)(OC,s+1(yj)) and define ψ(s+1) on OC,s+1(yj) − OC,s(yj) so that ψ(s+1)

restricted to OC,s+1(yj) is an isomorphism to the g-orbit of ψ(s)(yj).

Case 2. ϕe,s(yes+1) ∈ Is.

Consider the current g-orbit O of ϕe,s(yes+1). If ψ(s) induces an embedding
of O into Des+1 , then use an initial segment of N − Is to add new elements
and define g to extend O to an orbit which is isomorphic to Dq(ℓs+1). Put

∆es+1 markers on all elements of this new Dq(ℓs+1)-orbit. Define ψ(s+1) on
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OC(yq(ℓs+1)) so that it is an isomorphism from (OC(yq(ℓs+1)), h) onto this new
g-orbit of ϕe,s(yes+1). Now if the elements of O had Γr markers on them for some
r where es+1 < r ≤ ℓs, then remove all those Γr markers. Then use these now
unmarked elements for initial segments of those elements that have currently
not been used in the construction, and define g on those elements to create
a new copy of OC,s+1(yr). Then define ψ(s+1) on OC,s+1(yr) so that it is an
isomorphism which sends yr to the least element of the cycle of the new g-orbit,
and the map from any tree that feeds into the cycle of yj is the canonical map
to the corresponding tree in the cycle of ψ(s+1)(yr). Set ℓs+1 = q(ℓs + 1). Also
use an initial segment of those elements that have currently not been used in
the construction up to this point and define g on those elements to create a new
copy of OC,s+1(yi) for all i such that ℓs < i < ℓs+1. Define ψ(s+1) on OC,s+1(yi)
so that it is an isomorphism which sends yi to the least element of the cycle of
the new g-orbit isomorphic to OC,s+1(yi), such that the map from any tree that
feeds into the cycle of yi is the canonical map to the corresponding tree in the
cycle of ψ(s+1)(yi). Also put Γi markers on the new g-orbit of ψ(s+1)(yi). Then
let ψ(s+1) = ψ(s) on

∪
j∈{0,...,s}−{r}OC,s(yj). Finally, for all j ≤ s, j ̸∈ ran(q),

take elements from an initial segment of elements that have not currently been
used in the construction and define g on those elements so that the g-orbit of
ψ(s)(yj) is isomorphic to OC,s+1(yj). Put Γj markers on the new elements in
the image ψ(s+1)(OC,s+1(yj)) and define ψ(s+1) on OC,s+1(yj)−OC,s(yj) so that
ψ(s+1) restricted to OC,s+1(yj) is an isomorphism to the g-orbit of ψ(s)(yj).

If ψ(s) does not induce an embedding of O into Des+1 , then O is inconsistent

with having its pre-image under ψ(s) isomorphic to Des+1 . In this case, put
∆es+1 markers on all the elements of O. Then set ℓs+1 = ℓs + 1. Next use
elements from an initial segment of elements of N − Is and define g on those
elements to create a g-orbit which is isomorphic to OC,s+1(yℓs+1) and define
ψ(s+1) on OC,s+1(yℓs+1) so that it is an isomorphism which sends yℓs+1 to the
least element of the cycle of the orbit. and the map from any tree that feeds
into the cycle of yj is the canonical map to the corresponding tree in the cycle
of ψ(s+1)(ys+1). Put Γℓs+1 markers on the elements of this new g-orbit. Then
let ψ(s+1) = ψ(s) on

∪
j≤sOC,s(yj). Finally, for all j ≤ s, j ̸∈ ran(q), use ele-

ments from an initial segment of N − (Is ∪ ψ(s+1)(OC,s+1(ys+1))) and define g
on those elements so that the g-orbit of ψ(s)(yj) is isomorphic to OC,s+1(yj).
Put Γj markers on the new elements in image of ψ(s+1)(OC,s+1(yj)) and define
ψ(s+1) on OC,s+1(yj) − OC,s(yj) so that ψ(s+1) restricted to OC,s+1(yj) is an
isomorphism to the g-orbit of ψ(s)(yj).

This completes the construction. It is easy to see that each step is effective
and, hence, g is computable since we never change the value of g(x) for any x.

Next observe that if es+1 is defined, then es+1 ∈ ran(q) and our action
ensures that ϕes+1(yes+1) has a B-orbit which is not isomorphic to Des+1 . Thus
ϕe can not be an isomorphism from C onto B. Moreover, we will never remove
the ∆es+1 markers that we placed at stage s+1, which means that we will never
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take an action to meet the requirement Pes+1
after stage s+ 1.

It is a straightforward induction to show that for each yj such that j ≥ 0,
the lims→∞ ψ(s)(x) = ψ(x) exists for x ∈ OC(yj) and that ψ restricted to
(OC(yj), h) is an isomorphism on OB(ϕ(yj)). That is, we can only be forced to
have ψ(s)(x) ̸= ψ(s+1)(x) for any x ∈ OC,s(yj) for an s ≥ j if we are taking an
action to meet a requirement Pe for e ≤ j. Since we can only take an action for
Pe once, it follows that there will be a t large enough so that OC,t(yj) = OC(yj)
and ψ(t)(x) = ψ(s)(x) for all s ≥ t and x ∈ OC(yj). By the construction, at each
stage s ≥ j, ψ(s) is an isomorphism from (OC,s(yj), h) to (ψ(s)(OC,s(yj)), g).
Thus ψ is an isomorphism form (OC(yj), h) onto ψ((OC(yj)), g).

Thus the only thing that we need to do to show that B is not computably
isomorphic to C is to show that we satisfy all the requirements Pe. Suppose for
a contradiction, that ϕe is an isomorphism from B into C. Then there will be
a stage t large enough so that: (i) we never take any action for a requirement
Pi with i < e after stage t, (ii) OC,t(yj) = OC(yj) for all j < e, (iii) for all
j < e, ψ(s)(x) = ψ(t)(x) for all x ∈ OC(yj), and (iv) ϕe,t(yr) is defined for all
r ≤ 1 +

∑
j≤e card(OC(yj)). Since we are assuming that ϕe is an isomorphism

from C to B, there must be yj in the range of q such that ϕe(yj) maps to an
element which does not have a Γr marker on it for any r < e. But then yj could
be used to satisfy the requirement Pe at stage t + 1. Thus either et+1 = e, in
which case we take an action at stage s + 1 to ensure that OB(ϕe(yj)) is not
isomorphic to OC(yj), or there is an s ≤ t such that es = e. In either case, our
construction ensures that OB(ϕe(yj)) is isomorphic to OC(yj). Thus there can
be no such e and, hence, B is not computably isomorphic to C.

Next we give two simple examples where, even though we are given quite a bit
of information about the possible isomorphism types of k-cycles in a computable
(2,0):1 structure A, there still exists a computable (2,0):1 structure which is
isomorphic to A but is not computably isomorphic to A.

For the first example, we construct locally finite computable (2,0):1 struc-
tures A = (N, f) and B = (N, g) such that: (i) Fin(A) = Fin(B) = N, (ii) A
and B are isomorphic but not computably isomorphic, and (iii) for any k ≥ 1,
there are only two types of k-cycles ⟨(c0, . . . , ck−1), (T0, . . . , Tk−1)⟩, one, which
we shall call Ek, where all the Ti are one-element binary trees and one, which
we shall call Fk, where all the trees Ti are three-element binary trees. Thus, for
example, E4 and F4 are pictured in Figure 10.

In fact, we can construct A = (N, f) and B = (N, g) so that for each k ≥ 1,
A and B have exactly one k-cycle isomorphic to Ek, and either 1 or 2 k-cycles
which are isomorphic to Fk such that A and B are not computably isomorphic.

The construction of A and B is quite easy. That is, on the even num-
bers E, define f and g so that we have computable (2,0):1 structures which
have exactly one copy of Ek = ⟨(ck0 , . . . , ckk−1), (T

k
0 , . . . , T

k
k−1)⟩ and one copy

of Fk = ⟨(dk0 , . . . , dkk−1), (S
k
0 , . . . , S

k
k−1)⟩ for each k ≥ 1. Thus each T j

i is a

one-element tree and each Sj
i is a three element binary tree. Then for each k,

attempt to compute ϕk(c
k
0). We then have two cases.
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Figure 10: The cycle types E4 and F4.

Case 1. ϕk(c
k
0) ↓ and ϕk(c

k
0) ∈ {ck0 , . . . , ckk−1}.

In this case, we will use new elements from the odd numbers and define f on
these odd numbers to extend ⟨(ck0 , . . . , ckk−1), (T

k
0 , . . . , T

k
k−1)⟩ to a cycle of type

Fk. We shall then use new odd numbers and define f on these numbers to create
a new cycle of type Ek in A. We will also use new odd numbers and define g on
those numbers to create a new cycle of type Fk. This will ensure that ϕe cannot
be an isomorphism from A onto B since ϕk will map an element of a k-cycle of
type Fk into a k-cycle of type Ek. Thus in this case, A and B will have one
k-cycle of type Ek and two k-cycles of type Fk.

Case 2. ϕk(c
k
0) ↑, or ϕk(ck0) ↓ and ϕk(c

k
0) ̸∈ {ck0 , . . . , ckk−1}.

In this case, we do nothing to the k-cycles in A or B. Then we know that ϕk
cannot be an isomorphism from A onto B. In this case, both A and B will have
one k-cycle of type Ek and one k-cycle of type Fk.

Note that there are infinitely many k such that ϕk is the identity so that
we will be in Case 1 infinitely often and, hence, f and g will be defined on all
of N. It is easy to see that A = (N, f) and B = (N, g) are computable (2,0):1
structures such that A and B are isomorphic but not computably isomorphic.

Next we construct similar examples of locally finite (2,0):1 structures A =
(N, f) and B = (N, g) such that: (i) Fin(A) = Fin(B) = N, (ii) A and B are
isomorphic but not computably isomorphic, and (iii) for any k ≥ 1, there are
exactly two types of k-cycles where either the two cycle types are Ek and Fk

or the cycle types are Fk and Gk = ⟨(bk0 , . . . , bkk−1), (R
k
0 , . . . , R

k
k−1)⟩, where each

Rk
i is a complete binary tree of height 2. For example, G4 is pictured in Figure

11.
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Figure 11: The cycle type G4.

The construction of A and B is very similar. That is, on the even num-
bers E, define f and g so that we have computable (2,0):1 structures which
have exactly one copy of Ek = ⟨(ck0 , . . . , ckk−1), (T

k
0 , . . . , T

k
k−1)⟩ and one copy

of Fk = ⟨(dk0 , . . . , dkk−1), (S
k
0 , . . . , S

k
k−1)⟩ for each k ≥ 1. Thus each T j

i is a

one-element tree and each Sj
i is al three-element binary tree. Then for each k,

attempt to compute ϕk(c
k
0). We then have two cases.

Case 1. ϕk(c
k
0) ↓ and ϕk(c

k
0) ∈ {ck0 , . . . , ckk−1}.

In this case, we will use new elements from the odd numbers and define f on
these odd numbers to extend ⟨(ck0 , . . . , ckk−1), (T

k
0 , . . . , T

k
k−1)⟩ to a cycle of type

Gk. We will also use new odd numbers and define g on those numbers to extend
the cycle type of Ek to Fk and the cycle type of Fk to Gk. This will ensure that
ϕk cannot be an isomorphism from A onto B since ϕk will map an element of
a k-cycle of type Gk into a k-cycle of type Fk. Thus in this case, A and B will
have one k-cycle of type Fk and one k-cycle of type Gk.

Case 2. ϕk(c
k
0) ↑, or ϕk(ck0) ↓ and ϕk(c

k
0) ̸∈ {ck0 , . . . , ckk−1}.

In this case, we do nothing to the k-cycles in A or B. Then we know that ϕk
cannot be an isomorphism from A onto B. In this case, both A and B will have
one k-cycle of type Ek and one k-cycle of type Fk.

Note that there are infinitely many k such that ϕk is the identity so that
we will be in Case 1 infinitely often and, hence, f and g will be defined on all
of N. It is easy to see that A = (N, f) and B = (N, g) are computable (2,0):1
structures such that A and B are isomorphic but not computably isomorphic.

Next, we will briefly consider ∆0
2- and ∆0

3-categoricity of (2, 0) : 1 structures.
We have the following corollary to the proof of Theorem 3.1.

Theorem 4.3. Any computable locally finite (2,0):1 structure with only finitely
many ω-chains is ∆0

2-categorical.
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Proof. Observe that ran(f) is a c.e. set. Thus the isomorphism constructed as
in the proof of Theorem 3.1 will be computable in an 0′ oracle and is therefore
∆0

2.

Next we consider structures which are not ∆0
2-categorical.

Theorem 4.4. There is a computable locally finite (2,0):1 structure A, con-
sisting of infinitely many ω-chains with attached finite trees, which is not ∆0

2-
categorical.

Proof. Let T0 be the one-element binary tree and T1 be the three-element binary
tree. We let Ak = (N, f) be a computable (2,0):1 structure that consists a single
ω chain that starts at a0, has ai = f i(a0) for i ≥ 1 and elements {b1, b2, . . .}
disjoint from {a0, a1, a2, . . .} such that f(bi) = ai where TreeAk

(bi) is isomor-
phic to T1 if 1 ≤ i ≤ k and is isomorphic to T0 if i > k. For example, the graphs
of A0 and A3 are pictured in rows 1 and 2, respectively, in Figure 12. We let
A∞ = (N, f) be a computable (2,0):1 structure that consists a single ω-chain
that starts at a0, has ai = f i(a0) for i ≥ 1 and elements {b1, b2, . . .} disjoint
from {a0, a1, a2, . . .} such that f(bi) = ai where TreeAk

(bi) is isomorphic to T1
for all i ≥ 1. The graph of A∞ is pictured at the bottom of Figure 12.
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Figure 12: The ω-chains A0, A3 and A∞.

The desired computable structure A will consist of infinitely many copies
of An, for each n, and infinitely many copies of A∞. Clearly,+ there is a
computable copy A = (E, f) where E is the set of even numbers such that for
each n, the orbit of 4⟨n, k + 1⟩ is of the form Ak if k ≥ 0 and is of the form
A∞ if k = 0. In this case, the set of n such that OA(4n) is isomorphic to A∞
is computable.

Now we can build a computable (2,0):1 structure B = (N, g) which is isomor-
phic to A such that the representatives of the orbits of B are {4⟨n, k⟩ : n, k ≥ 0}
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but for which the set of

{4⟨n, k⟩ : OB(4⟨n, k⟩) is isomorphic to A∞}

is a Π0
2-complete set, as follows. Let Inf = {e : We is infinite} be the usual

Π0
2-complete set. Let g = f on the even numbers E. If ⟨n, k⟩ is not of the form

⟨e, 1⟩, then OA(4⟨n, k⟩) = OB(4⟨n, k⟩). We then use odd numbers to define the
orbits OB(4⟨e, 1⟩). Originally, the orbit OA(4⟨e, 1⟩) looks like A0 so assume
that A is defined such that the chain starts at ae0 = 4⟨e, 1⟩ and f i(ae0) = aei and
bei is the element in the orbit different from aei−1 such that f(bei ) = aei . Then
whenever a new element appears in We at stage s, extend tree(bei ) from T0 to
T1, if necessary, for each i < s. If We is infinite, then it is clear that OB(4⟨e, 1⟩)
will be isomorphic to A∞. If We is empty, then OB(4⟨e, 1⟩) will be isomorphic
to A0. Finally, ifWe is finite, then OB(4⟨e, 1⟩) will be isomorphic to As for some
s ≥ 1. Since there are infinitely many e such that We is empty, there will be
infinitely many e such that OB(4⟨e, 1⟩) is isomorphic to A0. Moreover, e ∈ Inf
if and only if OB(4⟨e, 1⟩) is isomorphic to A∞. Hence, the set of 4⟨n, k⟩ such
that OB(4⟨n, k⟩) is isomorphic to A∞ is a Π0

2-complete set.
We claim that B cannot be ∆0

2-isomorphic to A. That is, if ϕ is a ∆0
2

isomorphism from A onto B, then we can decide whether OB(4⟨n, k⟩) is iso-
morphic to A∞ by finding x = ϕ−1(4⟨n, k⟩) and then computing f until we
find that x ∈ OA(4⟨r, s⟩). It would then follow that the set of 4⟨n, k⟩ such
that OB(4⟨n, k⟩) is isomorphic to A∞ is a ∆0

2 set. Thus the two computable
structures A and B are isomorphic, but not ∆0

2-isomorphic.

For our final result, we first need to consider the isomorphism problem for
orbits.

Proposition 4.5. Let A be a computable locally finite (2,0):1 structure. Then

1. {(a, b) : O(a) is isomorphic to O(b)} is Σ0
3, and

2. {(a, b) : O(a) is isomorphic to O(b) where the isomorphism maps a to b}
is Π0

2.

Proof. First note that O(a) is finite if and only if fm+k(a) = fm(a) for some a,
so that this is a Σ0

1 relation. Given that A is locally finite, we can then use 0′ as
an oracle to test whether O(a) is finite and, if it is finite, then we can again use
0′ as an oracle to compute O(a). Then given two such orbits O(a) and O(b),
we can simply inspect them to see whether they are isomorphic.

Given a and b such that O(a) and O(b) are infinite, we can use an oracle
for 0′ to compute the sequences tree(f i(a)) and tree(f i(b)). Then there is an
isomorphism from O(a) to O(b) mapping a to b if and only if tree(f i(a)) and
tree(f i(b)) are isomorphic for each i. So this is a Π0

2 question. Then O(a) is
isomorphic to O(b) if and only if there exist x ∈ O(a) and y ∈ O(b) such that
there is an isomorphism mapping x to y.

Theorem 4.6. Every computable locally finite (2,0):1 structure is ∆0
3-categorical.
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Proof. Let A and B be two isomorphic computable locally finite (2,0):1 struc-
tures. We can use 0′′ as an oracle to compute an isomorphism H from A onto
B as follows. First enumerate a sequence of representatives of the orbits of
A, starting with a0 = 0 and letting an+1 be the least element of A not in
the orbit of ai for any i ≤ n, and we can similarly compute b0, b1, . . . so that
B =

∪
i O(bi). Since we know that B contains an orbit isomorphic to O(a0), we

can compute using 0′′ an element b = H(a0) such that there is an isomorphism
of O(a0) to O(b) mapping a0 to b. Now let A0 = O(a0) and let B0 = O(b).
The construction of H continues by a back-and-forth argument. At stage 2s,
we will have a partial isomorphism Hs from a subset A2s of A onto a subset
B2s of B, so that for all i < s, ai ∈ A2s and bi ∈ B2s. Now at stage 2s + 1,
we check to see whether a2s+1 ∈ A2s and if not, we find the least b not in B2s

such that there is an isomorphism h mapping O(a2s+1) to O(b). Then we let
A2s+1 = A2s ∪ O(a2s+1) and let B2s+1 = B2s ∪ O(b) and extend the mapping
H2s to H2s+1 by adding this isomorphism h to H2s. Similarly, at stage 2s+ 1,
we check to see whether b2s+1 ∈ B2s and if not, we find the least a not in A2s

such that there is an isomorphism h mapping O(b2s+1) to O(a) and extend the
isomorphism as above.

For any k ≥ 3, we define a k : 1 structure A = (A, f) to consist of a function
f where for all x ∈ A, f−1(x) is a size k and (k, 0) : 1 structure A = (A, f) to
consist of function f where for all x ∈ A, f−1(x) is either of size k or empty.
It should be clear that we can prove analogues of all our results for k : 1 and
(k, 0) : 1 structures.
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