Complexity Theoretic Model Theory and Algebra

Douglas Cenzer
Department of Mathematics
University of Florida Gainesville, F1 32611
e-mail: cenzer@math.ufl.edu
Jeffrey B. Remmel*
Department of Mathematics
University of California at San Diego

La Jolla, CA 92093

e-mail: jremmel@ucsd.edu

November 19, 1997

1 Introduction

In this paper, we will survey some recent results on complexity theoretic model
theory and algebra. Essentially there are two major themes in this work. The
first, which we call complexity theoretic model theory, deals with model ex-
istence questions. For example, given a recursive model A, is there there a
polynomial time (exponential time, polynomial space, etc.) model B which is
isomorphic to A. The second theme, which we call complexity theoretic al-
gebra, fixes a given polynomial time structure and explores the properties of
that structure. For example, we can ask whether every polynomial time ideal
of a given polynomial time representation of the free Boolean algebra can be
extended to a maximal polynomial time ideal. In both cases, one uses the rich
theory of recursive model theory and algebra as a reference but looks at resource
bounded versions of the results in those areas.

It turns out that not only are there a number of contrasts between results
in recursive model theory and algebra and complexity theoretic model theory
and algebra, but some new and interesting phenomena occur in the study of
complexity theoretic model theory and algebra. That is, there are results in
recursive model theory and algebra for which the natural complexity theoretic
analogue is true but requires a more delicate proof which incorporates the re-
source bounds. There are also results in recursive model theory and algebra for

*Dept. of Commerce Agreement 70-NANB5H1164 and NSF grant DMS-9306427.

which the natural complexity theoretic analogue is false because the proof of the
recursive result uses the unbounded resources allowed in recursive constructions
in a crucial way. However, there are a number of interesting new phenomena
which arise due to the fact that not all infinite polynomial time sets are poly-
nomial time isomorphic or due to the fact that complexity theoretic results do
not relativize as is the case for most recursion theoretic results. For example, in
recursive model theory any two infinite recursive sets are recursively isomorphic,
so that one can restrict one’s attention to models whose universe is the set of
natural numbers. It is not the case that any two infinite polynomial time sets
are polynomial time isomorphic so that the choice of a particular universe, say
the tally representation of the natural numbers versus the binary representation
of the natural numbers, makes a difference.

Also, it 1s well known that the question of whether P = N P 1s oracle depen-
dent. That is, Baker, Gill and Solovay [4] proved that there are recursive oracles
X and Y such that PX = NPX and PY # NPY. We shall see that some of the
natural complexity theoretic analogues of results in recursive algebra are oracle
dependent as well.

There are several other areas of complexity theoretic model theory and al-
gebra which will not be covered in this survey. There is the work of Friedman
and Ko (see for example, [27], [42], and [43]) on polynomial time analysis, where
complexity theoretic versions of various theorems of analysis are studied. Some
of these results are oracle dependent and some are shown to be equivalent to
P = NP. There is the work of Crossley, Nerode and Remmel on p-time equiv-
alence types and p-time isols, as developed in [56], [57], [22] and [23]. We will
present some results from [56] on p-time equivalence types in section 4. There is
the work of Khoussainov and Nerode [41] on automatic, or automata presentable
structures, which is a further restriction of polynomial time structures.

We will start with a survey of complexity theoretic model theory. In section
2, we will provide a general introduction to complexity theoretic model theory.
In section 3, we shall give our basic complexity theoretic definitions and establish
notation. In section 4, we will give a series of lemmas which are useful for
building models with standard universes such as the binary representation of the
natural numbers, Bin(w), and the tally representation of the natural numbers,
Tal(w). In section 5 we provide a survey of the main existence theorems for
feasible models. In section 6, we survey various feasible categoricity results.
In section 7, we give an introduction to complexity theoretic algebra. Then in
section 8, we focus on the structure of the binary and tally representation of an
infinite dimensional vector space over a polynomial time field. In section 9, we
look at the semilattice of NP ideals of the binary and tally representation of
the free Boolean algebra. Finally in section 10, we give conclusions as well as
some directions for further work.

2 Complexity Theoretic Model Theory

Complexity theoretic or feasible model theory is the study of resource-bounded
structures and isomorphisms and their relation to computable structures and
computable isomorphisms. The focus of complexity theoretic model theory in
this paper is very different from classical complexity theory. A primary focus
in classical complexity theory has been to determine the complexity of certain
classes of finite models encoded as a decision problem. That is, one is interested
in classifying decision problems as being in P, NP, PSPACE, etc. A typical
example is the graph-coloring problem; where it is known that the family of
finite graphs which can be 3-colored is N P-complete.

Complexity theoretic model theory is more concerned with infinite models
whose universe, functions, and relations are in some well known complexity
class such as polynomial time, exponential time, polynomial space, etc. Thus
if one studies graph colorings from this point of view, one would study the
complexity of graph colorings in an infinite polynomial time graph as was done
by Cenzer and Remmel in [13]. However complexity theoretic model theory
has been more concerned with the complexity of the model itself. Thus one
can pick any complexity class and ask questions about what structures can be
represented by models in that complexity class. By far, the complexity class
that has received the most attention is polynomial time. The basic questions
that have been consider are to classify which recursive models are isomorphic
or recursively isomorphic to a polynomial time model.

To establish some notation, let w = {0,1,...} denote the set of natural
numbers. Let [,] denote the usual quadratic-time pairing function [m,n] =
m-+ %(m +n)(m+n+1), which maps w X w onto w. Let ¢, , denote the n-ary
partial function on ({0,1}*)" computed by the e-th Turing machine. Then we
say that a structure

A= (A AR s, {f Yier, (Y iev),

(where the universe A of A is a subset of {0, 1}*) is recursive if A is a recursive
subset of {0,1}*, S, T, and U are initial segments of w, the set of relations
{R#};cs is uniformly recursive in the sense that there is a recursive function
G such that for all i € S, G(i) = [n;, e;] where R is an n;-ary relation and
e, n, computes the characteristic function of R¢!, the set of functions {f*};er
1s uniformly recursive in the sense that there is a recursive function F' such that
for all i € T', F(i) = [n;, e;] where f* is an n;-ary function and @, ,, restricted
to A" computes flA, and there is a recursive function interpreting the constant
symbols in the sense that there is a recursive function H such that for all : € U,
H(i) = ¢f*. Note that if A is a recursive structure, then the atomic diagram of
A is recursive.

We say that a recursive structure A = (A, {R#}ies, {fP Vier, {c}ier), is
polynomial time if A is a polynomial time subset of {0,1}* and the set of re-
lations {R#};es and the set of functions {f#};er are uniformly polynomial

time in the sense that, in addition to the functions G and F' defined above,
there are recursive functions G’ and F’ such that for ¢ € S, G'(i) = m; where
for all (z1,...,2y,) in ({0,1})" it takes at most (max{2,|z1], ..., |2n,|})™
steps to compute ¢, n,(21,...,2,,) and for all i € T, F'(i) = ¢; where for all
(Z1,...,2pn,) in ({0,1}%)7, it takes at most (maz{2,|z1], ..., |zn,|})? steps to
compute ¢e, n, (1, ..., 2s,). Note that if A is a polynomial time structure with
infinitely many relation symbols or with infinitely many function symbols, then
our definition of a polynomial time structure does not ensure that the atomic
diagram of A is polynomial time. Thus we say A is uniformly polynomial time
if the atomic diagram of A is polynomial time. Note that the fact that A4 is uni-
formly polynomial time implies, among other things, that the sequence of run
times {#™ : i € S} and {2#% : i € T'} are bounded by some fixed polynomial.
Of course, if A is a structure over a finite language, then A is a polynomial time
structure if and only if A is a uniformly polynomial time structure. Similar
definitions may be given for other resource-bounded classes.

There are two basic types of questions which have been studied in polyno-
mial time model theory. First, as discussed above, there is the basic existence
problem, i.e. whether a given infinite recursive structure A isomorphic or re-
cursively isomorphic to a polynomial time model. For example, the authors
showed in [10] (p. 24) that every recursive relational structure is recursively
isomorphic to a polynomial time model and that the standard model of arith-
metic (w, 4+, —, -, <, 2%) with addition, subtraction, multiplication, order and the
1-place exponential function is isomorphic to a polynomial time model. The fun-
damental effective completeness theorem says that any decidable theory has a
decidable model. It follows that any decidable relational theory has a polyno-
mial time model. However, one is naturally led to ask more refined existence
questions in complexity theoretic algebra than one asks in recursive algebra.
That is, since all infinite recursive sets are recursively isomorphic, it is easy to
see that any infinite recursive structure is recursively isomorphic to a recursive
structure whose universe is w. It is certainly not the case that any two infinite
polynomial-time sets are polynomial-time isomorphic. For example, the tally
representation of the natural numbers is not polynomial time isomorphic to the
binary representation of the natural numbers. Hence i1t no longer the case that
any infinite polynomial-time structure can be identified with a polynomial-time
structure whose universe is {0, 1}*. Thus a more refined existence questions is to
take a fixed universe, such as the tally representation of the natural numbers or
the binary representation of the natural numbers, and ask if a recursive model
1s isomorphic or recursively isomorphic to a polynomial time model with that
given universe.

Here are two examples which illustrate both the negative and positive out-
comes to the simplest existence type question, i.e., whether a given recursive
model is isomorphic to a polynomial time model.

Example 2.1 Let A = (A,0,5, R) where A = {1}* (that is, the set of natural

numbers in unary representation), S is the successor function, (that is, S(1") =
1"+1) and R is a unary relation, (that is, a subset of {1}*). Now if A is
isomorphic to a polynomial-time structure B = (B,08, 58 RP), then we can
test for membership in R as follows. Given 17, compute (SP)"(08) = y, and
then test whether y, is in RP. Now if we assume that we can compute ST (z)
in |z|* steps for |x| > 2, then it takes at most X1 |08 |F" < |0B|F" 41 steps to
compute y,. Next we may assume that testing whether x € RP takes |x|" steps
if 2] > 2, so that it takes at most |0F|"F "1 steps to test whether 0 is in
R. This means that R s a doubly-exponential-time set. Thus if we start with
any recursive structure A = (A,0,S, R) where R is a recursive set bul is not
doubly exponential-time, then A is not even isomorphic, much less recursively
wsomorphic, to a polynomial-time structure.

Despite this example, there are lots of recursive structures which are recur-
sively isomorphic to polynomial-time structures.

Example 2.2 Let A = (A, f), where A = {1}* and f is a unary function.
We say that 1™ and 1" are in the same f-orbit if, for some k > 0, either
Ay = 17 or fF(17) = 1™, If f is length-increasing, then it is clear that
each f-orbit is isomorphic to (A,S). Now let f and g be any two recursive length-
increasing functions from {1}* into {1}*. Then the structures (A,f) and (A,g)
are recursively isomorphic if and only if they have the same number of orbits.
Thus, for example, we can let f(17) = 12(") where a is Ackermann’s function
and still be guaranteed that (A,f) is recursively isomorphic to a polynomial-time
structure.

Next consider the more restricted kind of existence question, i.e. whether a
given recursive model is isomorphic or recursively isomorphic to a polynomial
time model which has a standard universe such as the binary representation of
the natural numbers, Bin(w), or the tally representation of the natural numbers,
Tal(w) = {1™ : n € w}. Grigorieff [32] proved that every recursive linear order-
ing is isomorphic to a linear time linear ordering which has universe Bin(w).
However Grigorieff’s result can not be improved to the result that every recur-
sive linear ordering is recursively isomorphic to a linear time linear ordering
over Bin(w). That is, Cenzer and Remmel [10] (p. 25) showed that for any
infinite polynomial time set A C {0,1}*, there exists a recursive copy of the
linear ordering w + w* which is not recursively isomorphic to any polynomial
time linear ordering which has universe A. Here w +w* is the ordering obtained
by taking a copy of w = {0, 1,2, ...} under the usual ordering followed by a copy
of the negative integers under the usual ordering.

The general problem of determining which recursive models are isomorphic
or recursively isomorphic to feasible models has been studied by the authors in
[10], [11], and [14]. For example, it was shown in [11] (pp. 343-348) that any
recursive torsion Abelian group (' is isomorphic to a polynomial time group A

and that if the orders of the elements of G are bounded, then A may be taken
to have a standard universe, i.e. either Bin(w) or Tal(w). It was also shown
in [11] (p. 357) that there exists a recursive torsion Abelian group which is not
even isomorphic to any polynomial time (or any primitive recursive) group with
a standard universe. Feasible linear orderings were studied by Grigorieff [32],
by Cenzer and Remmel [10], and by Remmel [68, 69]. Feasible vector spaces
were studied by Nerode and Remmel in [53] and [55]. Feasible Boolean algebras
were studied by Cenzer and Remmel in [10] and by Nerode and Remmel in [54].
Feasible permutation structures and feasible Abelian groups were studied by
Cenzer and Remmel in [11] and [14]. By a permutation structure A = (A, f),
we mean a set A together with a unary function f which maps A one-to-one
and onto A. Similarly an equivalence structure A = (A, RA) consists of a set A
together with an equivalence relation.

The second basic type of problem studied in polynomial time model theory
is the problem of feasible categoricity. Here we say that a recursive model A
is recursively categorical if any other recursive model isomorphic to A is in fact
recursively isomorphic to A. The notion of recursive categoricity was first de-
fined by Mal’cev [49] and is referred to in the Russian literature as autostability.
Recursively categorical structures have been widely studied in the literature of
recursive algebra and recursive model theory.

The recursively categorical structures for various theories have been classi-
fied, including Boolean algebras independently by Goncharov [30] and
LaRoche [44], Abelian groups by Smith [74] and linear orderings independently
by Dzgoev [31] and Remmel [66]. For example, Remmel showed in [66] that a
recursive linear ordering L = (D, <) is recursively categorical if and only if L
has only finitely many successivities, where a pair a < b is a successivity if there
is no ¢ with a < ¢ < b.

Defining a natural analogue of feasible categoricity is complicated by the
fact that unlike the case of infinite recursive models, where any two infinite
recursive universes are recursively isomorphic, it is not the case that any two
polynomial time universes are polynomial time isomorphic. It turns out to be
more natural to define polynomial categorical structures with respect to a fixed
universe. Thus we say that a p-time structure A with universe D C {0, 1}* is
p-time categorical with respect to D if every p-time structure B with universe D
which is isomorphic to A is necessarily p-time isomorphic to A, i.e. there exist
polynomial time functions f, ¢ such that f restricted to D is an isomorphism
from A onto B and g restricted to D is an isomorphism from 5 onto A.

Remmel showed in [66] that there are no p-time categorical linear orderings
with respect to the standard universes Bin(w) and T'al(w). There are two parts
to this strongly negative statement. For any p-time linear ordering L with
universe B (either Bin(w) or T'al(w)), there is a p-time linear ordering L’ with
universe B which is not primitive recursively isomorphic to L. Furthermore, if
L 1s not recursively categorical, then L’ is not even recursively isomorphic to
L. Similar results will be shown for other structures. The problem of feasible

categoricity for permutation structures and torsion Abelian groups was studied
by Cenzer and Remmel in [14]. Here there are some limited positive results.
In particular, a permutation structure (A, f) such that all orbits of f have the
same finite size is p-time categorical over T'al(w). There are also structures A
which are not p-time categorical over B, but such that any p-time structure D
with universe B which is isomorphic to .4 must be exponential time isomorphic
or double exponential time isomorphic to A. More generally, we can define a
larger notion of feasibility, g-teme or iterated exponential time computability,
and show that there are many natural structures which are g-time categorical
over Bin(w) and Tal(w).

General semantic conditions for when a decidable model is recursively cate-
gorical were given by Nurtazin [60] and Goncharov [29] and similar results were
found by Ash and Nerode [2] for models in which one can effectively decide
all X1 formulas. These methods are based on the existence of a so-called Scott
family of formulas. We discuss in section 6 various notions from [15] of a feasible
Scott family of formulas for a feasible model and show that any two families
which possess a common Scott family and have the same universe B are feasibly
isomorphic. Structures considered in [15] include linear orderings, permutation
structures, Abelian groups and equivalence structures.

3 Preliminaries

In this section, we will give the basic definitions from complexity theory which
will be needed for the rest of the paper.

Let X be a finite alphabet. Then X* denotes the set of finite strings of
letters from X and X% denotes the set of infinite strings of letters from X where
w={0,1,2,...} is the set of natural numbers. For any natural number n # 0,
tal(n) = 17 is the tally representation of n and bin(n) = dgiy...¢. € {0, 1}*
is the (reverse) binary representation of n if n = dg +2 -4y + - 4+ 2° - i,
and i, # 0. In general, the k-ary representation by(n) = dpiy...¢ if n =
i+ k+--ic-k®and i, #0. We let tal(0) = bin(0) = b;(0) = 0. Then
we let Tal(w) = {tal(n) : n € w}, Bin(w) = {bin(n) : n € w} and, for each
k > 3, Bp(w) = {bx(n) : n € w}. Occasionally, we will want to say that
By (w) = Bin(w) and that By (w) = Tal(w).

For a string o = (¢(0),0(1),...,0(n—1)), |o| denotes the length n of o. The
empty string has length 0 and will be denoted by §). A constant string o of length
n will be denoted by k”. For m < |o|, o[m is the string (¢(0),...,0(m — 1));
o is an initial segment of T (written o < 7) if ¢ = 7[m for some m. The
concatenation o1 (or sometimes just o7) is defined by

o1 =(0(0),0(1),...,0(m—1),7(0),7(1),...,7(n = 1)),

where || = m and |7| = n; in particular we write ™ a for o™ (a) and a™ o for
(a)" 0.

Our basic computation model is the standard multitape Turing machine of
Hopcroft and Ullman [5]. Note that there are different heads on each tape and
that the heads are allowed to move independently. This implies that a string ¢
can be copied in linear time. An oracle machine is a multitape Turing machine
M with a distinguished work tape, a query tape, and three distinguished states
QUERY, YES, and NO. At some step of a computation on an input string o,
M may transfer into the state QUERY. In state QUERY, M transfers into the
state YES if the string currently appearing on the query tape is in an oracle set
A. Otherwise, M transfers into the state NO. In either case, the query tape is
instantly erased. The set of strings accepted by M relative to the oracle set A
is L(M, A) = {o]| there is an accepting computation of M on input ¢ when the
oracle set is A}. If A =0, we write L(M) instead of L(M,).

Let t(n) be a function on natural numbers. A Turing machine M is said
to be t(n) time bounded if each computation of M on inputs of length n where
n > 2 requires at most ¢(n) steps. A function f(x) on strings is said to be in
DTIME(t) if there is a t(n)-time bounded deterministic Turing machine M
which computes f(z). For a function f of several variables, we let the length
of (w1,...,2y) be |z1|+ -+ |zn]. A set of strings or a relation on strings is in
DTIME(t) if its characteristic function is in DTTM E(t). We let

R=ADTIME(n+c¢):c> 0},

LIN = JADTIME(cn) : ¢ > 0},

P =UADTIME(n) :i >0},

DEXT =J.so{PTIME(2°™)}, and

DOUBEXT = J.so{ DTIME(22" ")},

EXPTIME = J,,{DTIME(2"")}, and in general,

DEX(S) = Uynyes PTIME(2™)}.

A function f(z) on strings is said to be in NTTM E(t) if there is a t(n)-time
bounded nondeterministic Turing machine M which computes f(z). A set of
strings or a relation on strings is in NTTM E(t) if its characteristic function is
in NTIME(t). We let

NP = ANTIME(n") : i > 0},

NEXT =, > {INTIME(2°")},

NEXPTIME = UC>O{NTIME(2”C)},

DOUBNEXT =J,5o{NTIME(2>"")} and in general,

NEX(S) = Usnyes NTIME(2'())}.

We fix enumerations {P; };en and {N; };en of the polynomial time bounded
deterministic oracle Turing machines and the polynomial time bounded non-
deterministic oracle Turing machines respectively. We may assume that p;(n) =
maz(2,n)! is a strict upper bound on the length of any computation by P; or N;
with any oracle X on inputs of length n. PX and N denote the oracle Turing
machine using oracle X and in an abuse of notation we shall denote L(F;, X)

by simply PX and L(N;, X) by NX. This given, P*X = {PX :i € N} and
NPX = {NX :iec N}.

For A, B C ¥*, we shall write A <P B if there is a polynomial-time function
f such that for all z € ¥*, z € A iff f(z) € B. We shall write A <E B if 4
is polynomial time Turing reducible to B. For r equal to m or T, we write
A=P Bif A<P Band B <P A and we write A [¥'B if not A < B and not
B <F A

We define the standard notions of feasibility as follows. We say that a
function f(x) is quasi-real-time if f(x) € R. (This is slightly more general
than the usual notion of real-time as computable by a Turing machine which
simply reads the input one symbol at a time from left to right (or right to left)
and simultaneously leaves the output in its place on the tape. In particular, a
real-time function is always in DTIM E(n).) The function f(z) is linear time
if f(x) € L, polynomial time if f(x) € P, nondeterministic polynomial time if
f(x) € NP, exponential time if f(x) € DEXT, nondeterministic exponential
time if f(z) € NEXT, and is double exponential time if f(x) € DOUBEXT.
We say that f(x) is exponentially feasible if f(x) € DEX(T) for a notion T of
feasibility. In particular, if f(x) € DEX(DOUBEXT), then f(z) is said to be
triple exponential time.

The smallest class including P and closed under DEX can be defined by
iterating DEX. That is, let

PY= P, P*tl = DEX(P) for each n, and Q = Uncw P
A function f(x) € @ is said to be iterated exponential time or g-time. The
iterated exponential functions E,(#) can be defined recursively by Fy(x) = =
and Epqi(z) = 2E.(#) for all n and x. It is easy to see that z" < E,(z) for all
r > 0, from which it follows that @ =, ., DEX" (DTIM E(n)).

We observe that the classes R, LIN, P, NP, and @) are all closed under com-
position, whereas the other classes defined above are not. In addition, Tal(w)
and Bin(w) are g-time isomorphic.

Observe that for a function f(xq,...,25) of several variables, the above
definitions are equivalent, if we declare the size of the input (z1,...,2x) to be
the maximum of the sizes |a1], ..., |2zg| since we allow multiple tapes. This

occasionally simplifies the computation of the complexity of various functions.

We refer the reader to Odifreddi [61] for the basic definitions of recursion
theory. Let ¢;, be the partial recursive function of n variables computed by
the ith Turing machine M;. If n = 1, we will write ¢; instead of ¢; 1. Given a
string o € {0, 1}*, we write ¢f(o) | if M; gives an output in s or fewer steps
when started on input string ¢. Thus the function ¢; is uniformly polynomial
time. We write ¢.(o) | if (3s)(¢2 (o) {) and ¢ (o) 1 if not ¢e (o) J.

The notion of a p-time structure was defined in section 2. We need a few
refinements of that definition.

Definition 3.1 (i) A p-time function f is honest p-time if there is a poly-
nomial function q such that for all x1, ..., o,

y=1[@,.) = (Vi <n)(Jzi] < q(lyl)-

(ii) A p-time structure A is honest p-time if all of its functions are honest
p-time.

(iii) A structure A has honest witnesses if for any quantifier-free
formula ¢(y, 1, ..., x,), there is a polynomial q such that for any ay, . .., a, €
A if AE 3y)é(y, a1, ... an), then there is a z € A with |z] < ¢(lay| +
<o |an|) such that A= ¢(z, a1, ..., a,).

Note that for an honest p-time function mapping T'al(w) into T'al(w), Nerode
and Remmel showed in [56] that f=! is also honest p-time.

For a group, we will distinguish two types of computability. The structure
of a group G is determined by the binary operation which we will denote by
the addition sign +¢, since we are interested in Abelian groups. We let e
denote the additive identity of G. However, the inverse operation, denoted by
inv®, may also be included as an inherent part of the group. Thus we have the
following distinction.

Definition 3.2 A group G is I-computable if (G,+%,e%) is -computable,
and is fully ['-computable if (G, 4+, inv%, %) is ['-computable.

It is easy to see that any recursive group is also fully recursive, since inv(a)
can be computed as the least member b of G such that a +% b = ¢, where the

elements of G are ordered first by length and then lexicographically for elements
of the same length.

On the other hand, the fully p-time groups make up a proper subclass of the
p-time groups, as shown by Proposition 1.1 of [11].

Definition 3.3 For any complezity class I' and any structures

A= (AR ies, {1 Yier, {citicv),
and
B = (B,{RP}ies, {fF Yier, {citicv),

we say that A and B are T'-isomorphic if there s an isomorphism f from A
onto B and T'-computable functions F' and G such that f = F[A (the restriction
of F to A) and f~1 = G[B.

10

4 Polynomial time sets and isomorphisims

In this section we shall give a number of useful lemmas about the relations
between the various standard universes that we will consider in our study of
feasible structures. The most basic standard universe is the set X* where X
is a finite alphabet and in particular where ¥ = {0,1}, {1}, or {0}. Other
standard universes include the set Tal(w) of tally representations of natural
numbers, the set Bin(w) of binary representations of natural numbers, and, for
any k, the set Bj(w) of k-ary representations of natural numbers. In recursion
theory, all of these sets are recursively isomorphic and therefore interchangeable.
For our purposes, we must consider carefully which of these isomorphisms are
polynomial time or even polynomial time in one direction.

First we need to explicitly define a polynomial time pairing function. For
any finite alphabet X, there is a natural embedding p of £* into Bin(w) given
as follows. We may suppose that ¥ C {0,1,2,...,n} for some n. Let p(#}) =0
and, for o = (i1, ...,4), let

p(a) = 0271702717 ... 0T .

The function p is actually an isomorphism from w* onto Bin(w) and has an
inverse p~1. It is also clear that, for each n, the set p({0,1,...,n}*) is linear
time (uniformly in n). Thus we can normally assume that an arbitrary structure
has universe a subset of Bin(w).

The coding function (o1, 02, ...,0%) for o1,..., 0% € {0,1}* is now defined
by

—~ —~

(01,00, ..., 060k = plo17 270572 orp-1" 27 o).

Let Qx = {{01,02,...,00)k : 05 € {0,1}* foreachi}. For i = 1,...k,
the projection functions 7% from @ onto {0,1}* are implicitly defined by the

equation
k k k
o= (i (o), m5(c),...,m(0))k.
The subscript k& will normally be omitted. It is easy to see that the sets (), and
By (w) are all linear time and that the functions 7%, and { ,...,) are all

computable in linear time.
Given two subsets A and B of {0, 1}*, define

A@ B={{a,b):a€ A be B}
and
A®d B={{0,a):ac AYU{(1,b): b€ B}.

It is clear that if A and B are p-time, then both A ® B and A ® B will also be
p-time.

Now, for each k& > 2, a natural number in (reverse) k-ary form is simply a
string o € {0,1,...,k — 1}* which is either 0 or else ends with an element of

11

{1,...,k—1}. Thus the set By(w) of k-ary representations of natural numbers
is a linear time subset of {0,1,...,k — 1}*. Tal(w) = {0} U {1}*1 is of course
a linear time subset of {0,1}*, but is not polynomial time isomorphic to the
whole set. (This will follow immediately from Lemma 4.6 below.) For a string
o = by(n) € Bi(w) with n > 0, let (o) be the unary representation, 17, of n
and let p5;(0) = 0. We now state a sequence of lemmas which will be useful for
our main results. Most of these lemmas are proved in [11] or [14].

Lemma 4.1 (a) Suppose that A is a polynomial time structure and that ¢
15 a polynomual time set isomorphism from A onto a set B. Then B is
a polynomial time structure, where the functions and relations on B are
defined to make ¢ an 1somorphism of the structures.

(b) Suppose that A is an EXPTIME structure and that ¢ is a polynomial time
set isomorphism from A onto a set B. Then B s an EXPTIME struc-
ture, where the functions and relations on B are defined to make ¢ an
1somorphism of the structures.

(¢) Suppose that A is a g-time lime structure and that ¢ is a g-time time sel
tsomorphism from A onto a set B. Then B s a g-time time structure, where
the functions and relations on B are defined to make ¢ an isomorphism of
the structures.

Proof: We sketch the proof for the p-time case. The other cases are sim-
ilar. To simplify the proof, let us suppose that A has one function f* and
one relation R4. Observe first that B is a polynomial time set, since b €
B <= ¢~ !(b) € A. The function f® is polynomial time, since fZ(by,...,b,) =

d(fA(p~1(b1),...,671(by))). Therelation R® is polynomial time, since R (b, . ..

RAYG7 (b1), o, 07 (b)) -

Next we state two lemmas which relate tally representation of a structure
to its binary representation and, more generally, to its k-ary representation.
Part (b) of the first lemma is an improvement of Lemma 2.2 of [11] where the
computation was bounded in polynomial time.

Lemma 4.2 For each k > 1,
(a) Bin(w) is linear time isomorphic to {0,1}*.

(b) There is a linear time function p such that, for all n, both the computation
of pr(bg(n)) = 1™ and the inverse computation ofugl(ln) = by(n) can be
computed in time p(n);

(¢) For eachn >0 and o = by(n), k7=t < n + 1 <kl

12

Proof: We sketch the proof of (b) for & = 2. The basic computation in either
direction consists of enumerating the binary numbers from 1 to n on one tape
while either writing or reading n 1’s on the other tape. The enumeration of the
binary numbers is done by repeatedly adding 1 by the usual algorithm, which
consists of replacing 1’s with 0’s while looking for the first 0, and then replacing
the first 0 with a 1. If we define h(n) to be the total number of symbols written
by this procedure for the numbers from &k = 1 up to & = 2”7 — 1, then we observe
that A(1) = 1 and that, in general, hA(n+1) = n4+ 14 2h(n). This is because the
numbers from 27 up to 2°+! — 1 are obtained by writing 27, which takes n + 1
steps and then essentially writing the numbers from 1 up to 2” — 1 again, while
leaving the final 1 on the end of each. Now it is easy to see by induction that
h(n) < 2"*t! —n —2 for each n. Counting a slightly smaller number of steps for
returning to the beginning of the string, we see that all of the binary numbers
from 1 up to k = 2" — 1 may be written in total time < 2h(n) < 2"+t —2 = 4k.
For any number k& with 27~ < k < 27, the binary numbers from 1 to k may be
written in total time < 27+1 — 2 < 8k. a
For any subset M of w, let tal(M) = {tal(n) : n € M}, let bin(M) =
{bin(n) : n € M}, and for any finite k > 1, let by (M) = {bx(n) :n € M}.

Lemma 4.3 For any finite k > 1, any M C w and any oracle X :
(a) tal(M) € PX < by(M) € DEXTX;

(b) tal(M) € NPX < by(M) € NEXTX.

(¢) bp(M) € PX —tal(M) € LINX.

Proof: = We give the proof for k = 2, where by (M) = bin(M). The proof of
(b) is the same as the proof of (a).

(a) Suppose first that tal(M) € P*. Then there is a procedure with oracle
X which tests whether tal(n) € tal(M) in time < n° for some fixed ¢ and
all n > 2. To test whether ¢ = bin(n) € bin(M), we first compute tal(n),
which requires time < 8n by the proof of Lemma 4.2. Then we test whether
tal(n) € tal(M), which requires < n® steps by assumption. Now by part (c) of
Lemma 4.2, n¢ < (2l71)¢ = 2¢l9l 5o that bin(M) € DEXTX.

Next suppose that bin(M) € DEXTX. Then there is a procedure with
oracle X which tests whether bin(n) € bin(M) in time < 2¢1°"() for some
fixed ¢ and all n. To test whether tal(n) € tal(M), we first compute bin(n),
which requires time < 8n by the proof of Lemma 4.2. Then we test whether
bin(n) € bin(M), which requires < 2¢1%7(")l steps by assumption. Now by
part (c) of Lemma 4.2, 2¢1bin()l = (2lbin(n)lye < (9n)° < min(2,n)?°. Hence
tal(M) € PX.

(c) Suppose that bin(M) € PX, so that we can test o = bin(n) € bin(M) in
time < |o|°. Now let || = r, so that 2”71 < n < 2". Then as in part (a) above,
we see that we can test tal(n) € tal(M) in time < r°. Now it is clear that for
sufficiently large r, ¢ < 27~ < n. Thus tal(M) € LINX. a

13

We note that the assumption that tal(M) € LIN* actually implies that we
can test ¢ € Bin(M) in time < 217l for some fixed ¢ and almost all o

For any structure M with universe M C w, let tal(M) be the tally represen-
tation of M with universe tal(w) and relations and functions defined so that the
mapping taking n to tal(n) is an isomorphism from M onto tal(M); bin(M)
and bx (M) are similarly defined. Lemma 4.3 is easily extended to tally and
binary representations of relational structures M and one direction extends to
structures with functions.

Lemma 4.4 Let k > 2, let M be a structure with unwerse M C w and let
A =tal(M) and B = bi(M). Then

(a) If A is p-time, then B is exponential time.
(b) If B is exzponential time, then A is EXPTIME.

(¢) If B is exponential time and, for all functions fM, fM(ny, ... ng) <
2¢(nit+nx) for some fized constant ¢ and all but finitely many k-tuples,
then tal(M) is exponential time.

(d) If B is exponential time and, for all functions fM, fM(ny, ... ng) < (ny+
oot ng)¢ for some fired constant ¢ and all but finitely many k-tuples, then
A is p-time.

(e) If B is polynomial time and, for all functions fM, fM(ny, ... ng) < e(ng+
...+ ny) for some fired constant ¢ and all but finitely many k-tuples, then
A is linear time.

Proof: We sketch the proofs for £ = 2.

(a) Suppose that A is p-time. It follows from Lemma 4.3 that B has a
exponential time universe and it is easy to see that the relations of B are also
exponential time. For simplicity, suppose that f* is a unary function. (The
general proof can be found on p. 320 of [11].) Suppose tal(m) = fA(tal(n)).
By assumption, tal(m) may be computed from tal(n) in time < n° for some
fixed ¢ and all n > 2, so that m < n°. To compute fZ(bin(n)), we first
compute tal(n) from bin(n), which takes exponential time by Lemma 4.2. Then
we compute tal(m) = fA(tal(n)) in A, which takes time < n¢ < 2¢lbin()l,
Finally, we must compute bin(m) from tal(m). This final computation takes
time < 8m < 8n° < 8(21°"(")e. Thus B is exponential time.

For parts (b), (c¢) and (d), suppose that B is exponential time. Then we
easily see that the universe of A and the relations of A are polynomial time. For
simplicity, let f* be a unary function. The procedure for computing f4 (tal(n))
has three parts as above. First, compute bin(n) from tal(n), which takes time
< 8n by Lemma 4.2. Next, compute bin(m) = fZ(bin(n)) which takes time <
gclbin(n)] < (2n)°. The final and most time-consuming part of the computation
is to compute tal(m) from bin(m), which takes time < 8m. In general, we only

14

know that |bin(m)| < 2701 < (2n)¢ so that m < 2(2?)° and hence we can
only conclude that A is EXPTIME. For part (c), we have m < 2°” and hence
A is exponential time. For part (d), we have m < n° so that A is p-time.

(e) Tt follows easily from the hypothesis and Lemma 4.2 that the universe
of A and the relations of A are linear time. Now let tal(m) = f*(tal(n) and
observe that by the hypothesis, m < ne. The computation of bin(n) from tal(n)
takes time < 8n by Lemma 4.2. Since B is polynomial time, the computation of
bin(m) = fP(bin(n)) takes time < |bin(n)|* for some fixed d. It follows as in the
proof of Lemma 4.2(c) that this computation can almost always be done in time
< n. Finally, the computation of tal(m) from bin(m) takes time < 8m < 8nc.
Thus A is a linear time structure. ad

Note that the hypothesis needed for part (d) follows from the assumption
that, for some fixed constant ¢ and all but finitely many k-tuples,

IfB (o1, .. o) < ellor] + ...+ |ox]).

Nerode and Remmel define in [56] the notion of a p-time equivalence type
(PET) by saying that two subsets A and B of Tal(w) are p-time equivalent if
there is a partial 1:1 honest p-time function f with domain including A such
that f(A) = B. Tt is natural to extend this notion to p-time subsets of Bin(w)
by defining two sets A and B to be p-time isomorphic if there is a 1:1 p-time
function mapping A onto B whose inverse is also p-time. (We may assume that
J and f~! have domain Bin(w) since A and B assumed to be p-time.)

It follows from Theorem 3 of [56] that for any p-time subset A of Tal(w),
there are infinitely many p-time subsets of Tal(w) which are recursively iso-
morphic to A but not p-time isomorphic to A. We can now characterize those
subsets of {1}* which are polynomial time isomorphic to T'al(w) and put con-
ditions on those subsets of {0, 1}* which are polynomial time isomorphic to
Tal(w). The following was proved in [11].

Lemma 4.5 (a) Let A be a p-time subset of Bin(w) which is polynomial time
isomorphic to Tal(w) and let ag,ay,. .. list the elements of A in the stan-
dard ordering, first by length and then lexicographically. Then for some
gk and all n > 3, n < |a,|’ and |a,| < n*.

(b) Let A be a p-time subset of Tal(w) and let ag, a1, ... list the elements of A
in the standard ordering, Then the following are equivalent.

1. A is p-time isomorphic to Tal(w).
2. For some k and all n > 2, |a,| < n”.

8. The canonical map taking 17 to a, is p-time.

Lemma 4.6 For any infinite set M of natural numbers, tal(M) = {tal(n) :
n € M} and bin(M) = {bin(n) : n € M} are not p-time isomorphic.

15

Lemma 4.7 Let By (w) be the set of k-ary representations of natural numbers.
Then

(a) The addition, subtraction, multiplication and division (with remainder)
funetions from By (w) ® By (w) to Bi(w), the order relation on By (w) and
the length function from By (w) to By(w) are all p-time. (As usual, m—n
is set to 0 if m < n.)

(b) Bin(w) \ {1}* is p-time isomorphic to Bin(w).

(c) Foreach k > 2 and for A equal to either the set By (w) or the set {0,1,... k—
1}*, there is a polynomial time isomorphism ¢ from A to Bin(w) and a
constant ¢ such that, for all but finitely many a € A, |a| < |¢(a)| < ¢|al.

We will frequently want to combine structures using disjoint unions and
direct sums. Nerode and Remmel proved in [56] that there exist p-time subsets
A, B and C of Tal(w) such that A is not p-time isomorphic to B but A & C'
i1s p-time isomorphic to B & C and similarly there exist subsets X, Y and Z
of Tal(w) such that X is not p-time isomorphic to Y but X ® 7 is p-time
isomorphic to Y ® Z. This result of Nerode and Remmel also easily follows
from our next results due to Cenzer and Remmel [11].

Lemma 4.8 (a) Let A be a p-time subset of Tal(w). Then A®Tal(w) is p-time
isomorphic to Tal(w) and A @ Bin(w) is p-time isomorphic to Bin(w).

(b) Let A be a nonempty p-time subset of Tal(w). Then A ® Tal(w) is p-time
isomorphic to Tal(w) and A ® Bin(w) is p-time isomorphic to Bin(w).

Proof: (a) First observe that A @ Tal(w) is p-time isomorphic to the set
C={2a:a€ AU{2n+1 : n € Tal(w)} by the obvious isomorphism.
Now let ¢g, ¢1, ... enumerate C' in increasing order. Since C' contains every odd
number, it is clear that ¢, < 2n+1. It follows from Lemma 4.5 that C'is p-time
isomorphic to T'al(w).

Next, A® Bin(w) is certainly p-time isomorphic to (A® Tal(w))® (Bin(w)\
Tal(w)). Now by the preceding discussion, A & T'al(w) is p-time isomorphic to
Tal(w). Tt follows that A @ Bin(w) is p-time isomorphic to Tal(w) & (Bin(w) \
Tal(w)) which is clearly p-time isomorphic to Bin(w).

(b) If A has only one element, this is obvious. If A has at least two elements,
let @ be one of them. Then A x T'al(w) is p-time isomorphic to ({a} x Tal(w)) &
((A\{a})xTal(w)). Now the first part of this sum is obviously p-time isomorphic
to Tal(w) and the second part is p-time isomorphic to some p-time subset of
Tal(w). Tt now follows from part (a) that the sum is p-time isomorphic to
Tal(w).

For the case of Bin(w), again if A consists of single element, the result is
trivial. Otherwise, let a@ be the least element of A and consider the following

mapping. If b € A and b # a, then let f((b,0)) = 07 10°1. The idea is to define

16

f so that the image of {a} x Bin(w) under fis Bin(w) \ f((A\{a}) x Bin(w))
by letting f({a, bin(n))) be the n-th element of Bin(w)\ f((A\ {a}) x Bin(w)).
Observe that for any 7 = bin(g) € Bin(w), which is not of the form ¢~ 10°1 for

some b € A\ {a}, we can find in polynomial time in |r| all strings of the form
1%0710°1 such that

1. >0,
2. 1° ¢ A and
3. under the usual ordering on Bin(w), 1**~ 10°1 < 7 but 1%+1710°1 £ 7.

That is, since A is a polynomial time subset of T'al(w), we can test each element
of the 1° with 0 < b < |r| for membership in A in b* steps for some fixed k
and hence find all strings of the form 1° where ¢ > b > 0 and 1> € A in at
most ZLTzll 7% < (|7])**! steps. Thus in polynomial time in |7|, we can find all
the strings 1%~ 10011, ..., 1%~ 10°»1 satisfying properties (1)-(3) above. This
mean that exactly °'_, 2% elements of Bin(w) which are less than or equal to 7
are in the image of f((A\{a}) x Bin(w)). Thus we let f({a,bin(¢—> F_, 2¥:)) =
7. It follows that f~! is polynomial time. To see that f is polynomial time,
note that f({a,bin(n)) < bin(n)™ 11 so a similar computation starting with = =
bin(n) ™ 11 will allow us to find the n-th element of Bin(w)\ f((A\{a})x Bin(w))
in polynomial time in |bin(n)|. O

It follows easily from the lemmas above that any p-time relational structure
A is recursively isomorphic to a p-time structure B such that 4 and B are not
p-time isomorphic. (We assume that A has universe Bin(A) = {bin(a) : a € A}
for some A C w and let B have universe Tal(A) = {tal(a) : a« € A}.) Now
these structures are actually exponential-time isomorphic. However, there is a
stronger result.

Lemma 4.9 For any p-time set A = {bin(ag) < bin(a1) < ---}, there is a set
M = M(A) = {bin(mo) < bin(mi) < ---} such that M is p-time and the map
which takes bin(m;) to bin(a;) is p-time, but there is no primitive recursive map
from A into M which maps at most k elements of A to any element of M' where
k is any fived finite number. Furthermore, M may be taken to be a subset of

Tal(w).

Proof: Let ¢. be the e-th primitive recursive function mapping Bin(w) into
Bin(w) and, for each e, let t. be the total time required to test all numbers
up to a. for membership in A and to compute ¢;(bin(a;)) for all j,7 < a.;
clearly t. < t.y1. For each e, let m¢ = 2'< so that bin(m.) = 01 and
[bin(m.)| = te + 1. Tt follows that ¢.(bin(a;)) < bin(m;) for all ¢ < e, since
by convention it takes at least k steps to compute an output of length k. Let
A” = {bin(me) e < w}.

Here 1s the p-time algorithm for testing whether & € A*. First check to see
that @ = 01 for some n. Then start to test bin(0), bin(1), ... for membership in

17

A. As soon as we find that bin(n) is e-th member of A so that bin(n) = bin(a.),
then compute in order ¢¢(ap), -, ¢e(ae—1) and ¢g(ac), -, ¢e(a.) and then
return to testing whether bin(n+1), bin(n+2), - - - are in A. If the total number
of steps reaches t exactly when the computation of some ¢.(a.) has just been
completed, then ¢ = ¢, so that # = bin(m.) belongs to A*. Otherwise, ¢ A*.
This argument also shows that the map which takes bin(m.) to bin(a.) is p-
time. Finally, let M = M(A) = {bin(m;2) : i < w}. Then M is also p-time
since we can clearly check in polynomial time whether 7 is a square if we discover
that # = bin(m.) at the end of the computation. The map taking bin(m;z) to
bin(a;) is p-time since we can test all numbers < a;2 for membership in A in
time < |bin(m;z2)| and therefore determine a; from bin(m;:).

Suppose now by way of contradiction that ¢. were a map from A into M’
which were at most k& to 1. Since each primitive recursive function has infinitely
many indices, we may assume that e > k. Then

{de(bin(ag)), . .., ¢ (bin(ae2))}

must contain at least e distinct elements, so that at least one of them is >
bin(mez), which contradicts the observation above that ¢.(bin(a;)) < bin(m.)
for all # < e and thus establishes the result.

Since Bin(w) and Tal(w) are primitive recursively isomorphic via the stan-
dard map ps, it follows that we could replace M in this argument with the set
M* ={tal(mg), tal(my), .. .}. O

Remark 1: The only properties of the set of primitive recursive functions
needed for this result is that the primitive recursive functions is a class of total
recursive functions which can be effectively listed. Thus in the statement of
Theorem 4.9 we can replace the primitive recursive functions by any class of
total recursive functions which can be effectively listed.

Remark 2: Letting £ = 1, we see that there is no primitive recursive embed-
ding of A into M (A). Furthermore, there is no primitive recursive embedding
¢ of a cofinite subset C' of A into M (A), since if |A\ C| = k — 1, then we could
extend ¢ to a map from A into M(A) which is at most £ to 1 by mapping all
elements of A\ C' to some fixed element of M (A).

5 The Existence of Feasible Structures

In this section, we shall survey a number of model existence results for polyno-
mial time structures. In particular, we will consider four existence questions for
any class C of structures.

e Is every recursive structure in C isomorphic to a polynomial time struc-
ture?

e Is every recursive structure in C recursively isomorphic to a polynomial
time structure?

18

e Is every recursive structure in C isomorphic to a polynomial time structure
with a specified universe such as the binary or tally representation of the
natural numbers?

e Is every recursive structure in C recursively isomorphic to a polynomial
time structure with a specified universe such as the binary or tally repre-
sentation of the natural numbers?

The fundamental result for relational structures is due to Grigorieff [32] and
(for structures with infinitely many relations) to Cenzer-Remmel [10]. Recall
that a structure with no function is said to be relational.

Theorem 5.1 Fuvery relational structure is recursively isomorphic to a real time
structure with universe a subset of Bin(w) and to a linear time structure with
universe a subset of Tal(w).

Sketch of Proof: = We may assume without loss of generality that the struc-

ture 4 has universe w. The element a is represented in the binary real time

model by ¥(a) = 19t1010°, where ¢ is the time required to compute whether

Rj(®1, ..., %)) for all j < a and all tuples (21, ..., 2 ;) from {0, .. Laytl),
The set B = {¢(a) : a € w} is real time by the following algorithm.

Given bin(n), start to read bin(n) from left to right. If at any time
we discover that bin(n) is not of the form 1%+1010¢ for some a and
t, then bin(n) ¢ B. Otherwise, having read the first 0 in bin(n) so
that we have found a such that bin(n) = 1°t1010¢, start the com-
putation which tests for all j < a and for all tuples (x1,..., %))
from {0, ...,a}'V), whether Rj(®1,...,%;)). If the total computa-
tion finishes in exactly ¢ steps, then bin(n) € B. If the computation
either finishes in fewer steps, or has not finished by ¢ steps, then
bin(n) ¢ B.

Each relation R; is real time, by the following algorithm.

Given (bin(no), ..., bin(ny;) € Bt first compute aj and tj for
each k < j so that bin(ng) = 19%T1010%. Then let t = max{to, .. St
Now by the construction we can test whether Rj(ao,...,a;;)) in
time < ¢.

The tally representation of A has universe {tal(n) : bin(n) € B} and is linear
time by Lemma 4.4(e). a

Note that Theorem 5.1 allows us to conclude that if G is a recursive graph,
i.e. G = (V, E) where V, the vertex set of (G, is a recursive set of natural num-
bers and the edge relation F is also recursive, then G is recursively isomorphic
to a polynomial time graph G'. However if G has a recursive k-coloring, then
to conclude that G is recursively isomorphic to a polynomial time graph with a

19

polynomial time k-coloring requires a stronger version of Theorem 5.1. We will
present an improved version of Theorem 5.1 due to Cenzer and Remmel [17]
which is their primary tool in their analysis of polynomial time combinatorial
structures and I19-classes. The improved version of the theorem presented ap-
plies to structures with two distinct types of objects, the first type being the
normal universe of the structure, and with functions which map the first type
into the second type. The type of example that we have in mind is a function
from the vertices of a graph into the natural numbers which computes the degree
of a vertex or the color assigned to a vertex. The universe of the graph is now
expanded by adding a p-time set which represents the natural numbers and the
degree function or coloring now becomes part of the structure. Naturally, the
new objects are not vertices and therefore are not joined to any other objects
by edges.

Theorem 5.2 Let
C= (Ca Aa Ba {ch}iESa {fic}iETa)a
be a recursive structure such that

(i) A and B are disjoint subsets of C' with C' = AU B and B is a polynomial
time set;

(i1) there is a recursive isomorphism from Bin(w) onto a subset of
Bin(w) \ B with a p-time inverse;

(iii) for each i € T, f; maps C into B;

(iv) for each i € S, the relation R; is independent of B, thatl is, for any
(Z1,...,2n) € C™, where n = s(i), any j < n such that x; € B, and
any b € B, RS (z1,...,2,) holds if and only if
RS(z1,...,2j_1,b,2j41,...,2,) holds;

(v) for each i € T, the function f; is independent of B, that is, for any
(Z1,...,2n) € C™, where n = t(i), any j < n such that x; € B, and
any b€ B, fC(x1,...,xn) = fE (21, xjo1, b, 41, -,).

Then there is a recursive isomorphism ¢ of C onto a p-time structure M such

that ¢(b) = b for all b € B.

5.1 Structures with Functions

In contrast to purely relational structures, recursive structures with functions
need not be effectively isomorphic to feasible structures. The following results

are Theorems 3.1, 3.2 and 3.3 of [10].

Theorem 5.3 Let Ly be the language with exactly one function symbol f which
1§ unary.

20

(a) There is a recursive structure A = (A, fA) which is not recursively isomor-
phic to any primitive recursive structure.

(b) There is an exponential time structure D = (D, fP) which is not recursively
1somorphic to any polynomial time structure.

Proof: (a) Let (Ao, fo), (A1, f1),... be an effective list of all primitive re-
cursive structures over Ly and let ¢g, ¢1,... be a list of all one-to-one partial
recursive functions. We must meet the following set of requirements in our
construction of A.

R; ;: ¢; is not a recursive isomorphism from A to (4;, fi).

)

To meet the requirements R; ;, recursively partition {0, 1}* into infinitely
many disjoint infinite recursive sets S; ;. We then define A so that A =
Ui,j S;j = 10,1} and for all 7, j, f4 maps S; ; into S; ;.

We now fix 7, j and then we define f = f* on S; ; in stages. Welet ag, aq,. ..
be some effective listing of S; ;. At stage s, we shall define f(a;). We start by
defining f(ag) = ai at stage 0. At stage s + 1, compute ¢3(ao). If ¢3(aq) 1
or if qu_l(ao) }, then we define f(as) = asy1. Otherwise, that is, if ¢3(ao) |
but qu_l(ao) T, let @ = ¢3(ag) and do the following. Compute the sequence

z, fi(x), fi(fi(z)), ..., fi(s-l_l)(x), where here fi(k) denotes f composed with itself
k times. Note that if ¢; were an isomorphism, then it must be the case that
éi(ar) = fi(k)(x) for all k. Thus if ¢; were an isomorphism, then it must be the

case that
flag) = ag = U (@) = .

Thus if fi(s-l_l)(x) =z, then we define f(as) = as41. If fi(s-l_l)(x) # x, then we
define f(as) = ap. Note that in either case, we will have ensured that ¢; cannot
be an isomorphism from A onto (4, f;).

(b) The proof of part (a) must be modified in several ways. First, let
(Eu, fo), (E1, f1), ... be an effective list of all p-time structures whose universe
is contained in {0,1}® over Loy. Let ¢, ¢1,... be a list of all one-to-one partial
recursive functions which map {0, 1}* into {0, 1}". We shall build our structure
(D, fP) so that D C Tal(w) and we meet the following set of requirements.

R; ;j: ¢; is not a recursive isomorphism from D to (E;, f;).

)

To meet the requirements R; ;, we construct D as a disjoint polynomial-time
union of infinite p-time sets D = Define the function ¢ : Tal(w) x
Tal(w) x Tal(w) — Tal(w) by ¥(0 tal(tal (7)) = tal(2[4, j]) +3) and ¥ (tal(n+
1), tal(d),tal(y)) = tal(2?) if ¥(tal(n), tal(i), tal() = tal(p).

Note that tal(x) = tal(2[¢, j] + 3) can be computed from input
(tal(?),tal(j)) in time a-z for some fixed constant a and that the computation of
tal(y) = tal(2%) from input tal(x) can be computed in time at most b-y for some

21

fixed constant & > a. Thus the computation of tal(z) = (tal(n),tal(i),tal(j))
from input (tal(n),tal(i),tal(j)) takes at most the following number of steps:

bi, j]+ ba + 2" + 2% + - bz <b(1+2+ -4 2) < b2

For each 4, j, we let T; ; = {¥(n,4,j) : n < w}. Then we can test whether
tal(z) = ¢(tal(n), tal(i), tal(j)), perform the computation of

¥(0,tal(i), tal(§)), v(1,tal(i), tal(§)), ..., ¥(tal(n), tal (), tal(j))

for bz? steps and see if the computation converges to z by that time. It follows
that the sets T; ; are uniformly p-time and that D is also p-time, since

tal(z) € T; ; <= (In < 2) tal(z) = Y(tal(n), tal(i), tal(j))
and
tal(z) € D <— (Fi,j < z) tal(z) €T; ;.

We now fix 4,5 and define f = fP on T;; = {tal(ag),tal(ar),...}, where
tal(an) = ¢(tal(n),tal(i),tal(j)). For each m, perform the following series of
computations for at most 2™ steps.

(1) Start to compute ¢;(tal(ag)). If this converges in less than 2% steps, let
bo = qb](tal(ao))

(2) Check that by € E;.
(3) Compute the sequence by = f;(bg), b2 = fi(b1),..., bms1 = fi(bm).

Let s be the least m such that the computations can be successfully com-
pleted in at most 2%~ steps. Assuming the existence of by = ¢;(ap), we can show
that such an s must exist. That is, it takes some constant amount ¢g of time to
compute bg. Since f; is p-time, fi(y) can be computed in time bounded by |y|*
for some fixed integer k£ > 1 and any y € {0, 1}* with |y| > 1. Let ¢; be the time
required to compute f;(#), f;(0) and f;(1), if needed, and let ¢ = ¢g + ¢1. Then
to compute the sequence by = ¢;(ao), b1 = fi(bo),. .., bmy1 = fi(bm) takes time
at most

t(m) = e+ [bol" + (bol*)* + -+ =+ [bol* + b + -+ b0

We need to show that this sequence is eventually dominated by the sequence
ag,a; = 2%, ..., a, = 2971, We may assume without loss of generality that
|bo| > 1. Now if m is large enough so that both ¢ and m are < |bg|*", then

t(m) < (m 4 1)[bol*™ < [bo|™".
Now let m be large enough so that |bg|? < 22", k < 2, and m® + m < 2™.

Then k™ < 2™ and t(m) < 22727 = 22" g2 o expsz(m). To show

22

that the latter is dominated by a,,, note first that ag > 3 and that, for any m,
am > m+ 3; it follows that @43 > exps(m + 3).

The definition of f now proceeds in stages, as in part (a). Let s be the least
m such that the computations described above can be successfully completed.
Now for t # s, we let f(a:) = as41. To compute f(as), we let 2 = ¢;(ao)
and compute fi(s-l_l)(x). Then if fi(s-l_l)(x) = x, we define f(as) = as41. If
fi(s-l_l)(x) # x, then we define f(a;) = ag. Note that in either case, we will have
ensured that ¢; cannot be an isomorphism from P onto (E;, fi).

It remains to be seen that the computation of f can be done in exponential
time. Given tal(z) € D, we first compute the unique triple (n, ¢, j) such that
tal(z) = ¢(tal(n),tal(?),tal(j)). This can be done in polynomial time since n, ¢
and j are all less than z. Next we perform the computations (1), (2) and (3) for
m=20,1,...,nin turn. This can be done in exponential time since each series
of computations is bounded by time 2%=. The remainder of the computation
of f(x) takes little time. We look for the least n, if any, such that the n-th

series of computations has been successfully completed. If m = n, then we
check to see if fi(sH)(x) = z and let f(tal(am)) = tal(2%) if so; otherwise,
f(tal(am)) = tal(ag). O

We note here that the functions in the previous theorem may be taken to
be permutations of the sets A and D. Then next two results show that we can
diagonalize over AY isomorphisms if the underlying language has at least two
unary function symbol or at least one n-ary function symbol with n > 2.

Theorem 5.4 Let Ly be the language with exactly two function symbols f and
g which are unary.

a ere 1s a recursive structure A = (A, f*,g”) which is no 1somorphic
Th tructure A = (A, f4, g*) which t A9 h
to any primitive recursive structure.

(b) There is an exponential time structure D = (D, fP gP) which is not A
1somorphic to any polynomial time structure.

Theorem 5.5 Let Ly be the language with exactly one function symbol h which
1s binary.

(a) There is a recursive structure A = (A, i) which is not AY isomorphic to
any primitive recursive structure.

(b) There is an erponential time structure D = (D, h?) which is not AY iso-
morphic to any polynomial time structure.

Two natural types of structures with functions will be considered below in
more detail. These are permutation structures (A, f4), where f4 is a permuta-
tion of the set A, and Abelian groups.

Next we state an unpublished theorem due to H. Freidman and J. Remmel
which characterizes when structures which are finitely generated are isomorphic
to polynomial time structures.

23

Definition 5.6 (a) We say that
A= (Aa {R?}izl,...,ka {fiA}izl,...,na {C?}izl,...,m) is ﬁnltely genemted ZfA
equals the closure of {Cf}izl,...m under the set of functions {fiA}i:L...,n~

(b) A finitely generated structure A as above has a double exponential time
decision procedure if

1. AC{0,1}* is double exponential time.

2. There is an algorithm which given any two terms ti(cit, ... e2) and
ta(et, ...) in the free term algebra generated by ¢t ... cA and
it A, decides in 92 steps for some constant ky ifti(cf, ... cA) =
ta(ed, ... cA) where d is equal to the mazimum of the depth ofty(ci, ... c2)
and the depth of ta(c, ... ch).

3. There is an algorithm which given a relation R and terms
ti(ef, .o ed), o tp(eft, o et in the free term algebra generated
by cit, ... cA and f{t, ..., fA, decides in 92" steps for some con-
stant ko if RA(G(ef, .. ek, (e, oo cl)) holds where d is

equal to the marimum of the depths of tj(cft, ... cd) forj=1,...p.
Theorem 5.7 Let A = (A, {RA}V =1 5, {fAYiz1, n, {ciz1, m) be a finitely

generated structure. Then A is isomorphic to a polynomial time model iff A has
a double exponential time decision procedure.

5.2 Linear Orderings

There are several results on the existence of p-time linear orderings.

Theorem 5.8 (Grigorieff 1989) Every recursive linear ordering L is isomor-
phic to a real time linear ordering £ = (Bin(w), <z).

Sketch of Proof: We sketch a proof showing that £ is isomorphic to a
p-time ordering. There are two cases. The first case is where £ has either a
recursive increasing sequence

SI(SQ <z 51 <g 82 <g)
such that S is cofinal or S has a limit or £ has a recursive decreasing sequence
D:(do >edy > dy >)

such that D is cofinal or D has a limit.

In this case, we have a p-time copy of either S or D with universe Bin(w)
and we can make a p-time copy of L\ 8§ (or £\ D) with universe a subset of
Tal(w) by Theorem 5.1. Then we can apply Lemma 4.8 to combine the two
orderings into one p-time ordering with universe Bin(w) which is recursively
isomorphic to L.

24

The second case is where no such sequences exist. In this case £ is isomorphic
to w4+ Z - A+ w” for some recursive ordinal A. Here Z is the order type of the
integers. Then there are two subcases. First if A has a first or last element
or has a pair of elements <y y such y is an immediate successor of z, then
L contains an explicit recursive copy of D = w + w* which is isomorphic to a
p-time linear ordering with universe Bin(w). We can make a p-time copy of
L\ D with universe a subset of T'al(w) by Theorem 5.1. Then we can apply
Lemma 4.8 to combine the two orderings into one p-time ordering with universe
Bin(w). The only other subcase is that A is a dense linear ordering without
endpoints so that A is isomorphic to the rationals Q. But in this case it is easy
to construct a p-time linear ordering with universe Bin(w) which is isomorphic
to L. a

The natural question is whether the isomorphism in the previous theorem is
effective. It should be observed that the proof is not uniform. Indeed in case 2,
we only constructed an isomorphic copy and not a recursively isomorphic copy
of £. The next result due to Remmel is Theorem 2.2 of [68] which shows that
in case 2 the 1somorphism cannot be replaced by a recursive isomorphism.

Theorem 5.9 Let A C {0, 1}* be any infinite p-time set and let L be a recursive
linear ordering which is isomorphic to w + 7 - A + w* for some linear ordering
A. Then there exists a recursive linear ordering K which is isomorphic to £ but
which is not recursively isomorphic to any p-time linear ordering whose universe

s A.

Sketch of Proof:

We will not give the full proof as it requires an infinite injury priority argu-
ment. However we will give the proof in the case where the £ is isomorphic to
w 4 w* since in that case, a simple finite injury priority argument suffices.

Recall that ¢; is the ¢-th partial recursive function and let Ry, Ry, ... be an
effective list of all polynomial time binary relations on {0,1}*. For simplicity,
we let (A, R.) denote the structure with universe A and relation R which is the
restriction of B, to A x A.

Let 7o, 71, ... be an effective enumeration of A in the usual order (first by
length and then by lexicographic order.)

We shall construct our desired recursive linear ordering £ in stages. Let
00,01, ... be an effective listing of {0,1}*. At any given stage s, we shall specify

S s s S s s J—
two sequences ap, aj, ..., a, and by, by,..., b} for some ns; > s such that By =
{00, .., 00,11} = {a§, b5, a3, b],...,ay b} }. Moreover, at stage s we shall

define the ordering < = < on Bs x B so that

ap <aj <---<a, <b, <b _;<---<bg.
Our construction will ensure that for all ¢, lim; ¢ = @; and lim; b = b;
exist. Moreover, our construction will ensure that {0, 1}* = {ag, bo,a1,b1,...}

and that

25

(a) for all i, a; < a;41 and b; 41 < b; and
(b) for all i and j, a; < b;.

Thus ({0,1}*, <) will have order type w + w*. To ensure that £ is not
recursively isomorphic to (A, R,) for any e, we shall meet the following set of
requirements

Prer: There exist n and m such that one of the following four conditions

holds.
(i) ¢r(an) T or ¢plan) =2 & A.
(ii) ¢x(bm) T or ¢r(bm) == & A

(iii) ¢x(an) = x € A and there exist n + 1 elements vg, ..., v, of A such that
(vj,2) € Ro for i =0,...,n.

(iv) ¢i(bm) = y € A and there exist m + 2 elements wo, ..., wmy1 of A such
that (w;,y) ¢ Re for i =0,..., m+ 1.

We write (w;,y) ¢ R rather than (y, w;) € R, in clause (iv) to allow for the
possibility that R, is not actually a linear ordering.

It is easy to see that if requirement F z is satisfied, then ¢, is not a re-
cursive isomorphism from £ = ({0, 1}*, <.) onto (A, R.). Thus meeting all the
requirements P, 3] ensures that £ is not recursively isomorphic to any p-time
linear ordering with universe A.

Our basic strategy for meeting a requirement P,, where z = [e k], is as
follows. Let us assume that s > z is a stage large enough so that requirements
Py, ..., P._1 no longer require action at any stage ¢ > s. Then at stage s, we

consider a;. Our construction will then ensure that aj = a§» for all 5 < z and
t > s unless there is a stage v > s such that ¢§(a?) |. Of course if there is no
such u, then a2 = a, and a, will witness that requirement P, is satisfied (by
virtue of clause (i)).

Now if there is such a stage u, then let © = ¢} (al). If z ¢ A, then again we
will simply ensure a = a, so that once again a, will witness that requirement
P, is satisfied. If x € A, then we will compare x to the first 4n,_1 + 4 elements
of A (in the fixed order 7y, 71, ... prescribed above) with respect to the binary
relation R.. Note that since A and R, are polynomial time, we can effectively
make these 4n,_1 + 4 comparisons. There are two possibilities.

(i) There are h = 2ny_1 + 2 of these elements v of A such that (v,2) € R. —
denote these elements by vg, ..., vp_1.

(i1) There are h = 2ny_1 + 3 of these elements w of A such that (w,z) ¢ R —
denote these elements by wy, ..., wp_1.

26

In case (i), we will simply ensure ¢} = a,. But then a, is preceded by exactly
z elements in £, where z < ny_1, whereas = ¢y(a.) is preceded by at least
2ny—1 + 2 elements in (A, R.). Thus ¢ is not an isomorphism from £ onto
(A, Re).

In case (ii), we will switch a = a¥~! from the w side of £ to the w* side
of £. That is, we shall let n, = 2n,_1 — 2z + 1 and let bzu_l_l_i = Uny,_y—it+l

for ¢ = 1,...,ny — ny—1. We also let b} = b?_l for ¢+ < ny_y. Then our
construction will ensure that for all ¢ > u, bf, = b% = ai. Thus in this
case, there will be precisely n, + 1 elements w (namely bg, ..., by,) such that

(w,by,) ¢<.. However, in (A, R¢) there are at least 2n,_1 + 3 elements x such
that (2, ¢x(bn,)) € Re. But ny +1 = 2ny_1+2 — 2 < 2ny_1 + 3, so that ¢,
cannot be an isomorphism from £ onto (A, R;). Our construction will ensure
that af can switch from the w side to the w*-side of £ only for the sake of
requirements Py, ..., P,. The usual priority argument will then show that af
“switches sides” for at most finitely many s.

We shall employ a set of movable markers I'. to help us keep track of which
requirements we have acted on. The idea 1s that if we have taken an action as
described above which ensures a will witness that requirement P, is satisfied,
then we will place a I', marker on a¥. Thus at any given stage s, either T', is
wmnactive, 1.e., [, does not rest on any element at stage s, or I'; is active, 1.e., ',
rests on some element € {af, b3,...,a5 b5 }. If T, is active, we let T',(s) = =,

9 %no Ung
where z is the element on which T', is placed.

CONSTRUCTION.
Stage 0.

Let a8 = 0y, b8 = oy, and declare a8 < bg. We let I', be inactive for all z
at stage 0.

Stage s + 1. Assume we have defined n = ns, af, bj,...,a5,b5 so that n > s

* n'’'n
and

{ag, b5y .. yan, b0y ={o0,..., 00041} = Bs.

Moreover, assume we have defined a linear order < = <, on B; X B, so that
aj < aj <---<al <b <b_,<-o-<bY.

Look for a p < s such that I'; is inactive at stage s and ¢} (a;) |, where p = [e, k].

If there is no such p, then for all z, let ', be inactive at stage s+ 1 if and only
if T, is inactive at stage s. If T', is active, let T,(s + 1) = T';(s). In addition,
let @it = a and b5t = &g for all i < n = n,. Finally, let ny4; = n + 1,
Tonta = afl'l_l'_ll and 02,43 = bfl'll'_ll and extend our definition of < = <, to

B;s41 X Bsy1 by declaring

s+1 s+1 s+1 s+1
ag’ < e <aphy < bR << BT

27

If there is such a p, let p = p(s+1) = [e(s+1), k(s+1)] = [e, k] be the least such
pand z = z(s+1) = ¢x(ay). If 2(s+1) & A, then proceed exactly as in the case
where p(s+1) is not defined, except declare I'y active and let I'p(s+ 1) = af,"’l.
If z(s+ 1) € A, then find the first 4n; + 4 elements of A. Now compare these
elements to # with respect to R.. We will then be in one of two cases.

Case 1. There are h = 2n, + 2 elements vy, ..., v,_1 among the first 4n; + 4
elements of A such that (v;,2) € R, for ¢ = 0,1,...,h — 1. In this case, we
proceed exactly as in the case where z(s+ 1) ¢ A.

Case 2. Otherwise, there must be A +1 elements wy, ..., wp41, among the first
4ngs+4 elements of A, such that (w;,) ¢ R, for all i. Then we let af"’l = a} for
i < pand bj"'l =biforallj <n=n,. Set ng41 =2n+1—p. Let bfli =a;_;41
fori=1,...,n4+1—p and let a;i; = Oapyaqj forj =0,...,2n4+1-2p. Activate

the I', marker and place it on bf:il = a,. Remove any markers I'; that were on
elements among ay, ..., a;, and make them inactive. Any marker I'; which was
active at stage s where I',(s) € {a,...,a;_q,b5,...,b5,} is still active at stage

s+ 1and T';(s+ 1) = T'.(s). Markers T', where z # p which were inactive at
stage s remain inactive at stage s 4+ 1. Finally, extend < = <z to Bs41 X Bsy1
by declaring
agtt <<aptl <bt < o<bpth
This complete our construction. Because A is a polynomial time set and each
R, is a polynomial time relation, it easily follows that each stage 1s completely
effective. The following facts are easily proved by induction.

(1) For all s, ny; > s.

(2) For all s, {af,b5,...,a% b5 y={c0,..., 000,41}

)P ng? “ng

(3) Our definition of < is consistent, that is, if ¢, j < 2n, 4+ 1 and stage s, we
declare o; <, o, then for all t > s, we declare 0; <, o; at stage t.

Note that these facts imply that £ = ({0,1}*,<*) is a recursive linear
ordering, because to decide if o; < 0, we simply go to stage s = maxz{i, j} and
then o; < o; if and only if at stage s, we declare o; < 0;.

Next we prove two lemmas which will complete the proof that £ has the
desired properties.

Lemma 5.10 For each z, lim, aj = a, and lim, b5 = b, exist and there is a
stage t, such that either ', 1s inactive at stage s for all s > t, or I', s active

at stage s and T;(s) =T, (t,) for all s > t,.

Proof: We proceed by induction on z = [e, k]. By induction, we can assume
that there is a stage « > z large enough so that

28

(i) a; = a} and b3 = b} for all j < 2 and s > u and

(ii) for each j < z, either I'; is inactive at stage s for all s > u or for all s > u,
T'; is active at stage s and I';(s) = T';(u).

Note that our construction ensures that a I'; marker can be removed from
an element at stage s only if I';(s — 1) = aj, for some k and we take action to
meet a requirement I',(;) at stage s where p(s) < k. Similarly, the only way
aj # at'is if p(s + 1) < k and we act according to Case 2 at stage s + 1.
Moreover, our construction ensures that if j < n,, then bt = &% for all s > ¢. It
follows that lim; b5 = b%. Now if I', is active at stage s, then our choice of u
ensures p(s) > z for all s > w so that lim, @] = a¥ and T, is active for all s > w.
If ', is not active at stage u, then either

(1) ¢} (a¥) 1 for all s > w, in which case, for all s > u, I'; is inactive at stage s,
p(s) > z and a3 = a¥, or

(i) There is an s > u such that ¢ (a?) |.

In case (ii), let ¢ be the least s > u such that ¢ (a¥) |. Then our choice
of u ensures that, for all v < s < ¢, p(s) > z and T, is inactive at stage s,
so that p(t + 1) will be defined and p(t + 1) = z. But then at stage t + 1, T,
becomes active and is placed on either alt! or bf{'{il. If T, is placed on a‘tt
then ait! = a! and I', will never be removed from a’*!. This is because I', can
be removed from ai*! only if p(s) < z for some s > ¢ + 1, which is ruled out by
our choice of u. If I', is placed on b*! | then again I', can never be removed

Nig1)?
from bf{'{il. Thus in either case I', will remain active for all s > ¢ + 1. But this
means p(s) > z for all s > ¢+ 1, so that @ = a**! for all s > ¢ + 1. a

Lemma 5.11 Requirement P, s satisfied for all p.

Proof: Let p = [e, k] and let s, be a stage such that s, > p and
(1) (Vs> sp)(Vj <p)laj = a;” and b = b;p] and

(ii) sp > max{t,,..., tp}, where ¢, is a stage such that either

(a) for all s >1,, T, is active at s, or

(b) for all s >1,, T', is inactive at s.

It then easily follows from our construction that if I', is inactive at stage s,
then ¢} (a;) 1 and a;, = a,” for all s > s,. Thus ¢x(ap) 1, where a, = lim, (ay,).
Hence, the requirement P, is automatically satisfied. If I, is active at stage s,
then there are two possibilities. The first is that I'y(s) = a, = ap, in which case
our construction guarantees that either ¢ (a,) ¢ A or ¢ (a,) € A but there are
at least p+ 1 elements vy, ..., v, € A such that (v;, ¢r(ap)) € Refori =10,... p.

29

The second possibility is that I',(s) = b5, = by, for some m < n,,. In this case,
our construction ensures that ¢ (b5,) € A and there are at least m 4 2 elements
Wy, ..., Wmy1 € A such that (wy, ¢i(bp)) ¢ Re for ¢ = 0,...,m. Thus in any
case, P, is satisfied. a

It now follows from Lemma 5.10 that a; <, a;41 and b; 1 <, b; for all ¢ and
that a; <. b; for all ¢ and j, so that £ is isomorphic to w +w*. By our remarks
preceding the construction of £, it follows that meeting all the requirements
P, ensures that £ is not recursively isomorphic to any polynomial time linear
ordering over A.

In the general case, if A is a recursive linear ordering, then a finite injury
priority argument very similar to the one given above for w + w* will prove
the theorem. However, the only thing that we can conclude from the fact that
w+7Z-n+w* is a recursive linear ordering is that X is a I19 linear ordering and
in that case, a more complicated infinite injury priority argument is required.
O

We note that in the special case of w + w*, one can make K have universe
Tal(w) when A = Bin(w) (This is Theorem 2.2 of [69]).

Cenzer and Remmel [16] gave a general condition which implies that a re-
lational structure is recursively isomorphic to a p-time structure with universe
Bin(w). This condition can be thought of as a generalization of the argument
in case 1 of Gregoriefl’s Theorem on linear orderings.

Definition 5.12 Let A be a recursive substructure with uniwerse A of the re-
cursive relational structure M with universe M. Then A is said to be a highly
recursive relatively indiscernible binary substructure of M if

(1) There is a recursive map f from A to Bin(w) which induces a p-time
model M. (Let a; = f=1(bin(4)).)

(2) For any m-ary relation R(x1,...,2m) of M, any fired sequence
bi,...,by € M\ A with k < m and any fivred sequence 1 < I} < ... < Iy <m, let
R?i::?: denote the (m — k)-ary relation on M — A which results by substituting
bi; forxy, forj=1,.. k.

Then, for any such R, 1 <) < ... < Iy <mandby,... by € M\ A, either
R?i::::?: holds for all but finitely many elements in (M — A)™~% or —|Rl}1:::::l}:
holds for all but finitely many elements in (M — A)™~k.

Furthermore, there is a uniform effective algorithm which, given an index for

R and sequences by, ... by € M\A and I, ..., Iy, will compule whether R?i::::l}:

holds for all but finitely many elements in (M — A)™~% or ﬂR?i’:::’%’: holds for
all but finitely many elements in (M — A)™~%, along with with a complete list
of the finitely many sequences of (M — AY™~* which are exceptions.

Theorem 5.13 Suppose that A is a highly recursive relatively indiscernible bi-
nary substructure of the relational structure M. Then M 1s recursively isomor-
phic to a p-time structure with universe Bin(w) (and therefore also recursively
isomorphic to a p-time structure with universe Tal(w)).

30

Proof: There is no loss in generality in assuming the universe of M is the set
of natural numbers w. Let Sy, Sq, ... be an effective list of all relations of 4 and
assume that there is a recursive function F such that S; is an F'(é)-ary relation.
Let A with universe A = {ag,ay,...} be isomorphic to M as described above
and let w\ A = {byg < by < ...}. For any # € w\ A, let t(x) be the total time
needed to search all elements y < x and determine if y € A and to compute the
common value of all relations of the form R?i::l}: and the finite list of exceptions
where R = S; for some ¢ < z and by, ...,b; are elements of M — A which are
less than or equal to . Let ¢(x) = 124=)] and let P = {¢(x) : 2 € M\ A}. Tt
is clear that P is a p-time subset of T'al(w).

We define a polynomial time model P with universe Bin(w) by defining
the relation SqD for D as follows. Given an element bin(i), search the strings
of the form 1% for k < |bin(i)| and determine whether each such string is in
P. If bin(i) € P, then let r(bin(i)) = bin(n) where bin(i) = 1~tE)1 If
bin(i) ¢ P, then let r(bin(i)) = bin(m) where bin(é) is the m-th element of
Bin(w) \ P. Note that because P is a polynomial time set, there is a fixed
polynomial p such that we can compute whether « € P in p(|z|) steps. Tt
thus takes at most Z‘ljbi%(l)lp(j) steps to search the strings of the form 1% for
k < |bin(?)| for membership in P so that the function r is polynomial time.
Then SqD(sl, ..., 85(q)) holds if either

(A) no s; € P and Sy(r(s1),...,7(sr(g)) holds in M, or

(B) there is some s; in P and S(Z1,..., Zp(g) holds in M where 7; = by,
if s; € P and r(s;) = bin(k), and Z; = ag, if s; ¢ P and r(s;) = bin(k).

Note that in case (A) we can compute whether SqD(sl, ..., 8F(qg)) holds in
time polynomial in [s1] 4 - - - 4 [sp(g)| since M is a polynomial time model. In
case (B), let n be the maximum value such that there is an s; € P with j < F(q)
and r(s;) = bin(n). If n > ¢, then s; = 1t @)1 and in t(b,) steps we can
compute whether R,(s1,...,sp(g) holds by the definition of ¢. Thus in case
(B), the only cases in which we can not directly compute in linear time whether
SqD(sl, ..., 8p(g)) holdsisif n < q. However it is easy to see that our assumptions
ensure that it takes only a finite amount of information to determine whether
SqD(sl, ..., 8F(gy) holds in all such cases. Thus SqD is a polynomial time relation.

Finally it is easy to see that our definitions ensure that we have defined
the map g where g(bin(i)) = by, if bin(i) € P and r(bin(¢)) = bin(n), and
g(bin(i)) = ap, if bin(i) ¢ P and r(bin(i)) = bin(n), is an isomorphism from D
onto M.

The model C with universe T'al(w) simply has relations RC defined by

RE(tal(iy, ... tal(in)) <= RT(bin(ir),...,bin(i,)).

The relation R is p-time since bin(i) can be computed from tal(i) in polynomial
time and [bin(7)| < |tal(7)]. O

For a simple example, consider a well-ordering M = (M, <™) of type > w
and let A = (A, <M) be the first w elements of M. A is a recursive set since

31

r € A < 1 <M w where w is the w-th element of M. A is certainly
recursively isomorphic to the standard ordering on Bin(w) and is indiscernible
since for all @ € A and all x € M \ A, a <™ x. Thus by Theorem 5.13, M is
recursively isomorphic to a p-time model with standard universe Bin(w). This
is a special case of Theorem 5.9 above.

5.3 Boolean Algebras

There are some cases of structures with function symbols where we can get some
positive results. For example, every recursive Boolean algebra is recursively
isomorphic to a polynomial time Boolean algebra.

Definition 5.14 (i) The language L of Boolean algebras consists of two binary
funetion symbols A (meet) and V (join), one unary function symbol —
(complement) and two constant symbols 0 (zero) and 1 (unity). A Boolean
algebra B is a structure (B,NB VB =B 08 1B) for this language which
satisfies the usual arioms.

(i1) Given a linear ordering M = (M, <) with a first element, the interval
algebra Intalg(M) is the Boolean algebra of subsets of M generated by the
left-closed, right-open intervals of M, [a,b) = {x :a < x < b}.

The partial ordering <? of a Boolean algebra B is defined by a <P b if and
only if 6 = aV e for some ¢ # 0. An element a of a Boolean algebra is said to be
an atom if whenever b < a, either b = 0 or b = a. The Boolean algebra A is said
to be atomic if for any b # 0, there exists some atom a with ¢ < b. A element
z € B is atomless if x is not the zero of B and there is no atom a of B such that

a <P z. B is said to be non-atomic if B contains an atomless element.
The following is Lemma 2.5 of [10].

Lemma 5.15 For any p-time linear ordering £ with a first element, the interval
algebra Intalg(L) is a p-time Boolean algebra.

Sketch of Proof: The nonzero elements of Intalg(L) are given the natural

representation [a;,as) U [as, a4) ... U [as,_1,as,), where ay <% as <& ... <

a9n—1 and either as, = oo or as, € L and as,,—1 < aap,. O
This lemma is used to prove the following result from [10].

Theorem 5.16 Every recursiwe Boolean algebra B is recursively isomorphic to
a p-ttme Boolean algebra.

Sketch of Proof: First observe that the classical proof that every count-
able Boolean algebra is isomorphic to the interval algebra of a countable linear
ordering is effective. (See Remmel [67].) Thus every recursive Boolean algebra
is recursively isomorphic to Intalg(M) where M is a recursive linear ordering.

32

However by Theorem 5.8, M is recursively isomorphic to a polynomial time

linear ordering P. The interval algebra of P is thus recursively isomorphic to B
and 1s polynomial time by Lemma 5.15.

O

The next two theorems are unpublished results due to Cenzer and Remmel.

Theorem 5.17 Every infinite non-atomic recursive Boolean algebra is recur-
sively isomorphic to a p-time Boolean algebra (a) with universe Bin(w); (b) with
universe Tal(w).

Theorem 5.18 Let A C {0, 1}* be an infinite p-time set and let B be an infinite
atomic recursive Boolean algebra. Then there is a recursive Boolean algebra D
which is isomorphic to B but is not recursively isomorphic to any p-time Boolean
algebra with universe A.

5.4 Graphs

Next we give two applications of Theorem 5.13 to recursive graphs due to Cenzer
and Remmel in [16].

Definition 5.19 (i) A graph G = (V, E) islocally finite (respectively locally
cofinite) if for everyv € V, the set N B(v) of neighbors of v is finite (resp.
cofinite).

(i1) A graph G = (V, E) is locally finite/cofinite if for every v € V, either
the set NB(v) of neighbors of v is finite or V' \ NB(v) is finite.

(iii) A locally finite/cofinite recursive graph G is highly recursive if there are
algorithms for deciding whether a given v € V has finite degree and for
computing N B(v) is the degree is finite and V' \ N B(v) if not.

Theorem 5.20 Every infinite highly recursive locally finite/cofinite graph G is
recursively isomorphic to a p-time graph H with universe Bin(w).

Sketch of Proof: If there are infinitely many vertices of G whose degree
is finite, then we can construct a recursive subset of such vertices U such that
G restricted to U is the empty graph. Moreover we can construct U so that it
will be the highly recursive relatively indiscernible binary substructure required
to apply Theorem 5.13. If there are infinitely many vertices of finite co-degree.
We can construct a a complete subgraph € which will be the highly recursive
relatively indiscernible binary substructure needed for Theorem 5.13. a

Theorem 5.21 Every infinite recursive graph G which is either locally finite
or locally cofinite, 1s recursively isomorphic to a p-time graph H with universe

Bin(w).

33

Sketch of Proof: Suppose that all vertices have finite co-degree. Then
we again pick out a complete subgraph C' = ({vg,vy,...}, E), now with the
additional property that v; is not joined to any vertex from {0,1,...,i—1}. O

The next result shows that the hypotheses of the two preceding theorems
are needed.

Theorem 5.22 Let A be any infinite polynomial time subset of {0,1}*. Then
there is a recursive graph, having every vertex of either finite degree or finite
co-degree, which is not recursively isomorphic to any p-time graph with universe

A.

5.5 Trees

A connected graph GG with no cycles is said to be a tree. The vertices of T are
called nodes. We will assume that any tree T has a designated root e. Then any
node v of T can be reached from the root by a path, that is, a sequence of edges
(e,v1), (v1,v2), ..., (vp—1,v). We say that v is a successor of v,_1. It is clear
that the successor relation is recursive, since the path from the root to a node
v may be computed from v in a uniform fashion. The partial ordering u <7 v,
which says that there is a path from the root to v which passes through u, is
also recursive. On the other hand, if T" is a p-time tree, then this computation
of the path from ¢ to v might not be in polynomial time in |v|, so that the
successor relation and the relation <7 need not be p-time. Thus we say that
T is fully p-time if both the successor relation and the relation <7 are p-time.
Similar notions may be defined for any bounded resource class.

T 1s said to be highly recursive if there 1s a recursive function which computes
from any node v a list of successors of v. The corresponding notion of a highly
feasible tree (or more generally, of a highly feasible graph) is more difficult to
formulate. Several inequivalent notions are studied in [12, 13, 16]. In particular,
a graph 1is said to be locally p-time, if there is a p-time function which computes
from any node v a list of successors of v and is said to be highly p-time if there
is a p-time function which computes from a vertex v and a tally number tal(n)
a list of all vertices at distance n from v.

The following results are Theorems 9, 10 and 12 of [16].

Theorem 5.23 Any infinite recursive tree 1" is recursively isomorphic to a p-
time tree with universe Bin(w).

Sketch of Proof: There are two cases. First, every node of T may have only
finitely many successors. In this case, Theorem 5.20 may be applied. Second,
some node v of T may have an infinite set A of successors. In this case, the set A
plays the role of the highly recursive relatively indiscernible binary substructure,
so that Theorem 5.13 may be applied. a

Theorem 5.24 There is a highly recursive tree T which is not recursively iso-
morphic to any fully primitive recursive tree P with a standard universe Bin(w).

34

Theorem 5.25 There is a highly recursive binary tree which is not isomorphic
as a directed graph to any highly primitive recursive tree with universe Bin(w).

A similar but stronger result for graphs was given in Theorem 2.3 of [13].

Theorem 5.26 There is a highly recursive graph G which is not isomorphic to
any locally primitive recursive graph.

5.6 Equivalence Structures

Another type of relational structure is an equivalence structure, (A, R*), where
R# is an equivalence relation on A. A recursive equivalence structure (A, R4)
is said to be highly recursive if the set of elements that belong to infinite equiv-
alence classes is recursive, and there is a recursive function f such that f(a) is
the cardinality of [a]f when [a]® is finite (so that the equivalence class [a]® can
be computed from a). We say that (A, R4) is highly p-time if A is a p-time
subset of Bin(w), the set of elements that belong to infinite equivalence classes
is p-time, and there is a p-time function f such that f(a) codes [a]® when it is
finite. The full spectrum of of (A, R) is the set of pairs (0,n) such that there
are at least n + 1 infinite equivalence classes in (A, R*4) and pairs (¢, n) such
that ¢ > 0 and there are at least n + 1 equivalence classes of size ¢ in (A, R4).
The following results are Theorems 13, 14 and 16 of [16].

Theorem 5.27 Any recursive equivalence structure (A, RA) 15 recursively iso-
morphic to a p-time model with universe Bin(w).

Sketch of Proof: There are two cases. If all equivalence classes of (A, R4)
are finite, then Theorem 5.21 can be applied to (A, RA) viewed as a graph. If
(A, R4) has an infinite equivalence class, then this class is a highly recursive
relatively indiscernible substructure so that Theorem 5.13 may be applied. O

Theorem 5.28 For any equivalence structure (A, RA) with full spectrum S
such that S* = {(tal(q),tal(r)) : (q,7) € S} is p-time, there is a highly re-
cursive, p-time equivalence structure (Bin(w), R) isomorphic to (A, R?).

Theorem 5.29 There is an infinite recurswe full spectrum S of w such that no
highly primitive recursive equivalence structure with universe Bin(w) has full
spectrum a subset of S.

We now turn to the study of some structures with functions. There are three
basic models which we have been considered: first, models of some fragment of
arithmetic; second, Abelian groups; and, third, permutation structures.

35

5.7 Models of Arithmetic

Our first result, taken from [10], demonstrates that the unary exponential func-
tion 2% may be adjoined to the standard model of arithmetic while being rep-
resented by a p-time function.

Theorem 5.30 N = (w, S, +,—,-,2%,<,0) is isomorphic to a p-time structure
M.

Sketch of Proof: The elements of M are terms in the language
{0, A, I, E}. The natural number n is represented by the expression o(n) defined
as follows.
(0) = 0

7(2¥) = Ba(k)

o(2% +m) = AEo(k)o(m) for 0 < 2m < 2k,
o (2% —m) = [Ea(k)o(m) for 0 < 2m < 2*.

It is easy to see that the universe of M is a linear time set and that the term
o(n) which represents n can be computed from bin(n) in polynomial time. Tt
can be shown by induction that |o(n)| < 2|bin(n)|? and that

lo £M 7| < |o|+ |7] + 1. O

We note that it is an open question whether (w,S,+, —, - exp, <,0) is is
isomorphic to a polynomial time model where exp(m,n) = m”™ is the general
exponential or even whether (w,S,+, —, -, 27,37, <, 0) is isomorphic to a poly-

nomial time. Béauerle [5] proved that in the model of Theorem 5.30 the function
3% is not polynomial time.

We also note that the model of Theorem 5.30 can be used to build a EXPTIME
group isomorphic to the integers under +, Z = (Z,+4), which is not ¢-time iso-
morphic to the standard model of Z where the positive integer n is coded as
bin(2n) and a negative integer —n is coded as bin(2n — 1); see section 6.3.

5.8 Injection Structures

The simplest type of structure with a function is an injection structure (A, f4)
where f4 is a one-to-one mapping from A into itself. If f4 maps A onto A, then
we say that (A, f4) is a permutation structure. The orbit O(a) of an element
aof Ais{be A: (In € w)(f"(a) = bV f*(b) = a)}. There are two types of
infinite orbits, one of type w which is isomorphic to (w, S) and the other of type
7 which is isomorphic to (Z, S). The order |a| of a is card(O(a)) if O(a) is finite
and is either w or Z otherwise. The full spectrum of (A, f%) is the set of pairs
(0,n) such that there are at least n + 1 orbits of type w, pairs (1,n) such that
there are at least n + 1 orbits of type Z, and pairs (¢, n) such that ¢ > 1 and
there are at least n + 1 orbits of size ¢ — 1 in (A, f4).

It 1s easy to see that the full spectrum of a recursive injection structure is
always a recursively enumerable set. It is shown in Theorem 3.4 of [14] that
any r.e. spectrum can be realized by a p-time injection structure. Thus every

36

recursive injection structure is isomorphic to a p-time structure. However, we
know by Theorem 5.3 that this isomorphism need not be recursive. Now we
consider the question of when we can obtain a p-time injection structure with
a standard universe Bin(w) or Tal(w).

The basic result here is Theorem 3.2 of [11].

Theorem 5.31 Any recursive permutation structure (A, f4) with all finite or-
bits is recursively isomorphic to an honest p-time structure with universe a sub-

set of Tal(w).

Sketch of Proof: The element @ € A is represented by tal(n), where
bin(n) = 1%0" and ¢ is the total time required to compute the orbit of a. The
details follow as in the proof of Theorem 5.1 above. a

Theorems 3.4 and 3.6 of [11] give two cases in which we can improve this
result to obtain a standard universe.

Theorem 5.32 Let B = Bin(w) or Tal(w). Any recursive injection struc-
ture (A, f) with at least one but only finitely many infinite orbits is recursively
1somorphic to a p-time structure with universe B.

Sketch of Proof: Let FF = {a € A : |a] is finite} and let T = A\ F. Since
there are only finitely many orbits in I, both /' and I are recursive. It is easy
to see that (I, f) is recursively isomorphic to a p-time structure with universe
B. By Theorem 5.31, (F, f) is recursively isomorphic to a p-time structure with
universe a subset of T'al(w). The result now follows from Lemma 4.8. a

Theorem 5.33 Let B = Bin(w) or Tal(w). Any recursive injection structure
(A, f) with infinitely many orbits of size q, for some finite q, is recursively
1somorphic to a p-time structure with universe B.

Sketch of Proof: Let C={a € A:|a|=¢}andlet D= A\C. It follows
from Theorem 5.31 that (D, f) is recursively isomorphic to a p-time structure
with universe a subset of T'al(w). Tt therefore suffices by Lemma 4.8 to show
that C is recursively isomorphic to a p-time structure (B, g). For B = Bin(w),
the permutation g is simply defined by g(bin(ng + ¢)) = bin(ng + ¢ + 1), if
i+ 1<gq,and g(bin(ng+ ¢ — 1) = bin(ng). The tally definition is similar. O

A general result on the existence of p-time injection structures is given by

Theorems 3.4 and 3.8 of [14].

Theorem 5.34 (a) For any r.e. full spectrum S, there is a p-time injection
structure (A, f) with full spectrum S.

(b) If {{tal(q),tal(r)) : (q,7) € S} is p-time, then A may be taken to be
either Bin(w) or Tal(w).

37

Sketch of Proof: We sketch the proof of part (b) for B = Tal(w), assuming
that all orbits will be finite. Let g, g1, ... enumerate in non-decreasing order

the set of orbit sizes (with repetitions). Then the permutation f may be defined
by

flallgo+ 4+ ...+ g1 +7)=F(allgo+ 1+ -+ g1 +r+ 1) if r < gy,
and =tal(go+ 1+ ...+ qe—1+ ax)), if r = gx.

An infinite orbit of type w is given by the standard successor function on T'al(w)
and an orbit of type Z is given by f(tal(2n)) = tal(2n 4+ 2), f(1) = 0 and
f(tal(2n+3)) = tal(2n+ 1). Multiple infinite orbits and a combination of finite
and infinite orbits may then be obtained by Lemma 4.8. a

Corollary 5.35 Any recursive injection structure is isomorphic to a p-time
mgection structure.

Finally, we consider some negative results. The first is Theorem 3.13 of [11]
and deals with structures with a fixed universe.

Theorem 5.36 There is a recursive set M such that no ingection structure with

full spectrum M s isomorphic to any primitive recursive structure with universe
Bin(w) or Tal(w).

Sketch of Proof: Let f. enumerate all primitive recursive unary functions
and let B, = (Bin(w), fe). Construct a set R = {rg < r; < ...} by a diagonal
argument so that, for all e, either

(1) fe is not one-to-one, or

(2) B. has an infinite orbit, or

(3) B, has two disjoint orbits of the same finite size, or

(4) B has an orbit of size ¢ ¢ R.

We establish this requirement, given ry < ... < r._1; by computing enough
of Be to either find two orbits of the same size, or an orbit (perhaps incomplete)
of size r > r._y. If the orbit is complete, we let r. = » 4+ 1, thus ensuring that
B, has an orbit of size » ¢ R. If the orbit is incomplete, we continue to build the
orbit at later stages and take a similar action when the orbit becomes complete.
If this never happens, then the orbit is infinite, so that (2) is satisfied.

It follows that no primitive recursive permutation structure with all finite
orbits can have M = {(r,1) : » € R} as a subset of its full spectrum. O

The final result here is Corollary 3.18 of [11] and deals with the question of
recursive isomorphism. The proof is omitted.

Theorem 5.37 For any recursive injection structure (C, f) with infinitely many
infinite orbits, there is a recursive structure (A, f4) which is isomorphic to
(C, f) but is not recursively isomorphic to any primitive recursive structure.

38

5.9 Abelian Groups

We now turn to the study of feasible versus recursive Abelian groups. The results
here are parallel to those for permutation structures. We begin by recalling some
basic notation. For any natural number n > 1, Z(n) is the cyclic group of order
n. For a prime number p, the group Z(p®) is the inverse limit of the sequence
Z(p"), or more concretely, the set of rational numbers with denominator equal
to a power of p and where the group operation is addition modulo 1. The group
Z(p™) is said to be quasi-cyelic. The additive group of rational numbers is
denoted by Q.

For any element a of an Abelian group A = (A, +4, —4,04) and any integer
n, n - a is defined recursively by 0-a = 0 and (n + 1) -a = a +% n - a. Then
(—n) -a = 04 —A n - a. The order |a|4 of a is the least n such that n-a = 0.
A is said to be torsion if all elements have finite order and torsion-free if all
elements (except the identity) have infinite order.

We will frequently be concerned with products of Abelian groups.

Definition 5.38 For any sequence Ag, A1, ... of Abelian groups, where A; =
(Ai, 44, —i,€) and A; C {0,1}*, the direct product A = ®,A, is defined to

have domain
A={{o1,00,...,08) kEw,0;, €A for 1 <i<k and o, # ei }.

The identity of A is e* = 0, and addition +4 and subtraction —* are defined
as follows: for o = (01,09,...,0m) and 7 = (11,72, ..., Tp), o+ | A1 =p=
(p1,p2,-- -, pry, where k = max{i: i< mAi<nAo,+/—imiF£e)Vm<
i<nVn<i<m}and, fori<k,

oi+i /=i, for i< min(m,n)
pi = o, forn<i<k
T, form< o<k
In particular, we write B;<,G to be the direct product of a countably infinite

number of copies of G.

Definition 5.39 Let B be either Bin(w) or Tal(w). For any complexity class
T, the sequence Ay, Ay, ... of groups, where Ay = (Ap, +n, —n, €n) is said to be
uniformly I'-computable over B if

(i) {{b(n),a):a € A,} is a T-computable subset of B® B, where b(n) = bin(n)
if B = Bin(w) and b(n) = tal(n) if B = Tal(w).

(i1) The functions F(b(n),a,b) = a +, b and G(b(n),a,b) = a —, b are both
the restrictions of I'-computable functions from B? into B where we set

F(b(n),a,b) = G(b(n),a,b) =0 if either a or b is not in A,.

(iii) The function from Tal(w) into B given by e(tal(¢)) = e; is T-computable.

39

The following is Lemma 4.2 of [11].

Lemma 5.40 Let B be either Bin(w) or Tal(w) and let T be one of the following
complexity classes: recursive, primitive recursive, exponential time, polynomual
time. Suppose that the sequence A; = (Ai,+i,—i,e;) of Abelian groups is T'-
computable over B. Then

(a) The direct product A of the sequence is recursively isomorphic to a T-
computable group with universe contained in B.

(b) If A; is a subgroup of A;y1 for all i and if there is a T-computable function
[such that, for all a € U;A;, a € Ay(y), then the union U;A; is recursively
wsomorphic to a I'-computable group with universe contained in B.

(¢) If the sequence is finite and one of the components has universe B, then the
product is recursively isomorphic to a I'-computable group with universe

B.

(d) If the sequence is infinite and if each component has universe B, then the
product is recursively isomorphic to a I'-computable group with universe

Bin(w).

(e) If each component has universe Tal(w) and there is a uniform constant
¢ such that for any i and any a,b € A;, |a +; b| and |a —; b| are both
< ¢(lal+1b]), then the product is recursively isomorphic to a T'-computable
group with universe Tal(w).

If a torsion Abelian group G is isomorphic to a direct sum &;Z(4;"") of prime
power cyclic groups, then we define the characteristic n(G) to be

{(p™, k) : ¢ = p™ for at least k + 1 distinct values of i}.

Khisamiev shows in Corollary 3.4 of [40] that for any ¥ < w and any torsion
Abelian p-group G, G & (B« Z(p®°)) is isomorphic to a recursive group if and
only if n(G) is a X set. We will say that a subset @ of w x w is hereditary if
(m,k+ 1) € Q implies (m, k) € @ for all m, k. Tt is clear that a subset @ of
w X w is the characteristic 7(G) for some Abelian torsion group G if and only if
@ is hereditary and (m, k) € @ implies m is a prime power. Therefore we will
say that any such set @) is a characteristic.

The following are results 4.3 and 4.4 of [11].

Theorem 5.41 Fach of the groups Z, @i Z(k), Z(p™°) and Q are isomor-
phic to polynomial time groups (a) with universe Bin(w) and (b) with universe

Tal(w).
Theorem 5.42 Any finitely generated recursive Abelian group is recursively

isomorphic to a p-time Abelian group (a) with universe Bin(w) and (b) with
universe Tal(w).

40

The simplest torsion groups are primary groups, or p-groups, in which every
element has order a power of p where p is a prime. In [74], Smith characterized
the recursively categorical p-groups as follows.

Theorem 5.43 (Smith) A recursive p-group G is recursively categorical iff ei-
ther

(1) G~ QicnZ(p™) © F or

(2) G~ BicnZ(p™) ® BicuwZ(p™) & F where F is a finite p-group and m and
n are nonnegative integers.

Corollary 5.44 Any recursively categorical p-group s recursively isomorphic
to a polynomial time group (a) with universe Bin(w) and (b) with universe

Tal(w).

Note that not every product of cyclic groups is recursively categorical. For
example, consider @; ¢, Z(2) B®B;<wZ(4). The following fundamental result from
[11] shows that this group is recursively isomorphic to a p-time group.

—G ¢G)

Theorem 5.45 Any recursive Abelian torsion group G = (G,+9, 15

recursively isomorphic to a polynomial time group H with universe a subset of

Tal(w).

Sketch of Proof: It suffices, by the remarks following Lemma 4.4, to define
a p-time group H with universe a subset of Bin(w) such that both a +* b and
a —" b have length bounded by some constant multiple of |a| 4 |b].

Let A be the subgroup generated by {1,2,...,k}. Renumber the elements
of A as ap, ay, . ..so that the elements of Ay precede the elements of Ag11 \ Ag.
This can be done so that the map taking ¢ to a; is a recursive isomorphism. Now
map ay, € A to ¢(ar) = 1¥0°¥) where t(k) is the total time required to compute
the operation table for Ag. The key to the proof is that whenever a; +9 a; = ag,
where ¢ < j, then we have ¢(k) < (j), since ai will be in the group generated
by {ao, ..., a;}. Furthermore |¢(ay)| = k+t(k) < 2t(j) < 2(|¢(ai)+¢(j)]) since
k<t(k).]

We need an effective version of the Fundamental Theorem of Abelian groups,
which states that every torsion Abelian group is a direct product of primary
groups. This is Lemma 4.8 of [11].

Theorem 5.46 Any recursive Abelian torsion group G s recurstvely isomorphic
to a p-time direct product of primary groups over B where B may be taken to
be either Tal(w) or Bin(w).

The main result on the existence of feasible groups with standard universe
is the following theorem from [11].

41

Theorem 5.47 Let G be an infinite recursive Abelian group with bounded or-
der. Then G is recursively isomorphic to a polynomial time group with universe
Tal(w) and to a polynomial time group with universe Bin(w).

Sketch of Proof: Let B be either Bin(w) or Tal(w). We may assume that
G is p-time by Theorem 5.45. Since the orders are bounded, there is no loss
of generality in assuming that G is a p group for some prime p. Let p™ be
the largest order of an element of G. The proof is by induction on m. We can
express G as a product H @ K, where H is generated by some independent set
of elements of order p”™ and K is maximal independent of H with no elements
of order p™. There are two cases.

Case 1. If H is finite, then K is infinite and may be assumed to have universe
B by induction. The result now follows from Lemma 4.8.

Case 2. If A is infinite, then A is isomorphic to ;< Z(p™) and is therefore
recursively isomorphic to a p-time group with universe B by Theorem 5.44.
Since K is recursively isomorphic to a p-time group with universe a subset of
Tal(w) by Theorem 5.45, the result again follows from Lemma 4.8. a

Next we state some results on characteristics. The first result here follows
from Theorem 5.45 together with the theorem of Khisamiev cited above.

Theorem 5.48 For any XY characteristic Q, there is a p-time Abelian group
with characteristic Q).

We will show in Theorem 5.50 that not all recursive characteristics can be
realized by p-time groups. The next result shows that any p-time characteristic
can be so realized.

Theorem 5.49 [14] Let Q) be a nonempty, infinite characteristic such that
tal(Q) = {tal([p™, k]) : (p™, k) € Q} is a p-time set. Then there exists a p-
time Abelian group with characteristic Q and universe B where (a) B = Bin(w)

or (b) B="Tal(w).

Theorem 5.50 [11] There is a recursive characteristic M such thal no recur-
sive group G with characteristic QQ 1s can be isomorphic to any primitive recursive
group with universe Bin(w) or Tal(w).

Proof: Let Ag, Ay, ... be an effective enumeration of the primitive recursive
structures (w, fe) with one binary operation f.. Let Q. = {p : (p,0) € n(Ac)}
and for any a € A, let |a|. be the order of a in A.. Construct a set R = {ry <
71 < ...} of prime numbers such that, for any e, A, either

1. is not an Abelian group with identity 0, or
2. has an element of infinite order, or

3. has an element of order p? for some prime p, or

42

4. has two subgroups of the same prime order, or
5. has an element of prime order p ¢ Q.

Now the order |a|. of an element a may not be a prime. Therefore we need
some way to control the prime factors of |al.. We will now define a recursive
function v such that for any ¢ and any r > v(q), r either is divisible by p? for
some prime p or r has a prime factor bigger than q. Given ¢, v(q) is simply the
product of all of the prime numbers p < q.

We will define the set @ in stages. At stage s, we will have s + 1 elements
go < q1 < ---qs in ° along with a certain finite subset /° of w X w of restraints
which will prevent numbers from coming into) at stage s or at any later stage.
Let qo =1, Q%= {1} and I° = 0.

The initial stage of the construction proceeds as follows. Compute fo(1,1).
There are then two cases.

(Case 1) If fo(1,1) = 0, then we have 2 € Qg or else Ap is not an Abelian
group with identity 0. Thus we can ensure that () is not the characteristic of
Ao by setting ¢; = 3 and restraining 2 from ever coming into Q. We let 1% = (.

(Case 2) If fo(1,1) # 0, then we know that either Ay is not an Abelian group
with identity 0 or |1|o > 2 and therefore either has a prime factor ¢ > 2 or is
divisible by 4. Now let ¢; = 2 and let Iy = {(1,0)}. This means that either
Ag will have an element of order 4, thus satisfying part (4) of the requirement,
or we will eventually restrain at least one of the prime factors of |1|g from ever
coming into Q.

At stage s+1, we are given qg < - - - < g5 and the set I® of previous restraints.
Moreover, assume by induction that for every (a,e) € I®, either

(i) |ale <€ v(gs) and there is a prime factor ¢ < ¢5 of |al. such that ¢ # ¢; for
any ¢ < s, or

(i1) |ale < v(g¢s) and |alc is divisible by the square of a prime, or
(ii1) |ale > v(gs).

Now let k = 14+v/(g;s)? and compute i@ in A for each a < k and each i < k.
This will produce a set of equivalence classes [a], where a and b are equivalent
if either b = ¢ -a or a = ¢ -b for some ¢ < k. Note that every number a < k
belongs to some equivalence class, but numbers greater than k& can also belong.
Now all we need is that the computation of i - @ in A, produces a sequence of
distinct elements up until it produces 0. If this is ever violated, then A is not
an Abelian group, so that we will have satisfied the e-th requirement. In this
case, we let I*T1 = I* and we choose ¢s11 to be the least prime p > ¢, which
does not violate any of the restraints (¢,b) € I*T1. That is, gs41 is the least ¢
such that (i), (ii) or (iii) above are satisfied for all restraints in I**!. Otherwise,
there are two further cases.

43

(Case 1) There is some equivalence class which has more than v(q¢,) elements.
In this case, let a be the least such that [a] has more than v(¢s) elements. Tt
follows that |als > v(¢gs). Now put (a,s) into the set of restraints, so that
It = 1 U {(a,s)}. Since we will keep this restraint active throughout the
construction, it will be the case that either |a|s| = w or else it is finite and has
a prime factor p such that either p ¢ Q or p? divides |al;.

Then let g;41 be the least prime p > ¢; which does not violate any of the
restraints (¢,b) € I**t1. That is, ¢s41 is the least ¢ such that (i), (ii) or (iii)
above are satisfied for all restraints in 51,

(Case 2) Each class has v(g;) or fewer elements. In this case, |a|; < v(qgs)
for all @ < k and each equivalence class is a cyclic subgroup of A;. Now, since
k = 14+v(q¢?), there must be at least v(g,) different subgroups among the classes.
Since there are no more than v(g,) possible orders (that is, numbers between
2 and v(qs)) for these subgroups, there must be two distinct subgroups of the
same order in A;. It follows from this that A; has two distinct subgroups of
some prime order and hence part (3) of the s-th requirement will be satisfied.

Then we again let g;1 be the least ¢ > ¢, which does not violate any of the
restraints (¢,b) € I°T1.

This completes the construction. The set @ = {qo, ¢q1, ...} is recursive since
g€EQ = (Is <q)(q=4qs). Let M =Q x{0}.

Now suppose that n(A;) = M for some s. Then A; does not have two
distinct subgroups of the same order so that Case 2 does not apply at stage
s+ 1. Thus Case 1 must apply and hence there i1s an element a with finite order
lals = ¢ > v(qs) such that (a,s) is in I* for all ¢ > s. Thus there must be a
stage t > s such that either condition (i) or (ii) is satisfied. That is, |a|; < v(q:)
and there is a prime factor ¢ < ¢; of |a|s such that either

(1) g # q; for any i <t or
(ii) |a|c is divisible by ¢2.

In case (i), we have (¢q,0) € n(A;) but ¢ € Q. In case (ii), we have (¢2,0) € n(A;)
but (¢?,0) ¢ M. In either case, we see that n(A;) is not a subset of M. a

Corollary 5.51 There is a recursive torsion Abelian group A which is not
isomorphic to any primitive recursive Abelian group with universe Bin(w) or

Tal(w).

For groups of unbounded order, Theorem 3.6 of [10] and Theorem 4.21 of
[11] give different results.

Theorem 5.52 [10]

(a) There is a recursive Abelian group A which is not recursively isomorphic
to any primitive recursive group.

44

(b) There is an exponential-time Abelian group B which is not recursively
1somorphic to any polynomial-time group.

Theorem 5.53 [11] There is a recursive lorsion-free Abelian group which can-
not be embedded into any p-time Abelian group.

6 Uniqueness of Feasible Structures

In this section, we shall survey results on feasible categoricity. Again we shall
concentrate mainly on polynomial time structures. As we shall see, unlike re-
cursive model theory where there are many beautiful classification results on
recursively categorical structures, there are very few examples of polynomial
time categorical structures even if we restrict the universe. Thus most of the
results on polynomial time categoricity are negative. Recall that a structure A
with universe B is said to be p-time categorical over B if any structure D with
universe B which is isomorphic to A is in fact p-time isomorphic to A. A similar
definition can be given for other notions of feasibility. We note that restricting
the universe is crucial if we are to have any positive results due to the following
general theorem of Cenzer and Remmel [14].

Theorem 6.1 For any p-time relational structure A = (A, {R}ies), there
are infinitely many p-time structures By = A, By = (B1,{R}}ics), B =
(B2,{R?}i¢cs), ... which are each recursively isomorphic to A and such that,
for each m < n, there s a p-time map taking B, one-to-one and onto By, but
there 1s no primitive recursive map from By, into B, which is at most ¢ to 1,
for some finite number ¢. Furthermore, the universes B, may be taken to be
subsets of Tal(w) for each n > 1.

Sketch of Proof: Let By = A and By = A. Given B, = {bin(by) <
bin(by) < ...}, let Byy1 = M(By) = {bin(mg) < bin(my) < ...} as defined
above in the proof of Lemma 4.9 and define the relations R; on B, 41 to make
the map taking bin(b.) to bin(m.) an isomorphism. a

6.1 Linear Orderings

In this subsection, we survey results of Remmel [69], which was the first paper
on polynomial time categoricity. Remmel essentially showed that there are no
polynomial categorical linear orderings over either Tal(w) or Bin(w).

The classic back-and-forth method of Cantor which shows that any two
dense linear orderings without end points are isomorphic is crucial to the study
of categoricity in linear orderings. The key step in defining an isomorphism
between two structures requires a way to select, given two elements a < b of one
structures, an element ¢ < a, an element d > b and an element e with a < e < b.
Thus we are led to the following effective notion of density functions in the effort
of finding conditions which will provide some form of feasible categoricity.

45

Definition 6.2 A T'-computable dense linear ordering L = (D, <) without end
points s said to have I'-computable density functions if there are I'-computable
functions fo, fo and f; such that for any x and y in D, fp(z) < z < fu(z) and
z < fi(e,y) <y.

By carefully following the back-and-forth argument and keeping track of the
number of steps required, we obtain the following, Theorems 3.1, 3.2 and 3.3 of
[69].

Theorem 6.3 Suppose Ly = (B,<1) and Ly = (B,<3) are polynomial-time
dense linear orderings without endpoints with polynomial-time density functions.
Then

(a) if B="Tal(w), L1 and Ly are double-exponential-time isomorphic and
(b) if B= Bin(w), L1 and La are triple-exponential-time isomorphic.

Theorem 6.4 Suppose Ly = (B,<1) and Ly = (B,<3) are polynomial-time
dense linear orderings without endpoints with linear-time density functions.
Then

(a) if B="Tal(w), L1 and Ly are exponential-time isomorphic and
(b) if B= Bin(w), L1 and La are double-exponential-time isomorphic.

Theorem 6.5 Suppose Ly = (Bin(w),<1) and Ly = (Bin(w), <2) are
polynomial-time dense linear orderings without endpoints with quasi-real-time
density functions. Then Ly and Lo are exponential-time isomorphic.

Note that the standard ordering on the dyadic rationals in the interval (0, 1)
is in fact a p-time linear ordering with quasi-real density functions and has
universe p-time isomorphic to Bin(w). Details are given in Theorem 3.4 of [69].
On the other hand, there are p-time structures without nice density functions,

as shown by Corollary 3.6 of [69].

Theorem 6.6 There exist p-time dense linear ordering without end points with
universe B for B = Bin(w) and B = Tal(w) which have no primitive recursive
density functions.

We note that there is a possible positive result, namely one can show that
any two p-time linear orderings with universe T'al(w) which have quasi-real-time
density functions are polynomial time isomorphic. However Ash showed that
there are no p-time linear orderings with universe T'al(w) which have quasi-real-
time density functions, see [69].

Examination of the previous theorems shows that the complexity of the back-
and-forth 1somorphism falls within the scope of exponential iteration. Thus we
have the following.

46

Theorem 6.7 Suppose Ly = (B,<1) and Ly = (B,<3) are polynomial-time
dense linear orderings without endpoints with g-time density functions. Then
for B = Bin(w) or B=Tal(w), L1 and Ly are g-time isomorphic.

The main result of [69] improves Theorem 6.1 above by obtaining models
with a fixed universe. This result shows that there really are no categorical
linear orderings.

Theorem 6.8 Let L be a p-time linear ordering with universe B, either Tal(w)
or Bin(w). Then

(a) There exists a p-time linear ordering L' with universe B which is not prim-
wtive recursively isomorphic to L.

(b) If L is not recursively categorical, then there exists a p-time linear ordering
L" with universe B which is not recursively isomorphic to L.

Sketch of Proof: ~ We just sketch the proof of part (a). If L is recursively cat-
egorical, then L contains a copy of a dense linear ordering without end points.
Then by Theorems 6.6 and 6.7, there exist p-time orderings L; and Lo with
universe B, one having p-time density functions and one without primitive re-
cursive density functions. Thus L may not be primitive recursively isomorphic
to both structures. ad

6.2 Injection Structures

For injection structures, Cenzer and Remmel classified in Theorem 3.2 of [14]
the recursively categorical injection structures.

Theorem 6.9 A recursive injection structure (A, f) is recursively categorical if
and only if it has only finitely many infinite orbits.

The feasible categoricity results for injection structures depend on the spec-
trum of orbits. For example, there 1s one very nice positive result, Theorem 3.7

of [15].

Theorem 6.10 Let A = (A, f) and B = (B,g) be two finitary permutation
structures such that all but finitely many orbits have the same size q for some

finite q.
(a) If A and B are both p-time over Tal(w), then A is p-time isomorphic to B.

(b) If A and B are both p-time over Bin(w), then A is exponential time iso-
morphic to B.

(¢) If A and B are both g-time over either Bin(w) or Tal(w), then A is g-time
tsomorphic to B.

47

Sketch of Proof: ~ We sketch the argument for T'al(w). We may assume with-
out loss of generality that all orbits have the same size ¢. The desired isomor-
phism ¢ is defined in stages ¢°, in which we enumerate s orbits Ay, A, ..., A
and By, Bs, ..., B of each structure, by defining a sequence of elements ay, . . ., as
and by, ... by so that A; = {a;, f(a;),..., f97 (a;)} and similarly for B;. Then
we let ¢ (f™"(a;)) = f7(b;). The key to measuring the complexity of this map-
ping is that since each orbit has ¢ members, ax = tal(m) for some m < kq.
O

The general negative result is analogous to Theorem 6.8 above for linear
orderings, except that we cannot specify the universe for the non-recursively
categorical structures, since as seen by Theorem 6.10 there actually are some
p-time categorical structures. Our next result combines Corollaries 3.3 and 3.5

of [14].

Theorem 6.11 Let A be a p-time injection structure with universe B where B
is either Tal(w) or Bin(w). Then

(a) There exists an infinite family A; of p-time structures each recursively iso-
morphic to A which are pairwise not primitive recursively isomorphic.

(b) If A is not recursively categorical, then there exists a p-time structure A"
with universe B which is not recursively isomorphic to A.

The most general result for recursively categorical structures is the following.
This combines Theorems 3.6 and 3.10 of [14].

Theorem 6.12 Let B be either Bin(w) or Tal(w) and let A be an injection
structure such that either

(a) A has an infinite orbit or

(b) A has infinitely many orbils of size q for some finite q and has infinitely
many other orbits.

Then there is an infinite family A; of p-time structures each with universe
B and isomorphic to A which are pairwise not primitive recursively isomorphic.

Sketch of Proof: There are two distinct arguments. We first sketch the
proof in the case that A has either an infinite orbit or infinitely many orbits
of finite size ¢, together with an infinite set of other elements. We partition
the structure into two parts. The first part B is either the infinite orbit or
the infinitely many orbits of size ¢ and may be assumed to have universe B
by Theorem 5.31 and 5.32. The second part C has an infinite family of copies
C; with universe C; such that B cannot be primitive recursively embedded in
any C; and such that, by Theorem 6.11, and for any ¢ # j, C; is not primitive
recursively isomorphic to C;. Now just let A; = B ® ;.

48

For the case of a single infinite orbit, we appeal directly to Lemma 4.9. Here
is the construction of a copy of (w,S) with universe Bin(w) but not primitive
recursively isomorphic to the standard structure. Let mg < my < ... be the set
from Lemma 4.9, where A = Bin(w), and assume mg = 0.

We define 0, f2(0), f2(#2(0)), ... 1in blocks so that the k-th block is in three
parts:

3my,3mg + 3, ..., 3mp4 — 3,

followed by
3mk+1 -2, 3mk+1 —5,...,3m, + 1,

and then
3mp +2,3mi +5,...,3me — 1.

The unique isomorphism ¢ from (w, S) to (B, fZ) maps 3my + 1 to 2mg41 —
mg — 1 and 1s not primitive recursive by Lemma 4.9. a

Finally, we note that if A has no infinite orbits and the spectrum of A is
p-time in tally as in Theorem 5.34, then the conclusion of Theorem 6.12 also
applies by Theorem 3.8 of [14].

6.3 Models of Arithmetic

Before focusing on the categoricity of torsion Abelian groups, we briefly present
two results for the group Z of integers. These are Theorems 4.28, 4.29 and 4.30
of [14].

Theorem 6.13 Let B be Tal(w) or Bin(w). There is a p-time structure (B, SB +5)
isomorphic to (7Z,S,+) but not exponential time isomorphic.

Sketch of Proof: (Binary case) Let < 0,bin(n) > represent n > 0 and let
<1, bin(2”2) > represent —n < 0. O

Theorem 6.14 There is a fully p-time group A isomorphic to 7 but not g-time
1somorphic.

Sketch of Proof: This is a corollary of 5.30, since the model defined there
is not g-time isomorphic to A'. To see this, observe that the term E™0, which
has length n 4 1 is mapped to the iterated exponential 2%, a

Let Bin(7Z) be the standard structure of Z with universe p-time isomorphic
to Bin(w) and similarly for Tal(Z).

Theorem 6.15 There is an EXPTIME (respectively, exponential-time)
group A with universe Bin(w) (Tal(w)) which is isomorphic to Bin(7Z)
(Tal(7Z)) but not g-time isomorphic.

49

6.4 Torsion Abelian Groups

The results for Abelian groups are parallel to those given above for injection
structures. We begin with the positive results, Theorems 4.24 and 4.25 of [14].

Theorem 6.16 Let p be a prime, and let A and B be two groups with universe
B, where B = Tal(w) or B = Bin(w), both isomorphic to ®n<wZ(p).

(a) If A and B are p-time, then A and B are EXPTIME isomorphic if B =
Tal(w) and double-exponential-time isomorphic if B = Bin(w).

(b) If A and B are g-time, then A and B are g-time isomorphic.

Sketch of Proof: We sketch the proof of (a) for universe Tal(w). The
standard structure B may be viewed as an infinite dimensional vector space
over Z(p), where the general element (¢, ..., ¢,) is represented by tal(c; + ¢ -
p+...+ecn-p~1). The arbitrary structure A will have a basis defined recursively
by letting a,, be the least element independent of {a,...,a,—1}. It can then be
seen that the map taking tal(c; +ca p+...+cp-p" 1) toer a1 +...+ ¢y ay
is exponential time and its inverse is EXPTIME. a

The next result, Theorem 4.26 of [14] shows that a p-time isomorphism is
not always possible in Theorem 6.16.

Theorem 6.17 For any prime p and for B = Tal(w) or B = Bin(w), there
exist two p-time groups with universe B and which are isomorphic to @<, Z(p)
but which are not p-time isomorphic to each other.

The case of ®,Z(p™) where m > 1 requires a stronger hypothesis. The
difficulty 1s that only elements not divisible by p, can be used for the generators
ay, g, ... and these may all be very large. (This is the basis for the proof of
Theorem 6.17 above.) What is needed is the ability to compute a divisor of an
element x which is divisible by p. Let us say that the group A has recursive
divisors if there 1s an algorithm which, for any a € A, determines whether a
is divisible and which computes a divisor of a if there is one; if the algorithm
runs in polynomial time, then we say that A has p-time divisors. Note that the
standard models of the recursively categorical groups all have p-time divisors.

Theorem 6.18 Let p be a prime, let m > 1 be finite and let A and B be
two groups with universe B, B = Tal(w) or B = Bin(w), both isomorphic to
S Z(p™).

(a) If A and B are p-time and have p-time divisors, then A and B are EXP-
TIMFE isomorphic if B = Tal(w) and double-exponential-time isomorphic
if B = Bin(w).

(b) If A and B are g-time and have g-time divisors, then A and B are g-time
1somorphic.

50

The next result, Theorem 4.19 of [14] shows that the hypothesis of p-time
divisibility is needed in Theorem 6.18.

Theorem 6.19 Let B be either Bin(w) or Tal(w), let p be a prime and let
m > 1 be finite. Then there exists an infinite family of p-time groups G; each
recursively isomorphic to @; < Z(p™) and having universe B such that there is
no primitive recursive structure preserving embedding from G; into G; for any
1< J.

The basic non-categoricity result for torsion groups is Theorem 4.11 of [14].

Theorem 6.20 For any infinite recursive Abelian torsion group A, there is
an infinite family A; of p-time groups each recursively isomorphic to A and
having universe a subset of Tal(w) which are pairwise not primitive recursively
1somorphic.

It is also the case that if some p-primary component of A is infinite and has
bounded order, or is isomorphic to Z(p®°), then each A; in Theorem 6.20 may
be taken to have standard universe.

Next we give two results for p-groups, Theorems 4.9 and 4.23 of [14]. The
first is the fundamental result for non-recursively categorical p-groups and the
second 1s a summary of results for products of basic p-groups.

Theorem 6.21 Let G be a recursive p-group which is not recursively categor-
tcal. Then there exist p-time groups Hi and Ha both 1somorphic to G but not
recursively isomorphic to each other. If G has bounded order, then we may take
Hi and Ha to have universe B where either B = Tal(w) or B = Bin(w).

Theorem 6.22 Let p be a prime number, let B = Tal(w) or Bin(w), and let
C be an infinite recursive group which s a product of cyclic and quasi-cyclic
p-groups and which is not isomorphic to (Bi<wZ(p)) B F for any finite group F
and either C has a quasicyclic factor or is a product of cyclic groups such that
n(C) is p-time in tally.

(a) Then there exists an infinite family A; of p-time groups with universe B
and 1somorphic to C which are pairwise not primitive recursively isomor-
phic.

(b) If C is not recursively categorical, then there exist p-time groups Ay and
As, each with universe B and isomorphic to C, which are not recursively
1somorphic to each other.

The group Q of rationals is closely related to the quasicyclic groups Z(p®),
since Q@ N[0, 1] is isomorphic to the product of the quasicyclic groups. We use
this to obtain the following result, Theorem 4.31 of [14].

Theorem 6.23 Let B be either Bin(w) or Tal(w). Then there is an infinite
famaly of p-time groups H; each with uniwerse B and isomorphic to QQ but not
pairwise primitive recursively isomorphic.

51

6.5 Scott Families

We now consider some general, syntactic conditions which lead to some feasi-
ble categoricity results. Nurtazin [60] and Goncharov [29] provided sufficient
conditions to ensure that a model A with universe A is recursively categor-
ical, namely if there is a finite sequence (cp,...,cx—1) of elements of A and
a recursive sequence (called a Seott family) of recursive existential formulas
{n(21,. .., 8m,c0,...,ch—1) : n < w} in the extended language with names for
o, - - -, cx—1 satisfying the following two conditions:

(1) Every ay,...,a;, € A satisfies one of the formulas ¢,;

(2) Foreach n and for any (a1, ..., an) and (dy, ..., dy), if Asatisfies ¢,, (a1, ..., am,co, .

and ¢n(di,...,dm,co,...,cx_1), then
(A a1, ..., am,co,...,cx—1) is isomorphic to (A, dy,...,dm,co,...,ck-1)
via the map which sends a; to d; for i = 1 to m and ¢; to ¢; for i < k.

Several notions of feasible Scott families were developed in [15] and applied
to the feasible structures we have studied. We will present one such formulation
here.

A Scott family {¢n (21, ..., 2m,c0,¢1,...,¢k-1) : 1 < w} of p-time existen-
tial formulas, for a p-time model A with universe A, satisfying (1) and (2) as
described above is said to be strongly p-time if there is some fixed integer r > 1
such that the following conditions are satisfied, for each m > 0.

(3) For any finite sequence ay, ..., a,, of elements of A, we can compute in
time < (max{2,m,|a1],...,|am|})" a formula ¢; from the list such that
é1(ar, ..., am,co,¢1,...,cx—1) holds in A.

(4) For each formula ¢¢(x1, ..., 2m,co,...,ck—1) and each
ai,...,a, € A, if there exists a such that A satisfies
é1(ar, ..., am,a,co,c1,...,ck-1), then there exists such an a with
la| < (m =+ 2)" + max{|a1],. .., |am|}.

(5) For each ¢¢(21,...,2m,c0,¢1,...,c5—1) and each
ai,...,an, € A, if there exists a such that A satisfies
$1(ar, ..., am,a,co,C1,...,Ck-1), then we can compute an a as described
in (4) in time < (max{2, m, |a1],...,lam|})".

Note that clause (4) above implies that the structure .4 has only finitely
many types of each arity. The following theorem is proved by a careful analysis
of the back-and-forth method.

Theorem 6.24 If A and B possess a common strongly p-time Scott family, then

A and B are p-time isomorphic if both have universe T'al(w) and are exponential
time isomorphic if both have universe Bin(w).

52

o)

Theorem 6.5 can be proved directly from this general result. We give one
other corollary here which provides some additional feasible categoricity for
permutation structures.

Corollary 6.25 Let A = (Tal(w), f) and B = (Tal(w), g) be two isomorphic
p-time permutation structures such that for some fized integer k,

(i) for any a and @’ in the same orbil,
|a'| < lal + &
and

(i1) for any ap,ay,...,am—1 € B and any finile q, if there is an orbit of size q
not containing any of ag, ..., dm_1, then there is such an orbit containing
an element a of size

|Cl| S mcw:{|a0|, R |am—1|} + (m + Q)k
Then A and B are p-time 1somorphic.

Weaker notions of Scott families defined in [15] include the strongly expo-
nential time Scott family, which leads to exponential time 1somorphism for uni-
verse T'al(w) and double exponential time isomorphism for universe Bin(w) and
the strongly EXPTIME Scott family,which leads to EXPTIME isomorphism for
universe T'al(w) and double exponential time isomorphism for universe Bin(w).
The following applications are given in [15].

Corollary 6.26 Let A = (B,=4) and B = (B, =) be two polynomial time
models of an equivalence relation = such that, for some fived integer k, both
models satisfy the following:

(1) for any a and o' in the same equivalence class,
la'| < k- |a| if B=Tal(w)
or (where a = bin(n) and @’ = bin(n'))

n—kla] <n' <n+kla| if B= Bin(w)

and
(i1) for any ag, ... ,am—1 € B and any finite q, if there is an equivalence class
of size q not containing any of ag,...,am_1, then there is such a class

containing an element b of size
[b] < k- max{k™, |agl,. .., |am-1|} if B = Tal(w)

or
[b] < k- max{2,m} if B= Bin(w).

53

Then A and B are exponential time isomorphic if B = Tal(w), and double
exponential time isomorphic if B = Bin(w).

Corollary 6.27 Let A and B be two isomorphic p-time torsion Abelian groups
with the same universe Tal(w) such that for some fived integer k:

(i) for any a,b,
la+ b < k- maz{|al,[b]}

and

(i1) for any ag,...,am-1 in either A or B and any finite q, if there is an
element of order ¢ not in G(aq,...,am—1) (that is, the subgroup generated
by {ag,a1,...,am—1}), then there is such an element b of size

[b] < k™ - max{|agl,. .., |am-1]}

Then A and B are EXPTIME isomorphic if B = Tal(w) and are double expo-
nential time isomorphic if B = Bin(w).

7 Complexity Theoretic Algebra

In this section, we introduce the second theme of our survey. That 1s, instead
of focusing on problems of comparing polynomial time versus recursive models,
we will fix a given polynomial time model such as an infinite dimensional vec-
tor space over a polynomial time field or a polynomial time atomless Boolean
algebra and consider the internal structure of that model. Once again we shall
use established results from recursive algebra as a guide.

In recursive algebra, one studies the effective content of results like the fact
that every independent subset of a vector space V can be extended to a basis.
If the vector space V is infinite dimensional, then all known proofs of this fact
use some version of the axiom of choice, e.g. Zorn’s Lemma, which is known to
be non-constructive. Thus one would expect that it is not the case that every
recursive independent set can be extended to a recursive basis in infinite dimen-
sional recursive vector space. Indeed, Metakides and Nerode [48] proved that
not every recursive independent set of a recursively presented infinite dimen-
sional vector space over a recursive field could be extended to a recursive basis.
Another theme in the study of recursive algebra has been to study the lattice
of r.e. substructures of various recursive structures structures; see the survey
article by Nerode and Remmel [51]. Nerode and Remmel began the study of
complexity theoretic algebra in a series of papers, [53], [65], [54], and [58]. We
survey their results as well as results by Bauerle [5] in the next two sections.

The overriding paradigm of Nerode and Remmel’s study of complexity the-
oretic algebra was to use the admittedly flawed analogy that “recursive is to
r.e.” as “Pis to NP” to formulate natural complexity theoretic analogues of

54

theorems in recursive algebra. For example, Dekker [24] proved that every r.e.
subspace of a recursively presented infinite dimensional vector space over a re-
cursive field with a dependence algorithm has a recursive basis. The natural
complexity theoretic analogue of Dekker’s Theorem is that in a suitable poly-
nomial time infinite dimensional vector space V' over a polynomial time field
with a polynomial time dependence algorithm, every N P subspace of V' has a
basis in P. It turns out that the proof of Dekker’s Theorem is not uniform in
that the proof breaks up into two cases depending on whether the underlying
field of V is finite or infinite. The complexity theoretic analogue of Dekker’s
Theorem behaves very differently in these two cases. That is, Nerode and Rem-
mel [55] proved that if the underlying field is infinite and has a polynomial time
representation with certain nice properties, then every N P subspace of V' has
a basis in P. However if the underlying field is finite, then Dekker’s Theorem
is oracle dependent. That is, there is an oracle X such that PX # NPX and
every NPX subspace of V has a basis in P* and there is an oracle Y such
that PY # NPY and there is a subspace W of V which is NPY but has no
basis in PY. This presents us with two general themes. Sometimes the com-
plexity theoretic analogue of a theorem of recursive algebra is true but must
be proved by more delicate methods which take into account the bounds of the
resources used in a computation. Sometimes the complexity theoretic analogue
is false or oracle dependent because the proof of the recursive algebra result
uses unbounded resources available in a recursive construction in a crucial way.
Thus complexity theoretic algebra is not just a mere translation of the results
of recursion theoretic algebra.

Another problem that complicates the study of complexity theoretic algebra
is that fact that not all polynomial time models are equivalent, as we have seen
in the previous sections. That 1s, Metakides and Nerode showed that all infi-
nite dimensional recursive vector spaces with an effective dependence algorithm
are recursively isomorphic. Similarly, Cantor’s basic back and forth argument
which shows that all countable free Boolean algebras are isomorphic is effective
so that all recursive free Boolean algebras are recursively isomorphic. As we
have seen in the previous section it is certainly not the case that all polynomial
time free Boolean algebras are polynomial time isomorphic. Thus in complexity
theoretic algebra, one fixes a polynomial time presented structure over a natural
universe such as the tally representation of the natural numbers or the binary
representation of the natural numbers and studies that particular structure. In-
deed, Nerode and Remmel studied two basic models of vector spaces, the tally
representation of an infinite dimensional vector space of a polynomial time field
with a polynomial time dependence algorithm, T'al(Vy), where the underlying
universe is the tally representation of the natural numbers and the binary rep-
resentation of an infinite dimensional vector space of a polynomial time field
with a polynomial time dependence algorithm, Bin(V), where the underlying
universe is the binary representation of the natural numbers. Similarly they
consider a tally representation and a binary representation of the free Boolean

55

algebra. The results for the tally representation and standard representation of
a structure are not always the same.

Another basic question in the study of complexity theoretic algebra is whether
the priority method which was so useful in the study of recursive algebra would
again play a central role. In 1975, Metakides and Nerode [47] initiated the sys-
tematic study of recursion theoretic algebra and introduced the use of the finite
injury priority method from recursion theory as a uniform tool to meet algebraic
requirements. Prior to that time the priority method has been limited primar-
ily to internal applications within recursion theory in the theory of recursively
enumerable sets and in the theory of degrees of unsolvability and their gener-
alizations. Recursion theoretic algebra has been developed since, in depth, by
many authors in such subjects as commutative fields, vector spaces; orderings,
and Boolean algebras (see Crossley [21] for references and a cross-section of re-
sults before 1980). Recursion theoretic algebra yielded as a byproduct a theory
of recursively enumerable substructures (see the survey article Nerode-Remmel
[51] for references).

Simultaneously in computer science there was a vast development of P and
N P problems in complexity theory. This subject started out as a tool for mea-
suring the relative difficulties of classes of computational problems (see Cobham
[19], Cook [20], Hartmanis and Stearns [35]). Many papers in this area have
dealt with coding a given problem M into a calibrated problem to find an up-
per bound on the complexity of M, and coding a calibrated problem into a
given problem M to find a lower bound the complexity of M (see Hopcroft
and Ullman [37] and Garey and Johnson [28]). Due to the intractability of
the fundamental problem P = NP, Baker-Gill-Solovay [4] began a line of in-
quiry using diagonal arguments to produce sets (“oracles”) Rj, Rz such that
Pl = NpF: pR2 £ N PRz Typical of recent work in this direction is the con-
struction by Yao [76] of oracles relative to which none of the polynomial time
hierarchy collapses, and the result of Cai [8] that this holds for oracles with
probability 1. The Baker-Gill-Solovay, Yao, and Cai results are fundamental,
but they do not use the priority method which was used systematically with
success in recursion-theoretic algebra.

Priority arguments have been used by many authors in the study of P4
and N P4 sets for recursive or recursively enumerable oracles A. For example,
Homer and Maass [36], used priority arguments to investigate the lattice of N P4
sets. Shinota and Slaman [72] and Shore and Slaman [73] have used priority
argument to study the structure of the polynomial time Turing degrees relative
to a recursive oracle. Downey and Fellows [25] used priority arguments to study
the density of their fixed parameter complexity classes. Nerode and Remmel
([63], [55], [54], and [58]) showed that indeed priority methods play a central
role in the study of complexity theoretic algebras as we will bring out in the
following sections.

We will start by surveying results of Nerode, Remmel and Bauerle on poly-
nomial time vector spaces.

56

8 Polynomial Time Vector Spaces

In this section, we shall study the structure of an infinite dimensional vector
space Vi, over a polynomial time field. We will start by giving some basic defi-
nitions and defining the binary or standard representation of V, and the tally
representation of V,,. Our definitions of the standard and tally representation
of Vo will be broken down into two cases depending on whether the underlying
field F' is finite or infinite.

A recursive field F = (Up,+rF, -, Al;, MIp) consists of a recursive subset
Ur of the natural numbers w and partial recursive functions +p (field addition),
-p (field multiplication), Alr (field additive inverse), and M I (field multiplica-
tive inverse) such that these operations restricted to F' turn Up into a field. A
recursively presented vector space V.= (Uy,+v,-v) consists of a recursive sub-
set Uy of the natural numbers and partial recursive functions +v (vector space
addition) and -y : Up x Uy — Uy (scalar multiplication) which turn Uy into
a vector space. V is said to have a dependence algorithm if there is a uni-
form effective procedure which given any n-tuple v, ..., v,—1 will determine if
Vg, ..., Un_1 are dependent.

We say that a recursive fleld F' = (Up,+r, r, Al;, MIF) is a polynomial
time field if Up is a polynomial time subset of {0,1}* and the operations
+r, r, Alp, M Ip are the restrictions of total polynomial time functions. We
will always assume that 0,1 € Up and that 0 is the zero of F' and that 1 is the
multiplicative identity of F'.

Let Vi, be the infinite dimensional vector space over a polynomial time field
F which consists of all finite sequences < ay,...a, > of elements of I where
a, # 0 together with the empty sequence) which is the zero of the vector space.
The operations on V,, are induced by coordinate-wise addition and scalar mul-
tiplication. Finally we say that a vector v =< ay,...a, > of Vi, where aq; € F
for 1 < i < n and a, # 0 has height n. We say that the zero vector of V., has
height 0.

Case 1 F is finite.

Suppose that FF = {0,1,...,k — 1} is a finite field where 0 is zero of F and
1 is the multiplicative identity of /. The space V,, can be coded into the natu-
ral numbers w = {0,1,2,...} as a polynomial time vector space in many ways.
We refer to e, eq,... as the standard basis of V., where ¢, 1s the sequence of
the length n, (0,...,0,1) with n — 1 zeros and 1 denotes the unit of F'. Now
the question of whether V, is polynomial time, recursive, etc., depends on how
we code the sequences {(ay,...,a,). Following [53, 55], we will distinguish two
specific polynomial time representations of V., which we call the tally and bi-
nary (or standard) representations of V.,. We identify each vector v € V,, with

57

a natural number R(v) by R(G) =0 and
R({a1,...,an)) = a1 + ask + .. La k"t if a, # 0.

Next, with a slight abuse of notation, we define maps b : Voo — Bi(w), bin :
Voo = Bin(w) and tal : Voo — Tal(w) by bi(v) = bi(R(v)), bin(v) = bin(R(v))
and tal(v) = tal(R(v)).

Then By (Vs) consists of the set By (w) with the operations of vector addi-
tion +p, and scalar multiplication -g, induced by the corresponding operations
from V. Similarly, bin(Vs) consists of the set Bin(w) = {bin(v) : v € V!
with corresponding induced operations +4i, and -4, and tal(Ve) consists of the
set T'al(w) with the induced operations +:4; and scalar multiplication -¢4;. It is
easy to see that By (Vs), bin(Vs) and tal(Vs) are polynomial time structures
and it follows from Lemma 4.4 that By (V) and bin(Vy) are p-time isomor-
phic. We shall normally refer to either of these two structures as the standard
representation st(Veo) of Voo and write the operations as +;; and .

Case 2 F is infinite.

Recall the p-time coding functions (o1, ..., o) defined in section 4. Now
suppose that F = (Up,+F, r, Al;, MIF) is an infinite polynomial time field
of characteristic 0. Let 0 and 1 denote the zero and 1 of F' respectively. For
any positive integer n, let n = 14 ...+ 1 where there are n summands and let
—n = Alp(n). For any integers n and m # 0, let n/m = n -p M T(m). Then
set

QT ={n/m:neN,meN\{0}}.

Thus Q1 is a copy of the nonnegative rationals inside of F. We say that @ is
properly embedded in F if

(1) QT is a polynomial time subset of {0,1}* and

(i1) the map f : Q1 — {0,1}* given by f(n/m) = [bin(n), bin(m)] = bin([n, m])

is the restriction of polynomial time function from {0, 1}* to {0, 1}*.

Now suppose that F = (Up,+r, -r, Al;, MIp) is a polynomial time field
where Q% is properly embedded and Up = {0,1}*. Define bin : Vo, — Bin(w)

=

by bin(0) = 0 and
bin(< ay,...an >) = {ay,...ap)y for ai,...,a, in F with a, # 0.

In this case, we let st(Voo) = (Us,+s, 5), where Up = {bin(v) : v € Vi}
and where the operations 4 and -, are defined so that bin is an isomorphism
from Vi, onto st(Vs). It is easy to see that the operations 4+, and -, are
the restrictions of polynomial time functions and that U, is polynomial time
isomorphic to {0, 1}*. We call st(Vo) the binary representation (or the standard
representation) of Vo, in this case.

58

The tally representation of V., is defined by observing that that if ¢ =
op -0y 18 any string of Uy, other than the empty string, then ¢ ends in a 1.
Hence there is an integer n, such that bin(n,) = oy -+ - 07.

Now define a map tal : Voo — Tal(w) by tal(v) = tal(ny), where n, is the
natural number such that bin(v) = bin(n) and let tal(Ve) = (Us, ++,), where
U = {tal(v) : v € Voo } and the operations +; and - are defined so that tal is an
isomorphism from V,, onto tal(V.). Tt is easy to see that the operations +; and
-t are the restrictions of polynomial time functions and that U; is polynomial
time isomorphic to Tal(w). We call tal(Vy) the tally representation of Vi in
this case.

Finally we argue that both the standard and tally representation of Vi,
have polynomial time dependence algorithms. First the decoding functions 7%
defined in section 4 allow us to recover the coefficients ay,...,a; from any
vector bin(v) = {a1,...,ap)r € st(Ve). We can then similarly recover the
coefficients from tal(v) by first computing bin(v). It follows that, given any
set vy,...v, of vectors in either of our representations of V,,, we can recover
the matrix of coefficients of vy, ..., v, corresponding to the expansions of those
vectors 1n terms of the standard basis e1,es, ... of Vo, in polynomial time in
the sums of the lengths |v1]| 4+ - - -+ |v,|. We can then use Gaussian elimination
on the matrix of coefficients to determine whether or not {vy,...,v,} is an
independent set. Since Gauss elimination is polynomial time over the coefficients
(since the operations of F' are polynomial time), it follows that in each of our
representations, there is a polynomial p such that we can decide if {vy,... v,}
is dependent in p(|v1|+ - - + |v,]) steps.

We end this section with some basic definitions and notations for vector
spaces. Let V be either Vo, st(Vo) or tal(Vs). We shall abuse notation and
let 0 denote the zero vector for Vs, st(Veo), and tal (V) even though technically
the zero vectors of the three vector spaces are distinct objects. Given a subset
A of V, we let space(A) denote the subspace of V generated by A. Given two
subspaces U and W of V| we let U + W denote the subspace generated by
UUW. We shall write W = Uy @ Us if W,U; and Us are subspaces of V' such
that W = Uy + Us and U1 N Uz = {6} We say U is a complementary subspace
of Wit U W =V. Given # € V, we let ht(z) denote the height of . We
note that if © € st(V.o), then in polynomial time in |z|, we can produce the
binary representations of the integers a1, ..., a, such that = bin({(ay, ..., an))
with a, # 0 so that we can find the height of # in polynomial time in |z]|.
Similarly if # € tal(V.), then in polynomial time in |#|, we can produce the
tally representations of the integers ai,...,a, such that ¢ = tal({(ay1,...,an))
with a, # 0 so that we can find the height of # in polynomial time in |z|.

59

8.1 Subspaces and Bases over infinite polynomial time

fields

We shall see that there is a vast difference between the theory of bases and
subspaces of st(Vs) or tal(Ve) when the underlying field is infinite as opposed
to when the underlying field is finite. For example, Nerode and Remmel proved
the following strengthening of Dekker’s Theorem that every r.e. subspace of
a recursively presented vector space over a recursive field with a dependence
algorithm has a recursive basis.

Theorem 8.1 ([55])
Let I be a polynomial time field where Q) ts properly embedded. Then

(a) every r.e. subspace V of tal(Vs) has a basis in P and

(b) every r.e. subspace W of st(Vs) has a basis in P.

Bauerle [5] proved the existence of simple and maximal subspaces of tal(Vy)
which are in P. To properly state Bauerle’s results, we first need some defini-
tions.

In the lattice, &, of recursively enumerable (r.e.) sets of natural numbers, a
r.e. set S is simple if w\ S is infinite and for any infinite r.e. set W, W NS # 6.
A re. set M is mazimal if w\ M is infinite and for any r.e. set W D> M,
either w \ W or W\ M is finite. The analogues of these notions in the lattice of
N P4 sets, Expa, for any oracle A are the following. A NP4 set S C {0,1}* is
N PA-simple if {0,1}*\ S is infinite and for any infinite N P4 set W C {0,1}*,
WnNS#0. A NPAset M C{0,1}* is NPA-mazimal if {0,1}*\ M is infinite
and for any NP4 set W D M, either {0,1}* \ W or W \ M is finite.

It was shown by Homer and Maass [36], that there exists oracles A and B
such that N P4 # P4 and no N PA-simple sets exist and N P? £ PP and there
exist N PB-simple sets. It follows from a result of Briedbart [7] that there are
no N P#-maximal sets for any A.

In the lattice, £(V), of r.e. subspaces of a recursively presented copy of Ve,
a r.e. subspace S of Vo, is simple if the dimension of the quotient space V. /S
is infinite and for any infinite dimensional r.e. subspace W of Vo, WNS # {6}
A r.e. subspace M is mazimal if the dimension of Vo /M is infinite and for
any r.e. subspace W D M either the dimension of V, /W or the dimension of
W/M is finite. A r.e. subspace M is supermazimal if the dimension of V. /M
is infinite and for any r.e. subspace W D M, either V.., = W or the dimension
of W/M is finite. The NP analogues of these notions in st(Vy) and tal(V)
are the following. Let A be an oracle, then a NP4 subspace S of st(V) (
tal(Vao)) is N PA-simple if the dimension of st(V.,)/S (tal(Ve)/S) is infinite
and for any infinite N P4 subspace W of st(Vao) (tal(Vao)), W N S # {bin(0)}
(WNS # {tal(0)}). A NP4 subspace M is N PA-mazimal if the dimension
of st(Veo)/M (tal(Vao)/M) is infinite and for any N P4 subspace W of st(Vs,)

60

(tal(Vs)), either the dimension of st(Vo)/W (tal(Veo)/W) or the dimension
of W/M is finite. A NP4 subspace M is N PA-supermarimal if the dimension
of st(Veo)/M (tal(Vao)/M) is infinite and for any N P4 subspace W of st(Vs,)
(tal(V)), either st(V) = W (tal(Veo) = W) or the dimension of W/M is
finite.

Nerode and Remmel [58] introduced a slightly weaker notion than N PX-
simple subspace which they called P*X-simple subspace. Note that in the case
of simple sets or simple subspaces, we can replace the infinite r.e. set W or
the infinite dimensional r.e. subspace W by an infinite recursive set W or
an infinite dimensional recursive subspace. That is, every infinite r.e. set W
contains an infinite recursive set and every infinite dimensional r.e. subspace
V of Vi contains an infinite dimensional recursive subspace. Thus a r.e. set S
is simple iff w \ S is infinite and for any infinite recursive set W, W N S #£ .
Similarly an r.e. subspace S of Vi is simple iff the dimension of V., /S is infinite
and for any infinite dimensional recursive subspace W of Vo, WNS # {6} Thus
we make the following definition. Let A be an oracle, then a N P4 subspace S
of st(Vao) (tal(Va)) is PA-simple if the dimension of st(V.,)/S (tal(Va)/9) is
infinite and for any infinite dimensional P4 subspace W of st(Va) (tal(Veo)),
Wns # {bin(0)} (WnNS #£ {tal(0)}). It follows from results of Nerode
and Remmel [55] that there exists oracles A such that there exists an infinite
dimensional N P4 subspace V of tal(V.,) such that V has no infinite dimensional
subspace W € P4, Thus while a subspace W which is N PA-simple is certainly
P4_simple, it is not clear that every PA-simple subspace of tal(V.,) is N P4-
simple.

Given a subspace V of st(V) (tal(Vx)), we let

D,(V) = {{vi,...,00)n :v1,..., 0y are dependent}
Dy = |JDu(v).
n>1

The Turing degree of D, (V) is called the n-th dependence degree and the Turing
degree of D(V) is called the dependence degree of V. (The sets D, (V') and D(V')
can be defined for any subspace of a recursively presented vector space over a
recursive field using a suitable coding of the finite sequences of N.) Nerode and
Remmel [50] proved the following.

Theorem 8.2 Assume the underlying field F of tal(Ve) is an infinite recursive
field. Let Ay, A1, A, ... be any effective sequence of r.e. sets such that Ay <p
A <p --- <p Ay and Ay is not recursive. Then there is a supermaximal

subspace V' in tal(Veo) such that D(V) =p Ay and Dy (V) =1 As.

There is a nice application of Theorem 8.2 in the case where we pick Ay, Aa, . ..
to be recursive and Ag to be nonrecursive. In that case, the supermaximal space
V of Theorem 8.2 is recursive so the quotient space W = tal(V.,)/V is a recur-
sively presented vector space such that

61

(i) every r.e. independent set I of W is finite,

(i1) for any fixed n, there is an effective procedure which given an n-tuple
wi, ..., w, will determine if wy, ..., w, are dependent, but

(iii) W has no dependence algorithm.
Bauerle [5] proved the following result for tal(Vy).

Theorem 8.3 ([5]) Let F be a polynomial time field where Q is properly em-
bedded and § be any nonzero r.e. degree. Then for any finite k > 1, there is a
supermazimal subspace V of tal(Vy) such that

(i) D1(V),..., Dg(V) are polynomial time,
(ii) for all j, D;(V) € PSPACENDEXT, and
(iii) D(V) €4.

Thus in particular, there exist a polynomial time supermaximal subspace
W of tal(Veo) which is of course automatically N P-simple and N P-maximal.
Moreover if we consider the quotient space U = tal(Veo /W), then it is easy to
see that U is a polynomial time vector space. That is, if we identify U with the
set of minimal elements in each equivalence class of tal(Ve /W), the @ will be a
polynomial time set and the operations of tal(V.,) will induce polynomial time
operations on U which will make it isomorphic to tal(Ve/W). Thus we have
the following

Theorem 8.4 There exists a polynomial time presented vector space U such
that the only r.e independent sets of U are finite.

As we shall see in the next section, the analogues of Theorems 8.1 and 8.3
are oracle dependent.

8.2 Subspaces and Bases over finite fields

In this section, we shall state several results on the relation between the com-
plexity of a subspace V' of either st(Vy) or tal(Vs) and the complexity of a
basis of that subspace when the underlying field is finite. These results turn out
to be essential for many of the more complicated results and constructions in
polynomial time vector spaces.

Note that since the universe of st(V) is Bin(w), there is a natural order <
on the elements of st(V.) inherited from the standard ordering of the natural
numbers. Similarly since the universe of tal(Vy) is Tal(w), there is a natural
order < on the elements of s¢(Vs,) inherited from the standard ordering of the
natural numbers. This given, we can now state some very useful definitions
for our purposes. Recall that ey, es,... is the standard basis for V,,. Thus
Ren) = k"L,

We start with the definition of a height increasing basis.

62

Definition 8.5 Let V be a subspace of st(Veo) or tal(Vy).

(1) Call B a height increasing basis of V if B is a basis for V and for all
n > 1, B has at most one element of height n.

(2) The standard height increasing basis of V, By, is defined by declaring
that x € By iff x € V and there is no y € V such that y < = and

ht(y) = ht(x).

(3) The standard height increasing complementary basis of V C tal(Vy,),
By, is defined in tal(Vy) by declaring that tal(e,) € By iff tal(en) ¢ V
and there is no y € V such that ht(y) = n. Similarly the standard
height increasing complementary basis of V' C st(V.,), By, is de-
fined in st(Voo) by declaring that bin(e,) € By iff bin(e,) ¢ V' and there
is noy € V such that ht(y) = n.

(4) We call the space(Byr), the standard complement of V.

There is a crucial difference between st(Voo) and tal(Vy) with respect to
searches. That is, the vector of height n with the smallest R value is e, and
R(en) = k"=, The vector of height n with the largest R value is (k — 1)e; +

-+ (k—1)e, and

R((k—1er 4 -4 (k= 1)en) =Y (k= Dk~ = k" — 1.

i=1

Thus in tal(Ve), given a vector v of height n, we can produce in polynomial
time in |v|, a list of all vectors of height n in tal(Vs). However in st(Vy),
given a vector v of height n, it takes exponential time in |v| to produce a list
of all vectors of height n in st(Vy). For this reason, the relation between the
complexity of V', By, By, and space(Byr) is very different in tal(V.) than in
st(Veo). For this reason, we shall divide this subsection into two parts, one for
tal(Voo) and one for st(Vo), and discuss the relation between the complexity of
bases and subspaces for each case separately.

8.2.1 Bases and Subspaces for tal(Vy).

Nerode and Remmel in [55] studied bases of N P-subspaces of tal(Vy,), so we
start by listing a number of results from that paper.

Theorem 8.6 ([55])
Let V be a subspace of tal(Ve).

(a) If B is a height increasing basis of V, then V <E B.

(b) By <E'V and B <L V.

63

Proof: The key point here is that in our tally representation, card({z €
Voo tht(z) <n}) =k -1+ (k—1k+ ...+ (k—1)k"~t = k™ — 1. Moreover,
if At(y) < n, then |y| < k™. Given x € V, such that ht(x) = n, we know that
|¢| > k"~1. So there are at most k|x| elements of tal(Ve) with height less than
or equal to ht(x). For ¢ fixed we can run any (uniform) computation which take
at most n? steps on strings of length n for all the elements of tal(Vy) of height
less than or equal to ht(z) in polynomial time. This is because

(kla])e g
S e S () g
yetal(Veo), ht(y)<ht(x) =0

Given these observations it is immediate from our definitions of By and By
that By <k V and By <2 V.

To prove Theorem 8.6 (a), note that if B is a height increasing basis for V|
then # € V iff » € space({y € B : ht(y) < ht(z)}). Thus to decide if z € V,
we simply search all the elements y in Voo with ht(y) < ht(z) and produce all
vectors y1, ..., 4, in {y € B : ht(y) < ht(x)}. We can then use the polynomial
time dependence algorithm to determine if y € space({y € B : ht(y) < ht(z)})
in polynomial time in |y|. Thus V <& B. a

An immediate corollary of Theorem 8.6 is the following.

Corollary 8.7 ([55])
(i) A subspace V of tal(Vi) is in P iff V has a height increasing basis B in P.

(i1) If V is a subspace of tal(Voo) and V € P, then V has a complementary
subspace W in P.

We note that one cannot replace <X by <P in the statement of Theorem
8.6 due to the following result of Nerode and Remmel .

Theorem 8.8 (/55])
There exists a subspace V of tal(Veo) such that neither By <P V norV <% By.

Next we observe that height increasing bases in N P generate N P spaces.

Theorem 8.9 (/58] Suppose that A is a height increasing independent set of
tal(Voo) in NP. Then space(A) € NP.

Proof: Note that if A is a height increasing independent set, then = €
space(A) iff @ € space({y € A : ht(y) < ht(x)}). Thus # € space(A) iff
there are elements by,..., b, of height < ht(z) and Ay, ..., A, € F such that
r=>""_, Aib;. Moreover, if ht(z) = m, then k7~! < |z| < k™ — 1 so that each
b; must have length < k|x|. Thus in nondeterministic polynomial time, we can
guess A1, ..., Ay, b1,...,b,, and computations which show that b; € A and then
verify that @ =)", A;jb;. Thus space(A) isin NP if A€ NP. a

Similarly one can show that if N PX = co-N PX | then we have the following.

64

Theorem 8.10 ([55])
Suppose N PX = co-NP* and V is a subspace of tal(Vs,). Then

(i) V € NPX {ff V has a height increasing basis in N PX ;
(ii) V € NPX implies V has a complementary subspace W in N PX.

Our next result will allow us to show that the property of a subspace V'
of tal(Vs) having a basis in P does not necessarily tell us anything about the
complexity of V other than that V' is recursively enumerable.

Theorem 8.11 ([55])
Let V' be a recursively enumerable infinite dimensional subspace of tal(Vy).
Then the following are equivalent:

(1) V has a basis C' in P;
(2) V contains an infinite dimensional subspace W in P;

(3) V contains an infinite height increasing independent subset S in P.

Another consequence of a subspace containing an infinite independent subset
in P is the following.

Theorem 8.12 Let V be a recursive subspace of tal(Ve) such that V' contains
an infinite height increasing independent set C' in P. Then if the dimension of
tal(Voo)/V is infinite, there is an infinite height increasing independent set D
in P such that V N space(D) = {0}.

Proof: Note that By is recursive. Let bg,b1,... be a list of the elements
of By such that h(bo) < h(b1) < Let f be a recursive function such that
F(0™) = b,. Similarly let ¢g,c1,... be a list of the elements of C' such that
h(co) < h(c1) < Then let ds = by +¢a1 cr(s) Where

r(s) =14 Z h(b;) + the number of steps to compute f(0),..., f(s).
i=0

Then we claim that D = {do,dy,...} is our required height increasing in-
dependent set. First observe that by our definition of r(s), r(s) > h(bs)
so that h(ds) = h(cy()). Also it is clear that #(0) < r(1) < ... so that
h(do) < h(dy) < Thus D is a height increasing basis. Moreover it is easy to
see that D is independent over V. Thus we need only show that D is p-time.
To decide whether a given z € tal(Vy) is in D, we first compute which elements
y with h(y) < h(z) are in C. Now C' is a p-time set so that for all z we can
determine whether z € C' in maz(2, |z|)™ steps for some fixed m. Moreover, if
h(x) = n, then x = 11°l where k"~! < |2| < k™ — 1 so that it requires at most

65

BRI < (ke 4 1)™)? = (|| + 1) steps to

2m o Y <
find the elements of C' of height less than or equal to A(xz). If no element of
height h(z) is in C, then clearly « ¢ D. If there is an element of height A(x)
in C| then in polynomial time in |x|, we can find r such that h(c,) = h(z). At
this point, we start to compute the sequence of elements f(0), f(1),... in order
for r steps. Suppose that end the end of r steps, we have successfully computed
f£(0),..., f(t). Note that if we are not successful in computing f(0) by the end

of 7 steps, then 2 ¢ D. Otherwise, see if there is some s < ¢ such that
r=1+ Z h(b;) + the number of steps to compute f(0),..., f(s).
i=0

If there is no such s, then @ ¢ D and if there is such an s, then « € D iff
z = f(s) +ta ¢r. Tt follows that we can decide if + € D in polynomial time in
||, so that D is a p-time height increasing independent set which is independent
over V. a

Next we show that having a basis in P does not restrict the degree of a
subspace other than ensuring the subspace is recursively enumerable.

Theorem 8.13 Let d be any r.e. degree. Then there there exists a r.e. subspace

V in tal(V) such that V has a basis in P.

Proof: Let B; be an infinite subset of {es, : n > 1} in P and for any given
r.e. degree d, let Bs be an infinite r.e. subset of {es,41 : n > 0} of degree
d. Then it is easy to see that the Turing degree of Vs = space(B; U Bs) is 4.
By Theorem 4, Vs has a basis in P since space(Byp) is an infinite dimensional
subspace of Vs which is in P. a

It is also easy to construct spaces with no basis in P. In fact, Nerode and
Remmel [55] gave a general construction which, given any effective list of r.e.
independent sets of tal(Veo) Ao, A1, . .., produced a subspace V of tal(Vs) such
that V' N A; is finite for all. Their construction can be specialized to prove the
following results.

Theorem 8.14 (1) There is a subspace V of tal(Vs) in DEXT such that V
has no basis in P.

(2) There is a recursive subspace V of tal(Ve) such that V' has no primitive
recursive basis.

(3) There is a subspace V of tal(V) which is recursive in 0" such that for any
r.e. independent set I, I NV s finite.

We should also note that every r.e. subspace has a basis which has high
complexity.

66

Theorem 8.15 ([55])
Let V be an r.e. subspace of either tal(Vs) or st(Veo). Then V' has a recursive
basis B which is not primitive recursive.

All of the results so far do not settle the question of whether every subspace
V of tal(Vs) which is in NP has a basis in P. In fact, this question is oracle
dependent. To prove the existence of an oracle B such that every subspace V
of tal(Vs,) which is in N P® has a basis in P?| Nerode and Remmel proved the
following result which strengthens a similar result of Homer and Maass [36].

Theorem 8.16 ([55]) There is a recursive oracle B such that PP # NP8 and
such that every infinite set X which is p-time Turing reducible to a set' Y n
NPE contains an infinite subset in PE.

We note that in light of Theorem 8.11, it also follows that for the oracle B
of Theorem 8.16, every N P® subspace V of tal(V.,) has a basis in PZ. Thus
we have the following.

Theorem 8.17 ([55]) There is a recursive oracle B such that PP # NP® and
every every N PP subspace V of tal(Vs,) has a basis in P5.

Via a delayed diagonal argument, Nerode and Remmel also proved the fol-
lowing.

Theorem 8.18 ([55]) There is a recursive oracle A such that

(a) there is an infinite dimensional subspace V in NP4 such that V has no
basis in P (and hence NP4 # P4) and

(b) NPA = co-NPA,
Combining Theorems 8.17 and 8.18, we have the following

Theorem 8.19 ([55]) Arguments valid under relativization are not sufficient
to prove

1. P# NP => every subspace of tal(Vs) in NP has a basis in P and
2. P # NP => there is a subspace V of tal(Veo) in NP which has no basis
mn P.

We end this section with some results of Bauerle [5]. Wesay aset A C {0, 1}*
is PX-immune if there are no infinite subset of A in PX. The next results show
that a subspace V' C tal(Vs) can have a basis in P without the standard basis
being in P.

Theorem 8.20 ([5]) There erxists an exponential time subspace V of tal(V)
which has a basis in P but for which the standard height increasing basis of V,
By, is P-immune.

67

Theorem 8.21 ([5]) There erists a recursive oracle A such that there erists a
subspace V of tal(Vi,) which is in NP4\ P2, has a basis in P4, and yet the
standard hieght increasing basis of V., By, is P4-immune.

Theorem 8.22 ([5])

There exists a recursive oracle B such that there exists a subspace V of
tal(Voo) in NPP\ PB and such that, for all N PP\ PP subspaces V of tal(Vs.),
the standard height increasing basis By has an infinite subset in P2,

Theorem 8.23 Let F be finite and V C tal(Veo). If V has an infinite dimen-
stonal subspace in P, then V has a height increasing basis D with a subset in P
such that By E; D.

Theorem 8.24 ([5]) Let A be an oracle such that NP4\ P4-subspaces of
tal(Voo) exist. Then if V has an infinite dimensional subspace in P4, then

?

V has a height increasing basis D with a subset in P4 such that By E; D.

8.2.2 Bases and Subspaces of st(V).

It will be convenient to think of st(V.) via the representation By (V) defined
above. The advantage is that for nonzero # € By(Vy), ht(x) = |z|. The
standard basis for By (V.,) is given by e, = by (k"t1) = 0"1.

As pointed out in the introduction to this section, there is a significant
difference between st(Vo,) and tal(Vy) with regard to searches. Indeed many
of the proofs of the propositions and theorems in the previous subsection relied
on the fact that given an x € tal(Vy), we could produce a list of all elements
tal(Voo) of height < ht(z) in polynomial time in |z|. This is no longer the case
in st(Va). That is, if z € tal(V.) and ht(z) = n, then k"7 < |z| < k" — 1
while if & € st(Va,), then ht(z) = |2| so that there are k1"l —1 elements of height
less than or equal to ht(z) in st(Ve). Thus in st(Vs), we can not find all the
elements of height less than or equal to ht(#) in a p-time height increasing set S
in polynomial time in |z|. However there is a special class of p-time independent
sets of st(Vs), which we call strongly p-time independent sets, which do have
most of the useful properties possessed by p-time height increasing bases of

tal(Veo).

Definition 8.25 An independent set B C st(Vy) is called strongly p-time if
(i) B is a p-time sel,

(i1) B is height increasing, and

(iii) of B = {bo, b1, ...} where ht(by) < ht(b1) < ..., then there is a polynomial
time function f such that for all n > 0

(ilia) f(1™) = by if ht(by) = n and B has an element of height n,

68

(iiib) f(1™) = 0 if B has no element of height n.

We note that condition (iii) allows us to find, for any z € st(Vy), all elements
of b of height < At(z) in polynomial time in |#|. That is, given z € st(Vy),
ht(z) = || and we can compute f(1), f(1%),..., f(1"®)) in polynomial time
in |z]. Then {b:b6 € BARt(b) < ht(x)} = {f(1") :n < || A F(1™) £ 0}, As
noted above, any p-time height increasing independent set B in tal(Vy) also
has the property that, for any «, we can find all elements of B of height < ht(x)
in polynomial time in |#|. Thus condition (iii) is specifically designed to give
us this property which holds for all p-time height increasing bases in tal(Vy)
automatically. Tt is easy to see that our standard basis {ey, ea, €3, ...} of st(Vi)
is strongly p-time.

Our next proposition lists several basic properties of subspaces generated by
subsets of a strongly p-time basis.

Theorem 8.26 Let B be a strongly p-time basis of st(Vs) and suppose that
S C B. Then

(i) S € P iff space(S) € P.

(ii) S € NP iff space(S) € NP.

(iii) S € co-NP iff space(S) € co-NP.
(iv) 5 =F space(S).

Proof: Since S = space(S) N B, it follows that S <X space(S) and S is in
P(NP,co-NP) if space(S) is in P(NP,co-N P).

Let f be the p-time function such that f(17) = b,, where b, is the element
of height n in B. Then, given an x# € st(Vy) of height n, we can compute
F(1) = by,..., f(1™) = b, and test b1, ..., b, for membership in S, all in time
polynomial in |#|. Thus in polynomial time in |z|, we can find {s1,... s},
where {bs,,...,bs,} = {y € S : ht(y) < ht(x)}. Moreover the fact that B is
a height increasing basis means that z = Zix:ll Aib; for some Ay, ..., Ajp in F.
Now suppose that |¢| = n, then we can write « = #1...2, where all z; € F
and and each b; = b;1...b;, where b;; € F. Then we can solve the matrix
equation over F

BY =X

where B = (b; ;), Y is a column vector of unknowns, and X is the column vector
(z1,...,2y) in polynomial time in n = |n|. Thus in polynomial time in |z|, we
can find Ay, ..., Az such that z = le:ll Asbi. This given,

z € space(S) iff {i: A\ #0} C {s1,...,88}.

It then easily follows that space(S) <% S and space(S) isin P (N P,co-N P) if
Sisin P (NP,co-NP). a
Our next result is a weak analogue for st(V,) of Theorem 8.7.

69

Theorem 8.27 Let V be a subspace of st(V.) with strongly p-time basis R.
Then RU By is a strongly p-time basis for st(Voo) and both V' and space(By)
are in P.

Our next theorem shows that no extra condition on a height increasing basis,
such as condition (iii), is required to generate subspaces of st(Vy) in N P.

Theorem 8.28 Let B be a height increasing independent set of st(Veo) which
is in NP. Then space(B) is in NP.

Proof: The key property of a height increasing basis is that if # € space(B),
then « € space({b € B : ht(b) < ht(x)}). That is, # must be generated
by the elements of height < ht(x) in B if # € space(B). Thus to see that
space(B) € NP, we simply guess the elements of B of height < ht(x), say
{b1,...,bg} = {b € B : ht(b) < ht(x)}, where ht(b1) < ... < hi(by). Now, for
all nonzero y € st(Veo), ht(y) = |y| so |b;] < |z| for all ¢ and k& < |z|. Then we

perform a nondeterministic polynomial time computation to check if bq,. .., b
are all in B. Finally, we use our polynomial time dependence algorithm to
check whether @ € space({b1,...,bz}). Thus space(B) is in NP. a

Theorem 8.29 Suppose NPX = co-NPX and V is a subspace of st(Va,).
Then

(i) V € NPX iff V has a height increasing basis in N PX.

(11) V € NPX implies V has a complementary subspace W in N PX.
Our next result is a weak analogue of Theorem 8.11 of [55] for st(V).

Theorem 8.30 Let V be an r.e. infinite dimensional subspace of st(Vo). Sup-
pose that there exists an wnfinite strongly p-time independent subset 1 C V.
Then V has a basts in P.

Our next next result is the analogue of Theorem 8.12 for st(Vi).

Theorem 8.31 Let V be a recursive co-infinite dimensional subspace of st(Vuo)
such that 'V contains an infinite strongly p-time height increasing independent
set C'. Then there 1s an infinite strongly p-time height increasing independent
set D such that V N space(D) = {0}.

Theorem 8.32 Given any r.e. Turing degree §, there exists an r.e. subspace

V of st(Veo) such that V has degree 6 and V has a basis in P.

Again one can show that exists an exponential time subspace of st(Vy)
which has no basis in P.

Theorem 8.33 There is a subspace V of st(Vy) such that V € DEXT and V
has no basis in P.

70

8.2.3 The semilattice of NP¥ subspaces

In this section we shall study various properties of the lower semilattice of N PX-
subspaces of tal(V) and st(Ve) for various oracles X. Our first result shows
that in contrast to the collection of r.e. subspaces which is closed under both
intersection (N) and sum (+) and hence forms a lattice, the collection of N P*-
subspaces of either tal(Vy) and st(Ve) is only closed under intersection and
hence only forms a lower semilattice.

Theorem 8.34 There exist two polynomial time subspaces W and V' of
tal(Voo) (st(Veo)) such that W NV = {0} and W + V is not recursive.

Proof: The proof that we present below works equally well for both tal(Vy)
and st(Ve). Thus we shall write a generic proof where V,, may be interpreted
as either tal (Vo) or st(Veo) and the standard basis eq, eq, ... may be interpreted
as either the standard basis tal(ey),tal(es), . .. of tal(Vs) or the standard basis
st(er), st(ez2),... of st(Vy) as appropriate.

By a result of Metakides and Nerode [47], a subspace V of V, is recursive
iff Vis r.e. and V has an r.e. complementary space. It is easy to see that
we can form an effective list (Ao, Bo), (A1, B1), ... of all pairs of r.e. subspaces
Wi and W; of Vi, such that W; N W; = {6} That is, if Wy, W1,... is an
effective list of all r.e. subspaces of V, and W denotes the set of elements
enumerated into W; after n steps, then (A;, B;) is the pair of r.e. subspaces
given by letting (A;, B;) be (Wi, Wy) iff ¢ = [k, €] and W N W, = {6} or
letting (Aj, Bi) be (space(W}]), space(W;')) where n is the least m such that
space(W,) 0 space(W") £ {0} if Wi N W, # {0}.

Given the list (Ao, Bo), (A1, B1),. .., we shall construct W and V so that
W+ V #£ A; for any ¢ such that A; + B; = V. Thus W + V' will not be
recursive. In the construction that follows we will in fact construct two p-time
height increasing disjoint independent sets K and L so that W = space(K) and
V = space(L) will be our desired polynomial time subspaces. Let rg, 71, ... be
a list of all prime numbers in increasing order. Our idea is to use the vectors
er, + €r,.2n, €p, .2n Where n > 1 to help us ensure that A; ZW 4+ V if A; + B, =
Veo. The only vectors which will be placed into K will be of the form e, +¢;,.2n
for some ¢ > 0 and n > 1, and the only vectors which will be placed into L will
be of the form e,,.2» for some ¢ > 0 and n > 1. In fact, for any fixed 7 either

Kn{e, +eron: n>1}=0

and
Lndeyon: n2>1 =10

or there will be an m such that

Knier +epon: n>1t={e,, +ep,0m}

71

and
Ln{e,,on: n>1} = {e,, .om}.

Note that in the standard representation of Vo, L will be a polynomial time
subset in the strongly p-time height increasing basis {st(e,) : n > 0} and K will
be a polynomial time subset of the strongly p-time height increasing independent
set {eg +eg.2n 1 kis odd and n > 1} so that L and K themselves will be strongly
p-time independent sets. Thus by Theorem 8.26, W and V will be polynomial
time subspaces of st(V). In the tally representation of Vi, K and L will be
polynomial time height increasing independent sets so that by Theorem 8.6, W
and V' will be polynomial time subspaces of tal(Ve).

Now to decide if e,, 4+ €,,.9m € K and e,,.om € L, we run the enumerations
of A; and B; for m steps. Let A7 and Bj™ denote those elements enumerated
into A; and B; respectively after m steps. If m > |e,,| and [space(AT) +
space(BP)]\ [space(AT ™) + space(BI"™1)] # B, then we place e, + €,,.9m into
K and e,,.om into L iff e,, € [space(AT") + space(BM™)]\ space(A"). Otherwise
we place neither e,, + e,,.om into K nor e,,.om into L. Using the fact that in
m steps, we can at most enumerate m vectors which are of length at most m
and the fact that Gaussian elimination is polynomial time in the dimensions of
the matrix, it is easy to see that both K and L are p-time height increasing
independent sets.

Now suppose e, +€,,.9m € K and e,,.om € L. Since A;NB; = {6}, we know
that each element v € space(A;)+space(B;) has a unique expression in the form
v =a+bwith a € space(A;) and b € space(B;). By our construction, it follows
that e., € [space(AT) + space(B™)]\ [space(A)] so that e, & space(A;). But
clearly e,, € space(K) + space(L), so that A; # space(K) + space(L).

Suppose there is no m such that e,, + e,,.o0m € K and e,,.om € L. Then
either there is no m such that e., € space(A") + space(B™) in which case
space(A;) + space(B;) # Vi so that we don’t have to worry about A; and B;,
or e, € space(A™) for some m (in which case e,, & space(K) + space(L) so
again space(K) + space(L) # A;). O

Next we make some observations about the existence of subspaces V of
tal(Voo) which are in NP\ P. We note that even with the assumption P #
NP, the existence of NP\ P-subspaces requires further complexity theoretic
assumptions. That is, in [34] Hartmanis proved that the existence of sparse sets
in NP\ P is equivalent to the separation of deterministic and nondeterministic
exponential time DEXT # NEXT. Thus if DEXT = NEXT, then no NP\
Psubspaces of tal(Vs) can exist even if NP # P. Since the existence of an
oracle such that NP4 # P4 and DEXTA = NEXT# was proven by Wilson
in [75], we have the following theorem.

Theorem 8.35 There exists an oracle A such that NP4 # P4 and no NP4\
P4 _subspaces of tal(Vs,) erist.

72

As a consequence of this theorem it follows that showing the existence of
NP\ P-subspaces is at least as hard as separating DEXT and NEXT. On
the other hand it is sufficient to separate DOUBDEXT and DOUBNEXT to
show the existence of NP\ P-subspaces.

Theorem 8.36 ([5]) If DOUBDEXT # DOUBNEXT, then N P\ P-subspaces
of tal (Vo) over finite fields exist.

Sketch of Proof: Let A€ DOUBNEXT\ DOUBDEXT and assume the
underlying field F has k elements. Define Ag = {0¥"|3z € A[n = 1z]}. Since
A€ DOUBNEXT\ DOUBDEXT, it follows that Ag € NP\ P. But clearly
Ap C {tal(ey), tal(es), ...} and and hence Ay is a height increasing independent
subset in NP\ P. Tt thus follows from Theorem 8.6 and 8.9 that space(Ap) is
in NP\ P. O

Corollary 8.37 There erist recursive oracles A such that there are N P4\ PA-
subspaces of tal(Veo).

Furthermore Mahaney [45] has shown that the existence of a sparse N P-
complete set with respect to <P implies NP = P. Thus, if P # NP, then
there cannot be a subspace V' of tal(V.,) which is N P-complete.

Next we turn our attention to the question of whether N P-maximal or N P-
simple subspaces exist. We note that Breitbart [7] proved that if R is any infinite
recursive set in {0, 1}*, then there exists a set S in P such that both SN R and
R\ S are infinite. This results shows that there can be no N P-maximal sets
since if M € NP and R = {0,1}*\ M is infinite, then certainly R is an infinite
recursive set. Thus there is a set .S € P such that both SN R and R\ S are
infinite. But then W = S U M is a set in NP such that both W\ M and
{0, 1}*\ M are infinite so that M is not N P-maximal. Nerode and Remmel [55]
proved that the analogue of Breidbart’s splitting theorem holds for recursive
subspaces of tal(Ve) and st(Vy).

Theorem 8.38 Let V' be an infinite dimensional recursive subspace of
tal(Veo) (st(‘_{oo)). Then there exist subspaces By and By in P such that
Bo N Bl = {0}, Bo + Bl = tal(Voo) (Bo + Bl = St(voo)), and both Bo NV and

By NV are infinite dimensional.

We note that unlike the set case, Theorem 8.38 does not exclude the possi-
bility of the existence of N P-maximal sets. That is, suppose V is an infinite and
co-infinite dimensional subspace of tal(Vs). Then the complementary subspace
of V, space(By), is certainly recursive so that there exists a pair of polyno-
mial time complementary subspaces, U and W, so that U N space(Byr) and
W N space(Byr) are infinite dimensional. However in this case, we can not make
the conclusion that V + U is a N P subspace which witnesses that V' is not N P-
maximal for two reasons. First there is no guarantee that V' 4 U is co-infinite

73

dimensional and second, in light of Theorem 8.34, there is no guarantee that
U+ Visin NP. Indeed our next results will show that there are oracles A for
which N P4-maximal sets exists. Similar remarks holds for st(Veo).

First we show that the assumption that NPX = co-NPX also eliminates
the possibility of the existence of N PX-simple and N PX-maximal subspaces of
tal(Veo).

Theorem 8.39 Suppose that NPX = co-NPX and V is an NPX subspace of
tal(Veo) such that tal(Ve,)/V is infinite dimensional. Then V is not NPX-
simple and V is not N PX -mazimal.

Proof: By Theorem 8.10, it follows that space(By) € NPX so that V
is not N PX-simple. To see that V' is not NPX maximal, note that by our
argument in Theorem 8.10, it follows that for any given 2 € NPX we can
nondeterministically from an X oracle find a list of all elements u; < ... < ug
of height < ht(z) which are in By and a list of all elements v; < ... < v of
height < ht(x) which are in By-. Thus we can form a new N PX height increasing
independent set C' where ¥ € C' iff x = u; for some i < s or x = v, for some
2k < t. Tt is then easy to see that both tal(Vy)/space(C) and space(C)/V are
infinite dimensional. It also follows from Theorem 8.10 that space(C) € N PX
so that C' witnesses that V is not N PX-maximal. a

Since Baker, Gill and Solovay [4] produced recursive oracles X such that
NPX # PX but NPX = co-NPX | we have the following.

Theorem 8.40 There erists a recursive oracle A such that NP4 # P4 and
there are no N PA-simple or N PA-mazimal subspaces of tal(Vs).

We note that the construction of Theorem 8.39 does not construct a PX-
subspace W such that W NV = {6} since it is a priori possible that space(Byr)
does not contain an infinite dimensional subspace in PX. Thus we do not
automatically rule out the possibility of the existence of PX-simple subspaces
of tal(V.,) with the assumption that NPX = co-NPX. We shall see a bit
later that there exist oracles A such that no N P4-simple, P4-simple, or N P4-
maximal subspaces exists in tal(Ve).

It is also the case that if a subspace V of tal(Vs) has an infinite height
increasing independent subset in P, then V' is not P-simple or N P-simple.

Corollary 8.41 ([58]) Let V€ NP be subspace of tal(Ve) such that V' con-
tains an infinite height increasing independent set C' in P. Then V s not
N P-simple or P-simple

Proof: We may assume that V is co-infinite dimensional since otherwise V'
cannot be N PA-simple or PA-simple. We can thus use the proof of Theorem
8.12 to construct a p-time infinite height increasing independent set D such that
D is independent over V. Tt follows by Theorem 8.7, that space(D) is a p-time

74

subspace of tal(Vy). Since D is independent over V| space(D) NV = {6} S0
that V' is not N P-simple or P-simple. a

To prove that there exists a recursive oracle B such that NP? £ PB and
yet no N PP-maximal, N PB-simple, or PP-simple subspaces exist, we can again
use the oracle from Theorem 8.16.

Theorem 8.42 There is a recursive oracle B such that P® #+ NPP® and no
N PB-marimal, N PB-simple, or PB-simple subspaces of tal(V.,) erist.

Proof: Let B be the recursive oracle of Theorem 8.16. Let V be a NPP
subspace of tal(Vy) such that the dimension of tal(V.,)/V is infinite. By The-
orem 8.6, By is p-time Turing reducible to V' so that By contains an infi-
nite subset £ in P?. Thus F is an infinite height increasing independent
set in PP so that by Theorem 8.6, space(FE) is an infinite dimensional sub-
space in PB. Clearly, space(E) NV = {6} so that space(F) witnesses that
V is not PP-simple or NPP-simple. Moreover, since we can test whether
tal(er),...,tal(e,) are in F in polynomial time in [tal(ey)|, the set Fs =
{tal(e,) € E : card(E N {tal(e1),...,tal(e,)}) is even} is also a p-time height
increasing independent set. We claim that W = space(V U E3) is a subspace
of tal(Vs) which witnesses that V' is not N PP-maximal. Note that By U Ej
is a height increasing basis for W and that &'\ E2 C By, Thus W D V' and
the dimensions of both tal(Vy)/W and W/V are infinite. Because By U Ej is
a height increasing basis for W it follows that © € W iff there exists a b € V
and an e € space(Fs>) such that @ = b +.4; ¢ and ht(b), ht(e) < ht(z). Thus
given a B-oracle, we can nondeterministically guess b and e of length < k|z|
and the computation which shows that & € V| and then verify in polynomial
time that £ = b 444 ¢ and e € space(F3). Thus W € NP? and hence V is not
N PB-maximal. ad
Nerode and Remmel [58] showed that the assumption that
NPX = co-NP¥X also eliminates the possibility of the existence of N P¥*-simple
and N PX-maximal sets in st(V.,)/V.

Theorem 8.43 Suppose that NPX = co-NPX and V is an NPX subspace of
st(Voo) such that st(Va,)/V is infinite dimensional. Then V is not N PX-simple
and V is not N PX -mazimal.

As was the case for tal(V.), we can use the Baker-Gill-Solovay results to
prove the following.

Theorem 8.44 There erists a recursive oracle A such that NP4 # P4 and
there are no N PA-simple or N P4-mazimal subspaces of st(Veo).

The analogue of Theorem 8.41 for st(V) is the following.
Theorem 8.45 ([58])
Let V be a NP co-infinite dimensional subspace of st(Vs) such that V contains

75

an infinite strongly p-time height increasing independent set C'. Then V is not
N P-simple or P-simple

Proof: Use the proof of Theorem 8.31 to construct a strongly p-time infinite
height increasing independent set D such that D is independent over V. It
follows by Theorem 8.26, that space(D) is a p-time subspace of (V). Since
D is independent over V| space(D) NV = {6} so that V' is not N P-simple or
P-simple. a

One can again use the oracle of Theorem 8.16 to prove that there is an oracle
B where no N PZ-maximal, N PB-simple, nor PZ-simple subspaces of st(V.,)
exist.

Theorem 8.46 There is a recursive oracle B such that P® #+ NPP® and no
N PB-marimal, N PB-simple, or PE-simple subspaces of st(Va,) exist.

In contrast to the set case, there are oracles X for which N P¥*-maximal
subspaces of tal(Ve) and st(Vy) exists. The proof requires a priority argument
for the construction of the oracle. Such arguments are easier in tal(Vy) than
in st(Veo). In tal(Ve), one can naturally follow the usual practice in oracle
constructions and make the desired N PX-maximal subspace V' be given by

V={1":(FoceX): |o|=n}.

This is not possible in st(Vo). In st(Vio), one constructs X so that there is a
N PX independent set which generates the desired N PX-maximal subspace. To
see the difference between these two type of construction, we will give the full
argument for tal(Vy) and give just the construction for st(Vs). We note that
similar techniques are used to prove results in the standard and tally represen-
tations of the free Boolean algebra which are given in the next section.

Theorem 8.47 There exists an r.e. oracle Y and a subspace V' of tal(V)
which is both PY -simple and N PY -mazimal.

Proof: We shall construct Y so that
M={0tu{1”:n>0& (Fae{0,1}")(Jo| =n and a« € Y)}

is our desired subspace. Clearly M € NPY.
To ensure that M is co-infinite dimensional we must meet the following set
of requirements.

T; : card({n| Y contains no strings o with k" < |o| < k"T! —1}) > j

Thus T} says there are at least j heights n so that M contains no strings of
height n. So meeting requirement T; ensures dim(Veo /M) > j.

To ensure that M is PY-simple, we shall meet the following two sets of
requirements. Given any subset V' C tal(Ve,), let At(V) = {n : (Jz € V)ht(z) =

n}

76

S; o If N]»Y is an infinite dimensional subspace of tal(V.,) such that
ht(NY)\ ht(M) is infinite, then M N NY # {0}.

Now suppose that PY is an infinite dimensional subspace of tal(Vs). Note
that meeting all the requirements S; will ensure that either PY N M # {6} or
ht(PY) C* ht(M) where for any two sets A and B where we write A C* B iff
there is a finite set I such that A C (B U F). Now suppose that ht(PY) C*
ht(M) and let B; be the standard height increasing basis for P}. By Lemma
8.6, B; is in PY. Then clearly we can modify B; by possibly deleting a finite
set of elements to form a new height increasing basis C; such that ht(M) D {n :
(3z € C;)ht(z) = n}. Thus C; will also be in PY and by Lemma 8.6, space(C;)
will also be in PY. Hence if ht(PY) C* ht(M), then there exists some j such
that P]»Y is an infinite dimensional subspace of tal(V.) and ht(PjY) C ht(M).
Thus to ensure that M is PY simple, it will be enough to ensure that we meet
the following set of requirements.

R;: If PY is an infinite dimensional subspace of tal(Vs,), then
ht(PY) ¢ ht(M).

Finally, to ensure M is N P-maximal, we shall meet the following set of
requirements.

Qi » If NY /M is infinite dimensional and N D M then there is an
z € NY such that = +tal(e,) € M.

K3

Note that if N} O M and dim(N.Y /M) is infinite, then meeting all the require-
ments Qi) will ensure that tal(e,) € NY for all n so that NY = tal(Va).
Thus in fact, M will be N PY-supermaximal.

We shall rank our requirements with those of highest priority coming first
as To,So,RQ,QQ,Tl,Sl,Rl,Ql, e

In the construction that follows, we shall let Y denote the set of elements
enumerated into Y by the end of stage s and

M, ={0JUu{1°:1>0& Fa € {0,1})(Ja| =L & a €Y,)}.

We shall ensure that for each s, M; is a finite dimensional subspace of tal(Vy)
and that ht(Mj) is contained in {1, ..., s}. For any stage s, we let CH; = {n} <
n$ < ...} be set of complementary heights for M, i.e. the set of all heights n
so that there are no elements of tal(Ve) of height n in M;.

At any given stage s, we shall pick out at most one requirement A; where A;
will be one of the requirements S;, R;, or ¢J; and take an action to meet that
requirement. The fact that the requirements 7; will be satisfied follows from
the construction described below. For the other requirements, we shall then say
that A; received attention at stage s.

The action that we take to meet the requirement A; of the form S; or Q;
will always be of the same form. That is, we shall put some elements into Y

77

at stage s and possibly restrain some elements from entering Y for the sake
of the requirement. We shall let res(A;,s) denote the set of elements that are
restrained from entering Y at stage s for the sake of requirement A;. We say that
requirement A; of the form S; or Q); is satisfied at stage s, if there is a stage
s’ < s such that A; has received attention at stage s’ and res(A4;,s') NY, = 0.

The actions that we take to meet the requirements R; will be slightly dif-
ferent. First, we shall declare that all R; are in a passive state at the start of
our construction. We would like to find an element z € P]»YS of height n such
that n ¢ ht(M;). If we can find such an z, then we will restrain all y such that
k"= <|y| < k™ —1 plus all elements not in Y which are queried of the oracle Y
during the computation of P]YS(J:) from entering Y for the sake of requirement
R;. Thus if we ensure that res(R;,s) Y = @, then M will have no elements
of height n and « € P]»Y so that ht(PjY) & ht(M). Tf we take such an action for
R; at stage s, then we will say that R; has received attention at stage s and
declare the state of R; to be active. Then for all ¢ > s, we will say that an
active R; is satisfied at stage ¢, if res(R;, s)NY; = (. However if R; is injured
at some stage ¢ > s in the sense that res(R;,s) NY; # 0, then R; will return to
a passive state. If we cannot find such an z, we will attempt to force ht(PjY)
to be finite. That is, since we will ensure that ht(M;_1) C {0,...,s — 1} for
all s, M;_1 will have no elements of height s. Recall that we are assuming that
for n > 0, the run time of computations of P]»X(y) for any oracle X is bounded
maz(2,n) for any string of length n. Then for n > 2, we let b, be the largest
i such that for all k71 < r < kP — 1,

(k™) +2) < 9F" 77

Note that it 1s easy to see that limg_ o bs = co. Our idea is that elements of
height n in tal(V,) are of the form 17 where k"1 < r < k™ — 1. Our strategy
at the end of stage s — 1 for s > 2 will be to ensure that for all R; with j < b,
which are in a passive state and have the property that P]YS_I(I’") = 0 for all
k5~ < ¢ < k* —1, we restrain all elements which are not in Y,_; and which are
queried of the oracle Y;_; in such computations from entering Y for the sake
of R;. This action will force ht(PjY) to be finite if R; is in a passive state at
stage s for all but finitely many s. For any fixed j < b, the maximum restraint
imposed for R; is if we restrained all elements not in Y;_; which are queried of
the oracle Y;_; in some computation P]YS_I(I’”) =0 with 1 <r <k"™—1. Since
the total number of steps used in all these computations is at most

e
2 4 Zij <k (k) = (k5)UFD),
i=2

78

then clearly we could have restrained at most (ks)(j‘l'l) elements from entering
Y for the sake of R;. Thus at stage s, we will have restrained at most

bs
Z(kn)(z+1) < (kn)(bs+2) < 2k("_2)
i=0
elements for entering Y for the sake of some passive requirement R; with j < b,

at stage s — 1. Hence for any given r with k"~! < r < k" — 1, we will have
restrained at most 2" ! elements of length r from entering Y for such R;’s.

CONSTRUCTION.

Stages 0, 1.

Let Yy =Y, = 0 so that My = M, = {6} Let res(A;,0) = res(4;,1) = 0 for
all requirements A; of the form S;, R;, or Q5.

Stage s with s > 2.

Let A; be the highest priority requirement among So, Ro, Qo, - . ., Ss, s, @5 such
that

Case 1. A; = S; and S} is not satisfied at stage s — 1 and there exists an ¢
with 0 < ht(1) < s such that

Ys_1
(a) 1€ N/,

(b) ht(1*) € CH,_; and ht(1) > nj_l, and

(e) for each 1" € space({1°}UM,_1)\ M,_y, there is a string o, € {0, 1}* such
that |a,| = |1"| = n and «, is not restrained from Y by any requirement
of higher priority than S; at stage s — 1 nor is «,, queried of the oracle in

some fixed computation of]\Z»YS_1 which accepts 1¢.

Case 2. A; = R; and R; is not satisfied at stage s — 1 and there exists an ¢
with 0 < ht(1%) < s such that

(i) 1t e P]»YS_1 and
(i) ht(1°) € CH,_y and ht(1f) > n~".

Case 3. 4; = ; and @; is not satisfied at stage s — 1, and if j = [e, n], there
exists an £ with 0 < ht(1*) < s such that

(I) 12 c NeYs—l’
(I1) ht(1%) € CH,_1 and ht(1%) > max(n,n;_l), and

(III) For each 1™ & space({1° +iqtal(en) UM _1)\ Ms_y, ht(1™) > nj_l and
there is a string ay,, of length m in {0,1}* which is not restrained from
Y by any requirement of higher priority than); at stage s — 1 nor is o,

queried in some fixed computation of Neys_1 which accepts 1¢.

79

If there is no such requirement A;, let Y, = Y,_;. Also for all requirements
Aj; of the form S; or @); and for all requirements A; of the form R; where
either R; is satisfied at stage s — 1 or j > b,11, let res(A4;, s) = res(A;, s — 1).
Declare that a requirement R; is active at stage s iff R; is active at stage s — 1.
For any R; with j < b,41 which is currently passive and has the property that
P]YS(I’”) = 0 for all & < r < k't — 1, let res(R;,s) equal res(Rj,s — 1)
union the set of all y ¢ Y such that y is queried of the oracle in one of the
computations P]YS(I’”) where k° < ¢ < kSt — 1.

If there is such a requirement A;, we have three cases.

Case 1. A; = 5;,_.

Let £, denote the least £ corresponding to S; . Then for each

1" € space({1%}UM,_1)\ M;_1, pick the least string a,, such that |a,| = n, oy
is not restrained from Y by any requirement of higher priority than S; at
stage s — 1, nor is «y, queried of the oracle Y;_; in the computation of]\Z»YS_1
which accepts 1%¢, and put @, into Y. This will ensure that if M,_; is a finite
dimensional subspace of Vo, then M, will also be a finite dimensional sub-
space of V. Note that the assumption that ht(lZS) € CH,_4 ensures that all
1" € space({1%}UM,_1)\ M,_; have the property that ht(17) > ht(1%). That
is, such a 1” must be of the form 17 = X 1oy 1% 4o m where m € M,_; and
A € F. Then since ht(m) # ht(1%), it must be the case that ht(17) > ht(1%).
Thus ht (M) N {ns~t . ,njs_l} = and hence for all i < j,, ni™" = ni. Let
res(S;,, s) equal the set of all strings not in Y,_; which are queried of the or-

acle Y;_1 in the computation of N{S_l which accepts 1%, and say S;, receives
attention at stage s. Also for all requirements A; of the form S; or @); and for
all requirements A; of the form R; where either R; is satisfied at stage s — 1
or j > byyi, let res(Aj,s) = res(A;,s — 1) if Y, Nres(4;,s — 1) = 0 and let
res(Aj,s) =0 if Y, Nres(A;,s—1) # 0. Declare that a requirement R; is active
at stage s iff R; is active at stage s — 1 and Y, Nres(R;,s — 1) = 0. For any R;
with j < bs41 which is currently passive and has the property that P]YS(I’”) =0
for all k% < r < k*+1 — 1, let res(Rj,s) equal res(R;j,s — 1) union the set of
all y ¢ Yy such that y is queried of the oracle Y; in one of the computations
P]YS(I’"), where k° < ¢ < kSt — 1.

Case 2. A; = R;,.

Let ¢, denote the least ¢ corresponding to js and ng = ht(1%). We then say
that R;, is active and receives attention at stage s. We let Y* = Y*~1 and
res(R;,, s) consist of all elements y with k"<~! < |y| < k™ — 1 and all elements
which are not in Y;_; and which are queried of the oracle Y;_; in the computa-
tion Pj}::l(lzﬁ. Note that if res(R;,,s) Y = @, then M will have no elements
of height n, = ht(1%) but 1% ¢ Pj}:. Also for all requirements A; of the form
S; or @; and for all requirements A; of the form R; where j # j, and where

80

either R; is satisfied at stage s — 1 or j > b,11, let res(A4;, s) = res(A;, s — 1).
For j # js, declare that a requirement R; is active at stage s iff R; is active
at stage s — 1. For any R; with j < b,41 which is currently passive and has
the property that P]YS(I’”) =0 for all k* < r < kSt — 1, let res(Rj, s) equal
res(Rj, s — 1) union the set of all y ¢ Y, such that y is queried of the oracle Y,
in one of the computations P]YS(I’") where k% < ¢ < k5T — 1.

Case 3. A; = Q..

Let js = [es,ns] and £; denote the least ¢ corresponding to js. Then for each
1m e space({IZS +eartal(en,) UM, _1)\ M;_1, pick the least string oy, such that
|| = m, and «,,, is not restrained from Y by any requirement of higher prior-
ity than @);, at stage s —1 nor is a,, queried in the computation of Ng:s_l which
accepts 1% and put a,, into Y. Once again this will ensure that A, is a finite
dimensional subspace of V.. Note that since ht(1%) > n, = ht(tal(e,,)), it fol-
lows that ht(1% 4,4 tal(en,)) = ht(1%). Thus as in case 1, the assumption that
ht(1%) € CH,_; ensures that all 1" € space({1% +atal(en,)} U Ms_1)\ Ms_y
have the property that ht(17) > ht(1%:). Let res(@Q,,,s) equal the set of all
strings which are not in Y;_; which are queried of the oracle in the compu-
tation of Ng:s_l which accepts 1% and say ();, receives attention at stage s.
Also for all requirements A; of the form S; or @; and for all requirements
Aj; of the form R; where either R; is satisfied at stage s — 1 or j > bsy1, let
res(Aj,s) = res(A;,s — 1) if Y, Nres(4;,s — 1) = 0 and let res(4;,s) = 0
if Yy Nres(A;,s — 1) # 0. Declare that a requirement R; is active at stage s
iff R; is active at stage s — 1 and Y Nres(Rj,s — 1) = 0. For any R; with
Jj < bsy1 which is currently passive and has the property that P]YS(IT) =0
for all k% < r < k*+1 — 1, let res(Rj,s) equal res(R;j,s — 1) union the set of
all y ¢ Yy such that y is queried of the oracle Y; in one of the computations
P]YS(I’"), where k° < ¢ < kSt — 1.

This completes the construction of Y.

Lemma 8.48 Fach requirement of the form S;, R;, or (), recewes attention
at most finitely often.

Proof: We proceed by induction on j. Suppose that sg is such that there is
no stage s > sy such that one of Sy, Ro, Qo, ..., S}, R;, Q; receives attention at
stage s. Then if there is at > sg such that S; 4, receives attention at stage ¢, then
by construction Sy is satisfied at stage ¢ and res(S;41,t) NY: = (). However
it is easy to see from our construction that for s > ¢, res(S;41,s) = res(Sjy1,1)
and res(Sj41,s) NY, = 0 unless some requirement of higher priority than S;41
receives attention at stage s. Since this never happens by our choice of sq, S;41
will be satisfied for s > ¢. Thus S;41 can receive attention at most once after
stage sg. Thus there must be a stage s; such that there is no stage s > s;

81

such that one of Sy, Ro, Qu, ..., 5;, Rj, Q;, Sj41 receives attention at stage s. A
similar argument will show that R;;, can receive attention at most once after
stage s1. Thus there must be a stage s, such that there is no stage s > s such
that one of Sy, Ro, Qo,...,S;, R;,Qj,Sj+1, Rj41 receives attention at stage s
Finally a similar argument will show that ();41 can receive attention at most
once after stage so. Thus each of the requirements S;, R;, or (J; can receive
attention only finitely often. a

Lemma 8.49 dim(tal(Vs)/ M) is infinite.

Proof: = We prove by induction that dim(tal(Ve)/M) > k for all k. That

18, let 29 be a stage such that no requirement Sy, Rg, Qo, - . ., Sk, Rk, Qk receives
attention at any stage s > ty. Since My, is finite dimensional, nﬁ” is defined for
all 2. Hence M; contains no strings of height n for n = ntlo, cee nZ”. But no

requirement S;, R;, or ; with j > k can force elements of height n < nj into
M at any stage s. Hence by our choice of ¢y, there can be no strings of heights
n for n = nl°,. ..,nZ” in M. Thus dim(tal(Ve)/M) > k. a

Lemma 8.50 M is PY -simple.

Proof: First we show that if N]»Y is a subspace of tal(Ve) such that ht(NjY)\
ht(M) is infinite, then N]»Y N M # {0}. For a contradiction assume N]»Y is such

that ht(N})\ ht(M) is infinite and N} N M = {0}. Note that since M is co-
infinite dimensional by Lemma 8.49, it follows that n; = lim,_ .. nj exists for
all 7. Let sy be a stage large enough so that n{ = n; for 7 < j and none of the
requirements Sy, Ro, Qo, . .., 5j-1, Rj_1,Q;j_1 receives attention after stage sg.
Let Us, denote the set of all 1™ such that there exists a requirement A; among
So, Ro, Qo, ..., 5;-1, Rj_1,Q;_1 which is satisfied at stage sg, such that there
exists an « € res(A;, sg) with |a| = n. Our choice of sy ensures that if n ¢ Uy,
then no string « of length n is ever restrained from Y by a requirement of higher
priority than S; which is satisfied at some stage ¢ > sg. Also our choice of s
ensures that n; = nf for all ¢ < j and t > sg. Next let tg > so be such that

L. to > max({ht(y) 1y € Us, } U{2,50,n;}),
2. by, > 7, and
3. 2771 > pd for all r > ty.

Note that for any ¢ > ¢y, our construction ensures that the number of strings
of length r where k'~! < r < k' — 1 which are restrained by some requirement
R; with ¢ < j which is passive at stage ¢ is less than 27~!. Moreover we are
assuming that any successful computation of the oracle machine N]»X for any
oracle X on a string of length r > 2 takes at most 7/ steps. Thus our choice
of ty ensures that if ¢ > 3 and 1% € Nth is string of height > ¢;, then there
is at least one string o, € {0,1}* of length # which is not restrained from

82

Y by any requirement of higher priority than S; at stage ¢, nor is queried
of the oracle Y} in some fixed computation which shows that 1% € NjY’. Since
ht(NY)\ ht(M) is infinite, there must exist a 1" € N} such that ht(1?) > ¢, and
ht(17") & ht(M). Then there must be some stage s > ¢y such that 1”7 € NJ.YS_l.
Note that at stage s, each 1™ € space({1"} U M;_1) \ M;_1 has the property
that ht(1™) > ht(1™) > tp and thus there is at least one string o, of length
m which is not restrained from Y by any requirement of higher priority than
S; at stage s — 1, nor is queried of the oracle Y,_; in some fixed computation
which shows that 17 € Nij_l. Thus 1" witnesses that S5; is a candidate to
receive attention at stage s. Thus either S5; is satisfied at stage s — 1 or .S; is
highest priority requirement among So, Rg, Qo, - - -, Ss, Rs, @5 which can receive
attention at stage s. In either case, it follows that S; will be satisfied at stage
s. Thus there will be some 17 € (N]»YS N M)\ {0} such that all elements which

are queried of the oracle Y in some computation which shows that 17 € N]YS,
and which are not in Y5, are in res(S;, s). However our choice of ¢y ensures that
we can never put any element of res(S;, s) into Y after stage s so that 17 will
witness that N]»Y NM # {0}

Remark. We note that the assumption that ht(NjY) \ ht(M) is infinite seems
to be crucial in this argument. That is, if we merely assume that dim(NjY/M)
is infinite, then 1t may be the case that whenever there exists a 17 € N,f such
that ht(1™) >t and 1™ € M, then at a stage s > ¢y where 1™ € N:S_l, there is
some 1™ € M;_ such that hy(1™) = ht(1™). In such a situation it is possible
that ht(1™ 444 1™) is much less than ht(17). That is, it may be possible that
some element in 1% € space({1"} U M;_1) \ M;_1 has height so small that all
strings of length x are queried of the oracle during any computation which shows
that 1™ € N:S_l. Then it will be impossible to put a string of length x into Y
so as to ensure that 17 € M, while maintaining the computation to ensure that
1" e NY.

To continue our proof of the lemma, we can now assume that if PY is
an infinite dimensional subspace of tal(V.,) such that PY N M = {0}, then
ht(PY)\ ht(M) is finite. By our argument preceding the construction, it would
then follow that there is some j such that P]»Y is an infinite dimensional subspace
of tal(Ve) and ht(PjY) C ht(M). We shall now show that there can be no such
j. For a contradiction, assume that P]»Y is an infinite dimensional subspace of
tal(Voo) and ht(PjY) C ht(M). Let s; be a stage large enough so that nj* =
n; for ¢ < j and none of the requirements Sy, Ro, Qo, ..., S;—1, Rj-1,Qj-1,5;
receives attention after stage si. Let U;, denote the set of all 1* such that
there exists a requirement A; among So, Ro, Qo, ..., S5-1, Rj-1,@;-1,5; which
is satisfied at stage s; and there exists an a € res(A4;,s;) with |a] = n. Our
choice of s ensures that if n ¢ Us, , then no string « of length n is ever restrained
from Y by a requirement of higher priority than R; which is satisfied at some
stage t > sg. Also our choice of s; ensures that n; = nf for all # < 5 and t > sg.

83

Next let ¢; be such that
1.ty > max({ht(y) 1y € Us, } U{2,81,n_1}),
2. by > 7, and
3. 2771 > pd for all r > .

Now we claim that there can be no stage ¢ > #; at which R; is satisfied
at stage . That is, if R; is satisfied at stage ¢, there must be some s < ¢
such that R; receives attention at stage s, and there is a 17 € PY*=" such that
g = ht(1*) € CH,_4, and res(R;,s) = res(R;,t) contains all strings of length
r where k97! < ¢ < k% — 1, and contains all strings which are not in Y,_;
which are queried of the oracle Y,;_; in the computation P]YS_I(lx) =1, and
res(R;, s)NY; = (. But then our choice of t > ¢; ensures that res(R;, s)NY =0,
which means that M can have no strings of height ¢ while 17 € PjY. But
then 1% witnesses that ht(PjY) & ht(M) which contradicts our assumption that
ht(PjY) C ht(M). Thus it must be the case that for all stages t > t;, R;
is in a passive state. It follows that for all ¢ > ¢;, there can be no r with
k' < r < k' — 1 such that P]Y’(l’“) = 1 since otherwise at stage ¢ + 1, there

is some 7 with &% < r < k! — 1 such that P]Y’(l’") = 1. But then at stage
t+1, 1" witnesses that /; is a candidate to receive attention at stage t +1. By
our choice of £ > 1, it would follow that R; is the highest priority requirement
among So, Ro, Qo, ..., St41, Ret1, Qe41 which could receive attention at stage
t 4+ 1 so that R; would receive attention at stage ¢ 4+ 1 which we have already
ruled out. Thus it must be the case that for all » with &' < r < k¥t — 1,
P]Y’(l’“) = 0. But then our choice of ¢ > {; ensures that j < b;y1 and hence all
elements which are not in ¥; which are queried of the oracle Y; during one of
the computations P]Y’(l’") = 0 where k' < r < k'*t! — 1 are put into res(R;,t).
Again the fact that ¢ > ¢; ensures that res(R;,t) Y = @ so that for all r with
Eo<r < kL1, Pjy(l’“) = 0. That is, P]»Y has no strings of length ¢ + 1
for any ¢ > ¢; and hence ht(PjY) is finite. Thus there can be no such P]»Y such
that P]»Y is an infinite dimensional subspace of tal(V.) and ht(PjY) C ht(M).
But this means that there can be no r such that PY is an infinite dimensional

r

subspace of tal(Va) and PY N M = {0}. Thus M is PY-simple as claimed. O
Lemma 8.51 M is NPY-mazimal.

Proof: By our remarks preceding the construction, we need only show that
we meet all the requirements Qe). So assume NY is a subspace of tal(Vs)
such that (NY /M) is infinite dimensional and N} D M. Let j = [e,n] and
let sy be a stage such that n; = nj? for ¢ < j and none of the requirements
So, Ro, Qo, ..., 5-1, Rj_1,Q;-1,5;, R; receive attention after stage ss. Let
Us, denote the set of all 17 such that there exists a requirement A; among

So, Ro, Qo, ..., 5;-1, Rj_1,Q;-1,S;, R; which is satisfied at stage s and there

84

exists an « € res(A;, s2) with |a| = n. Our choice of sy ensures that if n ¢ U,
then no string « of length n is ever restrained from Y by a requirement of higher
priority than ; which is satisfied at some stage ¢ > s5. Also our choice of s,
ensures that n; = nt for all 4 < j and ¢ > s3. Next let {3 be such that

1. ta > max({ht(y) 1y € Us, } U{2,82,n;_1}),
2. by, > 7, and
3. 2771 > 0 for all r > ts.

Note that for any ¢ > ts, our construction ensures that the number of strings
of length 7, where k=1 < r < k! — 1, which are restrained by some requirement
R; with ¢ < j which is passive at stage t, is less than 27~'. Moreover we are
assuming that any successful computation of the oracle machine N]»X for any
oracle X on a string of length r > 2 takes at most 7 steps. Thus our choice of
ty ensures that if ¢ > ¢, and 1% € N]»Y’ is string of height > ¢, then there is at
least one string «, € {0, 1}* of length 2 which is not restrained from Y by any
requirement of higher priority than ¢); at stage ¢, nor is queried of the oracle Y;
in some fixed computation which shows that 1¥ € NjY’.

Next observe that since dim(NY /M) is infinite and N} O M it must be the
case that ht(NY)\ ht(M) is infinite. That is, let A = {ag,ay,...} be an infinite
set of elements of N} which is independent over M. Then consider some fixed
a; € A and suppose a; = »_i_, A; -tal(e;,) where \; € Ffori=1,...,q, A, # 0,
and j1 < ... < jq. Thus ht(a;) = j,. Now if there exists an my € M such that
ht(m) = ht(a;), then m; = Zqu Be-tal(eg) where B, € F for all £ and 3;, # 0.

But then a} = a; —ta ;#ml is an element of NY \ M such ht(a}) < ht(a;).
Jq

Now if there exists an ms € M such that hi(a}) = ht(mz), then once again
there is some + € F' such that a? = aZ1 —tal Y - M2 18 an element of NeY \ M with
ht(a?) < ht(al) < ht(a;). If we continue in this fashion, we must eventually
find some a¥ = a; +¢q; vx Where v, € M such that ht(a¥) ¢ ht(M). That is, we
can replace our original independent set A over M by a set A’ = {af, daf,...}
where for all i, a; —tq1 af € M and ht(al) ¢ ht(M). But then A’ is an infinite
subset of NY which is independent over M. Thus there is no finite set F
such that space(M U F) D A’. This implies that ht(A") = {ht(a}) : ¢ > 0}
must be infinite, since otherwise there clearly would be a finite set F' such that
space(M U F) D A’. But by construction ht(A’) C ht(NY)\ ht(M) so that
ht(NY)\ ht(M) must be infinite.

Since ht(NY)\ ht(M) is infinite, there must exist a 19 € NY such that
ht(17) > tq, ht(19) > n, and ht(1?7) € ht(M). Then there must be some stage

s > t9 such that 19 € Neys_l. Note that at stage s, each 1™ € space({1? +:a
tal(en)} U M;_1) \ M;_; has the property that ht(1™) > ht(1? 4,4 tal(e,)) =
ht(1?) > ty, and thus there is at least one string ayy, of length m which is not
restrained from Y by any requirement of higher priority than @); at stage s — 1,

85

nor is queried of the oracle Y;_; in some fixed computation which shows that
17 € Nij_l. Thus 19 witnesses that @); is a candidate to receive attention at
stage s. Hence either (); is satisfied at stage s — 1 or); is highest priority re-
quirement among So, Rg, Qo, - - -, S5, Rs, @s which can receive attention at stage
s. In either case, it follows that ; will be satisfied at stage s. Thus there will
be some 17 € N]»YS such that 19 444 tal(e,) € M, and all elements which are

queried of the oracle in some computation which shows that 19 € N]YS and which
are not Yy, are in res();,s). However our choice of ¢, ensures we can never
put any element of res(Q;,s) into Y after stage s so that 17 € N]»Y and hence
requirement ¢J; is meet. Thus M will be N PY _supermaximal and hence will be
N PY -maximal. This completes the proof of Lemma 8.51 and of Theorem 8.47
O O

We note that M constructed in Theorem 8.47 has a number of interesting
properties besides being N PY-maximal and PY-simple. First of all, it is easy
to check that in meeting the requirements S;, we made no use of the fact that
N]»Y was a subspace of tal(Ve), but only that N]»Y was a subset of tal(Vy).
Similarly, it is easy to check that in meeting the requirements R; we made no
use of the fact that P]»Y was a subspace of tal(Vy), but only that P]»Y was a
subset of V. Thus meeting all the requirements R; ensures that there is no
infinite subset W of tal(Va,) in PY such that ht(W) C ht(M). Thus M does
not contain any infinite P set and hence M does not have a basis in PY. We
also claim that tal(V.,) \ M does not have any infinite subsets in PY. That
is, suppose that P]»Y C tal(Voo) \ M. Now it cannot be that ht(PjY) \ ht(M) is
infinite, since otherwise there 1s an 7 such that P]»Y = N} and the fact that we
met, requirement S; would mean that P} N M # {0}. Thus ht(P}) C* ht(M).
Let Q@ = ht(space(A)) \ht(PjY). Then clearly

S={ve P :hi(z)¢Q}

is an infinite set in PY such that ht(S) C ht(space(A)). Since meeting all
the requirements R; rules out the existence of such an S, tal(Ve) \ M does
not contain an infinite set in PY. Recall that a set of strings S is called PY-
immune if S has no infinite subset in PY. Thus both M and tal(V.,)\ M are
PY_immune

Note also that by Theorem 8.40, the fact that M is N PY-maximal implies
that NPY # co-NPY and hence that PY # NPY. Thus we have proved the
following.

Corollary 8.52 There erists an r.e. oracle Y and a subspace M of tal(Vy)
such that

(1) PY £ NPY and NPY # co-NPY,
(2) M e NPY,

86

(3) M is PY -immune and hence has no basis in PV,
(4) tal(Voo) \ M is PY -immune, and
(5) M is both PY -simple and N PY -supermazimal.

We next give an analogue of Theorem 8.47 for st(Ve). Once again we shall
think of st(Vs) as the k-ary representation By (Vao) so that for all € st(Vy),
|z| = ht(z).

Theorem 8.53 . There exists a r.e. oracle D such that there exists an N PP-
supermazimal PP -simple subspace in st(Vs,).

Proof: The construction again proceeds in stages. We let D; be the set of
elements enumerated into D by the end of stage s. For any given « € {0,... k—
1}* with |z] > 1, we let C; denote the set of all strings of length 8Jx| 4+ 2 of
{0,...,k — 1}* of the form #1047l where ¢ is any string of length 3|z| in
{0,...,k —1}*. Note that there are k37l strings in C,, for any = € st(Va,). Let
Cyp = {0}. It is then easy to see that if « # y, then C, NCy =0

We then define A = {z : C, N D # (}. Thus A will be in NPP. Our idea is
to define D so that A is a height increasing independent subset of st(Ve). Then
by the relativized version of Theorem 8.28, space(A) € N PP. Our construction
of D will ensure that space(A) is our desired PP-simple N PP-supermaximal
space. Let A, = {x : C; N Dy # B}. At each stage s, we shall let By, = {st(e,) :
Ajs has no element of height n}. Our construction will ensure that at each stage
s, As U B; is a height increasing basis of st(Vs). We define 6! for all ¢ and s so
that B, = {b5,05,...} where hi(b3) < ht(b5) < ...

To ensure that space(A) is co-infinite dimensional we must meet the following
set of requirements.

T; @ card({n : D contains no strings o with |o| = 8n +2}) > j

Thus T; says there are at least j heights n so that A contains no strings of
height n. So meeting requirement T; ensures dim(Vy/space(A4)) > j.

To ensure that space(A) is PP_simple, we shall meet the following two sets
of requirements.

S; o If NP is an infinite dimensional subspace of st(Vs,) such that
ht(NP)\ ht(space(A)) is infinite, then space(A) N NP # {6}

Now suppose that PjD generates an infinite dimensional subspace of st(V)
which is in N PP, Note that meeting all the requirements S; will ensure that ei-
ther space(PP)Nspace(A) # {6} or ht(space(PP)) C* ht(space(A)). Now sup-
pose that ht(space(PP)) C* ht(space(A)) and let U = ht(PP)\ ht(space(A)).
If U = 0, then ht(PP) C ht(space(A)). Otherwise, U is a finite set so let
U ={ng,...,ng} and let zg, ..., 2, be elements of space(PP) such that ht(z;) =

87

n;. Note that any # € st(Vy) is a string of the form # = a; -- ~@|g| where
a; €4{0,...,k—1}. Then we define the full height of z, fh(z) ={n:1<n <
|z| and a, # 0}. Then it is easy to see that given any x € space(P?), there
exists some Aq1,..., A, in F such that fh(x —g > i Aiz;)) NU = @. That
is, if © = ay---a)y where |z] > ng and a,, # 0 and x; = a1,4--an, 4
where an, 4 # 0, then 2/ = 2z — aa" g = by by where b,, = 0 so

ng,q

that ng & fh(z'). Now if b, _, # 0 and 241 = @1,4-1- - @n,_, -1 Where

"o_ 1 bg _ _ _
Ung_1,q-1 # 0, then 2" = 2" — qu_l =cq - Clp Where ¢, = by, =0

and ¢,,_, = 0 so that neither n, nor n,_; is in fh(z"). Continuing on in
this way we can construct our desired linear combination 2?21 A;z; such that
Jh(z — Y0 Mizi) N U = 0. Now let @ = {« € space(PP) : fh(z)NU =
P}. Tt is easy to see that @ is a subspace of PP and our argument above
shows that space(PP) = space({z1,...,24}) & Q. Thus @Q is an infinite di-
mensional subspace of st(Vy) such that ht(Q) C ht(space(A)). Let T be
the set of all y such that fh(y) N U = @, |y| > kI®dl and there exists an
v € PP and z € space({z1,...,2,}) such that z +5 » = y. Note that
space({x1,...,24}) has exactly k? elements since {z1,..., 2,4} is a height in-
creasing basis for space({z1,...,24}). Thus given any y with |y| > kleal in
polynomial time in |y|, we can find all y+,; w such that w € space({z1,...,24}).
Now for any w € space({z1,...,24}), ht(w) < ht(zg) = |24 < k7l so that
ht(y +s: w) = ht(y). Thus it take at most k%(|y]?) steps to test all such y+4; w
for membership in PjD given an oracle . But then

yeTiff {y+gw:we space({xl,...,xq})}ﬁpjp # 0.

Thus it follows that 7" is in P and clearly 7" generates an infinite dimen-
sional subspace of). Thus there must be some j such that PjD generates an
infinite dimensional subspace of st(V.) and ht(space(PjD)) C ht(space(A)).
Thus to ensure that space(A) is PP simple, it will be enough to ensure that we
meet the following set of requirements.

R;: If PP generates an infinite dimensional subspace of st(V), then

ht(PP) ¢ ht(space(A)).

Finally, to ensure that space(A) is N P-supermaximal, we shall meet the
following set of requirements.

Qi If NP /space(A) is an infinite dimensional and NP D space(A), then
there is an @ € NP such that x + st(e,) € space(A).

Note that if NP D space(A) and dim (NP /space(A)) is infinite, then meeting
all the requirements Qy; ,] will ensure that st(e,) € NP for all n so that NP =
st(Veo)-

We shall rank our requirements with those of highest priority coming first

as TOaSOaROaQOaTlaSthana s

88

As in the construction of Theorem 8.47, at any given stage s, we shall pick
out at most one requirement F; where £; will be one of the requirements S;, R;,
or (J; and take an action to meet that requirement. We shall then say that I
recewed attention at stage s. The action that we take to meet the requirement
E; of the form S; or @; will always be of the same form. That is, we shall
put some elements into D) at stage s and possibly restrain some elements from
entering D for the sake of the requirement. We shall let res(E;, s) denote the
set of elements that are restrained from entering D at stage s for the sake of
requirement £;. We say that requirement £; of the form S; or Q; is satisfied
at stage s, if there is a stage s’ < s such that E; has received attention at stage
s and res(E;,s")N D, = 0.

The actions that we take to meet the requirements R; will essentially the
same as in the construction of Theorem 8.47. First, we shall declare that all R;
are in a passive state at the start of our construction. We would like to find an
element « € PjDS of height n such that n & ht(space(As)). If we can find such
an «, then we will restrain all y such that |y| = 82+ 2 and y € C, for some
z € st(Vs) of height n plus all elements not in D; which are queried of the oracle
during the computation of PjDS (z) from entering D for the sake of requirement
R;. Then if we ensure that res(R;,s)ND = @, A will have no elements of height
n and & € PP so that ht(PP) ¢ ht(space(A)). If we take such an action for
R; at stage s, then we will say that R; has received attention at stage s and
declare the state of R; to be active. Then for all ¢ > s, we will say that an
active R; is satisfied at stage ¢, if res(R;, s) N Dy = . However if R; is injured
at some stage ¢ > s in the sense that res(R;, s) N Dy # 0, then R; will return to
a passive state. If we cannot find such an z, we will attempt to force ht(PjD) to
be finite. That is, since we will ensure that ht(space(As_1)) €{0,...,s—1} for
all s, A;_1 will have no elements of height s. Recall that we are assuming that
for n > 2, the run time of computations of P]»X(y) for any oracle X is bounded
maz(2,n) for any string of length n. Then for n > 2, we let d,, be the largest
¢ such that for all »,

nl+2) < k7.

Note that it is easy to see that lim;_ds = co. Our idea is that elements
of height n in st(Vo) are just the elements of length n. Our strategy at the end
of stage s — 1 for s > 2 is that for all R; with j < d, which are in a passive

state and have the property that PjDS_l(l‘) =0 for all » € st(V) of length s,
we will restrain all elements which are not in D;_; and which are queried in
such computations from entering D for the sake of R;. This action will force
ht(PjD) to be finite if R; is in a passive state at stage s for all but finitely many
s. For any fixed j < d;, the maximum restraint imposed for R; occurs if we
restrained all elements not in D;_1 which are queried of the oracle Ds_; in some
computation Pjps_l(x) =0 with 1 < |z|] < n and z € st(Vs). Since the total

89

number of steps used in all these computations is at most

27 4+ Zklz] < sk® - (s)j = kst

i=2

then clearly we could have restrained at most k°sU*1) elements from entering
D for the sake of R;. Thus at stage s, we will have restrained at most

ds
sts(i+1) < kss(ds+2) < k%k® = st

i=0

elements from entering D for the sake of some passive requirement R; with
J < by at stage s — 1. Hence for any given 2 with |¢| = n, we will have
restrained less than k?* elements of C,, from entering D for such R;’s.

CONSTRUCTION.

Stages 0, 1.
Let Dy = Dy = 0 so that Ag = A1 = 0. Let res(E;,0) = res(E;, 1) = 0 for all
requirements F; of the form S;, R;, or Q5.

Stage s with s > 2.

Let E; be the highest priority requirement among So, Ro, Qo, - . ., Ss, s, @5 such
that

Case 1. I; = S; and S; is not satisfied at stage s — 1 and there exists an
z € st(Voo) with 0 < |z| < s such that

(a) 2 € N/,
(b) |z| & ht(space(As—1)) and |z| > |bj_1|, and

(¢) there exists a y € Cy; such that y is not restrained from D by any require-
ment of higher priority than S; at stage s — 1 and y is not queried of the

oracle D;_1 in some fixed computation which shows that € N]»DS_I.

Case 2. E; = R; and R; is not satisfied at stage s — 1 and there exists an
z € st(Vs) with 0 < |2| < s such that

(i) |x| ¢ ht(space(As;—1) and
(ii) z € P

Case 3. 4; = @; and @, is not satisfied at stage s — 1, and if j = [e, n], there
exists an # with 0 < |z| < s such that

(1) we NO,

90

(I1) |z| ¢ ht(space(As—1), |z| > |bj_1|, and |z| > n, and

(IIT) there exists a y € Crpy,,st(c,) such that y is not restrained from D by any
requirement of higher priority than S5; at stage s — 1 and y is not queried

of the oracle D,_; in some fixed computation which shows that NeDS_1 (z).

If there is no such requirement £;, let D, = D,_;. Also for all requirements
E; of the form S; or @;, and for all requirements £; of the form R; where
either R; is satisfied at stage s — 1 or j > ds41, let res(E;,s) = res(E;, s — 1).
Declare that a requirement R; is active at stage s iff R; is active at stage s — 1.
For any R; with j < d,41 which is currently passive and has the property that
PjDs(x) =0 for all # € st(V) of length s+ 1, let res(R;, s) equal res(R;,s— 1)
union the set of all y ¢ D, such that y is queried of the oracle Dy in one of the
computations PjDS (z) where z € st(Vy) of length s + 1.

If there is such a requirement £, we have three cases.

Case 1. E; = 5.

Let z, denote the least x corresponding to S;,. Then pick the least string
ag, € Cp, such that a,, is not restrained from D by any requirement of higher
priority than S;, at stage s — 1, nor is a,_ queried of the oracle D;_; in the
computation of NP1 which accepts x,, and put oy, into D. Let res(S;,,s)
equal the set of all strings not in D;_; which are queried of the oracle Ds;_; in
the computation of N»I:S_l which accepts x,, and say S;, receives attention at
stage s. Also for all requirements E; of the form 5; or @;, and for all require-
ments F; of the form R; where either R; is satisfied at stage s —1 or j > d,44,
let res(Ej, s) = res(Ej, s — 1) if Dy Nres(E;,s — 1) = 0 and let res(Ej,s) =0
if D, Nres(Ej,s — 1) # 0. Declare that a requirement R; is active at stage s
iff R; is active at stage s — 1 and D, Nres(R;,s — 1) = @. For any R; with
J < ds41 which is currently passive and has the property that PjDs(z) =0 for
all 7z € st(Vo) of length s + 1, let res(R;, s) equal res(R;,s — 1) union the set
of all y ¢ Dj such that y is queried of the oracle Dy in one of the computations
PjDS(z), where z € st(Voo) and |z| = s + 1.

Case 2. I; = R;_.

Let x5 denote the least x corresponding to j;. We then say that R, is active
and receives attention at stage s. We let D, = D,_; and res(R;,, s) consist of
all elements y of length 8|z,|+2 which are in some C, such that z € st(V) and
|z| = |as|, and all elements which are not in Ds;_; and which are queried of the
oracle D,_1 in the computation Pji):l (z) = 1. Note that if res(R;,,s)ND = 0,
then A will have no elements of height |x4| but «, € lez. Also for all require-
ments F; of the form S; or @;, and for all requirements F; of the form R;
where j # j, and where either R; is satisfied at stage s — 1 or j > d,41, let
res(Ej,s) = res(E;,s — 1). For j # j,, declare that a requirement R; is active
at stage s iff R; is active at stage s — 1. For any R; with j < d,4; which is

91

currently passive and has the property that PjDs(x) =0 for all # € st(V) of
length s+ 1, let res(R;, s) equal res(R;, s — 1) union the set of all y ¢ D, such
that y is queried of the oracle Ds in one of the computations P]DS(J:), where
z € st(Vs) and |z| = s+ 1.

Case 3. I; = @Q);..

Let js = [es,ns] and 5 denote the least corresponding to j;. Then pick the
least string «,, € Cy, such that a,, is not restrained from D by any require-
ment of higher priority than J;, at stage s — 1, nor is o, queried of the oracle
D,_q in the computation of Pels)s_l(xs), and put oy, into D. Let res(Q;,,s)
consists of all strings which are not in D;_; which are queried of the oracle
D;_1 1n the computation of Pels)s_1 (z,), and say @Q;, receives attention at stage
s. Also for all requirements E; of the form S; or @); and for all requirements
Ej; of the form R;, where either R; is satisfied at stage s —1 or j > d,q1, let
res(Ej,s) = res(E;,s — 1) if D, Nres(E;,s — 1) = 0 and let res(E;,s) = 0
if D, Nres(Ej,s — 1) # 0. Declare that a requirement R; is active at stage s
iff R; is active at stage s — 1 and D, Nres(R;,s — 1) = @. For any R; with
J < ds41 which is currently passive and has the property that PjDs(x) =0 for
all © € st(Vy) of length s+ 1, let res(R;, s) equal res(R;, s — 1) union the set
of all y ¢ Dj such that y is queried of the oracle Dy in one of the computations
P]DS(JL‘), where z € st(Vy) and |z| = s + 1.

This completes the construction of D. We note that A is a height increasing
independent set in N PY since our construction ensures that we can never put
two elements of the same height in A. Thus by Theorem 8.28, space(A) € NPY.
We then have to prove the same sequence of lemmas as in Theorem 8.47 to
complete the proof the theorem. The details may be found in [5§]. a

Again the space(A) constructed in Theorem 8.53 has a number of interest-
ing properties besides being N PP-supermaximal and PP-simple. First of all,
meeting all the requirements R; ensures that space(A) is PP_immune. That
is, if PP is an infinite subset of space(A), then certainly PP generates an
infinite dimensional subspace of st(V.,) and ht(PP) C ht(space(A)), which
would violate requirement R;. Also as in the construction of Theorem 8.47 it
is easy to check that in meeting the requirements S; we made no use of the
fact that N]»D was a subspace of st(Vs), but only that N]»D was a subset of
st(Veo). We claim that st(Vs) \ space(A) does not have any infinite subsets in
PP That is, suppose that PjD C st(Voo) \ space(A). Now it cannot be that
ht(P]D)\ht(space(A)) is infinite since otherwise there is an 7 such that PjD = NP
and the fact that we met requirement 5; would mean that PjD Nspace(A) £ {0}.
Thus ht(PjD) C* ht(space(A)). Let Q = ht(space(A)) \ht(PjD). Then clearly

S={xe Pl ht(x)¢Q}

92

is an infinite set in PP which generates an infinite dimensional subspace of
st(Vo) and ht(S) C ht(space(A)). Since meeting all the requirements R; rules
out the existence of such an S, st(Ve) \ space(A) does not contain an infinite
set in PP, Thus space(A) and st(Vs,) \ space(A) are PP-immune.

Note also that by Theorem 8.40, the fact that space(A) is N PP-maximal
implies that N PP # co-NPP and hence that PP # NPP. Thus we have
proved the following.

Corollary 8.54 There exists an r.e. oracle D and a subspace V' of st(Ve) such
that

(i) PP £ NPP and NPP # co-N PP,

(i) V e NPP,

(iii) V is PP-immune and hence has no basis in P?,
(iv) st(Veo) — V is PP-immune, and

(v) V is both PP -simple and N PP -supermazimal.

Finally we observe that results about N P and P subspaces of tal(Vy) natu-
rally extend to results about N EXT and DEXT subspaces of st(Vo,) by Lemma
4.3 For a typical example, say that a subspace M of st(V.,) is N EXT#-maximal
if M € NEXTA, dim(st(Va)/M) is infinite, and for any subspace W of st(Vs,)
in NEXT# containing M, either dim(st(V.,)/W) is finite or dim(W/M) is
finite. Then Theorem 8.46 and Theorem 8.53 show that the question of the
existence of N I/ XT-maximal subspaces is oracle dependent.

Theorem 8.55 There is a recursive oracles A and an r.e. oracle B such that
the following hold.

(i) NEXTA # DEXT* and NEXT® # DEXT?.
(ii) There are no NEXT#4-mazrimal subspaces of st(Ve).

(iii) There is an N EXTE -marimal subspace W of st(Ve).

In the same way, all the results in this paper about PX and N PX subspaces
of tal(V) can be transfered to results DEXTX and NEXTX subspaces of
st(Veo)-

Next we consider some results on splitting theorems for tal(V.) due to
Bauerle. We note a result of Ash and Downey [1] that every r.e. subspace of
Vo 18 the direct sum of two decidable spaces. In tal(V.) the property of being
a direct sum of two p-time subspaces is equivalent to having a p-time basis.

Theorem 8.56 (5]} A subspace of V' of tal(Ve) can be split into two polyno-
mial time subspaces if and only «f V has a basis in P.

93

Note that by the results on bases and subspaces of tal(Vy,), we immediately
get the following corollaries.

Corollary 8.57 There is an exponential time subspace W of tal(V,) that can-
not be split into two polynomial time subspaces.

Corollary 8.58 For all r.e. degrees § there is an r.e.subspace V of tal(Vy)
such that deg(V) = and V' can be split into two polynomial time subspaces.

Corollary 8.59 There exists a recursive oracle A such that every NPpA \ P4
subspace V of tal(Vs,) can be split into two PA-vector spaces.

Corollary 8.60 Let F be finite. There exists a recursive oracle B such that
there is a N PP \ PB subspace V of tal(Va,) that cannot be split into two PP
vector spaces.

Corollary 8.61 Arguments valid under relativization are not sufficient to show
NP # P — every N P-subspace of tal(Vy,) can be split into two P-time sub-
spaces. NP # P — there exists an N P\ P-subspace of tal(Ve) which cannot
be split into two P-time subspaces.

In fact, Bauerle identifies three types of splittings by polynomial time sub-
spaces of tal(Vy).

Definition 8.62 Let V be an r.e. vector space.

1. V allows a P-splitting «f there exist P-time spaces Wy and Wy such that
Won Wy = {0} and Wy + Wy = V. We say that Wy and Wy P-split V.

2. V allows an induced P-splitting if there exist P-time spaces Wy and Wy
such that Won Wy = {0}, Wo+ Wi = Vi, dim(VNW1) = dim(V W) =
oo, and (Wo NV)+ (Wi NV) =V. We say that Wy and W1 induce a
P-splitting of V.

3. V allows an induced weak P-splitting if there exist r.e. vector spaces
Wo and W1 such that Wy and Wi have bases in P, Wo N W, = {6},
Wo + Wy = Vo, dzm(V N Wl) = dzm(V N Wo) = o0, and (Wo N V) +
(W1 NV)=V. We say that Wy and W1 induce a weak P-splitting of V.

Theorem 8.63 ([5]) Let V be a subspace of tal(Vy).
(1) If V allows a P-splitting, then V allows an induced P-splitting.

(i1) If V allows an induced P-splitting, then V allows an induced weak P-
splitting.

Theorem 8.64 ([5])

94

(i) There exists an exponential time subspace V of tal(Ve) that allows an in-
duced P-splitting but no P-splitting.

(i1) There exists an exponential time subspace V of tal(Vs) that does not allow
an wnduced weak P-splitting

This shows that three notions of Definition 8.62 are increasingly weaker.
We end this section, we some results on Bauerle [5] on subspaces and super-
spaces of NP\ P-subspaces of tal(V).

Theorem 8.65 ([5]) Fvery NP\ P-subspace V of tal(V) has a non-trivial
NP\ P-subspace W.

Theorem 8.66 (5]} Let V be a subspace of tal(V) such that V€ NP\ P.
If V has a non-trivial superspace in P, then V has a non-trwial superspace in

NP\ P.

Theorem 8.67 ([5]) There exists a recursive oracle C' such that there exists a
vector space V. C tal(Veo) that satisfies the following properties:

1. Ve NP\ P¢
2.V has a non-trivial superspace in N P€ \ P¢
3. V has no non-trivial superspaces in P¢

Theorem 8.68 (5]} There is a recursive oracle C' such that all non-trivial
NPC \ PC-subspaces of tal(Veo) have non-trivial superspaces in PC and in
NP\ PC.

Finally under the assumption that NP4 = co-NP4.

Theorem 8.69 ([5]) Let A be an oracle such that NP* \ PA-subspaces of
tal(Voo) exist and such that NP4 = co-NPA. Then the following is true.

1. For all N PA\ PA-subspaces V of tal(Vs,) their standard height increasing
basis By is in NP4\ P4,

2. For all N PA\ PA-subspaces V of tal(V,) their standard height increasing
complementary basis By and their standard complement (By)* are in
NPAN\ PA,

3. Bvery N PA\ PA-subspace V of tal(Va) can be split into two disjoint <X
incomparable N P4\ PA-subspaces.

4. The set of §$ degrees with NPA-subspaces of tal(Vs,) is dense.

5. There exists a pair V,W of NP\PA-subspaces of tal(Veo) such that if
U §$ Voand U §$ W, then U € PA.

6. The set of rationals Q can be embedded in the structures of <t and <f-
degrees of N PA-subspaces of tal(Ve).

95

9 Polynomial Time Boolean Algebras

In this section, we shall survey the results of Nerode and Remmel on the lower
semilattice of N P-ideals of a polynomial time presentation of the free Boolean
algebra. Again we consider two natural representations of the free Boolean
algebra called the tally and standard representation. We start by describing
these two representations.

Let P([0,1)) denote the Boolean algebra of all subsets of the rational left-
closed right-open interval [0, 1) in the rational number Q. The Boolean opera-
tions of meet, join, and complementation on P([0, 1)) are respectively intersec-
tion, union, and relative complement in [0,1). Let B(]0,1)) be the subalgebra
of P([0,1)) generated by the left-closed right-open intervals of the form

o
EAER
with n > 0 and 0 <4 < j < 2". For any subset S C B([0, 1)), (S)* denotes the
subalgebra of B([0,1)) generated by S and I(S) denotes the ideal generated by
S. Given a subalgebra D C B([0,1)), we let A¢(D) denote the set of atoms of
D.

Next we define a natural generating sequence aq,as, ... for B([0, 1)) by in-

duction:

aj I[O,l)
Agn—14myl = [ZZ—T, 2ty ifp > 1and 0 < m < 2771

gn

Thus

1 1 13 1

02:[0,5), 03:[0,1), a4:[§a1)a a5:[0ag)a
13 15 37
06—[1,5% a?—[?g)’ as—[i,g)

Let A, = {ai,...,a,}*. Then it is not difficult to see that A, As, As, ... is
a strictly increasing sequence of subalgebras such that for each n > 1, there is
a unique atom x, € At(4,) such that a,4; splits z,, i.e. § C apqy1 C zp. In
fact, one can easily show by induction that if & is of the form 27~ + m with
0<m<2"! then

1 i+1) j J+1 . e
At(Ak):{[Q—n,Q—n)30§l<2m}U{[2n—_1,F)im§J<2).
Hence agi11 = [Zz—T, 2”21;"1) splits the atom zp = [52%7, ;”n—ﬂ) of Ap. It follows

that A, has exactly n atoms for each n > 1, so that A,, has exactly 2" elements.
We use this generating sequence and its corresponding sequence of subalge-
bras
A1 CAsCAsC ...

96

to define the standard and tally representations of B([0, 1)).
The Standard Representation of 5([0, 1))

First we describe a coding of the elements of B([0, 1)) which we call that stan-
dard representation of B([0,1)). Our idea is to use binary numbers of length n
to code the elements of A, \ A,_1 for n > 1. Formally, we define a 1:1 corre-
spondence § — s5 between Bin(w) and B([0, 1)) by induction.

For the base step, set
50 = @,81 = [0, 1)

For the induction step, assume that the correspondence bin(k) — sj has
been defined between {bin(k) : 0 < k < 2"} and A,,. We then extend our
correspondence to A,y1 as follows. Given a binary number m of length n + 1,
let m = k - 2° where k is odd, so that bin(m) = 0° " bin(k), and let

o] s Uapyr i sgNapyy =0 (1)
m Sk \an+1 if Sk 2 An41-

Now let At(A,) = {#1,...,2n_1, 2o} where z, is the atom of A, which is
split by a,41. Then it is easy to see that every element of A, 1 \ A, is either

of the form
Apt1 U U xT;
i€S
or
(2 \ ang1) U U x;
i€S

for some set S C {1,...,n—1}. Thus (1) defines a 1:1 correspondence between
{k:2" <k < 2"t} and Appq \ Ay,

Indeed it is quite easy to use (1) to recursively construct s,. We write Sbin(n)
for s, in the following.

Example 9.1 Suppose bin(n) = 0101101. Then s, can be constructed as fol-
lows.

S = 0
so1 = as = [0, %) since as N sy = 0.

so101 = 501 Uas = [0,3) U[3,2 =10,2) since ag Nsg1 = 0.

97

Tt is not difficult to show that given two ¢ and rin Bin(w) with |o| < |7,
we can find «, 8 and v in Bin(w) such that

Sa =8, Usr, 55 =5, N8y, 85 =[0,1)\ s,
in polynomial time in |7|. Furthermore, note that each of «, 8 and ~ has length

< 2|7|, since each of s,, s3 and s, belongs to A, if s, € A,. See [54] for details.
It follows that if we then define

CNs T =« (2)
oV, T=0 (3)
ST = (4)

Then st(B) = (Bin(w), As, Vs, s) is a polynomial time representation of the
countable atomless Boolean algebra B([0, 1)) which we call the standard repre-

sentation of B([0, 1)).

The Tally Representation of 5([0, 1))

The tally representation tal(B) of B([0,1)) can easily be defined from the
binary representation st(B([0,1)) to be the isomorphic image under the map
taking bin(n) to tal(n) and is therefore a p-time structure by Lemma 4.4 in
light of the note above.

Nerode and Remmel [54] studied three basic properties of ideals in a recursive
Boolean algebras. Here given a Boolean algebra B = (B, Ap,Vp,—p), we say
I C B is an «deal if the zero of B, Og isin [, for all z,y € I imply z Vg y € B,
and forz € I and z € B, x Apz € I. I is a maximal ideal if for all z € B, either
z€[lorgzel.

Nerode and Remmel studied polynomial time analogues of the following well
known results on r.e. ideals in a recursive presentation of B([0, 1)).

A. In a recursive Boolean algebra, every r.e. maximal ideal is recursive.
B. Every proper recursive ideal 1s contained in a recursive maximal ideal.

C. There exists an r.e. ideal of B([0, 1)) which is not extendible to a recursive

1deal.

We note that C is equivalent to the proposition that there is an r.e. axiom-
atizable theory which is not contained in any decidable theory.

First consider A. The fact that every r.e. maximal ideal of a recursive
Boolean algebra is based on Kleene’s lemma that a set which is r.e. and co-
r.e. is automatically recursive. The obvious p-time analogue of A is that every
NP maximal ideal of p-time Boolean algebra is polynomial time. However

98

in this case, it is a long standing open problem whether NP Nco-NP = P.
Moreover is well known results of Baker-Gill-Solovay [4], there exists recursive
oracle X and Y such that NPX Nco-NP* # PX and NPY Nco-NPY = pY
but PY # NPY. Thus it should come as no surprise that the analogue of
A is oracle dependent. That is, Nerode and Remmel were able of modify the
Baker-Gill-Solovay constructions to prove the following.

Theorem 9.1 There exists a recursive oracle X such that there exist a mazimal

ideal I of tal(B) such that I € NPX\ PX.
Our next corollary immediately follows from Theorem 9.1 and Lemma 4.3.

Corollary 9.2 There exists a recursive oracle X such that there exists a re-
cursive oracle X such that there exist a maximal ideal I of st(B) such that
I e NEXTX\ DEXTX,

Theorem 9.3 There exists a recurstve oracle Y such that there exist a mazimal

ideal J of st(B) such that J € NPX \ PX.

Theorem 9.4 There erists a recursive oracle E such that P¥ # N PP and the
following hold.

(i) Fvery mazimal ideal I of tal(B) which is in NP¥ is in P¥.

(ii) Pvery mazimal ideal J of st(B) which is in NEXTE isin DEXTE.

(iii) Every mazimal ideal K of st(B) which is in N PY is in PE.
Theorems (9.1-9.4) then yield the following results.

Theorem 9.5 Arguments which remain valid under relativization to oracles do
not suffice to prove any of the following.

(1) P # NP implies that every NP mazimal ideal of tal(B) is in P.

(2) P # NP implies that there is an NP mazimal ideal of tal(B) which is not
i P.

(3) P # NP implies that every NP mazimal ideal of st(B) is in P.

(4) P # NP implies that there is a NP mazimal ideal of st(B) which is not in
P.

Next we turn to the analogues of B. In this case, Nerode and Remmel proved
that the obvious analogues of B are true for both tal(B) and st(B) although the
argument requires a great deal more care. That is, Nerode and Remmel [54]
proved the following.

99

Theorem 9.6 Every proper ideal I of st(B) which is in P can be extended to
mazimal ideal J of st(B) which is in P.

Theorem 9.7 Every proper ideal I of st(B) which is in NP N co-NP can be
extended to mazrimal ideal J of st(B) which is in NP N eco-NP.

Theorem 9.8 FEvery proper ideal I of st(B) which is in DEXT can be extended
to maximal ideal J of st(B) which is in DEXT.

Theorem 9.9 FEvery proper ideal I of st(B) which is in NEXT N co-NEXT
can be extended to mazimal ideal J of st(B) which is in NEXT Neco-NEXT.

Theorem 9.10 FEvery proper ideal I of tal(B) which is in P can be extended
to mazimal ideal J of tal(B) which is in P.

Theorem 9.11 FEvery proper I of tal(B) which is in NP N co-NP can be ex-
tended to mazrimal ideal J of tal(B) which is in NP N co-NP.

Finally we turn to the analogues of C. In this case, the analogues are oracle
dependent despite Theorems 9.6 - 9.11.

Theorem 9.12 There exists a recursive oracle A such that P4 # NP4 and

(1) every proper ideal Iy of st(B) which is in NP4 is extendible to mazrimal
ideal Jy of st(B) which is in NP4,

(2) every proper ideal Iy of tal(B) which is in NP4 is ertendible to mazrimal
ideal Jo of tal(B) which is in N PA.

(3) every proper ideal I3 of st(B) which is in NEXT? is extendible to mazrimal
ideal J3 of st(B) which is in NEXTA.

Proof: Homer and Maass [36] constructed a recursive oracle A such that
P4 £ NP2 but NP4 = co-NP#. Thus we can use the relativized version of
Theorem 9.7 to prove part (1) and we can use the relativized version Theorem
9.11 to prove part (2). Finally part (3) follows from part (2) and Lemma 4.3.
O

The proof of the other direction of the oracle dependence requires a new
construction is much more subtle than any of the previous theorems on ideals
in our p-time representation of B([0, 1)). The actual proofs can be found in [54].

Theorem 9.13 (1) There exists a recursive oracle C' and an ideal Jy of tal(B)
which is in NP which is not contained in any mazrimal ideal of tal(B)
which is in N PC.

(2) There exists a recursive oracle B and an ideal Jo of st(B) which is in N PP
which is not contained in any mazimal ideal of st(B) which is in NP5,

100

Of course, we can combine Lemma 4.3 and Theorem 9.13 (1) to prove the
following.

Theorem 9.14 There exists a recursive oracle C' and an ideal Js of st(B) which
is in NEXTC which is not contained in any mazrimal ideal of tal(B) which is
in NEXTC.

10 Conclusions and Future Directions

In this survey, we have presented the basic definitions of complexity theoretic
algebra and model theory and have attempted to outline the current state of
knowledge in the field. There is a great deal more which remains to be done.
We will just mention four possible themes for future research.

First, we observe that the results on complexity theoretic algebra were lim-
ited to the study of ideals in the free Boolean algebras and and subspaces of an
infinite dimensional vector spaces. There are many other algebraic structures
that have been studied in recursive algebra including fields, modules, subal-
gebras of Boolean algebras, subgroups of groups, etc.. Cenzer, Downey and
Remmel [9] have recently investigated torsion-free Abelian groups. We have
also given complexity theoretic results in combinatorics. Other related areas of
mathematics such as geometry and number theory should also provide fruitful
basis for investigation.

Second, most of our results concerned the notions of polynomial time com-
plexity, with some results given on linear time and on exponential time com-
plexity. There are many other interesting notions of complexity, including for
example, PSPACE and LOGSPACE, which should provide both comparable
and contrasting results.

Third, we gave only a few results involving the important complexity hy-
potheses of theoretical computer science, such as whether P = NP or NP =
PSPACE. 1In the complexity theory of real functions, Ko [42] has provided
many such results. For example, he gives a condition (not involving complexity)
on a real function f and shows that if P = NP and if f is a p-time computable
function on the unit interval which satisfies this condition, then all roots of f
are p-time computable. There should be similar results in complexity theoretic
algebra.

Fourth, we have only begun the study of complexity theoretic model theory
with a few results on relational structures and with the general notion of Scott
sentences and categoricity. If one studies the recursive model theory survey by
Harizanov [33], many problems suggest themselves. For example, the authors
have recently investigated complexity theoretic versions of the effective com-
pleteness theorem in [18]. Decidability is also of interest in the study of prime
and saturated models and in stability theory.

101

References

[1] Ash, C.J. and Downey, R.G.: Decidable subspaces and recursively enumer-
able subspaces, J. Symbolic Logic 49, pp 1137-1145, (1984).

[2] Ash, C. and Nerode, A.: Intrinsically recursive relations. Effective Aspects
of Algebra, editor J.N. Crossley, Upside Down A Book Co., Clayton, Vic-
toria, Australia (1980) 26-41.

[3] Balcdzar, J.L, Diaz, J., and Gabarrd, J.: Structural Complexity I. Springer-
Verlag, 1988.

[4] T. Baker, J. Gill, and R. Solovay: Relativisations of the P = N P question.
SIAM J. Comp. 4, pp. 431-442, 1981.

[6] Bauerle, F.A.: Ph.D. Thesis, University of California at San Diego, La
Jolla, CA 92093 (1995).

[6] Bennett, C.H. and Gill, J.: Relative to a Random Oracle A, PA # NPA #
co-N PA with Probability 1. SIAM J. Comp. 10, pp. 96-113, 1981.

[7] Breidbart, S.: On splitting recursive sets. J. Comput. System Sci. 17, pp.
56-64, 1978.

[8] Cai, J.: On Some Most Probable Separations of Complexity Classes. Com-
puter Science Ph.D,. Diss., Cornell University , Ithaca, New York, 1986.

[9] Cenzer, D., Downey, R. and Remmel, J.B.: Feasible torsion-free Abelian
groups. To appear.

[10] Cenzer, D. and Remmel, J.B.: Polynomial-time versus recursive models.

Ann. Pure and Appl. Logic 54 (1991) 17-58.

[11] Cenzer, D. and Remmel, J.B.: Polynomial-time Abelian groups. Ann. Pure
and Appl. Logic 56 (1992) 313-363.

[12] Cenzer, D. and Remmel, J.B.: Recursively presented games and strategies.

Math. Social Sciences 24 (1992) 117-139.

[13] Cenzer, D. and Remmel, J.B.: Feasible graphs and colorings. Math. Logic
Quarterly 41 (1995) 327-352.

[14] Cenzer, D. and Remmel, J.B.: Feasibly categorical abelian groups, in Feasi-
ble Mathematics II, editors P. Clote and J. Remmel, Prog. in Comp. Science
and Appl. Logic 13, Birkh&auser (1995) 91-154.

[15] Cenzer, D. and Remmel, J.B.: Feasibly categorical models, in Logic and
Computational Complexity, editor D. Leivant, Lecture Notes in Comp. Sci-
ence 960, Springer (1995) 300-312.

102

[16] Cenzer, D. and Remmel, J.B.: Feasible graphs with standard universe, in
Computabiity Theory, Oberwolfach 1996, Special issue of Ann. Pure and
Appl. Logic, to appear.

[17] Cenzer, D. and Remmel, J.B.: 11 classes. This volume.

[18] Cenzer, D. and Remmel, J.B.: Decidability and completeness and complex-
ity. To appear.

[19] Cobham, A.: The Intrinsic Computational Difficulty of Functions. Proc.
Inter. Cong, for Logic Methodology, and Philosophy of Science, North Hol-
land, pp. 24-30, 1964.

[20] Cook, S.A.: The Complexity of Theorem-Proving Procedures. ACM Sym-
postum on Theory of Computation, pp. 151-158, 1971.

[21] Crossley, J.N.: Aspects of Effective Algebra, (J.N. Crossley, ed.) Upside
Down A Book Company, Yarra Glen, Victoria , Australia, 1981.

[22] Crossley, J.N. and Remmel, J.B.: Polynomial-time combinatorial opera-
tors are polynomials. Feasible Mathematics, (S. Buss and P. Scott, eds),
Birkhauser, pp. 99-130, 1990.

[23] Crossley, J.N. and Remmel, J.B.: Cancellation laws for polynomial-time
p-1solated sets. Annals of Pure and Appl. Logic 56, pp. 147-172, 1992.

[24] Dekker, J.C.E.: Two notes on vector spaces with recursive operations.
Notre Dame J. Formal Logic 12, pp. 329-334, 1971.

[25] Downey, R.G. and Fellows; M.R..: Fixed Parameter Intractability and Com-
pleteness III: Some Structural Aspects of the W-Heirarchy. Complexity
Theory (Ed. K. Ambos-Spies, S. Homer, and U. Schoning), Cambridge
Uiversity Press, pp. 166-191, 1993.

[26] Edmonds, J.: Paths, Trees, and Flowers. Canad. J. Math 17, pp. 449-467,
1965.

[27] Friedman, H. and Ko, K.: Computational complexity of real functions.

Theoret. Comput. Sei. 20 (1982), no. 3, 323-352.

[28] Garey, M.R. and Johnson, D.S.: Computers and Intractability. W.H. Free-
man, San Francisco. 1979.

[29] Goncharov, S.S.: Autostability and computable families of constructiviza-

tion. Algebra and Logic 14 (1975) 392-409.

[30] Goncharov, S.S.: Some properties of the constructivization of Boolean al-

gebras. Sibirsk Mat. Z. 16 (1975) 264-278.

103

[31] Goncharov, S.S., Dzgoev, V.D.: Autostability of models. Algebra and Logic
19 (1980) 28-37.

[32] Grigorieff, S.: Every Recursive linear ordering has a copy in DTIME(n). J.
Symbolic Logic 55 (1990) 260-276.

[33] Harizanov, V.: Pure recursive model theory. This volume.

[34] Hartmanis, J.: On sparse sets in NP — P, Information Processing Letters
16, pp. 55-60, (1983).

artmanis, J. and Stearns, R.: On the Computational Complexity o -
35| H is, J dS R.: On the C ional C lexi f Al
gorithms. Trans. Amer. Math. Soc. 117, pp. 285-306, 1965.

[36] Homer, S. and Maass, W.: Oracel Dependent Properties of the Lattice
N P-sets. Theor. Comp. Science, 24, pp. 279-289, 1983.

[37] Hopcroft, J. and Ullman, J.: “Formal Languages and Their Relations to
Automata”. Addison Wesley (1969).

[38] Kalantari, I. and Retzlaff, A.: Maximal Vector Spaces under Automor-
phisms of the Lattice of Recursively Enumerable Vector Spaces. J. Symb.
Logic, pp. 481-491, 1977.

[39] Karp, R.: Reducibilities Among Combinatorial Problems. Complexity
Computer Computations, pp. 85-103, 1972.

[40] Khisamiev, N. G.: Constructive Abelian Groups. This volume.

[41] Khoussainov, B. and Nerode, A.: Automatic Presentations of Structures.
Logic and Computational Complexity editor D. Leivant, Lecture Notes in
Comp. Science 960, Springer (1995), pp. 367-392.

[42] Ko, Ker-I: Complexity theory of real functions, Progress in Theoretical
Computer Science. Birkhauser (1991).

[43] Ko, Ker-I: Computational complexity of fixed points and intersection
points. J. Complexity 11.2, (1995), pp. 265-292.

[44] LaRoche, P.E.: Recursively presented Boolean algebras. Notices Amer.
Math. Soc. 24 A-552.

[45] Mahaney, S.R.: Sparse complete sets for N P: solution of a conjecture of
Berman and Hartmanis, it Journal of Computer and System Sciences 25,

pp. 130-143, (1982).

[46] Martin, D.A.: Classes of Recursively Enumerable Sete and Degrees of Un-
solvability. Zeit. Math. Logik 12, pp. 295-310, 1966.

104

[47] Metakides, G. and Nerode, A.: Recursion Theory and Algebra. Lecture
Notes i Mathematics 450, Springer-Verlag, Berlin, pp. 209-219, 1975.

[48] Metakides, G. and Nerode, A.: Recursively Enumerable Vector Spaces.
Ann. of Math. Logic 11, pp 141-171, 1979.

[49] Mal’cev, AI: On recursive Abelian groups. Soviet Math. 3 (1962) 1431-
1432.

[60] Nerode, A. and Remmel, J.B.: Recursion Theory on Matroids, II. South-
east Asian Conference on Logic (eds. C.T. Chong and M.J. Wicks), North
Holland Pub. Co., New York, (1983), 133-184.

[61] Nerode, A. and Remmel, J.B.: A Survey of R.E. Substructures. Proc. Sym-
posta wn Pure Math 42, Amer. Math. Soc., pp. 323-373, 1985.

[62] Nerode, A. and Remmel, J.B.: Complexity theoretic algebraI: vector spaces
over finite fields. Logic and Computer Science, Rendconti del Seminario
Matematico: Covegno su Logic and Computer Science, New Trends and
Applications (1986), Fascicolo Speciale, Torino Universita e Politecnica,
La Precisa, Torino, 1987.

[63] Nerode, A.; Remmel, J.B.: Complexity theoretic algebra I, vector spaces
over finite fields, Proceedings of Structure in Complexity, 2d Annual Con-
ference, Computer Science Press (1987) 218-239.

[64] Nerode, A., Remmel, J.B.: Complexity theoretic algebra II, the free
Boolean algebra. Ann. Pure and Applied Logic 44 (1989) 71-99.

[65] Nerode, A., Remmel, J.B.: Complexity theoretic algebra: vector space
bases, Feasible Mathematics, editors S. Buss and P. Scott, Prog. in Comp.
Science and Appl. Logic 9 Birkhauser (1990) 293-319.

[66] Nerode, A. and Remmel, J.B.: Polynomial time equivalence types. Logic
and Computation: Proc. of a Workshop held at CMU, June 3 - July 2,
1987, (W. Sieg, ed.), Contemporary Mathematics Series vol. 106, American
Mathematical Society, Providence, R. I., 1990.

[67] Nerode, A. and Remmel, J.B.: Polynomially isolated sets. Recursion The-
ory Week: Proc. of a Conference at Oberwolfach, FRG, March 19-25, 1989,
(K. Ambos-Spies, G. Miller, G. E. Sacks, eds.), Springer, 1990.

[68] Nerode, A. and Remmel, J.B.: On the lattice of N P-subspaces of a Poly-
nomial Time Vector Space over a Finite Field. Annals of Pure and Applied
Logic, to appear.

105

[69] Nerode, A.; Remmel, J.B., and Scedrov, A.: Polynomial graded logic: A
graded version of Godel’s system T, extended abstract with proofs. Proc.
Logic in Computer Science (LICS), Computer Society of IEEE, pp. 375-384,
1989.

[60] Nurtazin, A.: “Completable classes and algebraic conditions for autosta-

bility”. Ph. D. thesis, Novosibirsk (1974)

[61] P. Odifreddi: “Classical Recursion Theory”. North-Holland, Amsterdam
(1989).

[62] J.B. Remmel “Maximal and Cohesive Vector Spaces”, J. Sym. Logic 42,
pp- 400-418, 1977.

[63] Remmel, J.B.: Recursively Enumerable Boolean Algebras. Ann. Math.
Logic 14, pp. 75-107, 1978,

[64] Remmel, J.B.: Recursion Theory on Algebraic Structures with an Indepen-
dent Set. Ann. Math. Logic 18, pp. 153-191, 1980.

[65] Remmel, J.B.: On Recursively Enumerable and Co-Recursively Enumer-
able Vector Spaces with Non-Extendible Bases. J. Symb. Logic 45, pp.
20-24, 1980.

[66] Remmel, J.B.: Recursively categorical linear orderings. Proc. Amer. Math.

Soc. 83 (1981) 387-391.

[67] Remmel, J.B.: Recursive Boolean Algebras, in Handbook of Boolean Alge-
bras, ed. J. Monk. North-Holland (1989) 1099-1165.

[68] Remmel, J.B.: When is every recursive linear ordering of type u recursively
isomorphic to a p-time linear order over the binary representation of the
natural numbers?, Feasible Mathematics, editors S. Buss and P. Scott. Prog.
in Comp. Science and Appl. Logic 9 Birkhauser (1990) 321-341.

[69] Remmel, J.B.: Polynomial-time categoricity and linear orderings, in Logical
Methods, editors J. Crossley, J. Remmel, R. Shore, and M. Sweedler, Prog.
in Comp. Science and Appl. Logic 12 Birkh&user (1993) 321-341.

[70] Schmerl, J.: Recursive colorings of graphs. Can. J. Math. 32 (1980) 821-
830.

[71] Schoening, U.: Complexity and Structure. Lecture Notes in Computer Sci-
ence 211, Springer-Verlag, Berlin, 1986.

[72] Shinoda, J. and Slaman, T.: On the theory of PTIME degrees of recursive
sets. J. Comput. System Sci., 40 pp. 417-443, 1990.

106

[73] Shore, R.A. and Slaman, T.A.: The p-T-degrees of the recursive sets: lat-
tice embeddings, extensions of embeddings and the two quantifier theory.

Th. Comp. Sci., 97 pp. 263-284, 1992

[74] Smith, R.: Two theorems on autostability in p-groups, it Logic Year 1979-
80 (Storrs, Conn.), Lecture Notes in Math. 859 Springer-Verlag (1981)
302-311.

[75] Wilson, C.: Relativization, Reducibilities, and the Exponential Time Hier-
archy, Ph.D. Thesis, U. Toronto, (1980).

[76] Yao, A.: Separating the Polynomial-Time Hierarchy by Oracles. IEEE
Symp. on Found. of Computer Science [FOCS], pp. 1-10, 1985.

107

