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Abstract

We study computability theoretic properties of computable injection
structures and the complexity of isomorphisms between these structures.
We prove that a computable injection structure is computably categorical
if and only if it has finitely many infinite orbits. We also prove that a
computable injection structure is ∆0

2 categorical if and only if it has finitely
many orbits of type ω or finitely many orbits of type Z. Furthermore,
every computably categorical injection structure is relatively computably
categorical, and every ∆0

2 categorical injection structure is relatively ∆0
2

categorical. We investigate analogues of these results for Σ0
1, Π0

1, and
n-c.e. injection structures.

We study the complexity of the set of elements with orbits of a given
type in computable injection structures. For example, we show that for
every c.e. Turing degree b, there is a computable injection structure A in
which the set of all elements with finite orbits has degree b and, for every
Σ0

2 Turing degree c, there is a computable injection structure B in which
the set of elements with orbits of type ω has degree c. We also study
various index set results for infinite computable injection structures. For
example, we show that the index set of infinite computably categorical
injection structures is a Σ0

3 complete set and that the index set of infinite
∆0

2 categorical injection structure is a Σ0
4 complete set.

We also explore the connection between the complexity of the char-
acter and the first-order theory of computable injection structures. We
show that for an injection structure with a computable character, there
is a decidable structure isomorphic to it. However, there are computably
categorical injection structures with undecidable theories.
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1 Introduction

Computable model theory deals with the algorithmic properties of effective
mathematical structures and the relationships among such structures. Perhaps
the most basic kind of relationship between two structures is that of isomor-
phism. Thus, is natural to study the isomorphism problem in the context of
computable mathematics by investigating the following question.

Given two effective structures that are isomorphic, what is the least complex
isomorphism between them?

Let N = {0, 1, 2, . . .} denote the natural numbers and Z = {0,±1,±2, . . .}
denote the integers. We let ω denote the order type of N under the usual order-
ing, and Z denote the order type of Z under the usual ordering. In this paper, we
restrict our attention to countable structures for computable languages. Hence,
if a structure is infinite, we can assume that its universe is N. We recall some
basic definitions. If A is a structure with universe A for a language L, then LA

is the language obtained by expanding L by constants for all elements of A. The
atomic diagram of A is the set of all atomic sentences and negations of atomic
sentences from LA which are true in A. The elementary diagram of A is the set
of all first-order sentences of LA which are true in A. A structure is computable
if its atomic diagram is computable and a structure is decidable if its elementary
diagram is computable. We call two structures computably isomorphic if there
is a computable function that is an isomorphism between them. A computable
structure A is relatively computably isomorphic to a (possibly noncomputable)
structure B if there is an isomorphism between them which is computable in the
atomic diagram of B. A computable structure A is called computably categorical
if every computable structure that is isomorphic to A is computably isomorphic
to A. A computable structure A is called relatively computably categorical if
A is relatively computably isomorphic to every structure that is isomorphic to
A. Similar definitions arise for other naturally definable classes of structures
and their isomorphisms. For example, for any n ∈ N, a structure is ∆0

n if its
atomic diagram is ∆0

n, two ∆0
n structures are ∆0

n isomorphic if there is a ∆0
n

isomorphism between them, and a computable structure A is ∆0
n categorical if

every computable structure isomorphic to A is ∆0
n isomorphic to A.

For a Turing degree d, a computable structure A is called d-computably
categorical if for every computable structure B isomorphic to A, there exists a
d-computable isomorphism from B onto A. Hence, for example, 0-computably
categorical structures are the same as computably categorical ones. In [10],
Miller introduced and first studied d-computable categoricity for computable
algebraic fields. He defined the degree of categoricity of a computable structure
A, if it exists, to be the least Turing degree d for which A is d-computably
categorical. Since there are only countably many computable structures, most
Turing degrees are not degrees of categoricity. In [8], Fokina, Kalimullin, and
Miller investigated which Turing degrees can be the degrees of categoricity.
Their investigation was further extended by Csima, Franklin, and Shore in [6].

Among the simplest nontrivial structures are equivalence structures, that
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is, structures of the form A = (A,E), where E is an equivalence relation on
A. The complexity of isomorphisms between computable equivalence structures
was recently studied by Calvert, Cenzer, Harizanov, and Morozov in [2] where
they characterized computably categorical equivalence structures and also rela-
tively ∆0

2 categorical equivalence structures. Cenzer, LaForte, and Remmel [4]
extended this work by investigating equivalence structures in the Ershov hier-
archy. More recently, Cenzer, Harizanov, and Remmel [3] studied Σ0

1 and Π0
1

equivalence structures.
For any equivalence structure A, we let Fin(A) denote the set of elements

of A that belong to finite equivalence classes. For equivalence structures, it is
natural to consider the different sizes of the equivalence classes of the elements
in Fin(A) since such sizes code information into the equivalence relation. The
character of an equivalence structure A is a subset of (N − {0}) × (N − {0})
defined by:

χ(A) = {(k, n) : n, k > 0 and A has at least n equivalence classes of size k}.

This set provides a kind of skeleton for Fin(A). Any set K ⊆ (N − {0}) ×
(N − {0}) such that for all n > 0 and k, (k, n + 1) ∈ K implies (k, n) ∈ K,
is simply called a character. We say that a character K is bounded if there
is some finite k0 such that for all (k, n) ∈ K, we have k < k0. Khisamiev
[9] introduced the concepts of an s-function and an s1-function in his work on
Abelian p-groups with computable isomorphic copies. In their book [1], Ash and
Knight investigated equivalence structures in the context of Khisamiev’s results.
For background on computable model theory and categoricity, see Ershov and
Goncharov [7].

Definition 1.1. Let f : N2→N. The function f is an s-function if
1. for every i, s∈N, f(i, s) ≤ f(i, s+ 1) and
2. for every i∈N, the limit mi = lim

s→∞
f(i, s) exists.

We say that f is an s1-function if, in addition,
3. for every i ∈ N, mi < mi+1.

Calvert, Cenzer, Harizanov, and Morozov [2] gave conditions under which a
given characterK can be the character of a computable equivalence structure. In
particular, they observed that if K is a bounded character and α ≤ ω, then there
is a computable equivalence structure with character K and exactly α infinite
equivalence classes. To prove the existence of computable equivalence structures
for unbounded characters K, they needed additional information given by s-
functions and s1-functions. They showed that if K is a Σ0

2 character, r ∈ N,
and either
(a) there is an s-function f such that

(k, n) ∈ K ⇔ card({i : k = lim
s→∞

f(i, s)}) ≥ n, or

(b) there is an s1-function f such that for every i ∈ N, ( lim
s→∞

f(i, s), 1) ∈ K,

then there is a computable equivalence structure with character K and exactly
r infinite equivalence classes.
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In this paper, we study injection structures. Here, an injection is, as usual,
a one-to-one function, and an injection structure A = (A, f) consists of a set A
and an injection f : A→ A. The structure A is a permutation structure if f is
a permutation of A. Given a ∈ A, the orbit Of (a) of a under f is

Of (a) = {b ∈ A : (∃n ∈ N)[fn(a) = b ∨ fn(b) = a]}.

Clearly, the isomorphism type of a permutation structure A is determined by
the number of orbits of size k for k = 1, 2, . . . , ω. By analogy with characters of
equivalence structures, we define the character χ(A) of an injection structure
A = (A, f) as

χ(A) = {(k, n) ∈ (N− {0})× (N− {0}) : A has at least n orbits of size k}.

We let Ran(f) denote the range of f .
An injection structure (A, f) may have two types of infinite orbits: Z-orbits,

which are isomorphic to (Z, S) and in which every element is in Ran(f), and
ω-orbits, which are isomorphic to (ω, S) and have the form Of (a) = {fn(a) :
n ∈ N} for some a /∈ Ran(f). Thus, injection structures are characterized by
the number of orbits of size k for each finite k and by the number of orbits of
types Z and ω. We will examine the complexity of the set of elements with
orbits of a given type in an injection structure A = (A, f). In particular, we
will study the complexity of Fin(A) = {a : Of (a) is finite}. It is clear from the
definitions above that any computable injection structure (A, f) will induce a
Σ0

1 equivalence structure (A,E) in which the equivalence classes are simply the
orbits of (A, f).

The outline of this paper is as follows. In Section 2, we investigate al-
gorithmic properties of computable injection structures and their characters,
characterize computably categorical injection structures, and show that all com-
putably categorical injection structures are relatively computably categorical.
More specifically, we prove that a computable injection structure A is com-
putably categorical if and only if it has finitely many infinite orbits. In Section
3, we characterize ∆0

2 categorical injection structures as those with finitely many
orbits of type ω or with finitely many orbits of type Z. We show that they coin-
cide with the relatively ∆0

2 categorical structures. Finally, we prove that every
computable injection structure is relatively ∆0

3 categorical.
In Section 4, we consider the spectrum question, which is to determine the

possible sets (or degrees of sets) that can be the set Fin(A) for some computable
injection structure A of a given isomorphism type. For example, we show that
for any c.e. degree b, there is a computable injection structure A such that
Fin(A) has degree b. In Section 5, we study the complexity of the theory
Th(A) of a computable injection structure A, as well as the complexity of its
elementary diagram FTh(A). We prove that the character χ(A) and the theory
Th(A) have the same Turing degree. We also show that there is a computably
categorical injection structure the theory of which is not decidable. In Section
6, we study index sets for infinite computable injection structures. That is, let
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φe denote the eth partial computable function and let Ae = (N, φe). For any
property P of injection structures, we let

Inj(P) = {e : Ae has property P}.

Then let Pcc be the property of being a computable categorial injection struc-
ture and P∆0

2c
be the property of being a computable ∆0

2 categorial injection

structure. We show that Inj(Pcc) is Σ0
3 complete and Inj(P∆0

2c
) is Σ0

4 complete.
We also establish that for infinite computable injection structures, the isomor-
phism problem is Π0

4 complete, while the computable isomorphism problem is
Σ0

3 complete.
In Section 7, we consider Σ0

1 injection structures, that is, injection structures
A = (A, f) where A is an infinite Σ0

1 set and f is the restriction of a partial com-
putable function to A. We show that every Σ0

1 injection structure is computably
isomorphic to a computable injection structure. Hence if two Σ0

1 injection struc-
tures are isomorphic, then they are isomorphic via a ∆0

3 isomorphism. In Section
8, we consider Π0

1 injection structures, that is, injection structures A = (A, f)
where A is an infinite Π0

1 set and f is the restriction of a partial computable
function to A. We show that there are Π0

1 injection structures that have ar-
bitrary non-trivial Σ0

2 characters and hence there are Π0
1 injections structures

which are not isomorphic to any computable injection structure. In Section 9,
we consider n-c.e. injection structures. We prove that for any n-c.e. injection
structure A, there exist a Π0

1 structure B and a computable injection that maps
B onto A. The notions and notation of computability theory are standard and
as in Soare [11].

2 Computably Categorical Structures

In this section, we first show that the characters of computable injection struc-
tures are exactly the c.e. characters. We then characterize computably categori-
cal injections structures and show that they coincide with relatively computably
categorical injection structures.

Lemma 2.1. For any computable injection structure A = (A, f):

(a) {(k, a) : a ∈ Ran(fk)} is a Σ0
1 set,

(b) {(a, k) : card(Of (a)) ≥ k} is a Σ0
1 set,

(c) {a : Of (a) is infinite} is a Π0
1 set,

(d) {a : Of (a) has type Z} is a Π0
2 set,

(e) {a : Of (a) has type ω} is a Σ0
2 set, and

(f) χ(A) is a Σ0
1 set.
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Proof. Parts (a) and (b) are straightforward.
(c) Of (a) is infinite if and only if (∀n)[fn(a) 6= a].
(d) Of (a) has type Z if and only if Of (a) is infinite and (∀n)(∃b)[fn(b) = a].
(e) Of (a) has type ω if and only if Of (a) is infinite and not of type Z.
(f) First notice that card(Of (a)) = k if and only if fk(a) = a and

(∀i < k)[f i(a) 6= a]. Hence the property that card(Of (a)) = k is computable.
Then (k, n) ∈ χ(A) if and only if

(∃x1) · · · (∃xn)

 n∧
i=1

card(Of (xi)) = k &
∧
i 6=j

(∀t < k)[f t(xi) 6= xj ]



Proposition 2.2. For any Σ0
1 character K, there is a computable injection

structure A = (A, f) with character K and with any specified finite or countabley
infinite number of orbits of types ω and Z. Furthermore, Fin(A) is computable
and Ran(f) is computable.

Proof. First we build (A, f) with character K and no infinite orbits. If K is
finite, this is trivial. If K is infinite, let (k0, n0), (k1, n1), . . . be a computable
enumeration of K without repetition. For each i > 0, let si = k0+k1+· · ·+ki−1.
Let s0 = 0. Define f to have orbits Of (si) = {si, si + 1, . . . , si + ki − 1}. Given
a ∈ N, let i be the least such that si ≤ a < si+1. Then f(a) = a + 1 if
a < si+1 − 1 and f(si+1 − 1) = si.

For any m ≤ ω and n ≤ ω, we can easily create a computable injection
structure consisting of exactly m orbits of type ω and n orbits of type Z. For
example, to have ω orbits of type ω and 3 orbits of type Z, let the orbits of
type Z be {0, 1, 2, 4, . . . }, {3, 6, 12, . . . } and {5, 10, 20, . . . }, and let the orbits of
type ω have the form {2a+ 7, 4a+ 14, 8a+ 28, . . . } for a ∈ N. In the orbits of
type ω, let f(x) = 2x. In the orbit of 0, let f(0) = 1, f(2) = 0 and for each i,
let f(22i) = 22i+2 and f(22i+3) = 22i+1. For the other two orbits of type Z, let
f(a · 22i) = a · 22i+2 and f(a · 22i+3) = 22i+1.

If K is infinite, then let A = (A, f) have character K and no infinite orbits,
and let B = (B, g) have the desired number of infinite orbits, and define the
disjoint union A⊕B in the natural way by mapping A to the even numbers and
B to the odd numbers. If K is finite of cardinality c, we may assume that (A, f)
has universe {0, 1, . . . , c − 1}, and then build a copy of (B, g) to have universe
{c, c+ 1, . . . } by mapping b to b+ c. It is easy to construct B so that the range
of f is computable. The only difficult case is when B has infinitely many orbits
of type ω. For example, if there are no other orbits, then we can take a standard
model such as f(x) = 2x with universe N− {0}.

Proposition 2.2 shows that injection structures are simpler than equivalence
structures in an important way. The characters are simpler, i.e., they are Σ0

1

rather than Σ0
2, and there is no distinction between characters that have or do

not have s1-functions.
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Theorem 2.3. If A = (N, f) is a computable injection structure with finitely
many infinite orbits, then A is relatively computably categorical.

Proof. Assume A has m orbits of type ω and n orbits of type Z, where m,n ∈ N.
Let a1, . . . , am be elements of the m orbits of type ω, each not in Ran(f). Let
b1, . . . , bn be representatives of the n orbits of type Z. A Scott formula for
a finite sequence c0, . . . , cr of elements distinct from a1, . . . , am, b1, . . . , bn is a
conjunction of ∆0

1 formulas of the following kinds. First, for each t ≤ r, we have
either

(1) fk(ct) = ct for some minimal k, or
(2) fk(ai) = ct for some unique i and k, or
(3) fk(bi) = ct for some unique i and k, or
(4) fk(ct) = bi for some unique i and k.

Nothing more needs to be said about the elements ct which fall into cases (2),
(3) or (4). For two elements cs and ct which fall into case (1) with the same
value of k, we need to add either

(5) f j(cs) = ct for some unique j < k, or
(6) (∀j < k)[f j(cs) 6= ct].

If two finite sequences satisfy the same Scott formula as defined above, then
it is clear that there exists an automorphism of A mapping one sequence to the
other, while preserving the infinite orbits.

Our next result will show that these are the only computably categorical
injection structures.

Theorem 2.4. If a computable injection structure A has infinitely many infinite
orbits, then it is not computably categorical.

Proof. First, consider the cases where either A consists of an infinite number of
orbits of type ω and no orbits of type Z, or A consists of an infinite number of
orbits of type Z and no orbits of type ω.

Suppose first that A = (N−{0}, f) consists of infinitely many orbits of type
ω, where f((2i+ 1)2n) = (2i+ 1)2n+1 for each i ≥ 0 and n ≥ 0. Thus, Ran(f)
is a computable set. Now we build a computable structure B = (N − {0}, g)
isomorphic to A such that Ran(g) is not computable, so that A cannot be
computably isomorphic to B.

Let C be a noncomputable c.e. set which does not contain 0 or 1. Let
C =

⋃
s Cs, where {Cs : s ∈ N} is a computable sequence of finite sets such

that Cs ⊆ {2, . . . , s − 1} and card(Cs+1 − Cs) ≤ 1 for all s. The injection g is
defined in stages. At stage s, we define a finite partial function gs is such that
(i) if i ∈ {1, . . . , s} − Cs, then gs((2i+ 1)2n) = (2i+ 1)2n+1 for 0 ≤ i ≤ s,
(ii) if i ∈ Cs, then (2i+ 1) will be in the orbit of 1 under gs, and
(iii) {(2i+ 1)2n : i, n ≤ s} ⊆ Dom(gs).
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Initially, we have g0(1) = 2. Now assume that at stage s, that we have de-
fined gs so that it satisfies (i)-(iii). Then at stage s + 1, we first extend gs
as follows. If i ∈ {1, . . . , s + 1} − Cs+1, gs+1((2i + 1)2n) = (2i + 1)2n+1 for
0 ≤ i ≤ s + 1. Next, add elements to the end of the current orbit of 1 so that
we ensure that {(2i + 1)2n : i, n ≤ s + 1} ⊆ Dom(gs+1) if necessary. Finally
if i ∈ Cs+1 − Cs, then let m be the unique element of the current orbit of 1
for which gs+1(m) is not defined and let gs+1(m) = 2i + 1. This has the effect
of adding the current orbit of 2i + 1 at the end of the current orbit of 1. It is
clear that if g =

⋃
s≥0 gs, then (N− {0}, g) is a computable injection structure

isomorphic to A and that (N − {0, 1}) − Ran(g) = {2i + 1 : i /∈ C}. Thus
B = (N− {0}, g) is not computably isomorphic to A.

Next, suppose that A = (N − {0}, f) consists of infinitely many orbits of
type Z, where every orbit of type Z is computable. We shall build a structure
B = (N− {0}, g) in which the orbit of 1 is not computable. The construction is
similar to that given above with several modifications. First, to make the orbits
have type Z, we extend the orbits at stage s + 1 to the right when s is even
and to the left when s is odd. Second, when i appears in Cs+1−Cs, we append
the orbit of 2i + 1 to the orbit of 1. In this way, we have i ∈ C if and only if
2i+ 1 ∈ Og(1), so that Og(1) is not computable.

Now, let A = (N−{0}, f) be a computable injection structure with infinitely
many infinite orbits. Suppose first that A has infinitely many orbits of type ω
and that Ran(f) is computable. Let A0 be the restriction of A to the orbits of
type ω, and let B0 be a computable structure isomorphic to A0, but not com-
putably isomorphic to A0, as above. By Proposition 2.2, there is a computable
injection structure C with χ(C) = χ(A) and such that C has the same number
of orbits of type Z as A. Let B = B0 ⊕ C. Then B is a computable injection
structure that is isomorphic to A, but is not computably isomorphic to A, since
any isomorphism would have to map A0 to B0. Note that in B0⊕C the element
1 in B0 gets mapped to 2. Thus the orbit of 2 in B is of type ω and is Turing
equivalent to C. The argument when A has infinitely many orbits of type Z is
similar.

The following corollary is immediate.

Corollary 2.5. Let A be a computable injection structure.

1. The structure A is computably categorical if and only if A is relatively
computably categorical.

2. The structure A is computably categorical if and only if A has finitely
many infinite orbits.

We also have the following corollary to the proof of Theorem 2.4.

Corollary 2.6. Let d be a c.e. degree.
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1. If A = (N, f) is a computable injection structure that has infinitely many
orbits of type ω, then there is a computable injection structure B = (N, g)
isomorphic to A in which Ran(g) is a c.e. set of degree d and there is an
x ∈ N such that Og(x) is of type ω and is a c.e. set of degree d and, for
all y ∈ N−Og(x), if Og(y) is of type ω, then Og(y) is computable.

2. If A = (N, f) is a computable injection structure that has infinitely many
infinite orbits of type Z, then there is a computable injection structure
B = (N, g) isomorphic to A such that and there is an x ∈ N such that
Og(x) is of type Z and is a c.e. set of degree d and, for all y ∈ N−Og(x),
if Og(y) is of type Z, then Og(y) is computable.

Proof. Parts (1) and (2) are immediate from the proof of Theorem 2.4.

3 ∆0
2 Categorical Structures

Theorem 3.1. Suppose that a computable injection structure A does not have
infinitely many orbits of type ω or does not have infinitely many orbits of type
Z. Then A is relatively ∆0

2 categorical.

Proof. Recall from Lemma 2.1 that {a : O(a) is infinite} is a Π0
1 set. Under the

assumption of our theorem, {a : O(a) has type ω} and {a : O(a) has type Z}
will be ∆0

2 sets. Thus, given isomorphic computable structures A = (A, f) and
B = (B, g), we can use an oracle for 0′ to partition A and B into three sets
each: the orbits of finite type, the orbits of type ω, and the orbits of type Z.

First suppose that A consists of infinitely many orbits of type ω and only
finitely many orbits of type Z. We shall construct an isomorphism h : A→ B,
which is computable in 0′. First let c1 < · · · < ct be representatives of the orbits
of type Z in A, and d1 < · · · < dt be the representatives of the orbits of type Z
in B. Then define h(ci) = di for i = 1, . . . , t and extend h in the obvious way
to map the orbits of c1, . . . , ct to the orbits of d1, . . . , dt, respectively. This map
will be computable in 0′ since the orbit of every ci and di is computable in 0′.

Next, a simple back-and-forth argument will allow us to show that we can
construct an isomorphism from (Fin(A), f) onto (Fin(B), g), which is com-
putable in 0′. That is, at any given stage s, assume that we have defined an
isomorphism hs on a finite set of orbits of (Fin(A), f) onto a finite set of orbits
of (Fin(B), g). Then let a ∈ Fin(A) be the least element not in Dom(hs). We
can compute its orbit {a, f(a), f2(a), . . . , fn−1(a)} in (Fin(A), f). Then search
through the elements of (Fin(B), g) until we find a b not in Ran(hs) such that
b has an orbit of size n, and define hs+1(f i(a)) = gi(b) for i = 0, 1 . . . , n − 1.
Next, let d be the least element of Fin(B), which is not in Ran(hs) and not in
the orbit of b. We can compute the orbit of d, {d, g(d), g2(d), . . . , gm−1(d)}, in
(Fin(B), g). Then we search for a c ∈ Fin(A) such that c is not in Dom(hs) nor
in the orbit of a, and has an orbit of size m. Then we set hs+1(f i(c)) = gi(d)
for i = 0, 1 . . . ,m− 1. Since Fin(A) and Fin(B) are c.e. sets, it follows that h
restricted to Fin(A) is computable in 0′.
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Let Aω and Bω denote the sets of elements that are in orbits of type ω in A
and B, respectively. It is easy to see that A−Aω and B−Bω are c.e. sets. Since
Ran(f) and Ran(g) are c.e. sets, we may use an oracle for 0′ to compute a list
a0, a1, . . . of Aω −Ran(f), and similarly a list b0, b1, . . . of Bω −Ran(g). Then
we extend the isomorphism h by mapping Aω to Bω as follows. Given a ∈ Aω,
compute the unique i and n such that a = fn(ai), and let h(a) = gn(bi).

Next, suppose that A consists of infinitely many orbits of type Z and only
finitely many orbits of type ω. Then, again, we shall construct an isomorphism
h : A → B that is computable in 0′. Let c1 < · · · < ct be the first elements
of the orbits of type ω in A, and let d1 < · · · < dt be the first elements of the
orbits of type ω in B. Then define h(ci) = di for i = 1, . . . , t, and extend h
in the obvious way to map the orbits of c1, . . . , ct to the orbits of d1, . . . , dt,
respectively. This function will be computable in 0′ since A − Ran(f) and
B−Ran(g) are computable in 0′. Then we can use the back-and-forth argument
to define an isomorphism h from Fin(A) onto Fin(B), computable in 0′.

Let AZ and BZ be the sets of elements that lie in orbits of type Z in A and
B, respectively. In this case, it is easy to see that A− AZ and B −BZ are c.e.
sets. Since the orbit of any element in A or B is computable in 0′, it follows
that we can use an oracle for 0′ to compute a list a0, a1, . . . of representatives
for the orbits. That is, observe that {(x, y) : O(x) = O(y)} is a c.e. set. Let a0

be the least element in AZ , and for each i, let ai+1 be the least a ∈ AZ that
is not in the same orbit as any of a0, . . . , ai. Similarly, we can compute a list
b0, b1, . . . of representatives for the orbits of BZ . Then an isomorphism h can
be defined on AZ as follows. Given a ∈ AZ , compute the unique i and n such
that either a = fn(ai) or ai = fn(a). In the first instance, let h(a) = gn(bi),
and in the second instance, let h(a) = b for the unique b such that gn(b) = bi.

In each case, if B is not computable, we can nevertheless use an oracle for
(deg(B))′ to compute the isomorphisms described above. Hence A is, in fact,
relatively ∆0

2 categorical.

Theorem 3.2. Suppose that a computable injection structure A has infinitely
many orbits of type ω and infinitely many orbits of type Z. Then A is not ∆0

2

categorical.

Proof. Clearly, it suffices to consider only the case when A has no finite orbits.
Let A = (A, f) be an injection structure in which the union of the orbits of
type ω is a computable subset of A. We will construct a computable injection
structure B = (N − {0}, g), which is isomorphic to A, but in which the union
of orbits of type ω is a Σ0

2 set that is not ∆0
2, so that A and B cannot be ∆0

2

isomorphic.
It is well-known that Fin = {e : We is finite} is a Σ0

2 complete set (see [11]).
Thus, for any Σ0

2 set C, there is a computable function F : N × N → {0, 1}
such that for all i,

i ∈ C ⇐⇒ ({s : F (i, s) = 1} is finite).
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Fix an arbitrary Σ0
2 set C and a corresponding F . We will define g such that

i ∈ C ⇐⇒ (Og(2i+ 1) has type ω).

The orbits of B = (B, g) will be exactly {Og(2i+ 1) : i ∈ N}.
Initially, we have g0(1) = 2. After stage s, the function gs will have orbits

Ogs(2i+ 1) = {(2i+ 1)2n : n ≤ 2s+ 2} for i ≤ s. At stage s+ 1, we first extend
each orbit of gs as follows. Fix i ≤ s. Let a be the unique element ofO(2i+1) not
inRan(gs), and let b be the unique element ofO(2i+1) not inDom(gs). In either
case, we let gs+1(b) = (2i+1)22s+3. If F (i, s+1) = 0, then gs+1((2i+1)22s+3) =
(2i+ 1)22s+4, and if F (i, s+ 1) = 1, then let gs+1((2i+ 1)22s+4) = a. Next, we
add a new orbit by letting g((2s+ 3)2n) = (2s+ 3)2n+1 for all n ≤ 2s+ 3. Let
g =

⋃
s gs. If i ∈ C, then {s : F (i, s) = 1} is finite, say of cardinality m. Then,

by the construction, there is no element b such that gm+1(b) = 2i+1, and hence
O(2i+ 1) has type ω. If i /∈ C, then {s : F (i, s) = 1} is infinite. Thus, for any
m, there is an element b such that gm+1(b) = 2i + 1, and hence O(2i + 1) has
type Z. It is clear that (N−{0}, g) is a computable injection structure all orbits
of which are infinite, and Og(2i + 1) is of type ω if and only if i ∈ C. If C is
not a ∆0

2 set, then B cannot be ∆0
2 isomorphic to A.

The following corollary is immediate.

Corollary 3.3. Let A be a computable injection structure.

1. The structure A is ∆0
2 categorical if and only if A is relatively ∆0

2 cate-
gorical.

2. The structure A is ∆0
2 categorical if and only if A has finitely many orbits

of type ω or finitely many orbits of type Z.

We also have the following corollary to the proof of Theorem 3.2.

Corollary 3.4. For any Σ0
2 set C, there exists a computable injection structure

A = (A, f) in which the set of elements with orbits of type ω is a Σ0
2 set with

Turing degree equal to deg(C).

The following theorem shows that there is a ∆0
2 categorical injection struc-

ture the degree of categoricity of which is 0′.

Theorem 3.5. LetM be a computable ∆0
2 categorical injection structure, which

is not computably categorical. Then there is a computable injection structure A
isomorphic to M such that the degree of categoricity of A is 0′.

Proof. Let K ⊆ (N−{0, 1}) be a c.e. set such that deg(K) = 0′. First, consider
the case whenM has infinitely many orbits of type ω. LetM0 be the restriction
of M to the orbits of type ω. Let A0 = (N− {0}, f) be isomorphic to M0 and
such that (N−{0})−Ran(f) = {2i+1 : i ∈ N}. Then, by the proof of Theorem
2.4, we obtain a computable structure B = (N− {0}, g) isomorphic to A0, and
an isomorphism G : A0 → B such that

(∀i)[i ∈ K ⇔ 2i+ 3 ∈ Ran(g)⇔ 2i+ 3 ∈ G(Ran(f))]
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Since Ran(f) is a computable set, we have K ≤T G, and thus 0′ ≤ deg(G).
Hence the degree of categoricity of A0 is 0′. Let C be a computable injection
structure with χ(C) = χ(M) and with the same number of orbits of type Z as
M. Let A = A0⊕C. Then A is a computable injection structure isomorphic to
M such that the degree of categoricity of A is 0′.

Now, assume that M has infinitely many orbits of type Z. Let M0 be
the restriction of M to the orbits of type Z. Assume that A0 is an injection
structure isomorphic toM0 such that every orbit of A0 of type Z is computable
and {2i + 1 :∈ N} are a set of representatives for the orbits of A0. Then, by
the proof of Theorem 2.4, we obtain a computable structure B = (N − {0}, g)
isomorphic to A0, and an isomorphism G : A0 → B such that

(∀i)[i ∈ K ⇔ 2i+ 1 ∈ G(OrbA(a))],

where G(a) = 1. Since OrbA0
(a) is a computable set, we have K ≤T G, and

thus 0′ ≤ deg(G). Hence the degree of categoricity of A0 is 0′. We now continue
as in the previous case.

Theorem 3.6. Every computable injection structure A is relatively ∆0
3 cate-

gorical.

Proof. Let A be a computable injection structure and let B be isomorphic to
A. It follows from Lemma 2.1 that, using an oracle for 0′′, we can partition A
into three ∆0

3 sets, that is, the orbits of finite type, the orbits of type ω, and the
orbits of type Z. Using an oracle for (deg(B))′′, we can similarly partition B.
It then follows from the proofs of Theorems 2.3 and 3.1 that we can compute
from (deg(B))′′ isomorphisms between the three substructures of A and B.

The following theorem shows that there is a computable injection structure
the degree of categoricity of which is 0′′.

Theorem 3.7. Let M be a computable injection structure, which is not ∆0
2

categorical. Then there is a computable injection structure A isomorphic to M
such that the degree of categoricity of A is 0′′.

Proof. Let C ⊆ N be a Σ0
2 set such that deg(C) = 0′′. Without loss of generality,

based on the proof of Theorem 3.5, assume that M has no finite orbits. Then
M has infinitely many orbits of type ω, and infinitely many orbits of type Z.
Let A be an injection structure isomorphic to M such that Aω (the set of all
elements of A the orbits of which have type ω) is a computable set. Then, by
the proof of Theorem 3.2, we obtain a computable structure B isomorphic to A
and an isomorphism G : A → B such that

(∀i)[i ∈ C ⇔ 2i+ 1 ∈ G(Aω)].

Since the set Aω is computable, we have C ≤T G, and thus, 0′′ ≤ deg(G).
Hence the degree of categoricity of A is 0′′.
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One of the most common finer classifications of the class of ∆0
2 objects is the

difference hierarchy of Ershov. Recall that a set A ⊆ N is said to be n-c.e. for
n ∈ N, if there is a computable function f : N× N→ {0, 1} such that for every
x ∈ N:

1. f(x, 0) = 0;

2. limsf(x, s) = A(x);

3. card({s : f(x, s+ 1) 6= f(x, s)}) ≤ n.

2-c.e. sets are also called d.c.e., for difference of c.e. sets. The set A is ω-c.e.
if instead of property 3 above there is a computable function h such that for all
x, |{x : As+1(x) 6= As(x)}| ≤ h(x).

Definition 3.8. (a) Let g(x) = limsf(x, s), where f is a computable function.
1. The function g is an n-c.e. function if for all x ∈ N,

card({s : f(x, s) 6= f(x, s + 1)}) < n.

2. The function g is an ω-c.e. function if there is a computable function h
such that for all x ∈ N,

card({s : f(x, s) 6= f(x, s + 1)}) ≤ h(x).

(b) For α ≤ ω, a function p is graph-α-c.e. if the graph of p is an α-c.e. set.

In [4], Cenzer, LaForte, and Remmel investigated α-c.e. and graph-α-c.e.
functions.

Theorem 3.9. There exist two computable injection structures that are not
ω-c.e. isomorphic.

Proof. We will diagonalize against all possible ω-c.e. isomorphisms he from a
standard computable injection structure A with domain N, consisting of in-
finitely many orbits of type Z, to another isomorphic computable structure
B = (N, g) that we shall construct. That is, we diagonalize over all pair of par-
tial recursive functions he = (fe, ge). Then we have to ensure that if fe and ge
are total functions and for all x ∈ N, card({s : fe(x, s) 6= fe(x, s+ 1)}) ≤ ge(x),
then f (e) is not an isomorphism from A onto B where f (e)(x) = lims fe(x, s) for
all x. We then have two sets of requirements.

Ne: B has at least e different Z orbits and

Pe: Either fe is not total, ge is not total, there is an x such that card({s :
fe(x, s) 6= fe(x, s + 1)}) > ge(x), or there exists a pair ae and be such that ae
and be are in different Z orbits in A, but f (e)(ae) and f (e)(be) are in the same
Z orbit in B.

We construct g in stages. Initially, we let g(0) = 1 and our intention is to
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use {(2i + 1)2n : n ∈ N} to build a Z orbit by adding elements to the end of
chains at even stages and elements at the beginning of chains at odd stages.
To meet the negative requirements Ne, at any stage s ≥ e, we shall have e Γe

markers on elements of the form (2i+ 1) which are currently in different orbits
relative to gs. We then allow two orbits with Γe markers on an element in an
orbit to be merged only for the sake of one meeting requirements P0, . . . , Pe−1.

To meet requirement Pe, at any stage s ≥ e, we note that there can be at
most Γj markers for j ≤ e on at most 1 + 2 + · · · + e =

(
e+1

2

)
different orbits.

Then we specify 2 +
(
e+1

2

)
elements from pairwise distinct Z orbits in A and

place ∆e markers on these elements. Then if ae and be are two elements with
∆e markers on them such that fe(ae, s) and fe(be, s) are defined and they are
currently in two different gs orbits which do not have any Γj markers on them
for some j ≤ e, then we will define gs+1 so that we merge the orbits of fe(ae, s)
and fe(be, s).

A standard finite injury priority argument will show that we can meet all
of the requirements Ne and Pe to construct the desired computable injection
structure B.

4 Spectrum Problems

Corollaries 2.6 and 3.4 are results about the spectra of natural relations on
computable injection structures. For a computable injection structure A =
(A, f) and any cardinal k ≤ ω, we may consider the possible Turing degrees
of {a : card(Of (a)) = k} as well as of {a : Of (a) has type ω} and {a :
Of (a) has type Z}. For example, we know that for any computable injection
structure A, Fin(A) is a c.e. set. Thus, a natural question is to ask whether
for any computable injection structure A and any c.e. Turing degree c, there
exists a computable injection structure B, which is isomorphic to A, such that
Fin(B) has degree c. Clearly, this is not possible for any computable injec-
tion structure. For example, if A has only finitely many infinite orbits, then
A − Fin(A) is c.e., so Fin(A) must be computable. Similarly, if c 6= 0, then
Fin(A) must be infinite if we are to have a computable injection structure B,
which is isomorphic to A, such that Fin(B) of degree c. However, we can prove
the following theorem.

Theorem 4.1. Let c be a c.e. Turing degree. Let A be a computable injection
structure such that A has infinitely many orbits of size k for every k ∈ N, and
also has infinitely many infinite orbits. Then there is a computable structure B
isomorphic to A such that Fin(B) is of degree c.

Proof. Without loss of generality, assume that A = (N, f) is such that we can
find a computable set of representatives a0, a1, . . . of the finite orbits of A, a
computable set of representatives b0, b1, . . . of the orbits of type Z of A, and a
computable set c0, c1, . . . of the first elements of all orbits of type ω in A.

First, consider the case when A has infinitely many orbits of type ω. Thus,
in this case, the list b0, b1, . . . may be finite. Let C be a noncomputable c.e. set,
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and let C =
⋃

s Cs, where {Cs : s ∈ N} is a computable sequence of finite sets
such that for every s, Cs ⊆ {0, 1, . . . , s − 1} and card(Cs+1 − Cs) ≤ 1. The
construction of B = (N, g) is quite simple. First, define g so that the orbits of
each ai and bi in B is the same as the orbits of ai and bi in A, respectively, by
having f and g agree on such orbits. Next, we define g so that orbit of each
c2i+1 in B is the same as the orbit of c2i+1 in A by having f and g agree on the
orbit of c2i+1.

For each ∈ N, we define g on the orbit of c2i in stages. At stage s, if i /∈ Cs,
then we define gk(c2i) = fk(c2i) for k ≤ s. If i ∈ Ct+1 − Ct, then we define
g(f t+1(c2i)) = c2i and set g(fr(c2i)) = fr+1(c2i) for r > t + 1. This will make
the orbit of c2i split into two orbits, one which is finite and one which is of type
ω in B. If i /∈ C, then f and g will agree on the orbit of c2i. It then easily
follows that c2i ∈ Fin(B) if and only if i ∈ C. Thus, C ≤T Fin(B). However, if
we know C, then we can easily compute Fin(B). Hence Fin(B) ≡T C. Finally,
it is easy to see that our assumptions ensure that A is isomorphic to B.

The construction when A has only finitely many orbits of type ω, but in-
finitely many orbits of type Z is similar. In that case, we split each orbit of b2i
into two orbits, one finite containing b2i and one infinite of type Z if i ∈ C, and
otherwise we will have g and f agree on the orbit of b2i. We also have that f
and g agree on the orbits of each ai, each ci, and each b2i+1.

Note that in the proof the Theorem 4.1, we used the assumption that A had
infinitely many orbits of size k for each k to ensure that B we constructed is
isomorphic to A, since in such a situation adding an extra finite orbit does not
change the isomorphism type. However, in general, we cannot do this for an
arbitrary injection structureA. We can, however, easily modify the construction
of Theorem 4.1 to prove a similar result in the case when A has infinitely
many orbits of different sizes. Similarly, it easy to see that we can modify the
construction to produce that a computable injection structure A = (N, f) such
that Fin(A) has degree c and the sizes of the finite orbits of elements of A
are pairwise distinct. A more general question is to characterize the possible
characters of computable injection structures A which have Fin(A) of degree c
for any given c.e. degree c.

A more refined question is what sets can be realized as Fin(A) for a com-
putable injection structure. An easy observation here is that Fin(A) can never
be a simple c.e. set. That is, if Fin(A) is not computable, then Fin(A) must
be infinite and also there must be some infinite orbits. But then each infinite
orbit of A is a c.e. set in the complement of Fin(A). Similarly, no infinite orbit
of A can be a simple c.e. set. We next show that there is a non-simple c.e. set
that cannot be Fin(A) for any computable injection structure A.

Theorem 4.2. Let C be a simple c.e. set. Then there is no computable injection
structure A = (N, f) such that 2C = Fin(A) or 2C is an orbit of A where
2C = {2c : c ∈ C}.

Proof. Suppose, for a contradiction, that A = (N, g) is a computable injection
structure such that 2C = Fin(A) or that 2C is an orbit of A. Then for c ∈ C,
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the orbit Of (2c) ⊆ 2C and hence every element of Of (2c) is even. Let D = {n :
(∃m)(2m + 1 ∈ Of (2n))}. D a c.e. set disjoint from C, and is therefore finite.
Hence there are only finitely many even numbers 2a1, . . . , 2an which have odd
numbers in their orbits. It follows that if 2x 6∈ {2a1, . . . , 2an}, then Of (2x)
consists entirely of even numbers.

Now suppose that 2C = Fin(A). If there is an x 6∈ C ∪ {a1, . . . , an}, such
that Of (2x) is infinite, then {m : 2m ∈ Of (2x)} would be an infinite c.e.
outside of C which would violate our assumption that C is simple. But then it
follows that if x 6∈ C ∪{a1, . . . , an}, Of (2x) is finite. But this would imply that
2C = {2n : n ∈ N} − {2a1, . . . , 2an} which would imply C = N − {a1, . . . , an}
which again violates our assumption that C is simple.

Finally suppose that 2C = Of (2m). Again if there is an x 6∈ C∪{a1, . . . , an}
such that Of (2x) is infinite, then {m : 2m ∈ Of (2x)} would be an infinite c.e.
outside of C which would violate our assumption that C is simple. Thus we
must assume that for all x 6∈ C ∪ {a1, . . . , an}, Of (2x) is finite. But then
{n : 2n ∈ Fin(A)} is an infinite c.e. set disjoint from C which again violates
our assumption that C is simple.

Now, for a computable injection structure A = (N, g), Ran(g) is always a
c.e. set so a natural question to ask is whether Ran(g) can be any c.e. set. There
are some obvious restrictions, namely, if A has only finitely many orbits of type
ω, then Ran(g) will be computable.

Theorem 4.3. Let C be any infinite, co-infinite c.e. set and let K be any c.e.
character.

(i) There is a computable injection structure (N, g) with Ran(g) = C.

(ii) If C is not simple, then there is a computable injection structure (N, h)
with character K, with Ran(h) ≡T C, and with an arbitrary number of
orbits of type Z.

Proof. Let C be an infinite, co-infinite c.e. set and let c0, c1, . . . be a computable
enumeration c0, c1, . . . without repetitions.

(i) The function g is defined in stages gs as follows. Initially, g0 = ∅. At
stage 1, there are three cases. If c0 6= 0, then we let g1 = {(0, c0)}. If c0 = 0
and c1 6= 1, then we let g1(0) = c1 and g1(1) = 0. If c0 = 0 and c1 = 1, then we
let g1(0) = 1 and g(1) = 0.

Suppose that after s steps, we have defined a finite function gs such that
{0, 1, . . . , s − 1} ⊆ Dom(gs) and {c0, c1, . . . , cs−1} ⊆ Ran(gs) ⊂ C. At stage
s+ 1, let i be the least number not in Dom(gs), and let m be the least number
such that cm /∈ Ran(gs). If i 6= cm, let gs+1(i) = cm. If i = cm, let j be the
least number such that j > i and j /∈ Dom(gs), and let n be the least number
such that n > m and such that cn /∈ Ran(gs). Now define gs+1(j) = cm and
gs+1(i) = cn. In this way we ensure that s ∈ Dom(gs+1) and cs ∈ Ran(gs+1).

(ii) Let A be an infinite computable set, disjoint from C. Then both A and
N−A are computably isomorphic to N, so we can build a computable structure
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(N−A, g) with range computably isomorphic to C. Then, by Proposition 2.2, we
can build a computable structure (A, f) with character K and with the desired
number of orbits of type Z. Now, (N, h) is defined so that h(x) = f(x) if x ∈ A,
and h(x) = g(x) if x /∈ A.

Next, we consider the infinite orbits of an injection structure. Since each
infinite orbit is a c.e. set, and also the union of all finite orbits forms a c.e. set,
any noncomputable orbit will have a c.e. set in its complement. We can show
that every c.e. degree contains a c.e. set which is an orbit of some computable
injection structure.

Theorem 4.4. For every c.e. set C and every computable injection structure
A with infinitely many infinite orbits, there is a computable injection structure
B isomorphic to A such that C is 1-1 reducible to an orbit of A.

Proof. First, suppose that A has infinitely many orbits of type ω. Clearly, it
suffices to build B = (N, g) consisting exactly of infinitely many orbits of type
ω, and having an orbit, say the orbit of 0, such that C is 1-1 reducible to it.
The construction of B is as follows. For each n, we start to build an orbit of
type ω with the first element 2n, using the odd numbers to extend the orbits.
When a number n appears in C, we attach the chain beginning with 2n to the
end of the chain beginning with 0. Thus, we see that for any n, n ∈ C if and
only if 2n ∈ Og(0).

If A has infinitely many orbits of type Z, then we can similarly define B
consisting of infinitely many orbits of type Z, and such that (n ∈ C ⇐⇒ 2n ∈
O(0)), by extending each chain both forward and backward.

5 Decidability of Structures and Theories

Recall that for any structure A, Th(A) denotes the first-order theory of A
and FTh(A) denotes the elementary diagram of A. In the case of equivalence
structures, Cenzer, Harizanov, and Remmel [3] showed that the character of
an equivalence structure together with the number of infinite classes effectively
determine its theory. Similarly, they showed that the character together with
the function mapping any element to the size of its equivalence class effectively
determine its elementary diagram.

Proposition 5.1. For any injection structure A, the character χ(A) is com-
putable from the theory Th(A). Hence if Th(A) is decidable, then χ(A) is
computable.

Proof. It follows from the proof of Lemma 2.1 that for all finite n and k, there
are formulas ψk(x) and sentences φn,k (in the language of injection structures)
such that:

1. For any injection structure A and any element a ∈ A, A |= ψk(a) if and
only if card(Of (a)) = k;
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2. For any injection structure A, A |= φn,k if and only if (n, k) ∈ χ(A).

Furthermore, the formulas ψk(x) and sentences φn,k are computable from k and
n.

It follows from the argument above that, in fact, χ(A) is many-one reducible
to Th(A).

Given an injection structure A = (A, f), let the relation R(A) ⊆ N × A be
defined by

(n, a) ∈ R(A)⇔ (∃x)[fn(x) = a].

Theorem 5.2. For any injective structure A, the elementary diagram of A is
Turing reducible to the join of the relation R(A) with the atomic diagram of A.

Proof. The proof is by quantifier elimination and is a straightforward modifica-
tion of the classical proof for the decidability of the theory of successor. We first
expand the language by adding the relation symbols γn such that A |= γn(a) if
and only if (n, a) ∈ R(A). Let ψ(x, t1, . . . , tk) be any conjunction of literals in
this expanded language, where t1, . . . , tk are either variables or elements of A,
and let θ be (∃x)ψ. Atomic formulas contain the basic terms x, t1, . . . , tk as well
as terms f j(t) for one of those basic terms. The atomic formulas have one of
two forms: γn(s) for some term s or s = t for some terms s and t. Since f is an
injection, we can ensure that all occurrences of x in any equality have the form
f j(x) for the same j, by applying f to each equality. Similarly, the formula
γn(f i(x)) is equivalent to γn+1(f i+1(x)), so that each such occurrence of x is
equivalent to some γm(f j(x)). Now, the formula (∃x)ψ(f j(x)) is equivalent to
the formula (∃y)[γj(y) & ψ(y)]. We may assume that for every term s of ψ,
either y = s or y 6= s occurs among the literals of ψ.

Now, there are two cases. First, suppose that one of the literals has the form
y = s. Then the formula (∃y)ψ(y) is equivalent to the formula ψ(s). Second,
suppose that for all terms s, the literal y 6= s occurs in ψ. Then the fact that A
is infinite means that such y must exist, so (∃y)ψ is equivalent to the formula
obtained by deleting the quantifier ∃y and all literals containing y.

At the end of quantifier elimination, we can determine whether the reduced,
quantifier-free formula φ holds in A by consulting the atomic diagram of A as
well as R(A).

Theorem 5.3. For any injection structure A, there is a structure B isomorphic
to A, such that B and R(B) are computable from χ(B).

Proof. We may assume, without loss of generality, that A has no infinite or-
bits, since, if needed, we can simply adjoin either infinitely many or some fixed
finite number of computable infinite orbits of either type. The structure B
will contain a distinct orbit O([〈k, n〉]) for each (k, n) ∈ χ(A), where we let
〈k, n〉 = 2k+1·3n+1. Let χ(A) be enumerated numerically as 〈k0, n0〉, 〈k1, n1〉, . . .
and let b0, b1, . . . enumerate N− χ(A). Then the function f = fB is defined by
using the elements b0, b1, . . . to fill out the orbits [〈k0, n0〉], [〈k1, n1〉], . . . in order
as needed. It is easy to see that B and R(B) are computable from χ(B).
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Putting the previous results together, we have the next two theorems along
with some immediate corollaries.

Theorem 5.4. For any injection structure A, Th(A) and χ(A) have the same
Turing degree.

Proof. It follows from Proposition 5.1 that χ(A) is Turing reducible to Th(A).
Conversely, let A be an injection structure, and let B, isomorphic to A, be given
by Theorem 5.3 so that B and R(B) are both computable from χ(B) (which, of
course, equals χ(A)). It follows from Theorem 5.2 that FTh(B) is computable
from χ(A). Now, Th(B), which equals Th(A), is computable from FTh(B), and
hence Th(A) is computable from χ(A), as desired.

Corollary 5.5. For any injection structure A, Th(A) is decidable if and only
if χ(A) is computable.

Theorem 5.6. For any injection structure A with computable character χ(A),
there is a decidable structure B isomorphic to A. (Hence Th(A) is decidable.)

Proof. Again, it suffices to assume that A has no infinite orbits. By Theorem
5.3, there is a structure B isomorphic to A, which is computable from χ(B), and
hence B and R(B) are also computable. It now follows from Theorem 5.2 that
FTh(B) is decidable, and hence Th(B), which equals Th(A), is decidable.

Clearly, any bounded character is computable.

Corollary 5.7. If the injection structure A has bounded character, then Th(A)
is decidable.

In contrast to the result for equivalence structures [3] that every computably
categorical structure is decidable, here we have the following negative result.

Proposition 5.8. There is a computably categorical injection structure A such
that Th(A) is not decidable.

Proof. Simply, let W be a non-computable c.e. set, and let A have character
{(n, 1) : n ∈ W} and no infinite orbits, by Proposition 2.2. Then χ(A) is not
computable and hence, by Proposition 5.1, Th(A) is also not decidable.

Proposition 5.9. For any computable character K, there is a decidable injec-
tion structure A with character K and with any specified countable number of
orbits of types ω and Z. Furthermore, Fin(A) is computable.

Proof. It suffices to constructA with no infinite orbits. By Proposition 2.2, there
is a computable injection structure B with character K. Now, by Theorem 5.6,
there is a decidable structure A isomorphic to B.

Corollary 5.10. If B is a computable injection structure with computable char-
acter and with no infinite orbits, then B is decidable.
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Proof. It follows from Proposition 5.9 that there is a decidable structure A that
is isomorphic to B. Since A has no infinite orbits, it is computably categorical
and hence A and B are computably isomorphic. Hence B is also decidable.

6 Index Sets for infinite injection structures

In this section, we develop a theory of index sets for infinite computable injection
structures. Fix an enumeration of structures Ae = (N, φe), where φe is the usual
e-th partial computable function. Clearly, this list includes every computable
injection structure with universe N. We avoid consideration of structures with
computable universe A ⊂ N since we want to focus on the properties of the
structure and not on the universe. Of course every computable structure with
an infinite universe A ⊂ N is computably isomorphic to a structure with universe
N.

We say that a set A is D0
n if A is the difference of two Σ0

n sets or equivalently
A is the intersection of Σ0

n and Π0
n set. We say A is D0

n-complete if A is D0
n

and for any D0
n set B, there is a computable function f such that e ∈ B ⇐⇒

f(e) ∈ A. If A ⊆ B ⊆ N, then we say that A is Σ0
n within B if it is the

intersection of B with a Σ0
n set. We say that A is Σ0

n complete within B if for
any Σ0

n set C, there is a computable function f such that, for every e, f(e) ∈ B
and e ∈ C ⇐⇒ f(e) ∈ A. Similar definitions apply for Π0

n and other notions
of complexity.

We want to consider properties of computable injection structures which
indicate the number of orbits of types ω and Z. Let Injm (Inj≤m) be the set of
indices e such that Ae is a computable injection structure with exactly m (≤ m)
orbits of type ω. The sets Inj<m, Inj≥m and Inj>m are defined similarly. Let
Injn (Inj≤n) be the set of indices e such that Ae is a computable injection
structure with exactly n (≤ n) orbits of type Z. The sets Inj<n, Inj≥n and
Inj>n are defined similarly. Let Injnm be the set of indices e such that Ae is a
computable injection structure with exactly m orbits of type ω and n orbits of
type Z. We can replace m by either ≤ m, < m, ≥ m, > m and n by either ≤ n,
< n, ≥ n, > n in the definition of Injnm to define similar sets. For example, the
set Inj>n

≤m is the set of all indices e such that Ae is an injection structure with
no more than m orbits of type ω and more than n orbits of type Z.

Theorem 6.1. The set Inj = {e : Ae is a computable injection structure} is
Π0

2 complete and the set Inj0
0 of injection structures with no infinite orbits is

Π0
2 complete and also Π0

2 complete within Inj.

Proof. It is easy to see that Inj is a Π0
2 set. That is, e ∈ Inj if and only if φe is

total and injective which is a Π0
2 condition. It follows from part (c) of Lemma

2.1 that Inj0
0 is also a Π0

2 set.
For the completeness of Inj and also of Inj0,0, we define a reduction f of

the Π0
2 complete set Inf = {e : We is infinite} to Inj. Define the structure

Af(e) = (N, φf(e)) as follows. Let s0 < s1 < . . . enumerate the possibly finite set
of stages at which a new elements comes new elements appear in the standard
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enumeration of We. Here we assume that at most one element enters We at
any stage. To define φ = φf(e), wait until s0 appears and then let φ(0) =
1, φ(1) = 2, . . . , φ(s0 − 1) = s0 and φ(s0) = 0. Next wait until s1 appears and
let φ(s0+1) = s0+2, . . . , φ(s1−1) = s1 and φ(s1) = s0+1. If We is finite and sk
is the last stage at which an element enters We, then φf(e)(sk + 1) is undefined,
so that f(e) /∈ Inj. If We is infinite, then φf(e) is total and Fin(Af(e)) = N

For the Π0
2 completeness of Inj0

0 within Inj, modify the construction above
to produce a computable function g as follows. Begin by letting φg(e)(0) =
1, φg(e)(1) = 2, . . . until s0 appears and then let φg(e)(s0) = 0. Next let φg(e)(s0+
1) = s0+2, φg(e)(s0+2) = s0+3, . . . again until s1 appears and then φg(e)(s1) =
s0 + 1. If sk is the last stage at which an element enters We, then φg(e)(sk +n+
1) = sk + n+ 2 for all n. It follows from this construction that if We is infinite,
then all orbits of Ag(e) are finite, whereas if We is finite, then Ag(e) has a finite
number of finite orbits together with one orbit of type ω. Then g shows that
Inj0

0 is Π0
2 complete in Inj.

Before giving further results for the above index sets, we first observe that
the property of being in the same orbit under f , that is, the relation
“Of (a) = Of (b)”, is Σ0

1.

Theorem 6.2. For each m ≥ 0, Inj≤m is Π0
2 complete, and the relations Inj>m

and Injm+1 are D0
2 complete.

Proof. The set Inj>m is Σ0
2 within Inj, that is, it is the intersection of the Σ0

2

class S with Inj, where S is the set of indices e such that there exist at least
m + 1 elements x /∈ Ran(φe). The other upper complexity bounds follow from
this fact.

Let Fin = {e : We is finite} and Inf = {e : We is infinite}. Then Fin is a
complete Σ0

2 set, Inf is a complete Π0
2 set and D = {〈a, b〉 : a ∈ Fin & b ∈ Inf}

is a complete D0
2 set.

For the Π0
2 completeness of Inj≤0, we can use the same proof that we used

to prove that Inj0
0 was Π0

2 complete.
For the Π0

2 completeness of Inj≤m where m ≥ 1, first consider the com-
putable function g that we used to show that Inj0

0 is Π0
2 complete in Inj. That

is, we constructed a computable function g such that if We is finite, then Ag(e)

is a computable injection structure with one infinite orbit of type ω and finitely
many finite orbits and if We is infinite, then all orbits of Ag(e) are finite. Then
let gm+1(e) be the computable function such that Agm+1(e) is a disjoint union
of m + 1 computable copies of Ag(e). It follows that a ∈ Inf ⇐⇒ gm+1(e) ∈
Inj≤m so that Inj≤m is Π0

2 complete.
For D0

2 completeness of Injm+1, we can define a computable function h
such that Ah(〈a,b〉) = Agm+1(a) ⊕ (Agm+1(b) ⊕Agm+1(b)). Now if 〈a, b〉 ∈ D, then
Agm+1(a) has exactly m + 1 infinite orbits of type ω and Ag(b) has no infinite
orbits so that Ah(〈a,b〉) will have exactly m+1 orbits of type ω. If a ∈ Inf , then
Ah(〈a,b〉) has no infinite orbits if b ∈ Inf and will have 2m+ 2 orbits of type ω
if b ∈ Fin. Thus h shows that D is many-one reducible to Injm+1.
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For D0
2 completeness of Inj>m, we can define a computable function q such

that Aq(〈a,b〉) = Agm+1(a) ⊕ (Af(b) ⊕Af(b)) where f is the computable function
constructed in Theorem 6.1 such that Af(e) is a computable injection structure
with no infinite orbits if e ∈ Inf and φf(e) is not total if e ∈ Fin. Now if
〈a, b〉 ∈ D, then Agm+1(a) has exactly m+ 1 infinite orbits of type ω and Ag(b)

has no infinite orbits so that Aq(〈a,b〉) will be a computable injection structure
with exactly m + 1 orbits of type ω. If b ∈ Fin, then Aq(〈a,b〉) will not be a
computable injection structure. Thus q shows that Inj>m is D0

2 complete.

Theorem 6.3. For each n ≥ 0, Inj≤n is Π0
3 complete, Inj>n is Σ0

3 complete,
and Injn+1 is D0

3 complete.

Proof. The set Inj>n is Σ0
3, since it is the set of indices e such that there exist

n + 1 elements x0, . . . , xn, each having an orbit of type Z and no two being in
the same orbit. The other upper complexity bounds follow from this fact.

First we show that Inj>0 is Σ0
3 complete and Inj≤0 is Π0

3 complete. Let
Cof = {e : We is co-finite}. Cof is a Σ0

3 complete set.
We define a computable function r such that Ar(e) is defined by the following

construction. We start to build ω chains going forward from each number 2m+1
by mapping x to 2x. When a number m comes into We at stage s+ 1, we find
the longest sequence k, k+1, . . . ,m,m+1, . . . , n including m which is contained
in We,s+1. We take the chains from 2(m+ 1) + 1 to 2n+ 1 and put them at the
end of the 2m + 1 chain, removing them from any further activity. If k < m,
then we put the newly expanded 2m + 1 chain at the end of the 2k + 1 chain.
Finally, we add an element to the beginning of the 2k + 1 chain.

If We is co-finite, there will be a least m such that every n ≥ m belongs to
We. In that case, the orbit of 2m+ 1 will be a Z chain, all of the 2n+ 1 chains
for n > m will be included in this orbit, and there will be finitely many orbits of
type ω for the numbers k < m. If We is co-infinite, then We will be an infinite
union of finite consecutive sequences, each of which will have an orbit of type ω
and these orbits will include all elements. Thus e ∈ Cof ⇐⇒ r(e) ∈ Inj>0 so
that Inj>0 is Σ0

3 complete and Inj≤0 is Π0
3 complete.

To show that Inj>m is Σ0
3 complete and Inj≤m is Π0

3 complete for m ≥ 1,
let rm(e) be the computable function such that Arm(e) is Ar(e)⊕Bm where Bm

is a computable injection structure that has m Z chains and no other orbits.
Then e ∈ Cof ⇐⇒ rm(e) ∈ Inj>m so that Inj>m is Σ0

3 complete and Inj≤m

is Π0
3 complete.
To show that Injm is D0

3 complete for m ≥ 1, we reduce the D0
3 complete

E = {〈a, b〉 : a ∈ Cof and b 6∈ Cof}. Let k be the computable function such
that Ak(〈a,b〉) = Arm−1(a) ⊕ (Arm−1(b) ⊕Arm−1(b)) Then it is easy to check that
Ak(〈a,b〉) has exactly m Z chains if and only if a ∈ Cof and b 6∈ Cof .

Theorem 6.4. The property of being a computable categorical computable in-
jection structure over N is Σ0

3 complete. That is,

CCI = {e : Ae is an injection structure with finitely many infinite orbits}



6 INDEX SETS FOR INFINITE INJECTION STRUCTURES 23

is a Σ0
3 complete set.

Proof. The set CCI is Σ0
3 since Ae has finitely many infinite orbits if and only

if there exists a finite sequence a0, . . . , ak such that for every b, if b /∈ O(ai) for
any i ≤ k, then O(b) is finite. The details follow from Lemma 2.1.

For completeness, consider the Σ0
3 complete set Cof = {e : We is co-finite}.

We define a computable function f such that for every e, Af(e) will have finitely
many infinite orbits if and only if We is co-finite. The orbits of Af(e) will be
exactly the orbits O(2i+ 1) for i ∈ N, and the even numbers will be used to fill
out the orbits. The injection φf(e) will be defined in stages, as φsf(e), so that for

i ≤ s, we have defined φtf(e)(2i+ 1) for all t ≤ s.
At stage s + 1, we do the following. For i ≤ s, we have three cases. If

i /∈ We,s+1, then at stage s + 1 we simply define φs+1
f(e)(2i + 1) to be the next

available even number. If i ∈We,s+1−We,s, then we define φs+1
f(e)(2i+1) = 2i+1.

If we already have i ∈ We,s, there is nothing to do. That is, if i ∈ We,s, then
φtf(e)(2i + 1) = 2i + 1 for some t ≤ s and hence φsf(e)(2i + 1) is automatically
defined for all s ≥ t. For i = s + 1, we choose the next s + 1 available even
numbers, say 2n1, 2n2, . . . 2ns+1, and let φtf(e)(2s+ 3) = 2nt for all t ≤ s+ 1.

The following facts are immediate from the construction.

1. The orbit Of(e)(2i+ 1) is finite if and only if i ∈We.

2. The function φf(e) is total and one-to-one.

It follows from Fact 2 that f(e) ∈ Inj for all e. It follows from Fact 1 that
Af(e) has finitely many infinite orbits if and only if We is co-finite.

Theorem 6.5. The property of being ∆0
2 computable categorical injection struc-

ture is Σ0
4 complete. That is, the set DCI of indices e such that Ae is an injec-

tion structure with finitely many orbits of type ω or finitely many orbits of type
Z, is a Σ0

4 complete set.

Proof. The set DCI is Σ0
4 since Ae has finitely many infinite orbits of type ω

or of type Z if and only if one of the following two cases holds.
Case I: There exists a finite sequence a0, . . . , ak such that, for every b, if

b /∈ O(ai) for any i ≤ k, then O(b) does not have type ω.
Case II: There exists a finite sequence a0, . . . , ak such that, for every b, if

b /∈ O(ai) for any i ≤ k, then O(b) does not have type Z.
It follows from Lemma 2.1 that the condition in Case I is Σ0

3, and the con-
dition in Case II is Σ0

4. For completeness, let C be any Π0
4 set. Then there is a

Π0
2 relation Q such that for every e, e ∈ C if and only if {n : Q(e, n)} is infinite.

Since Q is Π0
2, there is a computable relation R such that Q(e, n) if and only

if {r : R(e, n, r)} is infinite. That is, e ∈ C if and only if there are infinitely
many n such that there are infinitely many r for which R(e, n, r) holds. We may
assume that R is defined in stages, as Rs, so that Rs+1 − Rs contains at most
one element (e, n, r) for each s and that e+ n+ r ≤ s.
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We now define a reduction g such that for any e, Ag(e) has only infinite
orbits, and has infinitely many orbits of type Z if and only if e ∈ C. We first
define a reduction f so that Af(e) has finitely many orbits of type Z if and only
if e ∈ C and then modify the construction to obtain Ag(e) as the disjoint union
of Af(e) with a computable structure consisting of an infinite number of orbits
of type ω.

As in the proof of Theorem 6.4, the orbits of Af(e) will be exactly the orbits
O(2i + 1) for i ∈ N and the even numbers will be used to fill out the orbits.
The injection φf(e) will be defined in stages, as φsf(e), so that for i ≤ s, we have

defined φtf(e)(2i+ 1) for all t ≤ s.
At stage s+1, we do the following. For i ≤ s, we extend each orbit O(2i+1)

by defining φs+1
f(e)(2i + 1) to be the next available even number. We begin the

orbit O(2s + 3) by defining φtf(e)(2s + 3) for t ≤ s + 1 as the next s + 1 even
numbers.

Finally, if (e, n, r) enters R at stage s+ 1, then we add a new element to the
front of O(2n+ 1). That is, let b be the unique element of O(2n+ 1) at stage s
which is not in Ran(φf(e),s), let 2a be the next available even number, and let

φs+1
f(e)(2a) = b.

The following facts are immediate from the construction.

1. For every n, Of(e)(2n + 1) is infinite and has type Z if and only if {r :
R(e, n, r)} is infinite.

2. The function φf(e) is total, one-to-one, and onto.

It follows from Fact 2 that f(e) ∈ Inj for all e. It follows from Fact 1 that
Af(e) has infinitely many orbits of type Z if and only if e ∈ C.

Finally, let B be a computable structure consisting of an infinite number of
orbits each of type ω and let Ag(e) be the disjoint union of B with Af(e). It
follows that g(e) ∈ DCI ⇔ e /∈ C. Therefore, DCI is Σ0

4 complete.

Next, we consider the complexity of the isomorphism problem for infinite
computable injection structures.

Theorem 6.6. The set {(i, j) : Ai is isomorphic to Aj} is Π0
4 complete.

Proof. For the upper bound on the complexity, observe that Ai is isomorphic to
Aj if and only if they have the same character and the same number of infinite
orbits of each type. In particular, for the most complicated case, it must be that
for every n, if Ai has at least n orbits of type Z, then in Aj , there must exist
at least n elements, all in different orbits of type Z. Since being in an orbit of
type Z is Π0

2, it is easy to see that the overall definition is Π0
4.

For completeness, fix a structure Aj with infinitely many orbits of type ω
and infinitely many orbits of type Z. Let Q be an arbitrary unary Π0

4 relation,
so that there is a computable ternary relation R such that for every e,

e ∈ Q⇐⇒ (∃∞n)(∃∞k)R(n, k, e),
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where the quantifier ∃∞ stands for “there exist infinitely many.”
Define a computable function f by constructing Af(e) as follows. Each orbit

will be O(4n) for some n. Odd numbers will be used to fill out the orbits. At
each stage s, we will have finite chains of length ≥ s containing 4n for each
n < s. At stage s+ 1, we do the following:

(i) start a new chain for 4s of length s + 1 by letting t1 < · · · < ts be the
least odd number which have not been used in the construction up to this point
and define fe(4s) = t1 and fe(ti) = ti+1 for 1 ≤ i < s,

(ii) add a new odd number at the end of each previous chain starting at 4n
for n < s, and,

(iii) for every n < s, if R(n, s + 1, e) holds, then add a new odd number at
the beginning of the finite chain containing 4n.

Observe that for each n, if there exist infinitely many k such that R(n, k, e),
then in the construction we will add a new element to the front of O(4n) in-
finitely often, so that O(4n) will have type Z. Finally, use the numbers which
are equivalent to 2 mod 4 to build infinitely many orbits of type ω.

Suppose first that e ∈ Q. Then by the argument above, Af(e) will have
infinitely many orbits of type Z, in addition to having infinitely many orbits of
type ω. It follows that Af(e) will be isomorphic to Aj . On the other hand, if
e /∈ Q, then only finitely many of the orbits O(4n) will have type Z, so that
Af(e) will not be isomorphic to Aj .

Next, we investigate the complexity of the computable isomorphism problem
for injection structures.

Theorem 6.7. The set {(i, j) : Ai is computably isomorphic to Aj} is Σ0
3 com-

plete.

Proof. As usual, this set is Σ0
3 since the condition asks for the existence of

a total computable function that is an isomorphism. For completeness, let
Aj = (N, f) be a fixed structure with infinitely many orbits of type ω and
infinitely many orbits of type Z, in which Ran(f) is a computable set, the
set of all elements belonging to orbits of type Z is computable, and the set
{(a, b) : a, b are in the same orbit} is also computable. Note that any two injec-
tion structures with these properties will be computably isomorphic.

Recall that the set Comp = {e : We is computable} is Σ0
3 complete. We

shall define a computable function f so that for every e ∈ N, e ∈ Comp if and
only if Af(e) is computably isomorphic to Aj . We begin with a copy A′ of Aj

containing the odd numbers as elements and with the nice properties described
above. Next, we construct Bf(e) as follows. Every orbit of Af(e) will be O(4n)
for some n. Numbers of the form 4n + 2 will be used to fill out the orbits. At
stage s, each orbit will extend forward and backward from 4n. At stage s+ 1, if
n comes into We, then we stop adding elements to the front of the orbit O(4n).
Thus, if n ∈ We, then O(4n) will have type ω, and otherwise it will have type
Z. The structure Af(e) is defined to be the disjoint union of the structures A′
and Bf(e). Notice that for every n, O(4n) has type Z if and only if n ∈ We.
Thus, if e /∈ Comp, then Af(e) cannot be computably isomorphic to Aj . On the
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other hand, if e ∈ Comp, then Af(e) will have the properties described above,
and hence will be computably isomorphic to Aj .

7 Σ0
1 injection structures

Recall that an injection structures (A, f) is said to be a Σ0
1 injection structure if

A is an infinite Σ0
1 set and f is the restriction of a partial computable function

to A. The complexities of orbits and the character for Σ0
1 injection structures

are unchanged from those for computable structures.

Lemma 7.1. For any Σ0
1 injection structure A = (A, f):

(a) {(k, a) : a ∈ Ran(fk)} is a Σ0
1 set,

(b) {(a, k) : card(Of (a)) ≥ k} is a Σ0
1 set,

(c) {a : Of (a) is infinite} is a D0
1 set, in fact, the intersection of a Π0

1 set
with A.

(d) {a : Of (a) has type Z} is a Π0
2 set,

(e) {a : Of (a) has type ω} is a Σ0
2 set, and

(f) χ(A) is a Σ0
1 set.

Proof. It is a straightforward extension of the proof of Lemma 2.1.

Since the character of any Σ0
1 structure is Σ0

1, the following result is imme-
diate from Proposition 2.2.

Proposition 7.2. Any Σ0
1 injection structure is isomorphic to a computable

injection structure.

In fact, there is always a computable isomorphism.

Proposition 7.3. For any Σ0
1 injection structure A, there exists a computable

injection structure B and a computable isomorphism from B onto A.

Proof. Let A be a Σ0
1 set and let f be a partial computable function such that

the restriction of f to A is an injection. Let φ be a computable one-to-one
enumeration of A. Then define B = (N, g) by letting g(b) = φ−1(f(φ(b))).
The mapping φ : B → A is the desired computable isomorphism. The inverse
mapping φ−1 maps A onto B and is partial computable with domain A.

Theorem 7.4. If A1 and A2 are isomorphic Σ0
1 injection structures with finitely

many infinite orbits, then there is an isomorphism ψ : A1 → A2 such that both
ψ and ψ−1 are partial computable.



8 Π0
1 INJECTION STRUCTURES 27

Proof. Let the computable structures B1 and B2 be given by Proposition 7.3
together with partial computable isomorphisms φi : Bi → Ai for i = 1, 2. Since
B1 is computably categorical, there is a computable isomorphism g : B1 → B2.
Now define ψ : A1 → A2 by ψ(a) = φ2(g(φ−1

1 (a))).

The following result is proved similarly, using Theorem 3.1.

Theorem 7.5. If A1 and A2 are isomorphic Σ0
1 injection structures with finitely

orbits of type Z or finitely many orbits of type ω, then there is a ∆0
2 isomorphism

ψ : A1 → A2.

Now we can use Theorem 3.6 and Proposition 7.3 to establish the following
results.

Theorem 7.6. If A1 and A2 are isomorphic Σ0
1 injection structures, then there

is a ∆0
3 isomorphism ψ : A1 → A2.

Proposition 7.7. For any d.c.e. set B, there is a Σ0
1 injection structure A =

(A, f) such that B is 1-1 reducible to A− Fin(A).

Proof. Let B = C − D, where C and D are c.e. sets and D ⊂ C. Let A =
{2n + 1 : n ∈ C} ∪ {2n : n ∈ N}. For each n, we begin to define the orbit of
2n+ 1 in A by setting f(2n+ 1) = 2(2n+ 1), f(2(2n+ 1)) = 22(2n+ 1), and so
on, until we see that n ∈ D at some stage s+1. Then let f(2s(2n+1)) = 2n+1
and for t > s, let f(2t(2n + 1)) = 2t+1(2n + 1). It follows that for each n,
n ∈ B ⇔ 2n+ 1 ∈ A− Fin(A).

8 Π0
1 Injection Structures

Recall that an injection structure (A, f) is a Π0
1 injection structure if A is an

infinite Π0
1 set and f is the restriction of a partial computable function to A. The

complexities of orbits and the character for Π0
1 injection structures are higher

than those for computable structures.

Lemma 8.1. For any Π0
1 injection structure A = (A, f):

(a) {(k, a) : a ∈ Ran(fk)} is a Σ0
2 set, although each orbit of A is a d.c.e. set,

(b) {(a, k) : card(Of (a)) ≥ k} is a Π0
1 set,

(c) {a : Of (a) is finite} is a D0
1 set, the intersection of A with a c.e. set,

(d) {a : Of (a) has type Z} is a Π0
3 set,

(e) {a : Of (a) has type ω} is a Σ0
3 set, and

(f) χ(A) is a Σ0
2 set.
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Proof. In the first part of (a) and in (d), (e) and (f), we are quantifying over
the Π0

1 set A, which increases the complexity. For the second part of (a), the
orbit of any a ∈ A is

{x : (∃n)[fn(a) = x] ∨ [x ∈ A & (∃n)(fn(x) = a)]}.

Next we show that there are Π0
1 injection structures that have arbitrary

non-trivial Σ0
2 characters so that there are Π0

1 injection structures which are not
isomorphic to a computable injection structure.

Theorem 8.2. For any Σ0
2 character K, which is both infinite and co-infinite,

there is a Π0
1 injection structure with character K and with any finite or count-

ably infinite number of orbits of type Z and type ω.

Proof. Let K be a Σ0
2 character, which is both infinite and co-infinite. Clearly,

it suffices to construct a Π0
1 injection structure A = (A, f) with character K and

with no infinite orbits. Let R be a computable relation so that for all n, k > 0,
(n, k) ∈ K if and only if {t : R(n, k, t)} is finite. We may assume that for each t,
there is at most one pair (n, k) such that R(n, k, t). We begin with a computable
injection structure A = (N, f) consisting of infinitely many orbits of size k for
each k. For example, for all k, let f(〈k, nk + k + i〉) = 〈k, nk + k + i + 1〉 for
i < k and let f(〈k, nk + 2k〉) = 〈k, nk + k〉. The Π0

1 set A will be defined in
stages As, so that As+1 ⊆ As and A =

⋂
sAs. At each stage s, there will be

uniformly computable families of infinitely many orbits Os
k,n of size k, for each

k ≥ 1.
At stage s + 1, we look for the unique 〈n, k〉 such that R(n, k, s + 1) and

delete the orbit Ok,n from the set As to obtain the set As+1. The remaining
orbits are renamed so that Os+1

k,i = Os
k,i for i < n, and Os+1

k,i = Os
k,i+1 for i ≥ n.

Suppose that (n, k) ∈ K. Then for all m ≤ n, there are just finitely many t
such that R(m, k, t) so that after some stage s, we will retain the mth orbit of
size k at each successive stage. Hence A will have at least n orbits of size k.

Suppose that (n, k) /∈ K. Then there are infinitely many t such thatR(n, k, t)
so that the nth orbit of size k at any stage s is eventually deleted from A. Since
K is a character, this also happens for any i > n, so A has at most n− 1 orbits
of size k.

Now, we will consider the complexity of isomorphisms for Π0
1 injection struc-

tures. Since computable injection structures with finitely many infinite orbits
are relatively computably categorical, we obtain the following theorem.

Theorem 8.3. If A and B are isomorphic Π0
1 injection structures with only

finitely many infinite orbits, then A and B are ∆0
2 isomorphic.

In contrast to the previous positive results for Π0
1 equivalence structures in

[3], the results for Π0
1 injection structures that are isomorphic to ∆0

2 categorical
structures are mixed.
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Lemma 8.4. Let A = (A, f) be a Π0
1 injection structure and define the relation

RA(a, b) to hold if and only if a and b are in the same orbit. Then {〈a, b〉 :
RA(a, b) holds} is a d.c.e. set.

Proof. Just observe that

R(a, b)⇔ [a ∈ A ∧ b ∈ A ∧ (∃n)(fn(a) = b ∨ fn(b) = a)].

Theorem 8.5. Let A = (A, f) be a Π0
1 injection structure such that χ(A) is

a Σ0
1 set and which has only finitely many orbits of type ω. Then A is ∆0

2

isomorphic to a computable structure.

Proof. Suppose that A has n orbits of type ω and a1, . . . , an are the unique
elements in these orbits which are in A but not in the range of f restricted
to A. It follows from Lemma 8.1 that if we are given an oracle for 0′, we can
effectively list Fin(A) = {b0 < b1 < · · · } and we can effectively list the elements
c0 < c1 < · · · which are in A − (Fin(A) ∪ OA(a1) ∪ · · · ∪ OA(an)). Now let
B = (N, g) be a computable injection structure which is isomophic to A such
that Fin(B) is computable and the set of elements which lie in Z orbits is
computable. Let x1, . . . xn be the representatives of the ω orbits which are not
in Ran(g), let Fin(B) = {y0 < y1 < · · · }, and let z0 < z1 < · · · be an effective
list of the elements in N which are in N− (Fin(B) ∪ OB(x1) ∪ · · · ∪ OB(xn).

Then using the lists b0 < b1 < . . . and y0 < y1 < . . . and that fact that f
and g are partial computable, we can effectively construct an isomorphism h2 :
(Fin(A), f) → (Fin(B), g). Thus h1 will be computable in 0′. We can extend
h1 to include the ω orbits by defining h1(fm(ai)) = gm(xi) for all 1 ≤ i ≤ n
and m ≥ 0. Finally we can use the lists c0 < c1 < . . . and z0 < z1 < . . . to
construct an isomorphism h2 which maps the Z orbits of A onto the Z orbits
of B as follows. First if A has only finitely many Z orbits, then we let r1, . . . , rp
be a list of representatives from the Z orbits of A and s1, . . . , sp be a list of
representatives of the Z orbits of B. Then we define h2(ri) = si for i = 1, . . . , p
and extend h2 the Z orbits in the obvious way. If A has infinitely many Z
orbits, then using the 0′ oracle and Lemma 8.4, we can effectively construct a
sequence i0 < i1 < · · · such that i0 = 0, i1 is the least i such that ci 6∈ OA(ci0),

and for all k ≥ 1, ik+1 is the least i such that ci 6∈
⋃k

s=0OA(cis). Similarly,
using the 0′ oracle, we can effectively construct a sequence j0 < j1 < · · · such
that j0 = 0, j1 is the least i such that zi 6∈ OB(zi0), and for all k ≥ 1, jk+1 is

the least i such that zi 6∈
⋃k

s=0OB(zjs). Then we can define h2(cis) = zjs for
all s ≥ 0 and extend h2 so that it maps the OA(cis) to OB(zjs) in the obvious
way.

Then h = h1 ∪ h2 will be computable in 0′ so that h will be the desired ∆0
2

isomorphism from A onto B.

Note that in the proof of Theorem 8.5, if A and B are isomorphic Π0
1 injection

structures, then h will still be a ∆0
2 isomorphism because we can use the 0′ oracle
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to effectively construct the lists y0 < y1 < . . . and z0 < z1 . . .. Thus we have
the following corollary.

Corollary 8.6. If A and B are isomorphic Π0
1 injection structures with only

finitely many orbits of type ω, then A and B are ∆0
2 isomorphic.

For Π0
1 injection structures with infinitely many orbits of type ω, it is not

always possible to have a ∆0
2 isomorphism.

Proposition 8.7. For any infinite, co-infinite Σ0
2 set C, there is a Π0

1 injection
structure A = (A, f) consisting of infinitely many orbits of type ω and such that
C ≤T Ran(f).

Proof. Let C be a Σ0
2 set, which is both infinite and co-infinite. Let R be a

computable relation so that for all n, n ∈ C if and only if {t : R(n, t)} is finite.
We construct A so that for each n, 2(2n+ 1) belongs to the nth orbit and will
be the first element of its orbit if and only if n /∈ C. At each stage s of the
construction, every orbit will begin with an odd number, but this odd number
will be deleted from A whenever a new t is found so that R(n, t). Thus if n ∈ C,
then 2(2n+1) = f(a) for some fixed odd number a. If n /∈ C, then every a such
that f(a) = 2(2n + 1) at some stage s is eventually removed from A, so that
2(2n+ 1) /∈ Ran(f).

Here are the details of the construction. The Π0
1 set A will be defined in

stages As, so that As+1 ⊆ As and A =
⋂

sAs. The computable function f will
be defined in stages, as fs, such that (As, fs) has exactly s orbits of size s. At
stage 0, A = N and f0 is the empty function.

There are two parts to the construction at stage s+ 1. First, we add a new
orbit of size s+ 1 as follows. Select the next available odd number 2a+ 1, and
let fs+1(2a+ 1) = 2(2(s+ 1) + 1), and fs+1(2i(2(s+ 1) + 1) = 2i+1(2(s+ 1) + 1)
for i = 1, 2, . . . , s − 1. Next, we consider for i ≤ s, whether R(i, s + 1) holds.
If it does, then we remove the initial odd number from the orbit of 2i + 1 and
replace it with the next available odd number b, so that fs+1(b) = 2(2i + 1).
Finally, we add the (s+ 1)st element 2s(2i+ 1) to the orbit of 2(2i+ 1), and let
fs+1(2s−1(2i+ 1)) = 2s(2i+ 1).

Let A = ∩sAs. Then, clearly, A is a Π0
1 set and f is a partial computable

function with domain A so that (A, f) is a Π0
1 injection structure. As indicated

above, we have n ∈ C ⇔ 2(2n+ 1) ∈ Ran(f), so C ≤T Ran(f).

Theorem 8.8. For any Σ0
1 character K, there is a Π0

1 injection structure B
with character K, with infinitely many orbits of type ω, and any finite number of
orbits of type Z, such that B is not ∆0

2 isomorphic to any Σ0
1 injection structure.

Proof. Let C be a Σ0
2 set, which is not ∆0

2, and let B0 = (B, g0) be given by
Proposition 8.7 so that Ran(g) is not ∆0

2. Now build B = (B, g) by adjoining
a natural computable structure with character K and with the desired number
of orbits of type Z. Then the range of g is the disjoint union of the range of g0

with a computable set, and is still not a ∆0
2 set. Let A = (A, f) be a computable

structure given by Proposition 2.2 so that A is isomorphic to B, but Ran(f)
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is computable. If φ were a ∆0
2 isomorphism from A onto B, then Ran(g) =

φ[Ran(f)] and is, therefore, a Σ0
2 set. However, B − Ran(g) = φ[N − Ran(f)]

and is, therefore, also a Σ0
2 set. It would then follow that Ran(g) is, in fact, a

∆0
2 set. Thus A and B cannot be ∆0

2 isomorphic.
By Theorem 7.5, any Σ0

1 structure D which is isomorphic to A is in fact ∆0
2

isomorphic to A. It follows that D cannot be ∆0
2 isomorphic to B.

Proposition 8.9. For any d.c.e. set B, there is a Π0
1 injection structure A =

(A, f) such that B is 1-1 reducible to Fin(A).

Proof. Let B = C ∩D, where C is a Π0
1 set, D is a c.e. set, and D∪C = N. Let

A = {2n + 1 : n ∈ C} ∪ {2n : n ∈ N}. For each n, start to define the orbit of
2n+1 in A by having f(2n+1) = 2(2n+1), f(2(2n+1)) = 4(2n+1), and so on,
until we see that n ∈ D at some stage s+ 1. Then let f(2s(2n+ 1)) = 2n+ 1,
and for t > s, let f(2t(2n + 1)) = 2t+1(2n + 1). It follows that for each n,
n ∈ B ⇔ 2n+ 1 ∈ Fin(A).

9 Injection Structures in the Ershov Hierarchy

In this section, we consider injection structures (A, f), where A is an infinite
n-c.e. set and f is the restriction of a partial computable function to A, which
defines an injection on A. The complexities of orbits for n-c.e. injection struc-
tures are almost the same as that of Π0

1 structures.

Lemma 9.1. Let A = (A, f) be an n-c.e. injection structure for n ≥ 2.

(a) {(k, a) : a ∈ Ran(fk)} is a Σ0
2 set, although each orbit of A is an n- c.e.

set.

(b) {(a, k) : card(Of (a)) ≥ k} is an n-c.e. set, that is, the intersection of A
with a computable set.

(c) {a : Of (a) is infinite} is the intersection of A with a Π0
1 set, and is there-

fore n-c.e. if n is even, and (n+ 1)-c.e. if n is odd.

(d) {a : Of (a) has type Z} is a Π0
3 set,

(e) {a : Of (a) has type ω} is a Σ0
3 set, and

(f) χ(A) is a Σ0
2 set.

Proof. We only consider parts (a) and (c) since all other proofs are as before.
Part (a) easily follow by writing out the definition of {(k, a) : a ∈ Ran(fk)}
and using the fact that A is a ∆0

2 set. Note that since f is partial computable,
Of (a) = {x : (∃k)((fk(a) = x) ∨ (∃m)(fm(x) = a} is a c.e. set. Thus OA(a) =
A∩Of (a) is n-c.e. since the intersection of an n-c.e. set and a c.e. set is n-c.e.
set. The result in (c) follows in a similar manner where we use the fact that
for even n, the family of n-c.e. sets is closed under intersection with Π0

1 sets,
while for odd n, the intersection of a Π0

1 set with an n-c.e. set is an (n+ 1)-c.e.
set.
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Lemma 9.2. For any n ≥ 1 and any infinite n-c.e. set B, there is a Π0
1 set A

and a (total) computable 1-1 function φ mapping A onto B.

Proof. The proof is by induction on n. Certainly, for n = 1, every infinite c.e. set
has a 1-1 enumeration. Now, let B be an infinite (n+ 1)-c.e. set. By induction,
there are a Π0

1 set A1 and a computable 1-1 function φ1 mapping A1 onto B1.
There are two cases. If n is odd, then B = B1 ∪ E, where E is a c.e. set, and
we may assume that E is infinite and disjoint from B1. Let φ2 be a computable
1-1 enumeration of E. Now, let A = {2n : n ∈ A1} ∪ {2n + 1 : n ∈ N}, and
define φ(2n) = φ1(n) and φ(2n + 1) = φ2(n). Note that φ is a computable 1-1
function.

If n is even, then B = B1 ∩ A2, where A2 is a Π0
1 subset of B1. Now let

A = {n : φ1(n) ∈ A2}. Then φ1 maps A onto B, as desired.

This lemma leads to the following proposition.

Proposition 9.3. For every n-c.e. injection structure A, there exist a Π0
1 struc-

ture B and a computable injection φ : N→ N that maps B onto A.

Proof. Let A = (A, f) be an n-c.e. structure, so that f is a partial computable
function such that the restriction of f to A is an injection. Let B be a Π0

1

set, and let φ be a computable 1-1 function mapping B onto A. Then define
B = (B, g) by letting g(b) = φ−1(f(φ(b))). Observe that for b ∈ B, φ(b) ∈ A,
so f(φ(b)) ∈ A, and thus φ−1(f(φ(b))) is defined and can be computed, since
φ is a computable 1-1 function. Thus, the mapping φ : B → A is the desired
computable isomorphism. The inverse mapping φ−1 maps A onto B and is
partial computable with domain A.

Combining Proposition 9.3 with Corollary 8.6, we obtain the following result.

Corollary 9.4. If A and B are isomorphic n-c.e. injection structures with only
finitely many orbits of type ω, then A and B are ∆0

2 isomorphic.

Theorem 9.5. Let K be a Σ0
2 character.

(a) There is a 2-c.e. injection f such that (N, f) has character K and in-
finitely many infinite orbits.

(b) If K has an s1-function, then there is a 2-c.e. injection f such that (N, f)
has character K and no infinite orbits.

Proof. (a) By a previous result from [2], there exists a computable equivalence
structure B = (N, E) with character K and with infinitely many infinite equiv-
alence classes. Define the injection structure A = (N, f) as follows. At each
stage s, there will be a finite injection fs : {0, 1, . . . , s} → {0, 1, . . . , s} form-
ing a collection of finite orbits. In each orbit, the largest element will have a
value fs(m), which has never changed since being defined. At stage 0, we have
f0(0) = 0. At stage s + 1, there are two cases. If E(i, s + 1) holds for some
i ≤ s, we insert s+ 1 into the orbit of i by taking the largest element m of this
orbit and making fs+1(m) = s+ 1 and fs+1(s+ 1) = fs(m). If E(i, s+ 1) does
not hold for all i ≤ s, let fs+1(s+ 1) = s+ 1.
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It is clear that if the equivalence class of a in B is of finite size k, then O(a)
in A will also have size k.

If the equivalence class of a is infinite, then, by the construction, if [a] =
{a0 < a1 < . . . }, then in A, f(ai) = ai+1 for all i, so that O(a) is infinite.

(b) In this case, B = (N, E) with no infinite orbits exists, so the construction
will produce A with character K and no infinite orbits.
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