
Sub-computable Bounded Pseudo-Randomness

Douglas Cenzer1 and Jeffrey B. Remmel2

1 Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville,
Florida 32611 cenzer@matℎ.ufl.edu,

2 Department of Mathematics, University of California, San Diego, La Jolla, CA
92093-0112 jremmel@ucsd.edu

Abstract. This paper defines a new notion bounded pseudo-randomness
for certain classes of subcomputable functions where one does not have
access to a universal machine for that class within the class. In particular,
we define such a version of randomness the class of primitive recursive
function and certain subclass of PSPACE functions. Our new notion of
bounded pseudo-randomness is robust in that there are equivalent for-
mulations in terms of (1) Martin-Löf tests, (2) Kolmogorov complexity,
and (3) martingales.
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1 Introduction

The study of algorithmic randomness has flourished over the past century. The
main topic of study in this paper is the randomness of a single real num-
ber which, for our purposes, can be thought of as an infinite sequence X =
(X(0), X(1), . . . ) from {0, 1}!. Many interesting notions of algorithmic ran-
domness for real numbers have been investigated in recent years. The most
well-studied notion, Martin-Löf randomness [31] or 1-randomness, is usually de-
fined in terms of measure. A real X is 1-random if it is typical, that is, X
does not belong to any effective set of measure zero in the sense of Martin-Löf
[31]. A second definition of 1-randomness may be given in terms of informa-
tion content. X is 1-random if it is incompressible, that is, the initial segments
(X(0), X(1), . . . , X(n)) have high Kolmogorov [23] or Levin-Chaitin [10, 25] com-
plexity. A third definition may be given in terms of martingales. X is 1-random
if it is unpredictable, that is, there is no effective martingale for which one can
can obtain unbounded capital by betting on the values of X [36]. These three
versions have been shown by Schnorr [33] to be equivalent. This demonstrates
the robustness of the concept of Martin-Löf randomness. Many other notions
of algorithmic randomness have been studied and in most cases, formulations
are only given for one or perhaps two versions. For a thorough study of the
area of algorithmic randomness, the reader is directed to three excellent recently
published books: Downey and Hirschfeldt [18], Nies [32] and Li and Vitanyi [27].

In this paper we present a notion of bounded pseudo-randomness for certain
classes of subcomputable functions where one does not have access to a universal
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machine for that class within the class. We will first state our definitions for the
class of primitive recursive functions and define a new notion of bounded primitive
recursive pseudo-randomness (BP randomness). We shall show that there are
three equivalent definitions of BP randomness, one in in terms of measure, one
in terms of compressibility, and and one in terms of martingales. For measure, a
bounded primitive recursive test will be a primitive recursive sequence of clopen
sets (Un)n≥0 such that Un has measure ≤ 2−n and we define X to be BP random
if it does not belong to ∩n≥0Un for any such test. For compressibility, we say that
X is BP compressed by primitive recursive machine M if there is a primitive
recursive function f such that CM (X ↾ f(c)) ≤ f(c) − c for all c where CM
is a primitive recursive analogue Kolomogrov complexity. We will show that X
is BP random if and only if X is not compressible by any primitive recursive
machine. We will also consider process machines and the resulting notion of
process complexity as studied recently by Day [13].

For martingales, we say a primitive recursive martingale d succeeds on a
sequenceX if there is a primitive recursive function f such that d(X ↾ f(n)) ≥ 2n

for each n. Thus d makes us rich betting on X and f tells us how fast this
happens. We will show that X BP random if and only if there is no primitive
recursive martingale which succeeds on X.

These definitions can easily be adapted to define a notion of bounded pseudo-
randomness for other classes of sub-computable functions. As an example, we
will define a notion of bounded PSPACE pseudo-randomness.

The term bounded randomess or finite randomness are sometimes used to
refer to versions of randomness given by tests in which the c.e. open sets are in
fact clopen. Thus our notion of BP randomness is “bounded” in this sense. The
term “finite” comes from the fact that any clopen set U is the finite union of
intervals U = [�1]∪ ⋅ ⋅ ⋅ ∪ [�k]. Weak randomness, or Kurtz randomness [24] falls
into this category. A real X is Kurtz random if it does not belong to any �0

1class
Q of measure zero. But any �0

1class may be effectively expressed as a decreasing
intersection of clopen sets Q = ∩nQn where the clopen sets Qn are unions of
intervals of length n. If �(Q) = 0, it is easy to find a subsequence Ui = Qni

with
�(Ui) ≤ 2−i and thus (Un)n≥0 is a bounded Martin-Löf test. Another special
type of bounded randomness was recently studied by Brodhead, Downey and
Ng [6].

As shown by Wang [39], Kurtz random reals need not be stochastic in the
sense of Church. For example, it need not be the case that the relative number
of occurrences of 0’s and 1’s in a Kurtz random sequence X tends to 1 in the
limit. In such a situation, one often uses the term pseudo-random instead of
randomness. Our BP random reals are pseudo-random in this sense. That is, we
will construct a recursive real which is BP random but not stochastic. However,
we will show that BP random sets satisfy only a weak version of the stochastic
property.

A lot of work has been done on various notions of resource-bounded random-
ness. One of the first approaches to resource-bounded randomness was via the
stochastic property of typical reals [12]. It is expected that for a random real,
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the relative density of the occurrences of 0 and of 1 should be equal in the limit.
We identify a set A of natural numbers with its characteristic function and in

those terms we expect that limn
card(A∩n)

n = 1
2 . Levin [25] defined a notion of

primitive randomness for a set A to mean that for every primitive recursive set
B, A∩B is stochastic relative to B and constructed a recursive set that is prim-
itive random. Di Paola [14] studied similar notions of randomness in the Kalmar
hierarchy of elementary functions. Wilber [40] defined a set A to be P -random
if, for every PTIME set B, A and B agree on a set of density 1

2 and constructed
an exponential time computable P -random set.

The literature of computational complexity contains many papers on ran-
dom number generators and cryptography which examine various notions of
pseudorandomness. For example, Blum and Micali [4] gave a weak definition of
pseudorandom sequences in which a randomly generated sequence is said to be
pseudorandom if it meets all PTIME statistical tests. Ko [22] gives definitions
of randomness with respect to polynomial time and space complexity which are
in the tradition of algorithmic randomness as established by Levin, Martin-Löf
and Chaitin. One of the notions of Ko has equivalent formulations in terms of
tests and in terms of compressibility and has bounds on the compressibility that
are similar in nature to those presented in this paper. Ko’s definitions are based
on computation from a universal machine M and in particular state that X is
(PSPACE) compressed with polynomial bounding function f if, for every k,
there exists infinitely many n such that KM (X ↾ n) < n−(log n)k. In conatrast,
our definitions are not based on the existence of a universal machine.

Lutz [28] defined an important notion of resource-bounded randomness in
terms of martingales. Here a real is say PSPACE random if there is no PSPACE
martingale which succeeds on X. One can also say that a set X of reals has
PSPACE measure one if there is no PSPACE martingale which succeeds on ev-
ery element of X . Then almost every EXPSPACE real is random and this can
be used to study properties of EXPSPACE reals by examining whether the set
of EXPSPACE reals with the property has measure one. Buhrman and Long-
pre gave a rather complicated equivalent formulation of PSPACE randomness
in terms of compressibility. Lutz’s notion of complexity theoretic randomness
concept has had great impact on complexity theory [1–3]. Shen et al [11] have
recently studied on-line complexity and randomness.

There are several important properties of Martin-Löf randomn reals that are
regarded as fundamental such as Ville’s theorem which states that any effective
subsequence of a random sequence is also random. We will prove an analogue of
Ville’s theorem for BP randomness. Another fundamental property is random
reals is van Lambalgen’s theorem, which states that the join A⊕B of two random
sets is random iff A is random relative to B and B is random. We define a notion
of relative BP randomness which still has three equivalent formulations, and
prove an analogue of van Lambalgen’s theorem for this notion. Our formulation
is a type of truth-table reducibility similar to that of Miyabe [30].

For the case of bounded PSPACE randomness, we give two different notions,
one which has equivalent versions for compression and for measure and the other
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of which has equivalent versions for measure and for martingales. These notions
are actually a hybrid of polynomial time and space.

We note that we get a notion of bounded computable pseudo-randomness by
replacing primitive recursive functions by computable recursive functions in our
definitions. In such a case, our definition are equivalent to Kurtz randomness
which has nice equivalent formulations in all three settings. This was previously
shown by Wang [39] for the martingale definition and by Downey, Griiffiths and
Reid [17] for the compression definition. We give relativized versions of these
definitions as well.

Jockusch [20] showed that Kurtz random sets are immune, that is, they do
not have infinite computable subsets. We will consider notions of immunity for
oue notion of bounded psuedo-random sets.

We will normally work with the usual alphabet � = {0, 1} and the corre-
sponding set {0, 1}∗ of finite strings and the Cantor space {0, 1}! of infinite
sequences, but the results hold for any finite alphabet.

The outline of this paper is as follows. In section two, we study BP random-
ness and show the equivalence of our three versions. We construct a computable
real which is BP random. We prove an analogue of Ville’s theorem for primitive
recursive subsequences of BP random reals. We will also define a notion of rela-
tive randomness and prove an analogue of van Lambalgen’s theorem. In section
three, we briefly consider bounded computable randomness and observe that this
is simply Kurtz randomness. There are equivalent definitions here of all three
types. Finally, in section four, we consider two notions of bounded PSPACE
pseudorandomness and give two equivalent defintions for each notion.

2 Bounded Primitive Recursive Randomness

In this section, we will define the three notions of primitive recursive randomness,
Kolomogorov BP randomness, Martin-Löf BP randomness, and martingale BP
randomness and show their equivalence. Hence, we will say that that real X
is BP random if it statisfies one of these three definitions. We will then prove
analogues of Ville’s Theorem and van Lambalgen’s Theorem of BP random reals.

Let Prim be the family of primitive recursive functions M : �∗ → �∗, where
� is a finite alphabet (traditionally {0, 1}). Note that we can code finite strings
as numbers in order to define these primitive recursive functions and that the
coding and decoding functions are all primitive recursive.

Martin-Löf BP randomness
In what follows, the code c(�) of a finite sequence � = �1 . . . �n ∈ {0, 1}∗ is

just the natural number whose binary expansion is 1�1 . . . �n. Given a finite set
S = {�(1), . . . , �(k)} of strings in {0, 1}∗ such that c(�(1)) < ⋅ ⋅ ⋅ < c(�(k)), the
code C(S) of S is defined be the natural number n whose ternary expansion is
2c(�(1))2 . . . 2c(�(1)). We let 0 be the code of the empty set. We say a sequence
{Un : n ∈ ℕ} of clopen sets is a primitive recursive sequence if there is a recursive
function f such that for all n, f(n) is a code of finite set {�1,n, . . . , �k(n),n} such
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that Un = [�1,n]∪⋅ ⋅ ⋅∪ [�k(n),n]. Here for any � ∈ {0, 1}∗, [�] is just the set of all
� ∈ {0, 1}∗ that extend or are equal �. Since we can recover {�1,n, . . . , �k(n),n}
from f(n) in polynomial time, it is easy to see that given any primite recursive
sequence {Un : n ∈ ℕ}, we can produce a primitive recursive function g such that
g(n) is a code of finite set {�1,n, . . . , �r(n),n} such that Un = [�1,n]∪ ⋅ ⋅ ⋅ ∪ [�r(n),n]
and ∣�1,n∣ = ⋅ ⋅ ⋅ = ∣�r(n),n∣ = ℓ(n) where r and ℓ are also primitive recursive
function.

We define a primitive recursive test to be a primitive recursive sequence
(Un)n≥0 of clopen sets such that, for each n, �(Un) < 2−n. Without loss of
generality, we may assume that there is a primitive recursive function g such that
g(n) is a code of finite set {�1,n, . . . , �r(n),n} such that Un = [�1,n]∪ ⋅ ⋅ ⋅ ∪ [�r(n),n]
and ∣�1,n∣ = ⋅ ⋅ ⋅ = ∣�r(n),n∣ = ℓ(n) where r and ℓ are also primitive recursive
functions. It follows that there is a primitive recursive function m such that
m(n) codes the measure �(Un) as a dyadic rational. Since the measures �(Un)
may be computed, one could equivalently consider a primitive recursive sequence
{Vn : n ∈ ℕ} such that limn�(Vn) = 0 and there is a primitive recursive function
f such that, for each p, �(Vf(p)) ≤ 2−p.

We observe here that ∩nUn will be a �0
1 class of measure 0 so that any

primitive recursive test is also a Kurtz test. Moroever, since the sequence of
measures �(Un) will be primitive recursive, it follows that this is also a Schnorr
test.

We say an infinite sequence X ∈ {0, 1}! is Martin-Löf BP random if X passes
every primitive recursive test, that is, for every primitive recursive test (Un)n≥0,
there is some n such that X /∈ Un.

By the remarks above, every weakly random real is BP Martin-Löf random.

Proposition 1. X is BP random if and only if there is no primitive recursive
sequence ⟨Un⟩ of clopen sets with �(Un) = 2−n such that X ∈

∩
n Un.

Proof. The if direction is immediate. Now suppose that there is a primitive
recursive sequence (Vn)n≥0 such that �(Vn) ≤ 2−n and X ∈

∩
n Vn. Let Vn =∪

�inGn
[�] whereGn ⊆ {0, 1}ℓ(n) for some primitive recursive function ℓ(n) where

ℓ(n) ≥ n for all n ≥ 0. Then �(Vn) = card(Gn)
2k(n) ≤ 2−k(n). Now define Hn to be

Gn together with 2k(n)−n − card(Gn) additional strings of length k(n) and let
Un =

∪
�∈Hn

[� ]. Then for each n, X ∈ Un and �(Un) = 2−n.

We will also need the notion of a weak primitive recursive test. A weak
primitive recursive test is a primitive recursive sequence (Un)n≥0 where there
are primitive recursive functions k and ℓ such that for each n, Un = [�1,n] ∪
[�2,n] ⋅ ⋅ ⋅ ∪ [�k(n,n] where ∣�i,n∣ = ℓ(n) for all i and �(Un+1 ∩ [� ]) ≤ 1

2�([� ]).
We can convert each primitive recursive test into a weak primitive recursive

test as follows. First, we may assume that Un+1 ⊆ Un for each n, since the
sequence given by Wn =

∩
i≤n Ui is also a primitive recursive test with �(Wn) ≤

�(Un) ≤ 2−n. Next suppose Un = [�1,n]∪⋅ ⋅ ⋅∪ [�k(n),n] where there is a primitive
recursive function ℓ such that ∣�i,n∣ = ℓ(n) for 1 ≤ i ≤ k(n). Thus each interval
[�i,n] has measure exactly 2−ℓ(n). Now the clopen set Uℓ(n)+1 has a total measure
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< 2−ℓ(n)−1, so that the relative measure of Uℓ(n)+1 ∩ [�i] must be ≤ 1
2 . Then we

can define a primitive recursive weak test (Vn)n≥0 as follows. Let ℎ(0) = 0 and
let V0 = U0. Then let ℎ(1) = ℓ(0) + 1 and V1 = Uℎ(1). In general for n > 1, we
let ℎ(n+ 1) = ℓ(ℎ(n)) + 1 and let Vn+1 = Uℎ(n+1). Then the sequence V0, V1, . . .
will be a weak primitive recursive test. Since the sequence {Vn : n ∈ ℕ} is a
subsequence of the original sequence {Um : m ∈ ℕ}, it follows that

∩
n Vn =∩

n Un, so that X passes the weak test {Vn : n ∈ ℕ} if and only if it passed the
original test.

It follows that a real X passes every primitive recursive test, then it certainly
it passes every weak primitive recursive test. Conversely, if X fails some primitive
recursive test, then the argument above shows that it also fails some weak test.
Hence we conclude the following.

Proposition 2. X is Martin-Löf primitive recursively random if and only if it
passes every weak primitive recursive test. ⊓⊔

Kolomogorov BP random.

Let CM (�) be the length ∣�∣ of the shortest string � such that M(�) = � ,
that is, the length of the shortest M -description of � . Notice that we are using
plain and not prefix-free complexity. We say that X is primitive recursively
compressed by M if there exist primitive recursive functions M and f such
that, for every c, CM (X ↾ f(c)) ≤ f(c) − c. Our definition X being primitive
recursively compressed is a natural analogue for primitive recursive functions
of the usual definition of Kolmogorov randomness, which says that, for every c
there exists n such that CM (X ↾ n) ≤ n−c. Of course, one defines Kolomogorov
randomness in terms of prefix-free complexity KM since there are no infinite
Kolmogorov random sequences for plain complexity. We use plain complexity
here since every primitive recursive function is total so that there are no prefix-
free machines. Later, we will consider a version of prefix-free complexity for
primitive recursive functions.

We say that infinite sequence X ∈ {0, 1}! is Kolmogorov BP random if it
cannot be primitive recursively compressed by any primitive recursive machine
M .

We also want to consider so-called process machines and the resulting notion
of process complexity. Let M be a partial computable function on {0, 1}∗. M
is said to be a process machine if, whenvever � ⪯ � ′ and �, � ′ ∈ Dom(M),
then M(�) ⪯ M(� ′). M is a strict process machine if, whenever � ≺ � ′ and
� ′ ∈ Dom(M), then � ∈ Dom(M) and M(�) ⪯ M(� ′), that is, M is extension-
preserving. Finally, a strict process machine M is a quick process machine if M
is total and there is an order function ℎ such that, for all � ∈ {0, 1}∗, ∣M(�)∣ ≥
ℎ(∣� ∣). We will say that a strict process machine M is a quick BP process machine
if M is primitive recursive and there is a primitive recursive order function ℎ
such that, for all � ∈ {0, 1}∗, ∣M(�)∣ ≥ ℎ(∣� ∣).

The definition of a process machine is due to Levin and Zonkin [26] and a
similar notion was defined by Schnorr [34]. Day [13] gives characterizatiions of
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computable randomness, Schnorr randomness, and weak randomness using quick
process machines. We will show that X is Kolmogrov BP random if and only if
X cannot be primitive recursively compressed by a quick BP process machine.

Martingale BP random.
A primitive recursive martingale d is a primitive recursive function

d : {0, 1}∗ → ℚ∩[0,∞] such that for all � ∈ {0, 1}∗, d(�) =
∑
a∈{0,1} d(�⌢a)/card(�).

Of course, any primitive recursive martingale is also computable martingale. We
say that the martingale d succeeds primitive recursively on X if there is a prim-
itive recursive function f such that, for all n, d(X ↾ f(n)) ≥ 2n. (Of course, we
could replace 2n here with any primitive recursive function which is increasing
to infinity.) In general, a martingale d is said to succeed on X if lim supn d(X ↾
n) = ∞, that is, for every n, there exists m such that d(X ↾ m) ≥ 2n. Thus
our definition is an effectivization of the usual definition where there is primitive
recursive function f which witness that d will return 2n at some point for every
n. We say that X is martingale BP random if there is no primitive recursive
martingale which succeeds primitive recursively on X. If X is not BP martin-
gale random, then there is a computable martingale which succeeds primitive
recursively on X and thus certainly succeeds on X, so that X is not computably
random. Hence every computably random real is also a martingale BP random
real.

Our definition of martingale BP random real has the following equivalent
formulations.

Proposition 3. The following are equivalent:

(1) X is BP martingale random
(2) There do not exists a primitive recursive martingale d and a primitive re-

cursive function f such that, for every n, there exists m ≤ f(n) such that
d(X ↾ m) ≥ 2n.

(3) There do not exist a primitive recursive martingale d and primitve recursive
function f such that d(X ↾ m) ≥ 2n for all m ≥ f(n).

Proof. Our proof uses the idea of a savings account as formulated in [18, 32].
That is, if we have a martingale and function as in (2), then we can modify the
martingale so that whenever d(�) ≥ 2n+1 but d(�) < 2n+1 for all proper initial
seqments of � , then we put aside 2n and only bet with the other half of our
capital. This means that we can never drop below 2n in the future. Thus if we
use the function f ′(n) = f(n+ 1), we will satisfy condition (3) and hence satisfy
(1) as well.

Our main result in this section is to show the three versions of BP random
described above are equivalent.

Theorem 1. The following statements are equivalent for X ∈ �N :

(1) X is Martin-Löf BP random.
(2) X is Kolmogorov BP random.
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(3) X is quick process BP random.

Proof. The implication from (2) to (3) is immediate.
(1) implies (2): Suppose X is not Kolmogorov BP random. Then there exist

primitive recursive M and f such that, for every c, CM (X ↾ f(c)) ≤ f(c)− c−1.
Let Uc = {X : CM (X ↾ f(c)) ≤ f(c) − c − 1}. This is certainly a uniformly

primitive recursive sequence of clopen sets. That is, given c, compute M(�) for
all � with ∣�∣ ≤ f(c)− c− 1 and let

Gc = {M(�) : � ∈ {0, 1}≤f(c)−c−1} ∩ {0, 1}f(c)

and Uc =
∪
�∈Gc

[� ]. Clearly, (Uc)c≥0 is a primitive recursive sequence of clopen
sets.

We claim that �(Uc) ≤ 2−c. That is, fix c and let Uc = [�1] ∪ [�2] ∪ ⋅ ⋅ ⋅ ∪ [�k],
for distinct �i ∈ {0, 1}f(c). Thus there exist �1, . . . , �k such that, for i = 1, . . . , k,
∣�i∣ ≤ f(c) − c − 1 and such that M(�i) = �i. Since there are only 2f(c)−c − 1
strings of length ≤ f(c) − c − 1, it follows that k ≤ 2f(c)−c. Since for each i,
�([�i]) = 2−f(c), it follows that

�(Uc) = k ⋅ 2−f(c) ≤ 2f(c)−c ⋅ 2−f(c) = 2−c.

By assumption, X ∈ Uc for all c ≥ 0 so that X is not Martin-Löf BP random.

(3) implies (1): Suppose that X is not Martin-Löf BP random. Thus there
exist primitive recursive functions g, k, and f so that for all c ≥ 0, g(c) is a code
of a finite set Gc ⊆ {0, 1}f(c) with cardinality k(c), such that if Uc = [Gc], then
�(Uc) ≤ 2−c and X ∈

∩
c>0 Uc. Furthermore, we may assume by Proposition 5

that this is a weak test, so that, for each � ∈ Gc, �([�] ∩ Uc=1) < 1
2 . We may

assume without loss of generality that for each c, f(c+ 1)− (c+ 1) > f(c)− c.
This is because we may always break each [� ] into [�⌢0]∪ [�⌢1] to increase f(c)
by one, if necessary.

We will define a quick process BP machine M such that CM (X ↾ f(c) ≤
f(c)− c for all c in stages as follows.

At stage one, we have �(U1) ≤ 1
2 and , since �(U1) = k(1) ⋅ 2−f(1)), it follows

that k(1) ≤ 2f(1)−1. Now let G1 = {�1, . . . , �k(1), take the lexicographically first
k strings �1,c, . . . , �k(c),c of length f(1) − 1 and define M(�i,c) = �i,c. To make
M a total function, the remaining strings of length f(1)− 1 are all be mapped
to 0f(1) and all strings of length < f(1)− 1 are mapped to ∅.

By assumption X ∈ U1, so that X ↾ f(1) = �i = M(�i) for some iand it
follows that CM (X ↾ f(1) = f(1) − 1. Observe that for all strings � of length
< f(1) − 1, M(�)∣ = 0 and for all strings � of length f(1) − 1, M(�)∣ = f(1).
Thus we define ℎ(m) = 0 for m < f(1)− 1 and we define ℎ(f(1)− 1) = f(1).

After stage c, we have defined M(�) for all strings � of length ≤ f(c)− c so
that M is extension-preserving and such that, for each b ≤ c and each � ∈ Gb,
there exists � of length f(b) − b with M(�) = � . Furthermore, for any �, if
f(b− 1)− b+ 1 ≤ ∣�∣ < f(b)− b, then ∣M(�)∣ = f(b) and also if ∣�∣ = f(c)− c,
then ∣M(�)∣ = f(c).
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At stage c + 1, we extend M to all strings � with f(c) − c < ∣�∣ ≤ f(c +
1) − c − 1 as follows. For each � of length f(c) − c we work on the extensions
of � independently as follows. We first let M(�) = M(�) for any extension of �
of length < f(c+ 1)− c− 1.If M(�) /∈ GC , then M(�) = M(�)⌢0f(c+1)−1−f(c).
Next we let H� = {� ∈ {0, 1}f(c+1)−1−f(c) : M(�)⌢� ∈ Gc+1}. Then �(H�) ≤ 1

2 .
Thus we may proceed as at stage one to define M�(�) forall strings � of length
≤ f(c+ 1)− 1− f(c). Finally let M(�⌢�) = M(�)⌢M�(�). It is clear that M
continues to be extension-preserving. For any � ∈ Gc+1, we have � = M(�)⌢�
for some � ∈ H� and it follows that � = M�(� for some � of length f(c)− c, so
that M(�⌢�) = � . Finally, we have for any �, if f(c)−c ≤ ∣�∣ < f(c+1)−c−1,
then ∣M(�)∣ = f(c) and also if ∣�∣ = f(c+ 1)− c− 1, then ∣M(�)∣ = f(c+ 1).

To see that M is a primitive recursive function, observe that since f(c+ 1)−
c − 1 > f(c) − c > 0 for all c, we have f(c) − c > c. Thus, given a string � of
length m, we need only check c < m to find the least c such that m ≤ f(c)− c.
Then we simply run the process above for c steps to compute M(�).

To verify that M is a quick process machine, define the function ℎ as follows
so that ∣M(�)∣ ≥ ℎ(∣� ∣) for all � . First let ℎ1(m) be the least c ≤ m such that
m < f(c+ 1)− c− 1 and then let ℎ(m) = f(ℎ1(m).

By assumption X ∈ Uc for every c, so that X ↾ f(c) = � for some tau ∈ Gc
and hence M(�) = � where ∣�∣ = f(c) − c. It follows that CM (X ↾ f(c)) =
f(c)− c.

Hence, X is not quick process BP random.

Theorem 2. The following statements are equivalent for X ∈ �N :

(1) X is Martin-Löf BP random.
(2) X is martingale BP random.

Proof. (1) implies (2): Suppose that X is not martingale BP random. Then
there is a primitive recursive martingale d which succeeds primitive recursively
on X, so that there is a primitive recursive function f such that, for all n,
d(X ↾ f(n)) ≥ 2n. Let Gn = {� ∈ {0, 1}f(n) : d(�) ≥ 2n} and let Un =

∪
�∈Gn

[� ].
Since d and f are primitive recursive, it follows that the sequence (Un)n≥0 is a
primitive recursive sequence of clopen sets. Certainly X ∈ ∩nUn.

Recall that for martingales that
∑
∣� ∣=m d(�) ≤ 2m. It follows that there are

at most 2f(n)−n strings � ∈ {0, 1}f(n) such that d(�) ≥ 2n. For each such � ,
�([� ]) = 2−f(n). Thus the measure �(Un) ≤ 2f(n)−n ⋅ 2−f(n) = 2−n.

Thus (Un)n≥0 is a primitive recursive test so that X is not BP Martin-Löf
random.

(2) implies (1): Suppose X is not BP Martin-Löf random. Then X ∈
∩
n Un,

where (Un)n≥0 is a weak primitive recursive test. Let f(n) be the length of the
strings �i,n such that Un = [�1,n] ∪ ⋅ ⋅ ⋅ ∪ [�k(n),n].

We recursively define our martingale d as follows. For n = 1, and given

U1 = [�1,1]∪⋅ ⋅ ⋅∪ [�k(1),1], we let d(�i,1) = 2f(1)

k for i = 1, . . . , k. If � ∈ {0, 1}f(1)−
{�1,1, . . . , �k(1),1}, then we let d(�) = 0. Since �(U1) ≤ 1

2 , it follows that k ≤
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2f(1)−1 and therefore d(�i,1) ≥ 2 for each i. Moroever,
∑
�∈{0,1}f(1) d(�) =

k ⋅ 2f(1)

k = 2f(1). Now work backwards using the martingale equation d(�) =
1
2 (d(�⌢0)+d(�⌢1) to define d(�) for all � of length ≤ f(1). It follows by induc-
tion that for all j ≤ f(1),

∑
�∈{0,1}j d(�) = 2j so that, in particular, d(∅) = 1.

Now suppose that we have defined d(�) for all � with ∣� ∣ ≤ f(n) such that,
for � ∈ Gn, d(�) ≥ 2n. Then we will show how to extend d to strings of length
≤ f(n + 1). For � of length f(n), we will define d(�⌢�) for all � of length
f(n + 1) − f(n). If d(�) = 0, then we simply let d(�⌢�) = 0 for all � . Now fix
� ∈ Gn with d(�) ≥ 2n and consider G = {� : �⌢� ∈ Gn+1}.

Since we have begun with a weak test, it follows that �([G]) ≤ 1
2 . Thus we

may proceed as in the first case where n = 1 to define a martingale m such
that m(�) = 1 and m(�) ≥ 2 for all � ∈ G. Now extend the definition of d to
the strings below � by defining d(�⌢�) = d(�) ⋅m(�). Since d(�) ≥ 2n and, for
� ∈ G, m(�) ≥ 2, it follows that for �⌢� ∈ Gn+1, d(�⌢�) ≥ 2n+1. It is easy to
see that this extension obeys the martingale equality, since, for any � ,

d(�⌢�) = d(�)⋅m(�) = d(�)⋅1
2

(m(�⌢0)+m(�⌢1)) =
1

2
⋅(d(��⌢0)+d(�⌢�⌢1)).

Since X ∈ ∩nUn, it follows that d(X ↾ f(n)) ≥ 2n for each n and hence d
succeeds primitive recursively on X.

It is clear that from a given string �, this defines a primitive recursive pro-
cedure to compute d(�). The first step is to compute f(n) for n ≤ ∣�∣ until we
find n so that ∣�∣ ≤ f(n). Then we look for an extension � of � of length f(n).
If there is none, then d(�) = 0. If there is one, then we follow the procedure
outlined above to compute d(� ↾ f(i)) for i ≤ n, and then d(�), and finally we
backtrack using the martingale inequality to compute d(�) from d(�). Thus d is
a primitive recursive martingale so that X is not BP martingale random.

Given Theorem 1, we define an X ∈ {0, 1}! to be BP random if and only
if X is Martin-Löf BP random. Since every BP test is also a Kurtz test and a
computable test, it follows that in fact all Kurtz random and all computably
random reals are BP random.

It is clear that no primitive recursive set can be BP random. It was shown by
Jockusch [20] that Kurtz random sets are immune, that is, they do not include
any c.e. subsets. Here is a version of that result for BP randomness.

Proposition 4. If A is BP random, then for any increasing primitive recursive
function f , A does not contain the range of f .

Proof. Suppose for the contrapositive that A contains the range of f . For each
n, let Gn = {� ∈ {0, 1}f(n) : (∀i < n)(�(f(i)) = 1)}. Then let Un =

∪
�∈Gn

[� ].
It is clear that �([Un]) = 2−n so that (Un)n≥0 is a primitive recursive test. But
A belongs to each Un, so that A is not BP random.

Theorem 3. There is a recursive real which is BP random.
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Proof. Let (ge, ke, ℓe)e≥0 enumerate all triples of primitive recursive functions.
We want to construct a recursive real X = (X(1), X(2), . . .) such that X passes
every primitive recursive test. Thus we need on consider those e such for all
n, ge(n) is the code of a finite set of strings {�1,n, . . . , �ke(n),n} such that (a)

U
(e)
n = [�1,n]∪⋅ ⋅ ⋅∪[�ke(n),n] is a clopen set with measure≤ 2−n, (b) ∣�i,n∣ = ℓe(n)

for all i ≤ k(n), and (c) Un+1 ⊆ Un for all n.

Then we can construct X in stages.

Stage 0. Compute g0(1), k0(1), and ℓ0(1). If g0(1) is the code of a finite set
of strings {�1,1, . . . , �k0(1),1} such that U1 = [�1,1]∪ ⋅ ⋅ ⋅∪ [�k0(1),1] is a clopen set

with measure ≤ 2−1 and ∣�i,1∣ = ℓ0(1) for all i ≤ k0(1), then let � ∈ {0, 1}ℓ0(1)
be the lexicographically least string of length ℓ0(1) such that � ∕∈ U1 and let
(X(1), . . . X(ℓ0(1)) = � and r(0) = ℓ0(1). Otherwise, let r(0) = 1 and X(1) = 0.

Stage s+1. Assume that we have defined r(0) < . . . < r(s) and
(X(1), . . . , X(r(s)) such that for all i ≤ s, either
(I) it is the not the case that gi(r(i)) is the code of a finite set of strings
{�1,i, . . . , �ki(i),i} such that Ui = [�1,i] ∪ ⋅ ⋅ ⋅ ∪ [�ki(i),i] is a clopen set with mea-
sure ≤ 2−i and ∣�i,1∣ = ℓi(i) for all i ≤ ki(i) or
(II) gi(r(i)) is the code of a finite set of strings or {�1,i, . . . , �ki(i),1} such that
Ui = [�1,i] ∪ ⋅ ⋅ ⋅ ∪ [�ki(i),i] is a clopen set with measure ≤ 2−i and ∣�i,1∣ = ℓi(i)
for all i ≤ ki(i) and (X(0), . . . , X(r(i))) ∕∈ Ui.

First suppose that gs+1(2r(s)) is the code of a finite set of strings
{�1,s+1, . . . , �ks+1(s+1),s+1} such that Us+1 = [�1,s+1] ∪ ⋅ ⋅ ⋅ ∪ [�ks+1(s+1),s+1]

is a clopen set with measure ≤ 2−2r(s) and ∣�i,1∣ = ℓs+1(s + 1) for all i ≤
ks+1(s + 1). It follows that ℓs+1(s + 1) ≥ 2r(s). Moveover the measure of the
set of all stings of � which extend is 2−r(s). Thus there must be an exten-
sion � of (X(1), . . . , (X(r(s)) of length ℓs+1(r(s)) such that � ∕∈ Us+1. Then
let r(s + 1) = ℓs+1(r(s)) and set (X(1), . . . X(r(s + 1))) = �. Otherwise, set
r(s+ 1) = 2r(s) and set X(1), . . . X(r(s+ 1))) = (X(0), . . . , X(r(s)) ⌢ 0r(s).

It is easy to see that our construction is completely effective so that X =
(X(1), X(2), . . .) will be computable real. Now if e is such for all n, ge(n)
is the code of a finite set of strings {�1,n, . . . , �ke(n),n} such that (i) Vn =
[�1,n] ∪ ⋅ ⋅ ⋅ ∪ [�ke(n),n] is a clopen set with measure ≤ 2−n, (ii) ∣�i,n∣ = ℓe(n)
for all i ≤ k(n), and (iii) Vn+1 ⊆ Vn for all n, then our construction ensures
that (X(1), . . . , X(r(e))) ∕ inVge(r(e)). Since V0 ⊇ V1 ⊇ ⋅ ⋅ ⋅ , it follows that
X ∕∈

∩
n≥0 Vn. This X passes all primitive recursive tests and, hence, X is BP

random.

Next we show that BP random reals satisfy the following analogue of Ville’s
Theorem.
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Theorem 4. Let X ∈ {0, 1}n be BP random and let g be a primitive recursive
increasing function. Then the sequence X(g(n) : n ∈ ℕ} is also BP random.

Proof. Let Y (n) = X(g(n)) and suppose by way of contradiction that Y is not
BP random. Let (Un)n≥0 be a primitive recursive test such that Y ∈ Un for all
n. That is, suppose that there are primitive recursive functions a, b, and c such
that

1. Un+1 ⊆ Un for all n,
2. �(Un), is ≤ 2−n for all n, and
3. for all n, a(n) is the code of a finite set strings {�1,n, . . . , �b(n),n} such that
Un = [�1,n] ∪ ⋅ ⋅ ⋅ ∪ [�b(n),n] and ∣�i,n∣ = c(n) + 1 for all 1 ≤ i ≤ b(n).

For any string � = �1 . . . �g(c) of length c(n), let � (1), . . . , � (2
g(c(n))−c(n)) be a

list of the 2g(c(n))−c(n) strings such that (�
(i)
g(1)�

(i)
g(2) . . . �

(i)
g(c(n))) = � . Then define

Vn = {X : (X(g(1), . . . , X(g(c(n)))} ∈ Un} =

b(n)∪
i=1

2g(c(n))−c(n)∪
j=1

[�
(j)
i,n ].

It is easy to see that �(Un) = �(Vn) and the (Vn)n≥1 is a primitive recursive
test. But then X ∈

∩
n≥1 Vn which would violate the fact that X is BP random.

Thus Y must be BP random.

2.1 Prefix-free primitive recursive

Kolmogorov complexity and randomness are usually studied for prefix-free ma-
chines. Primitive recursive functions are total, but we can consider partial prim-
itive recursive functions by adding a new symbol, say ∞ for divergence. The
usual enumeration of strings is given by ∅, (0), (1), (01), (10), (11), . . . so that the
nth string 1⌢�n is the binary representation of n + 1. Then for any primitive
recursive function � : ℕ → ℕ, we can define a partial primitive recursive func-
tion M� :→ so that when �(m) = n + 1, M�(�m) = �n and when �(m) = 0,
M�(�m) = ∞. Then as usual M� is said to be prefix-free if whenever M�(�)
converges and � ≺ � , then M�(�) =∞.

Now define X to be prefix-free BP random if there do not exist a prefix-free
primitive recursive function M and a primitive recursive function f such that,
for all c, CM (X ↾ f(c) ≤ f(c)− c.

Proposition 5. A real X is BP random if and only if it is prefix-free BP ran-
dom.

Proof. Certainly if X is BP random then it is prefix-free BP random. Suppose
that X is not BP random. Then by Theorem 1, there is a primitive recursive
test {Uc : c ∈ ℕ} such that X ∈

∩
c Uc. We may assume (by replacing Uc with

U2c if necessary) that in fact �(Uc) ≤ 2−2c.
Define the primitive recursive function f so that Uc ⊆ {0, 1}f(c).
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Then, for each c, Uc is a clopen set with measure ≤ 2−2c of the form
Uc = [�1] ∪ [�2] ∪ ⋅ ⋅ ⋅ [�k(c)], where each �i has length f(c).
We may assume as before that, for each c, f(c+ 1)− (c+ 1) > f(c)− c.
We will now recursively define a prefix-free primitive recursive function M

such that CM (X ↾ f(c) ≤ f(c)− c for all c.
Since �(U1) = k(1) ⋅ 2−f(c)) ≤ 1

4 , it follows that k(1) ≤ 2f(1)−2. Now take
the lexicographically first k(1) strings �1, . . . , �k of length f(1) − 1 and define
M(�i) = �i. M is undefined for all other strings of length < f(1). Note that
M(�) =∞ for at least half of the strings of length f(1)− 1

Now suppose that we have defined M , in a prefix-free way, for strings of
length ≤ f(c) − c so that for each n ≤ c, and each � of length f(n), there is
some string of length f(n)− n such that M(�) = � and furthermore, such that
M(�) =∞ for at least 2−c of the strings of length f(c)− c.

Now let Uc+1 = �1]∪ [�2]∪⋅ ⋅ ⋅∪ [�k], where k ≤ 2f(c+1)−2c−2. By assumption,
there were at least 2−c ⋅ 2f(c)−c strings � of length f(c)− c such that M has not
been defined on any initial segment of �. Since each of these has 2f(c+1)−f(c)−1

extensions of length f(c+ 1)− c− 1, there are 2f(c+1)−2c−1 strings available of
length f(c+1)−c−1. Select the lexicographically first k of these and map them
to �1, . . . , �k. This will leave at least 2f(c+1)−c−1 ⋅ 2−c

Now take the lexicographically first k strings �1, . . . , �k of length f(c+ 1)−
c − 1, which do not extend any strings on which M has already been defined,
and define M(�i) = �i. Again let M be undefined on all other strings of length
f(c + 1) − c − 1 and on all strings with lengths strictly between f(c) − c and
f(c+ 1)− c− 1.

By assumption X ∈ Uc for every c, so that X ↾ f(c) = �i for some i and
hence M(�i) = �i = X ↾ f(c). Since ∣�i∣ = f(c) − c, it follows that CM (X ↾
f(c)) = f(c)− c.

It remains to be checked that M is indeed a primitive recursive function.
Observe that since f(c+ 1)− c− 1 > f(c)− c > 0 for all c, we have g(c)− c > c.
Thus, given a string � of length m, we need only check c < m to see whether
m = g(c)−c for some c and this can be done primitive recursively. If m = g(c)−c,
then we proceed as above to determine whether � = �i where M(�i) = �i or
not. If not, or if m ∕= g(c)− c for any c, then we just let M(�) = 0.

2.2 Statistical Tests

It is important to see to what extent the BP random sets are statistically random.
We begin with a positive result.

Theorem 5. Let A be a BP random set. For any increasing primitive recursive

function f and any � > 0, there is some n such that ∣ ∣card(A∩f(n))f(n) − 1
2 ∣ ≤ �.

Proof. This follows from the law of large numbers (Chernoff’s Lemma [27], p.
61).

Corollary 1. For any BP random set A, if limn
∣card(A∩n)

n exists, then it equals
1
2 .
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On the other hand, BP random sets do not have be stochastic.

Theorem 6. There exists a computable, BP random set A such that limn
card(A∩n)

n
does not exist.

Proof. To construct such a set A, just modify the proof of Theorem 2 by adding
long strings of 0’s and long strings of 1’s (in alternation) after satisfying each re-
quirement. Then we can make the density go below 1

3 and then above 2
3 infinitely

often.

2.3 Relative randomness

Recall that the set of primitive recursive functions consists the set of func-
tion f : ℕn → ℕm that includes the base functions (i) the constant func-
tions f(x1, . . . , xn) = m for all n ≥ 1 and m ≥ 0, (ii) the successor function
s(x) = x + 1, and the projection functions fi(x1, . . . , xn) = xi for all 1 ≤ i ≤ n
and is closed composition and primitive recursion. That is, if g1, . . . , gk are m-
ary primitive recursive functions and f is a k-ary primitive recursive function,
then ℎ(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . gk(x1, . . . , xm)) is primitive recursive
and if f is a k-ary primitive recursive function and g is a k + 2-ary primitive
recursive function, then the k+ 1-ary function H is primitive recursive where H
is defined by primitive recursion from f and g by

1. H(0, x1, . . . , xk) = f(x1, . . . , xk) and
2. H(S(y), x1, . . . , xk) = g(y,H(y, x1, . . . , xk), x1, . . . , xk).

Given a recursive real Y = (Y (0), Y (1), . . . , ), the primitive recursive func-
tions relative to Y are obtained by simply adding the function M(n, Y ) = Y (n)
to the base functions and closing under composition and primitive recursion.
Then we can define a real X = (X(0), X(1), . . . , ) to be Martin-Löf BP random
relative to Y , Kolmogorov BP random relative to Y , and martingale BP random
relative to Y by replacing the primitive recursive functions in the definitions of
Martin-Löf BP random, Kolmogorov BP random, and martingal BP random by
primitive recursive functions relative to Y , respectively.

It is easy to see that we can simply relativize the proof of Theorem 1 to prove
the following.

Theorem 7. The following are equivalent for X,Y ∈ �N :

(1) X is Kolmogorov BP random relative to Y
(2) X is Martin-Löf BP random relative to Y
(3) X is martingale BP random relative to Y .

Then we have the following analogue of van Lambalgen’s Theorem. Recall
that if A,B ⊆ ℕ, then A⊕B = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}.

Theorem 8. For any sets A,B ⊆ ℕ, A ⊕ B is BP random if and only if B is
BP random relative to A and A is BP random.
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Proof. First we show that A⊕ B is BP random, then B is BP random relative
to A. That is, suppose that B is not BP random relative to A so that there is a
primitive recursive test (UAn )n≥0 relative to A such that B ∈

∩
n≥0 U

A
n . We can

assume that �(UAn ) = 2−n. Then let Vn = {X⊕Y : X,Y ∈ {0, 1}! and Y ∈ UXn }.
It is easy to see that (Vn)n≥0 is primitive recursive test such that �(Vn) =∫
UXn dX = 2−n. But then A ⊕ B ∈

∩
n≥0 Vn so that A ⊕ B is not BP random.

Since A⊕B is BP random and {2n : n ∈ ℕ} and {2n+1 : n ∈ ℕ} are the ranges
of increasing primitive recursive functions, it also follows that A and B are BP
random.

Next we show that A is BP random and B is BP random relative to A,
then A⊕ B is BP random. Suppose that A⊕ B is not BP random. Then there
exists a primitive recursive test (UBn )n≥0 such that A ⊕ B ∈

∩
n≥0 Un. That

is, there are primitive recursive functions g, k, ℓ such that for all n ≥ 0, g(n) is
codes a finite set of strings {�1,n, . . . , �k(n),n} such that �i,n∣ = c(n) for all i and
Un = [�1,n] ∪ ⋅ ⋅ ⋅ ∪ [�k(n),n]. By passing to a subsequences, we may assume that
�(Un) = 2−2n. Now let

Vn = {X : �({Y : X ⊕ Y ∈ Un}) > 2−n}

Note to determine if X ∈ Vn, let � = (X(0), . . . , X(c(n) − 1)) and consider
the set of all � = (Y (0), . . . , Y (c(n) − 1). Then we can determine in primitive
recursively whether �⊕� ∈ (X(0), Y (0), . . . , X(c(n)−1), Y (c(n)−1)) in Un since
Un = [�1,n]∪ ⋅ ⋅ ⋅ ∪ [�k(n),n]. is generated by strings of length c(n). It follows that
(Vn)n≥0 is a primitive recursive test. It must be the case that �(Vn) ≤ 2−n for all
n since otherwise �(Un) > �(Vn)2−n > 2−n2−n = 2−2n. Since A is BP random,
it must be the case that A ∈ Un for only finitely many n. That is, for all but
finitely many n, �({Y : A⊕Y ∈ Un}) ≤ 2−n. Thus put V An = {Y : A⊕Y ∈Wn}.
Then �(V An ) ≤ 2−n for all but finitely many n. Thus there will be an m large
enough so that �(V An ) ≤ 2−n for all n ≥ m. Then we can define a primite
recursive test (Wn)n≥0 relative to A by setting WA

n = V An+m for n ≥ 0. It will
then follow that B ∈

∪
WA
n so that B is not BP random relative to A.

3 Polynomial-Space Bounded Pseudorandomness

Let PSPACE∗ be the family of functions computable in polynomial space where
we include the space needed to write the output and let PTIME be the family
of functions computable in polynomial time. Then we can define the three no-
tions of PSPACE BP random reals.

Martin-Löf BPS random.

A PSPACE test (Un)n≥0 is specified by a pair of functions (G, f) such that
G : {1}∗ × {0, 1}∗ → {0, 1} is a PSPACE-function and f{1}∗ → {1}∗ is a
strictly length increasing PTIME function such that for each n,

Gn,f = {� ∈ {0, 1}≤∣f(1
n)∣ : G(1n, �) = 1} = {�1,n, . . . , �k(n),n}
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is a set of strings of length ≤ ∣f(1n)∣ such that Un = [�1,n] ∪ ⋅ ⋅ ⋅ ∪ [�k(n),n] is
clopen set with measure ≤ 2−n.

A weak PSPACE test (Un)n≥0 is specified by a pair (G, f) as above with
the additional property that for each n, �(Un+1 ∩ [�i,n]) ≤ 1

2�([�i,n]).
We say that X is Martin-Löf BPS random if X passes every PSPACE test

and is weakly Martin-Löf BPS random if X passes every weak PSPACE test.

Kolomogorov BPS random.

An infinite sequence X is Kolmogorov BPS random if there do not ex-
ist a PSPACE∗ function M : {0, 1}∗ → {0, 1}∗ and a PTIME function
f : {1}∗ → {1}∗ such that, for every n ∈ ℕ, CM (X ↾ ∣f(1n)∣) ≤ ∣f(1n)∣ − n.

Martingale BPS random.

A PSPACE∗ martingale d : {0, 1} → ℚ ∩ [0,∞] succeeds on X if there is a
PTIME function f : {1}∗ → {1}∗ such that, for all n, there is some m ≤ ∣f(1n)∣
such that d(X ↾ m) ≥ 2n. Here we shall think of ℚ∩[0,∞] as the set of all strings
�2� where �.� is the binary expansion of a rational number r ∈ ℚ ∩ [0,∞]. We
say that X is martingale BPS random no PSACE∗ martingale succeeds on X.

We now prove two equivalences. First we show that the set of BPS random
reals equals the set of Kolomogorov BPS random reals.

Theorem 9. The following are equivalent for X ∈ {0, 1}!.

(1) X is Kolmogorov BPS random.
(2) X is Martin-Löf BPS random.

Proof. (2) implies (1): Suppose that X is not Kolmogorov BPS random. Then
there exist a PSPACE function M : {0, 1}∗ → {0, 1}∗ and a PTIME function
f : {1}∗ → {1}∗ such that for every c ∈ ℕ, CM (X ↾ ∣f(1c)∣ ≤ ∣f(1c)∣ − c. Then
let G : {1}∗ × {0, 1}∗ → {0, 1} be computed as follows. Let G(1n, �) = 0 if
∣� ∣ ∕= ∣f(1n)∣. If ∣� ∣ = ∣f(1n)∣, then in polynomial space, we can search through
all the strings � of length ≤ ∣f(1n)∣−n to see if there is a � such that M(�) = � .
If there is such a �, we set G(1n, �) = 1 and if there is no such �, we set
G(1n, �) = 0. It follows that

Gn,f = {� : ∣� ∣ = ∣f(1n)∣ & (∃�)(∣�∣ ≤ ∣f(1n)∣ − n & ∣M(�)∣ = �}.

Thus if Gn,f = {�1,n, . . . , �k(n),n}, then

Un = [�1,n] ∪ ⋅ ⋅ ⋅ ∪ [�k(n),n] = {X : CM (X ↾ ∣f(1n)∣) ≤ ∣f(1n)∣ − n}.

We claim that �(Un) ≤ 21−n. That is, since there exist �1,n, . . . , �k(n),n such
that for i = 1, . . . , k(n), ∣�i,n∣ ≤ ∣f(1n)∣ − n and M(�i,n) = �i,n and there are
only 2∣f(1

n)∣−n+1 − 1 strings of length ≤ ∣f(1n)∣ − n, it follows that k(n) ≤
2∣f(1

n)∣+1−n. For each i, �([�i,n]) = 2−∣f(1
n)∣. Hence �(Un) = k(n) ⋅ 2−∣f(1n)∣ ≤

2∣f(1
n)∣+1−n ⋅ 2∣f(1n)∣ = 21−n. It follows that (Un+1)n≥0 is PSPACE test such
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that X ∈
∩
n≥0 Un+1. Thus if X is not Kolmogorov BPS random, then X is not

Martin-Löf BPS random.

(1) implies (2): Let X ∈ ∩nUn, where (Un)n≥0 is a PSPACE test. That is,
suppose that there is pair of functions (G, f) such that G : {1}∗×{0, 1}∗ → {0, 1}
is a PSPACE-function and f{1}∗ → {1}∗ is a PTIME function such that for
each n, Gn,f = {� ∈ {0, 1}≤∣f(1n)∣ : G(1n, �) = 1} = {�1,n, . . . , �ℓ(n),n} is a set
of strings of length ≤ ∣f(1n)∣ such that Un = [�1,n] ∪ ⋅ ⋅ ⋅ ∪ [�k(n),n] is clopen

set with measure ≤ 2−n. Now we can replace G by a PSPACE G such that
G(1n, �) = 0 if ∣� ∣ ∕= ∣f(1n)∣ and if ∣� ∣ = ∣f(1n)∣, then G∗ searches the initial
seqments � of � to see if there is a � such that G(1n, �) = 1. If there is such a
�, then G(1n, �) = 1 and otherwise, G(1n, �) = 0. It follows that (Un)n≥0 is a
PSPACE test which is specifed by the pair of functions (G, f) and

{� ∈ {0, 1}≤∣f(1
n)∣ : G(1n, �) = 1} = {�1,n, . . . , �k(n),n}

is a set of strings of length ∣f(1n)∣ such that Un = [�1,n] ∪ ⋅ ⋅ ⋅ ∪ [�k(n),n]
We may assume without loss of generality that, for each n,

∣f(1n+1)∣−(n+1) > ∣f(1n)∣−n. That is, ∣f(1n+1)∣ > ∣f(1n)∣+1. This is because
we may always break each [�i] into [�i

⌢0] ∪ [�i
⌢1] to increase ∣f(1n+1)∣ by one,

if necessary. That is, if f(1n) is computed in time on the order of nr for some
fixed r, then we may define g(1n) by recursion so that g(10) = f(10) and, for all
i, g(1i+1) = max{f(1i+1), g(1i) + 1}. Then g(1n) can be computed in time on
the order of nr+1.

Next, we define a PSPACE function M such that CM (X ↾ ∣f(1n)∣) ≤
∣f(1n)∣−n for all n ∈ ℕ. Since �(Un) = k ⋅2−∣f(1n∣), it follows that k ≤ 2∣f(1

n)∣−n.
Now take the lexicographically first k strings �1,n, . . . , �k(n),n of length ∣f(1n)∣−n
and define M(�i) = �i,n. To make M a total function, the remaining strings of
length ∣f(1n)∣−n may all be mapped to 0 and all strings not of length ∣f(1n)∣−n
for any n ∈ ℕ may also be mapped to 0.

By assumption X ∈ Un for every n, so that X ↾ ∣f(1n)∣ = �i,n for some i and
hence M(�i,n) = �i,n = X ↾ ∣f(1n)∣. Since ∣�i,n∣ = ∣f(1n)∣ − n, it follows that
CM (X ↾ ∣f(1n)∣) = ∣f(1n)∣ − n.

It remains to be checked that M is indeed a PSPACE function. Observe
that since ∣f(1n+1)∣ −n− 1 > ∣f(1n)∣ −n > 0 for all n, we have ∣f(1n)∣ −n > n.
Thus, given a string � of length m, we need only check n < m to see whether
m = ∣f(1n)∣ −n for some n and this can be done in time nr. If m = ∣f(1n)∣ −n,
then we enumerate in lexicographic order the strings �i of length m, looking
for i ≤ k(n) such that � = �i,n. This only requires space to store the current
values of i and of �i,n, so can be done in PSPACE. If indeed � = �i,n for some
i ≤ k(n), then M(�i,n) = �i,n . If not, or if m ∕= ∣f(1n)∣ − n for any n ∈ ℕ, then
we just let M(�) = 0.

Our next goal is to show that X is martingale BPS random if and only if X
is weakly Martin-Löf BPS random. The following lemma about martingales will
be needed to help us prove this fact.
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Lemma 1. For any martingale d, any � ∈ {0, 1}∗ and any pairwise incompatible
set H of extensions of �,∑

�∈H
d(�) ⋅ 2−∣� ∣ ≤ d(�) ⋅ 2−∣�∣.

Proof. Let n = max{∣� ∣ : � ∈ H} and note that by the definition of martingales,∑
d(�):∣�∣=n & �≺�

= d(�) ⋅ 2n−∣�∣.

For each � ∈ H, let G(�) = {� ∈ {0, 1}n : � ⪯ �}. Then as above∑
�∈G(�)

d(�) = d(�) ⋅ 2n−∣� ∣.

Thus we have∑
�∈H

d(�) ⋅ 2−∣� ∣ =∑
�∈H

∑
�∈G(�)

d(�) ⋅ 2−n ≤
∑
{d(�) ⋅ 2−n : ∣�∣ = n & � ≺ �} = d(�) ⋅ 2−∣�∣.

Theorem 10. The following are equivalent for X ∈ �N :

(1) X is weakly Martin-Löf BPS random;
(2) X is martingale BPS random.

Proof. (1) implies (2): Suppose that there is a PSPACE∗ martingale d :
{0, 1}∗ → (ℚ∩ [0,∞]) which succeeds on X so that there is a PTIME function
f : {1}∗ → {1}∗ such that, for all n, there exists m ≤ ∣f(1n)∣ such that d(X ↾
m) ≥ 2n. Let r be such that for all � ∈ {0, 1}∗, ∣d(�)∣ ≤ (2 + ∣�∣)r. Such an r
exists since d is PSACE∗ function.

Our proof of this implication will be more difficult than the proof of the
corresponding implication for BP randomness since we need to construct a
PSPACE weak test that X fails as opposed to a just a PSACE test. De-
fine G : {1}∗ × {0, 1}∗ → {0, 1} by let G(1n, �) = 1 if ∣�∣ ≤ ∣f(1n)∣ & d(�) ≥
2n & (∀i < ∣�∣)(d(� ↾ i) < 2n). Note that if d(� ↾ (∣�∣ − 1)) < 2−n, then
d(�) < 2n+1. Since the binary representation of 2n+1 is of length n + 1, d is
PSPACE∗ function and f is PTIME function, it is easy to see that G is
PSPACE function. Thus

Gn,f = {� : ∣�∣ ≤ ∣f(1n)∣ & d(�) ≥ 2n & (∀i < ∣�∣)(d(� ↾ i) < 2n)}.

and Un =
∪
�∈Gn,f

[�]. Then X ∈ Un for all n by the assumption. By Lemma 1

with � = ∅,
∑
�∈Gn,f

d(�) ⋅2−∣� ∣ ≤ 1. Since for all � ∈ Gn,f , d(�) ≥ 2n, it follows
that

�([Un]) =
∑

�∈Gn,f

2−∣� ∣ ≤ 2−n.
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Now let Vn =
∪
�G2n,f

[� ] for all n. Then (Vn)n≥0 will be a PSPACE test that

X fails. Thus we need only show that the sequence (Vn)n≥0 is a weak test. We
have �(Vn) = �(U2n) ≤ 2−2n. For � ∈ Vn, let H(�) = {� : � ⪯ � & � ∈ Vn+2}

By Lemma 1, ∑
�∈H(�)

d(�) ⋅ 2−∣� ∣ ≤ d(�) ⋅ 2−∣�∣.

Since d(�) < 22n+1 and for each � ∈ H(�), d(�) ≥ 22n+2, we obtain∑
�∈G(�

22n+2 ⋅ 2−∣� ∣ ≤ 22n+1 ⋅ 2−∣�∣,

so that

�(
∪

�∈H(�)

[� ]) =
∑
�∈H(�

2−∣� ∣ ≤ 1

2
⋅ 2−∣�∣ =

1

2
�([�]).

Thus the sequence Vn is a weak PSPACE test as desired. Thus if X is not
martingal BPS random, then X is not weakly Martin-Löf BPS random.

(2) implies (1): Suppose that X ∈
∩
n Un, where (Un)n≥0 is a weak bounded

PSPACE test. Let (Un)n≥0 be specified by a pair of functions (G, f) where
G : {1}∗ × {0, 1}∗ → {0, 1} is a PSPACE-function and f{1}∗ → {1}∗ is a
PTIME function such that for each n,

Gn,f = {� ∈ {0, 1}≤∣f(1
n)∣ : G(1n, �) = 1} = {�1,n, . . . , �k(n),n}

is a set of strings of length ≤ ∣f(1n)∣ such that for all n ≥ 0 and � ∈ Gn,f , �([�]∩
Un+1) ≤ 1

2�(�). Assume that Gn,f = {�1,n, . . . , �k(n),n} so that Un = [�1,n] ∪
⋅ ⋅ ⋅ ∪ [�k(n),n]. We are not assuming at that all �i,n have the same length which
will require that our proof be slightly more complicated than the corresponding
proof for the primitive recursive case.

Note that �(U1) ≤ 1
2 . Let H = {� ∈ {0, 1}∣f(1)∣ : (∃� ∈ G1,f )(� ⪯ �)}. Then

U1 =
∑
�∈H [� ] so that �([H]) = �([G1]). Then as in the proof of Theorem 1,

we let k = card(H) and define a martingale d1 by letting d1(�) = 2f(1)

k for all

� ∈ H, letting d1(�) = 0 for all other � ∈ {0, 1}f(1), and backtracking using
the martingale equation to define d(�) for all � such that ∣�∣ < ∣f(1)∣. Since
�([H]) = k

2f(1) ≤ 1
2 , it follows that d1(�) ≥ 2 for all � ∈ H. Hence for � ∈ G1,f ,

every extension of � of length f(1) is in H so that d1(�) ≥ 2 as desired.
The eventual martingale d will have d(�) = d1(�) for � ∈ G1,f and d(�) = 0

for � ∈ {0, 1}∣f(1)∣ − H, but will not necessarily agree with d1 on the proper
extensions of � ∈ G1.

By induction assume that we have defined d(�) ≥ 2n for all � ∈ Gn,f and set
d(�) = 0 for all � ∈ {0, 1}≤∣f(1n)∣ such that � does not extend a string in G1,n.
Then we can extend the definition to Gn+1 as in the proof of Theorem 1. That
is, we fix � ∈ Gn and let G = {� ∈ Gn+1,f : � ⪯ �}. Since we started with a
weak test, it follows that �([G]) ≤ 1

2 . So we can define a martingale m such that
m(�) ≥ 2 for all � ∈ G and then let d(�⌢�) = d(�) ⋅m(�).
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It remains to be seen that the recursive calculation of d(�) can be accom-
plished by a PSPACE procedure. First observe that we can compute card(Gn)
from n in PSPACE as follows. First compute f(n) and then test in turn each
� ∈ {0, 1}∣f(1n)∣ and keep a count (in binary) of the number of members. Since
by assumption we have f(n) ≤ nc for some constant c, each � to be tested has
length ≤ nc so that this can be done in PSPACE.

Then we may compute d(�) from a given string � in PSPACE as follows. The
first step is to compute f(1nn) for n ≤ ∣�∣ until we find n so that ∣�∣ ≤ ∣f(1n)∣.
Then we look for an extension � of � of length ∣f(1n)∣. Since by our definition
we have ∣f(1n)∣ ≤ ∣n∣c = nc, this can be done in PSPACE. If there is no such
� , then d(�) = 0. If there is one, then we follow the procedure outlined above to
compute d(� ↾ ∣f(1i)∣ for each i ≤ n, and then d(�). Finally we backtrack using
the martingale inequality to compute d(�) from d(�).

Process BPS random.

A total PSPACE function M : {0, 1}∗ → {0, 1}∗ is said to be a BPS quick
process machine if there is a PTIME function g : {1}∗ → {1}∗ such that, for
any n and any � with ∣�∣ ≥ n, ∣M(�)∣ ≥ n, where for simplicity we let g(n)
denote ∣g(1n)∣.

An infinite sequenceX is process BPS random if there do not exist a PSPACE∗

BPS process machine M : {0, 1}∗ → {0, 1}∗ and a PTIME function f : {1}∗ →
{1}∗ such that, for every n ∈ ℕ, CM (X ↾ ∣f(1n)∣) ≤ ∣f(1n)∣ − n.

Theorem 11. The following are equivalent for X ∈ �N :

(1) X is weakly Martin-Löf BPS random;
(2) X is process BPS random.

Proof. (1) implies (2) We modify the argument of Levin [26] as found in Day
[13]. Suppose that X is not weakly Martin-Löf BPS random and let Let M
be a quick process machine and f a PTIME function so that for every n,
CM (X ↾ f(n)) ≤ n− c. Let g be a PTIME order function so that for any n and
any �, if ∣�∣ ≥ g(n), then ∣M(�)∣ ≥ n and hence g(n) ≥ n. Define the PSPACE
martingale d as follows. For any string � , let E� = {� ∈ {0, 1}g(�) : � ⪯M(�)}.
Then define d by

d(�) =
card(E� )

2g(∣� ∣)−∣� ∣

It follows as in Proposition 2.1 of [13] that d is a martingale. To compute d(�)
in PSPACE, first compute g(∣� ∣) and then test in turn all strings � of length
g(∣� ∣) for membership in E� , that is, compute M(�) and see whether it extends
� . Then we can keep a binary counter to obtain card(E� . Now d(�) may be
expressed as the quotient of card(E� with 2g(∣� ∣)−∣� ∣, which has binary length
g(∣� ∣)− ∣� ∣+ 1.
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Now suppose that CM (X ↾ f(n)) ≤ n−c. Let � = X ↾ f(n) and let M(�) = �
where ∣�∣ ≤ n − c. For any �′ such that ∣�′∣ = g(n) and � ⪯ �′, we have
� = M(�) ⪯ M(�′) so that �′ ∈ E� . Since g(n) ≥ n ≥ ∣�∣ + c, It follows that
card(E� ) ≥ 2g(n)−n+c and therefore d(�) ≥ 2c.

(2) implies (1) : Let X ∈ ∩nUn, where (Un)n≥0 is a weak PSPACE
test. Then, as in the proof of Theorem 9, There is a PSPACE function t G :
{1}∗ × {0, 1}∗ → {0, 1} and a PTIME function f{1}∗ → {1}∗ such that

{� ∈ {0, 1}≤∣f(1
n)∣ : G(1n, �) = 1} = Gn = {�1,n, . . . , �k(n),n}

is a set of strings of length ∣f(1n)∣ such that Un = [Gn]. Furthermore, for each
n,
∣f(1n+1)∣ − (n+ 1) > ∣f(1n)∣ − n.

We define in stages Mn a total PSPACE process machine M such that
CM (X ↾ ∣f(1n)∣) ≤ ∣f(1n)∣ − n for all n ∈ ℕ, as in the proof of Theorem 1. It
remains to be checked that M(�) may be computed in PSPACE. We will trace
out the computation of M(�) for a given �.

First we compute f(1c) for c ≤ ∣�∣ until we find c such that ∣�∣ < f(1c+1)−
c − 1. Now let mi = f(1i) for i ≤ c and decompose � into a concatenation
�1
⌢�2

⌢ ⋅ ⋅ ⋅⌢�c such that ∣�1⌢ ⋅ ⋅ ⋅⌢�j ∣ = f(1j) − j for all j ≤ c. This can
all be done using polynomial space and we can store the sequences m1, ⋅ ⋅ ⋅ ,mc

and �1, ⋅ ⋅ ⋅ , �c. Then we will have M(�) = �1
⌢ ⋅ ⋅ ⋅⌢�c where for each i ≤ c,

�1
⌢ ⋅ ⋅ ⋅⌢�j = M(�1

⌢ ⋅ ⋅ ⋅⌢�i and has length f(1j). If ∣�∣ < f(1) − 1, then
M(�) = ∅. Otherwise, we compute �1 as follows. First enumerate all strings of
length f(1j) and find i such that �1 is the i’th string. Then enumerate G1 =
{�1, . . . , �k(1). If k(1) < i, then �1 = 0f(1). Otherwise �i = �i. Once we have
computed �1, we may reset the work tape.

At stage c+ 1, we are given �1, . . . , �c+1 and �1, . . . , �c. If ∣�1⌢ ⋅ ⋅ ⋅⌢�c+1 <
f(1c)− c, then �c+1 = ∅ and M(�) = �1

⌢ ⋅ ⋅ ⋅⌢�c. Otherwise, we compute �c+1

as follows. First enumerate all strings of length f(1c+1) − c − 1 and find i such
that �c+1 is the i’th string. Then enumerate {� : �)1

⌢ ⋅ ⋅ ⋅⌢�c⌢� ∈ Gc+1} =
{�1, . . . , �k}. If k < i, then �c+1 = 0f(c). Otherwise �i = �i. It is clear that these
calculations may be done in PSPACE, since f is PTIME and c < ∣�∣.

To verify that M is a BPS quick process machine, observe that if ∣�∣ ≥
f(c)− c, then ∣M(�)∣ ≥ f(c) ≥ c. Hence the PTIME function g(n) = f(n)− n
completes the definition.

By assumption X ∈ Uc for every c, so that X ↾ f(c) = � for some tau ∈ Gc
and hence M(�) = � where ∣�∣ = f(c) − c. It follows that CM (X ↾ f(c)) =
f(c)− c.

Hence, X is not quick process BP random.

Theorem 12. There is a DSPACE(22
n

) real which is Martin-Löf BPS ran-
dom.

Proof. Let (G(e), f (e), a(e), b(e))e≥0 be an enumeration of all 4-tuples (G, f, a, b)
such that G : {1}∗ × {0, 1}∗ → {0, 1} is PSPACE function such that the space
required to compute string G on strings of length n is ≤ (2 + n)a for n ≥ 0 and
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f : {1}∗ → {1}∗ is PTIME function such that the time required to compute
string f on strings of length n is ≤ (2 + n)b for n ≥ 0. We want to construct
a recursive real X = (X(1), X(2), . . .) such that X passes all PSPACE tests.

Thus we need on consider those e such for all n, G
(e)

n,f(e) is a finite set of strings

{�1,n, . . . , �k(n),n} such that (i) Un = [�1,n]∪ ⋅ ⋅ ⋅ ∪ [�ke(n),n] is a clopen set with

measure ≤ 2−n, (ii) ∣�i,n∣ = ∣f (e)(1n)∣ for all i ≤ ke(n), and (iii) Un+1 ⊆ Un for
all n.

Then we can construct X in stages.

Stage 0. Let X(n) = 0 until you find an n large enough such that in 22
n

-space we
can computeG(0)(12n, �) on all strings of length ∣f (0)(12n)∣ and f (0)(1), . . . f (0)(12n).
That is, if we can not compute all these computations in 22

n

-space, then we set

X(n) = 0. There must be such n since G(0) runs in space (2 + n)a
(0)

and f runs

in time (2 + n)b
(0)

. Assume that n0 is the least such n. Thus in 22
n0

-space, we

can compute G
(0)

2n0,f(0) = {�1,2n0 , . . . , �k0(2n0),2n0
} and f (0)(1), . . . f (0)(12n0). Let

U
(0)
2n0

= [�1,2n0 ]∪ ⋅ ⋅ ⋅ ∪ [�k(2n0),2n0
]. Now if it is not the case that �(U

(0)
2n0

) ≤ 22n0

and ∣f (0)(1)∣ < ⋅ ⋅ ⋅ < ∣f (0)(12n0)∣, then set X(n0) = 0, r(0) = n0 and go
onto stage 1. Otherwise, the measure of the set of strings of length ∣f (0)(12n0)∣
which extend 0n0 is ≥ 2−n0 , so that in space 22

n0
, we can find the lexigraphic

least string � of length ∣f (0)(12n0)∣ which extends 0n0 and is not U
(0)
2n0

and set

X ↾ ∣f (0)(12n0)∣ and r(0) = ∣f (0)(12n0)∣.

Stage s+1. Assume that we have defined r(0) < . . . < r(s) (X(1), . . . , X(r(s))
such that for all i ≤ s, either

(I) it is the not the case that G
(i)

r(i),f(i) is a finite set of strings {�1,i, . . . , �ki(i),i}
such that Ui = [�1,i] ∪ ⋅ ⋅ ⋅ ∪ [�ki(i),i] is a clopen set with measure ≤ 2−i and

∣f (i)(1)∣ < ⋅ ⋅ ⋅ < ∣f (i)(1r(i))∣, or

(II) G
(i)

r(i),f(i) a finite set of strings or {�1,i, . . . , �ki(i),1} such that Ui = [�1,i] ∪
⋅ ⋅ ⋅ ∪ [�ki(i),i] is a clopen set with measure ≤ 2−i and ∣�i,1∣ = ∣f (i)(1r(i)∣ for all
i ≤ ki(i) and (X(0), . . . , X(r(i))) ∕∈ Ui.

Extend (X(0), X(1), . . . X(r(s)) by setting X(n) = 0 until you find an n >
r(s) large enough such that in 22

n

-space, we can compute G(s+1)(12n, �) on all
strings of length ∣f (s+1)(12n)∣ and f (s+1)(1), . . . f (s+1)(12n). That is, if we can not
compute all these computations in 22

n

-space, then we set X(n) = 0. There must

be such n since G(s+1) runs in space (2+n)a
(s+1)

and f runs in time (2+n)b
(s+1)

.
Assume that ns+1 is the least such n. Thus in 22

ns+1
-space, we can compute

G
(s+1)

2n0,f(s+1) = {�1,2ns+1
, . . . , �ks+1(2ns+1),2ns+1

} and f (s+1)(1), . . . f (s+1))(12ns+1).

Let
U

(s+1)
2ns+1

= [�1,2ns+1
] ∪ ⋅ ⋅ ⋅ ∪ [�ks+1(2ns+1),2ns+1

]. Now if it is not the case that

�(U
(s+1)
2ns+1

) ≤ 22ns+1 and ∣f (s+1)(1)∣ < ⋅ ⋅ ⋅ < ∣f (s+1)(12ns+1)∣, then set X(ns+1) =
0, r(0) = ns+1 and go onto stage s+ 1.
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Otherwise, the measure of the set of strings of length ∣f (s+1)(12ns+1)∣ which
extend (X ↾ r(s))⌢0ns+1−r(s) is ≥ 2−ns+1 , so that in space 22

ns+1
, we can find

the lexigraphic least string � of length ∣f (s+1)(12ns+1)∣ which extends 0ns+1 and

is not U
(s+1))
2ns+1

and set X ↾ ∣f (s+1)(12ns+1)∣ = � and r(s+ 1) = ∣f (s+1)(12ns+1)∣.

It is easy to see that our construction is completely effective so that X =

(X(1), X(2), . . .) will be DSPACE22
n

real which passes all PSPACE tests.
Thus X is a BPS random real.

Conjecture 1. There is an EXPSPACE real which is process BPS random.

4 Conclusions and Future Research

In this paper, we define robust notion of primitive recursive and PSPACE
randon real in the each definition could be framed in at least two of the three
version of random reals via measure, Kolomogorov complexity, or martingales.
We view the work of this paper as a possible model for several other classes
of sub-computable functions. In future work, we will define similar notions of
bounded pseudorandom reals for other classes of sub-computable functions such
as elementary, on-line, or EXPSPACE.

In future work, we plan to study bounded pseudorandomness for trees and
for effectively closed sets. Algorithmic randomness of trees and effectively closed
sets was developed in a series of papers by Barmpalias, Cenzer, Remmel et al
[?].
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