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� Introduction

In this paper� we will survey some recent results on complexity theoretic model
theory and algebra� Essentially there are two major themes in this work� The
�rst� which we call complexity theoretic model theory� deals with model ex�
istence questions� For example� given a recursive model A� is there there a
polynomial time �exponential time� polynomial space� etc�� model B which is
isomorphic to A� The second theme� which we call complexity theoretic al�
gebra� �xes a given polynomial time structure and explores the properties of
that structure� For example� we can ask whether every polynomial time ideal
of a given polynomial time representation of the free Boolean algebra can be
extended to a maximal polynomial time ideal� In both cases� one uses the rich
theory of recursive model theory and algebra as a reference but looks at resource
bounded versions of the results in those areas�

It turns out that not only are there a number of contrasts between results
in recursive model theory and algebra and complexity theoretic model theory
and algebra� but some new and interesting phenomena occur in the study of
complexity theoretic model theory and algebra� That is� there are results in
recursive model theory and algebra for which the natural complexity theoretic
analogue is true but requires a more delicate proof which incorporates the re�
source bounds� There are also results in recursive model theory and algebra for
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which the natural complexity theoretic analogue is false because the proof of the
recursive result uses the unbounded resources allowed in recursive constructions
in a crucial way� However� there are a number of interesting new phenomena
which arise due to the fact that not all in�nite polynomial time sets are poly�
nomial time isomorphic or due to the fact that complexity theoretic results do
not relativize as is the case for most recursion theoretic results� For example� in
recursive model theory any two in�nite recursive sets are recursively isomorphic�
so that one can restrict one	s attention to models whose universe is the set of
natural numbers� It is not the case that any two in�nite polynomial time sets
are polynomial time isomorphic so that the choice of a particular universe� say
the tally representation of the natural numbers versus the binary representation
of the natural numbers� makes a di
erence�

Also� it is well known that the question of whether P � NP is oracle depen�
dent� That is� Baker� Gill and Solovay �
� proved that there are recursive oracles
X and Y such that PX � NPX and PY �� NPY � We shall see that some of the
natural complexity theoretic analogues of results in recursive algebra are oracle
dependent as well�

There are several other areas of complexity theoretic model theory and al�
gebra which will not be covered in this survey� There is the work of Friedman
and Ko �see for example� ����� �
��� and �
��� on polynomial time analysis� where
complexity theoretic versions of various theorems of analysis are studied� Some
of these results are oracle dependent and some are shown to be equivalent to
P � NP � There is the work of Crossley� Nerode and Remmel on p�time equiv�
alence types and p�time isols� as developed in ����� ����� ���� and ����� We will
present some results from ���� on p�time equivalence types in section 
� There is
the work of Khoussainov and Nerode �
�� on automatic� or automata presentable
structures� which is a further restriction of polynomial time structures�

We will start with a survey of complexity theoretic model theory� In section
�� we will provide a general introduction to complexity theoretic model theory�
In section �� we shall give our basic complexity theoretic de�nitions and establish
notation� In section 
� we will give a series of lemmas which are useful for
building models with standard universes such as the binary representation of the
natural numbers� Bin���� and the tally representation of the natural numbers�
Tal���� In section � we provide a survey of the main existence theorems for
feasible models� In section �� we survey various feasible categoricity results�
In section �� we give an introduction to complexity theoretic algebra� Then in
section �� we focus on the structure of the binary and tally representation of an
in�nite dimensional vector space over a polynomial time �eld� In section �� we
look at the semilattice of NP ideals of the binary and tally representation of
the free Boolean algebra� Finally in section ��� we give conclusions as well as
some directions for further work�
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� Complexity Theoretic Model Theory

Complexity theoretic or feasible model theory is the study of resource�bounded
structures and isomorphisms and their relation to computable structures and
computable isomorphisms� The focus of complexity theoretic model theory in
this paper is very di
erent from classical complexity theory� A primary focus
in classical complexity theory has been to determine the complexity of certain
classes of �nite models encoded as a decision problem� That is� one is interested
in classifying decision problems as being in P � NP � PSPACE� etc� A typical
example is the graph�coloring problem� where it is known that the family of
�nite graphs which can be ��colored is NP �complete�

Complexity theoretic model theory is more concerned with in�nite models
whose universe� functions� and relations are in some well known complexity
class such as polynomial time� exponential time� polynomial space� etc� Thus
if one studies graph colorings from this point of view� one would study the
complexity of graph colorings in an in�nite polynomial time graph as was done
by Cenzer and Remmel in ����� However complexity theoretic model theory
has been more concerned with the complexity of the model itself� Thus one
can pick any complexity class and ask questions about what structures can be
represented by models in that complexity class� By far� the complexity class
that has received the most attention is polynomial time� The basic questions
that have been consider are to classify which recursive models are isomorphic
or recursively isomorphic to a polynomial time model�

To establish some notation� let � � f�� �� � � �g denote the set of natural
numbers� Let �� � denote the usual quadratic�time pairing function �m�n� �
m� �

��m� n��m�n� ��� which maps �� � onto �� Let �e�n denote the n�ary
partial function on �f�� �g��n computed by the e�th Turing machine� Then we
say that a structure

A � �A� fRAi gi�S � ff
A
i gi�T � fc

A
i gi�U ��

�where the universe A of A is a subset of f�� �g�� is recursive if A is a recursive
subset of f�� �g�� S� T � and U are initial segments of �� the set of relations
fRAi gi�S is uniformly recursive in the sense that there is a recursive function
G such that for all i � S� G�i� � �ni� ei� where RAi is an ni�ary relation and
�ei�ni computes the characteristic function of RAi � the set of functions ffAi gi�T
is uniformly recursive in the sense that there is a recursive function F such that
for all i � T � F �i� � �ni� ei� where f

A
i is an ni�ary function and �ei�ni restricted

to Ani computes fAi � and there is a recursive function interpreting the constant
symbols in the sense that there is a recursive function H such that for all i � U �
H�i� � cAi � Note that if A is a recursive structure� then the atomic diagram of
A is recursive�

We say that a recursive structure A � �A� fRAi gi�S � ff
A
i gi�T � fc

A
i gi�U �� is

polynomial time if A is a polynomial time subset of f�� �g� and the set of re�
lations fRAi gi�S and the set of functions ffAi gi�T are uniformly polynomial
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time in the sense that� in addition to the functions G and F de�ned above�
there are recursive functions G� and F � such that for i � S� G��i� � mi where
for all �x�� � � � � xni� in �f�� �g��ni � it takes at most �maxf�� jx�j� � � � � jxnijg�

mi

steps to compute �ei�ni�x�� � � � � xni� and for all i � T � F ��i� � qi where for all
�x�� � � � � xni� in �f�� �g��ni � it takes at most �maxf�� jx�j� � � � � jxnijg�

qi steps to
compute �ei�ni�x�� � � � � xni�� Note that if A is a polynomial time structure with
in�nitely many relation symbols or with in�nitely many function symbols� then
our de�nition of a polynomial time structure does not ensure that the atomic
diagram of A is polynomial time� Thus we say A is uniformly polynomial time
if the atomic diagram of A is polynomial time� Note that the fact that A is uni�
formly polynomial time implies� among other things� that the sequence of run
times fxmi � i � Sg and fxqi � i � Tg are bounded by some �xed polynomial�
Of course� if A is a structure over a �nite language� then A is a polynomial time
structure if and only if A is a uniformly polynomial time structure� Similar
de�nitions may be given for other resource�bounded classes�

There are two basic types of questions which have been studied in polyno�
mial time model theory� First� as discussed above� there is the basic existence
problem� i�e� whether a given in�nite recursive structure A isomorphic or re�
cursively isomorphic to a polynomial time model� For example� the authors
showed in ���� �p� �
� that every recursive relational structure is recursively
isomorphic to a polynomial time model and that the standard model of arith�
metic ������� �� �� �x� with addition� subtraction� multiplication� order and the
��place exponential function is isomorphic to a polynomial time model� The fun�
damental e
ective completeness theorem says that any decidable theory has a
decidable model� It follows that any decidable relational theory has a polyno�
mial time model� However� one is naturally led to ask more re�ned existence
questions in complexity theoretic algebra than one asks in recursive algebra�
That is� since all in�nite recursive sets are recursively isomorphic� it is easy to
see that any in�nite recursive structure is recursively isomorphic to a recursive
structure whose universe is �� It is certainly not the case that any two in�nite
polynomial�time sets are polynomial�time isomorphic� For example� the tally
representation of the natural numbers is not polynomial time isomorphic to the
binary representation of the natural numbers� Hence it no longer the case that
any in�nite polynomial�time structure can be identi�ed with a polynomial�time
structure whose universe is f�� �g�� Thus a more re�ned existence questions is to
take a �xed universe� such as the tally representation of the natural numbers or
the binary representation of the natural numbers� and ask if a recursive model
is isomorphic or recursively isomorphic to a polynomial time model with that
given universe�

Here are two examples which illustrate both the negative and positive out�
comes to the simplest existence type question� i�e�� whether a given recursive
model is isomorphic to a polynomial time model�

Example ��� Let A � �A� �� S�R� where A � f�g� �that is� the set of natural






numbers in unary representation�� S is the successor function� �that is� S��n� �
�n���� and R is a unary relation� �that is� a subset of f�g��� Now if A is
isomorphic to a polynomial�time structure B � �B� �B � SB � RB�� then we can
test for membership in R as follows� Given �n� compute �SB �n��B� � yn and
then test whether yn is in RB � Now if we assume that we can compute SB �x�

in jxjk steps for jxj � �� then it takes at most �n
i��j�

Bjk
i

� j�Bjk
n�� steps to

compute yn� Next we may assume that testing whether x � RB takes jxjr steps
if jxj � �� so that it takes at most j�Bjr�k

n��� steps to test whether �n is in
R� This means that R is a doubly�exponential�time set� Thus if we start with
any recursive structure A � �A� �� S�R� where R is a recursive set but is not
doubly exponential�time� then A is not even isomorphic� much less recursively
isomorphic� to a polynomial�time structure�

Despite this example� there are lots of recursive structures which are recur�
sively isomorphic to polynomial�time structures�

Example ��� Let A � �A� f�� where A � f�g� and f is a unary function�
We say that �m and �n are in the same f�orbit if� for some k � �� either
fk��m� � �n or fk��n� � �m� If f is length�increasing� then it is clear that
each f�orbit is isomorphic to �A�S�� Now let f and g be any two recursive length�
increasing functions from f�g� into f�g�� Then the structures �A�f� and �A�g�
are recursively isomorphic if and only if they have the same number of orbits�
Thus� for example� we can let f��n� � �a�n� where a is Ackermann�s function
and still be guaranteed that �A�f� is recursively isomorphic to a polynomial�time
structure�

Next consider the more restricted kind of existence question� i�e� whether a
given recursive model is isomorphic or recursively isomorphic to a polynomial
time model which has a standard universe such as the binary representation of
the natural numbers� Bin���� or the tally representation of the natural numbers�
Tal��� � f�n � n � �g� Grigorie
 ���� proved that every recursive linear order�
ing is isomorphic to a linear time linear ordering which has universe Bin����
However Grigorie
	s result can not be improved to the result that every recur�
sive linear ordering is recursively isomorphic to a linear time linear ordering
over Bin���� That is� Cenzer and Remmel ���� �p� ��� showed that for any
in�nite polynomial time set A 	 f�� �g�� there exists a recursive copy of the
linear ordering � � �� which is not recursively isomorphic to any polynomial
time linear ordering which has universe A� Here ���� is the ordering obtained
by taking a copy of � � f�� �� �� � � �g under the usual ordering followed by a copy
of the negative integers under the usual ordering�

The general problem of determining which recursive models are isomorphic
or recursively isomorphic to feasible models has been studied by the authors in
����� ����� and ��
�� For example� it was shown in ���� �pp� �
���
�� that any
recursive torsion Abelian group G is isomorphic to a polynomial time group A
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and that if the orders of the elements of G are bounded� then A may be taken
to have a standard universe� i�e� either Bin��� or Tal���� It was also shown
in ���� �p� ���� that there exists a recursive torsion Abelian group which is not
even isomorphic to any polynomial time �or any primitive recursive� group with
a standard universe� Feasible linear orderings were studied by Grigorie
 �����
by Cenzer and Remmel ����� and by Remmel ���� ���� Feasible vector spaces
were studied by Nerode and Remmel in ���� and ����� Feasible Boolean algebras
were studied by Cenzer and Remmel in ���� and by Nerode and Remmel in ��
��
Feasible permutation structures and feasible Abelian groups were studied by
Cenzer and Remmel in ���� and ��
�� By a permutation structure A � �A� f��
we mean a set A together with a unary function f which maps A one�to�one
and onto A� Similarly an equivalence structure A � �A�RA� consists of a set A
together with an equivalence relation�

The second basic type of problem studied in polynomial time model theory
is the problem of feasible categoricity� Here we say that a recursive model A
is recursively categorical if any other recursive model isomorphic to A is in fact
recursively isomorphic to A� The notion of recursive categoricity was �rst de�
�ned by Mal	cev �
�� and is referred to in the Russian literature as autostability�
Recursively categorical structures have been widely studied in the literature of
recursive algebra and recursive model theory�

The recursively categorical structures for various theories have been classi�
�ed� including Boolean algebras independently by Goncharov ���� and
LaRoche �

�� Abelian groups by Smith ��
� and linear orderings independently
by Dzgoev ���� and Remmel ����� For example� Remmel showed in ���� that a
recursive linear ordering L � �D��� is recursively categorical if and only if L
has only �nitely many successivities� where a pair a � b is a successivity if there
is no c with a � c � b�

De�ning a natural analogue of feasible categoricity is complicated by the
fact that unlike the case of in�nite recursive models� where any two in�nite
recursive universes are recursively isomorphic� it is not the case that any two
polynomial time universes are polynomial time isomorphic� It turns out to be
more natural to de�ne polynomial categorical structures with respect to a �xed
universe� Thus we say that a p�time structure A with universe D 	 f�� �g� is
p�time categorical with respect to D if every p�time structure B with universe D
which is isomorphic to A is necessarily p�time isomorphic to A� i�e� there exist
polynomial time functions f� g such that f restricted to D is an isomorphism
from A onto B and g restricted to D is an isomorphism from B onto A�

Remmel showed in ���� that there are no p�time categorical linear orderings
with respect to the standard universes Bin��� and Tal���� There are two parts
to this strongly negative statement� For any p�time linear ordering L with
universe B �either Bin��� or Tal����� there is a p�time linear ordering L� with
universe B which is not primitive recursively isomorphic to L� Furthermore� if
L is not recursively categorical� then L� is not even recursively isomorphic to
L� Similar results will be shown for other structures� The problem of feasible
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categoricity for permutation structures and torsion Abelian groups was studied
by Cenzer and Remmel in ��
�� Here there are some limited positive results�
In particular� a permutation structure �A� f� such that all orbits of f have the
same �nite size is p�time categorical over Tal���� There are also structures A
which are not p�time categorical over B� but such that any p�time structure D
with universe B which is isomorphic to A must be exponential time isomorphic
or double exponential time isomorphic to A� More generally� we can de�ne a
larger notion of feasibility� q�time or iterated exponential time computability�
and show that there are many natural structures which are q�time categorical
over Bin��� and Tal����

General semantic conditions for when a decidable model is recursively cate�
gorical were given by Nurtazin ���� and Goncharov ���� and similar results were
found by Ash and Nerode ��� for models in which one can e
ectively decide
all �� formulas� These methods are based on the existence of a so�called Scott
family of formulas� We discuss in section � various notions from ���� of a feasible
Scott family of formulas for a feasible model and show that any two families
which possess a common Scott family and have the same universe B are feasibly
isomorphic� Structures considered in ���� include linear orderings� permutation
structures� Abelian groups and equivalence structures�

� Preliminaries

In this section� we will give the basic de�nitions from complexity theory which
will be needed for the rest of the paper�

Let � be a �nite alphabet� Then �� denotes the set of �nite strings of
letters from � and �� denotes the set of in�nite strings of letters from � where
� � f�� �� �� � � �g is the set of natural numbers� For any natural number n �� ��
tal�n� � �n is the tally representation of n and bin�n� � i�i� � � � ie � f�� �g�

is the �reverse� binary representation of n if n � i� � � � i� � � � � � �e � ie
and ie �� �� In general� the k�ary representation bk�n� � i�i� � � � ie if n �
i� � i� � k � � � � ie � k

e and ie �� �� We let tal��� � bin��� � bk��� � �� Then
we let Tal��� � ftal�n� � n � �g� Bin��� � fbin�n� � n � �g and� for each
k � �� Bk��� � fbk�n� � n � �g� Occasionally� we will want to say that
B���� � Bin��� and that B���� � Tal����

For a string � � ������ ����� � � � � ��n����� j�j denotes the length n of �� The
empty string has length � and will be denoted by 
� A constant string � of length
n will be denoted by kn� For m � j�j� �dm is the string ������ � � � � ��m � ����
� is an initial segment of � �written � � � � if � � �dm for some m� The
concatenation ��� �or sometimes just �� � is de�ned by

��� � ������ ����� � � � � ��m � ��� � ���� � ���� � � � � � �n� ����

where j�j � m and j� j � n� in particular we write ��a for ���a� and a�� for
�a����
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Our basic computation model is the standard multitape Turing machine of
Hopcroft and Ullman ���� Note that there are di
erent heads on each tape and
that the heads are allowed to move independently� This implies that a string �
can be copied in linear time� An oracle machine is a multitape Turing machine
M with a distinguished work tape� a query tape� and three distinguished states
QUERY� YES� and NO� At some step of a computation on an input string ��
M may transfer into the state QUERY� In state QUERY� M transfers into the
state YES if the string currently appearing on the query tape is in an oracle set
A� Otherwise� M transfers into the state NO� In either case� the query tape is
instantly erased� The set of strings accepted by M relative to the oracle set A
is L�M�A� � f�j there is an accepting computation of M on input � when the
oracle set is Ag� If A � 
� we write L�M � instead of L�M� 
��

Let t�n� be a function on natural numbers� A Turing machine M is said
to be t�n� time bounded if each computation of M on inputs of length n where
n � � requires at most t�n� steps� A function f�x� on strings is said to be in
DTIME�t� if there is a t�n��time bounded deterministic Turing machine M
which computes f�x�� For a function f of several variables� we let the length
of �x�� � � � � xn� be jx�j� � � �� jxnj� A set of strings or a relation on strings is in
DTIME�t� if its characteristic function is in DTIME�t�� We let

R �
S
cfDTIME�n � c� � c � �g�

LIN �
S
cfDTIME�cn� � c � �g�

P �
S
ifDTIME�ni� � i � �g�

DEXT �
S
c��fDTIME��c�n�g� and

DOUBEXT �
S
c��fDTIME���

c�n

�g�

EXPTIME �
S
c��fDTIME��n

c

�g� and in general�

DEX�S� �
S
t�n��SDTIME��t�n��g�

A function f�x� on strings is said to be in NTIME�t� if there is a t�n��time
bounded nondeterministic Turing machine M which computes f�x�� A set of
strings or a relation on strings is in NTIME�t� if its characteristic function is
in NTIME�t�� We let

NP �
S
ifNTIME�ni� � i � �g�

NEXT �
S
c��fNTIME��c�n�g�

NEXPTIME �
S
c��fNTIME��n

c

�g�

DOUBNEXT �
S
c��fNTIME���

c�n

�g and in general�

NEX�S� �
S
t�n��S NTIME��t�n��g�

We �x enumerations fPigi�N and fNigi�N of the polynomial time bounded
deterministic oracle Turing machines and the polynomial time bounded non�
deterministic oracle Turing machines respectively� We may assume that pi�n� �
max��� n�i is a strict upper bound on the length of any computation by Pi or Ni

with any oracle X on inputs of length n� PX
i and NX

i denote the oracle Turing
machine using oracle X and in an abuse of notation we shall denote L�Pi� X�
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by simply PX
i and L�Ni� X� by NX

i � This given� PX � fPX
i � i � Ng and

NPX � fNX
i � i � Ng�

For A� B � ��� we shall write A �Pm B if there is a polynomial�time function
f such that for all x � ��� x � A i
 f�x� � B� We shall write A �PT B if A
is polynomial time Turing reducible to B� For r equal to m or T � we write
A 
Pr B if A �Pr B and B �Pr A and we write A jPr B if not A �Pr B and not
B �Pr A�

We de�ne the standard notions of feasibility as follows� We say that a
function f�x� is quasi�real�time if f�x� � R� �This is slightly more general
than the usual notion of real�time as computable by a Turing machine which
simply reads the input one symbol at a time from left to right �or right to left�
and simultaneously leaves the output in its place on the tape� In particular� a
real�time function is always in DTIME�n��� The function f�x� is linear time
if f�x� � L� polynomial time if f�x� � P � nondeterministic polynomial time if
f�x� � NP � exponential time if f�x� � DEXT � nondeterministic exponential
time if f�x� � NEXT � and is double exponential time if f�x� � DOUBEXT �
We say that f�x� is exponentially feasible if f�x� � DEX�T � for a notion T of
feasibility� In particular� if f�x� � DEX�DOUBEXT �� then f�x� is said to be
triple exponential time�

The smallest class including P and closed under DEX can be de�ned by
iterating DEX� That is� let

P � � P � Pn�� � DEX�P � for each n� and Q �
S
n�� P

n�

A function f�x� � Q is said to be iterated exponential time or q�time� The
iterated exponential functions En�x� can be de�ned recursively by E��x� � x
and En���x� � �En�x� for all n and x� It is easy to see that xr � Er�x� for all
r 	 �� from which it follows that Q �

S
m�� DEX

m�DTIME�n���
We observe that the classes R� LIN � P � NP � and Q are all closed under com�

position� whereas the other classes de�ned above are not� In addition� Tal���
and Bin��� are q�time isomorphic�

Observe that for a function f�x�� � � � � xk� of several variables� the above
de�nitions are equivalent� if we declare the size of the input �x�� � � � � xk� to be
the maximum of the sizes jx�j� � � � � jxkj since we allow multiple tapes� This
occasionally simpli�es the computation of the complexity of various functions�

We refer the reader to Odifreddi ���� for the basic de�nitions of recursion
theory� Let �i�n be the partial recursive function of n variables computed by
the ith Turing machine Mi� If n � �� we will write �i instead of �i��� Given a
string � � f�� �g�� we write �si ��� � if Mi gives an output in s or fewer steps
when started on input string �� Thus the function �si is uniformly polynomial
time� We write �e��� � if ��s���se��� �� and �e��� � if not �e��� ��

The notion of a p�time structure was de�ned in section �� We need a few
re�nements of that de�nition�
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De�nition ��� �i� A p�time function f is honest p�time if there is a poly�
nomial function q such that for all x�� � � � � xn�

y � f�x�� � � � � xn�� ��i � n��jxij � q�jyj���

�ii� A p�time structure A is honest p�time if all of its functions are honest
p�time�

�iii� A structure A has honest witnesses if for any quanti�er�free
formula ��y� x�� � � � � xn�� there is a polynomial q such that for any a�� � � � � an �
A� if A j� ��y���y� a�� � � � � an�� then there is a z � A with jzj � q�ja�j�
� � �� janj� such that A j� ��z� a�� � � � � an��

Note that for an honest p�time function mapping Tal��� into Tal���� Nerode
and Remmel showed in ���� that f�� is also honest p�time�

For a group� we will distinguish two types of computability� The structure
of a group G is determined by the binary operation which we will denote by
the addition sign �G� since we are interested in Abelian groups� We let eG

denote the additive identity of G� However� the inverse operation� denoted by
invG� may also be included as an inherent part of the group� Thus we have the
following distinction�

De�nition ��� A group G is ��computable if �G��G� eG� is ��computable�
and is fully ��computable if �G��G� invG� eG� is ��computable�

It is easy to see that any recursive group is also fully recursive� since invG�a�
can be computed as the least member b of G such that a�G b � eG� where the
elements of G are ordered �rst by length and then lexicographically for elements
of the same length�

On the other hand� the fully p�time groups make up a proper subclass of the
p�time groups� as shown by Proposition ��� of �����

De�nition ��� For any complexity class � and any structures

A � �A� fRA
i gi�S � ff

A
i gi�T � fcigi�U ��

and
B � �B� fRB

i gi�S � ff
B
i gi�T � fcigi�U��

we say that A and B are ��isomorphic if there is an isomorphism f from A
onto B and ��computable functions F and G such that f � F dA �the restriction
of F to A� and f�� � GdB�
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� Polynomial time sets and isomorphisms

In this section we shall give a number of useful lemmas about the relations
between the various standard universes that we will consider in our study of
feasible structures� The most basic standard universe is the set �� where �
is a �nite alphabet and in particular where � � f�� �g� f�g� or f�g� Other
standard universes include the set Tal��� of tally representations of natural
numbers� the set Bin��� of binary representations of natural numbers� and� for
any k� the set Bk��� of k�ary representations of natural numbers� In recursion
theory� all of these sets are recursively isomorphic and therefore interchangeable�
For our purposes� we must consider carefully which of these isomorphisms are
polynomial time or even polynomial time in one direction�

First we need to explicitly de�ne a polynomial time pairing function� For
any �nite alphabet �� there is a natural embedding 
 of �� into Bin��� given
as follows� We may suppose that � � f�� �� �� � � �� ng for some n� Let 
�
� � �
and� for � � �i�� � � � � ik�� let


��� � �i�����i���� � � ���ik���

The function 
 is actually an isomorphism from �� onto Bin��� and has an
inverse 
��� It is also clear that� for each n� the set 
�f�� �� � � � � ng�� is linear
time �uniformly in n�� Thus we can normally assume that an arbitrary structure
has universe a subset of Bin����

The coding function h��� ��� � � � � �kik for ��� � � � � �k � f�� �g� is now de�ned
by

h��� ��� � � � � �kik � 
���
�����

��� � � �� �k��
����k��

Let Qk � fh��� ��� � � � � �kik � �i � f�� �g� for each ig� For i � �� � � �k�
the projection functions �ki from Qk onto f�� �g� are implicitly de�ned by the
equation

� � h�k� ���� �
k
����� � � � � �

k
k���ik�

The subscript k will normally be omitted� It is easy to see that the sets Qk and
Bk��� are all linear time and that the functions �ki � and h � � � � � ik are all
computable in linear time�

Given two subsets A and B of f�� �g�� de�ne

A� B � fha� bi � a � A� b � Bg

and
A� B � fh�� ai � a � Ag � fh�� bi � b � Bg�

It is clear that if A and B are p�time� then both A�B and A�B will also be
p�time�

Now� for each k � �� a natural number in �reverse� k�ary form is simply a
string � � f�� �� � � � � k � �g� which is either � or else ends with an element of
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f�� � � � � k� �g� Thus the set Bk��� of k�ary representations of natural numbers
is a linear time subset of f�� �� � � � � k � �g�� Tal��� � f�g � f�g�� is of course
a linear time subset of f�� �g�� but is not polynomial time isomorphic to the
whole set� �This will follow immediately from Lemma 
�� below�� For a string
� � bk�n� � Bk��� with n 	 �� let �k��� be the unary representation� �n� of n
and let �k��� � �� We now state a sequence of lemmas which will be useful for
our main results� Most of these lemmas are proved in ���� or ��
��

Lemma ��� 	a
 Suppose that A is a polynomial time structure and that �
is a polynomial time set isomorphism from A onto a set B� Then B is
a polynomial time structure� where the functions and relations on B are
de�ned to make � an isomorphism of the structures�

	b
 Suppose that A is an EXPTIME structure and that � is a polynomial time
set isomorphism from A onto a set B� Then B is an EXPTIME struc�
ture� where the functions and relations on B are de�ned to make � an
isomorphism of the structures�

	c
 Suppose that A is a q�time time structure and that � is a q�time time set
isomorphism from A onto a set B� Then B is a q�time time structure� where
the functions and relations on B are de�ned to make � an isomorphism of
the structures�

Proof� We sketch the proof for the p�time case� The other cases are sim�
ilar� To simplify the proof� let us suppose that A has one function fA and
one relation RA� Observe �rst that B is a polynomial time set� since b �
B �� ����b� � A� The function fB is polynomial time� since fB�b�� � � � � bn� �
��fA�����b��� � � � � �

���bn���� The relationR
B is polynomial time� since RB�b�� � � � � bn� ��

RA�����b��� � � � � �
���bn��� �

Next we state two lemmas which relate tally representation of a structure
to its binary representation and� more generally� to its k�ary representation�
Part �b� of the �rst lemma is an improvement of Lemma ��� of ���� where the
computation was bounded in polynomial time�

Lemma ��� For each k 	 ��

	a
 Bin��� is linear time isomorphic to f�� �g��

	b
 There is a linear time function p such that� for all n� both the computation
of �k�bk�n�� � �n and the inverse computation of ���k ��n� � bk�n� can be
computed in time p�n�	

	c
 For each n 	 � and � � bk�n�� kj�j�� � n � � � kj�j
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Proof� We sketch the proof of �b� for k � �� The basic computation in either
direction consists of enumerating the binary numbers from � to n on one tape
while either writing or reading n �	s on the other tape� The enumeration of the
binary numbers is done by repeatedly adding � by the usual algorithm� which
consists of replacing �	s with �	s while looking for the �rst �� and then replacing
the �rst � with a �� If we de�ne h�n� to be the total number of symbols written
by this procedure for the numbers from k � � up to k � �n��� then we observe
that h��� � � and that� in general� h�n��� � n����h�n�� This is because the
numbers from �n up to �n�� � � are obtained by writing �n� which takes n� �
steps and then essentially writing the numbers from � up to �n� � again� while
leaving the �nal � on the end of each� Now it is easy to see by induction that
h�n� � �n��� n� � for each n� Counting a slightly smaller number of steps for
returning to the beginning of the string� we see that all of the binary numbers
from � up to k � �n� � may be written in total time � �h�n� � �n��� � � 
k�
For any number k with �n�� � k � �n� the binary numbers from � to k may be
written in total time � �n�� � � � �k� �

For any subset M of �� let tal�M � � ftal�n� � n � Mg� let bin�M � �
fbin�n� � n �Mg� and for any �nite k 	 �� let bk�M � � fbk�n� � n �Mg�

Lemma ��� For any �nite k 	 �� any M � � and any oracle X


	a
 tal�M � � PX �� bk�M � � DEXTX 	

	b
 tal�M � � NPX �� bk�M � � NEXTX �

	c
 bk�M � � PX � tal�M � � LINX �

Proof� We give the proof for k � �� where bk�M � � bin�M �� The proof of
�b� is the same as the proof of �a��

�a� Suppose �rst that tal�M � � PX � Then there is a procedure with oracle
X which tests whether tal�n� � tal�M � in time � nc for some �xed c and
all n � �� To test whether � � bin�n� � bin�M �� we �rst compute tal�n��
which requires time � �n by the proof of Lemma 
��� Then we test whether
tal�n� � tal�M �� which requires � nc steps by assumption� Now by part �c� of
Lemma 
��� nc � ��j�j�c � �cj�j so that bin�M � � DEXTX �

Next suppose that bin�M � � DEXTX � Then there is a procedure with
oracle X which tests whether bin�n� � bin�M � in time � �cjbin�n�j for some
�xed c and all n� To test whether tal�n� � tal�M �� we �rst compute bin�n��
which requires time � �n by the proof of Lemma 
��� Then we test whether
bin�n� � bin�M �� which requires � �cjbin�n�j steps by assumption� Now by
part �c� of Lemma 
��� �cjbin�n�j � ��jbin�n�j�c � ��n�c � min��� n��c� Hence
tal�M � � PX �

�c� Suppose that bin�M � � PX � so that we can test � � bin�n� � bin�M � in
time � j�jc� Now let j�j � r� so that �r�� � n � �r� Then as in part �a� above�
we see that we can test tal�n� � tal�M � in time � rc� Now it is clear that for
su�ciently large r� rc � �r�� � n� Thus tal�M � � LINX � �
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We note that the assumption that tal�M � � LINX actually implies that we
can test � � Bin�M � in time � c�j�j for some �xed c and almost all ��

For any structure M with universe M 	 �� let tal�M� be the tally represen�
tation ofM with universe tal��� and relations and functions de�ned so that the
mapping taking n to tal�n� is an isomorphism from M onto tal�M�� bin�M�
and bk�M� are similarly de�ned� Lemma 
�� is easily extended to tally and
binary representations of relational structures M and one direction extends to
structures with functions�

Lemma ��� Let k � �� let M be a structure with universe M 	 � and let
A � tal�M� and B � bk�M�� Then

	a
 If A is p�time� then B is exponential time�

	b
 If B is exponential time� then A is EXPTIME�

	c
 If B is exponential time and� for all functions fM� fM�n�� � � � � nk� �
�c�n������nk� for some �xed constant c and all but �nitely many k�tuples�
then tal�M� is exponential time�

	d
 If B is exponential time and� for all functions fM� fM�n�� � � � � nk� � �n��
� � ��nk�

c for some �xed constant c and all but �nitely many k�tuples� then
A is p�time�

	e
 If B is polynomial time and� for all functions fM� fM�n�� � � � � nk� � c�n��
� � ��nk� for some �xed constant c and all but �nitely many k�tuples� then
A is linear time�

Proof� We sketch the proofs for k � ��
�a� Suppose that A is p�time� It follows from Lemma 
�� that B has a

exponential time universe and it is easy to see that the relations of B are also
exponential time� For simplicity� suppose that fM is a unary function� �The
general proof can be found on p� ��� of ������ Suppose tal�m� � fA�tal�n���
By assumption� tal�m� may be computed from tal�n� in time � nc for some
�xed c and all n � �� so that m � nc� To compute fB �bin�n��� we �rst
compute tal�n� from bin�n�� which takes exponential time by Lemma 
��� Then
we compute tal�m� � fA�tal�n�� in A� which takes time � nc � �cjbin�n�j�
Finally� we must compute bin�m� from tal�m�� This �nal computation takes
time � �m � �nc � ���jbin�n�j�c� Thus B is exponential time�

For parts �b�� �c� and �d�� suppose that B is exponential time� Then we
easily see that the universe of A and the relations of A are polynomial time� For
simplicity� let fM be a unary function� The procedure for computing fA�tal�n��
has three parts as above� First� compute bin�n� from tal�n�� which takes time
� �n by Lemma 
��� Next� compute bin�m� � fB�bin�n�� which takes time �
�cjbin�n�j � ��n�c� The �nal and most time�consuming part of the computation
is to compute tal�m� from bin�m�� which takes time � �m� In general� we only
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know that jbin�m�j � �cjbin�n�j � ��n�c so that m � ���n�
c

and hence we can
only conclude that A is EXPTIME� For part �c�� we have m � �cn and hence
A is exponential time� For part �d�� we have m � nc so that A is p�time�

�e� It follows easily from the hypothesis and Lemma 
�� that the universe
of A and the relations of A are linear time� Now let tal�m� � fA�tal�n� and
observe that by the hypothesis� m � nc� The computation of bin�n� from tal�n�
takes time � �n by Lemma 
��� Since B is polynomial time� the computation of
bin�m� � fB�bin�n�� takes time � jbin�n�jd for some �xed d� It follows as in the
proof of Lemma 
���c� that this computation can almost always be done in time
� n� Finally� the computation of tal�m� from bin�m� takes time � �m � �nc�
Thus A is a linear time structure� �

Note that the hypothesis needed for part �d� follows from the assumption
that� for some �xed constant c and all but �nitely many k�tuples�

jfB���� � � � � �k�j � c�j��j� � � �� j�kj��

Nerode and Remmel de�ne in ���� the notion of a p�time equivalence type
�PET� by saying that two subsets A and B of Tal��� are p�time equivalent if
there is a partial ��� honest p�time function f with domain including A such
that f�A� � B� It is natural to extend this notion to p�time subsets of Bin���
by de�ning two sets A and B to be p�time isomorphic if there is a ��� p�time
function mapping A onto B whose inverse is also p�time� �We may assume that
f and f�� have domain Bin��� since A and B assumed to be p�time��

It follows from Theorem � of ���� that for any p�time subset A of Tal����
there are in�nitely many p�time subsets of Tal��� which are recursively iso�
morphic to A but not p�time isomorphic to A� We can now characterize those
subsets of f�g� which are polynomial time isomorphic to Tal��� and put con�
ditions on those subsets of f�� �g� which are polynomial time isomorphic to
Tal���� The following was proved in �����

Lemma ��� 	a
 Let A be a p�time subset of Bin��� which is polynomial time
isomorphic to Tal��� and let a�� a�� � � � list the elements of A in the stan�
dard ordering� �rst by length and then lexicographically� Then for some
j�k and all n � �� n � janjj and janj � nk�

	b
 Let A be a p�time subset of Tal��� and let a�� a�� � � � list the elements of A
in the standard ordering� Then the following are equivalent�

�� A is p�time isomorphic to Tal����

�� For some k and all n � �� janj � nk�


� The canonical map taking �n to an is p�time�

Lemma ��
 For any in�nite set M of natural numbers� tal�M � � ftal�n� �
n �Mg and bin�M � � fbin�n� � n �Mg are not p�time isomorphic�
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Lemma ��� Let Bk��� be the set of k�ary representations of natural numbers�
Then

	a
 The addition� subtraction� multiplication and division �with remainder�
functions from Bk����Bk��� to Bk���� the order relation on Bk��� and
the length function from Bk��� to Bk��� are all p�time� �As usual� m�n
is set to � if m � n��

	b
 Bin��� n f�g� is p�time isomorphic to Bin����

	c
 For each k � � and for A equal to either the set Bk��� or the set f�� �� � � � � k�
�g�� there is a polynomial time isomorphism � from A to Bin��� and a
constant c such that� for all but �nitely many a � A� jaj � j��a�j � cjaj�

We will frequently want to combine structures using disjoint unions and
direct sums� Nerode and Remmel proved in ���� that there exist p�time subsets
A� B and C of Tal��� such that A is not p�time isomorphic to B but A � C
is p�time isomorphic to B � C and similarly there exist subsets X� Y and Z
of Tal��� such that X is not p�time isomorphic to Y but X � Z is p�time
isomorphic to Y � Z� This result of Nerode and Remmel also easily follows
from our next results due to Cenzer and Remmel �����

Lemma ��� 	a
 Let A be a p�time subset of Tal���� Then A�Tal��� is p�time
isomorphic to Tal��� and A� Bin��� is p�time isomorphic to Bin����

	b
 Let A be a nonempty p�time subset of Tal���� Then A � Tal��� is p�time
isomorphic to Tal��� and A� Bin��� is p�time isomorphic to Bin����

Proof� �a� First observe that A � Tal��� is p�time isomorphic to the set
C � f�a � a � Ag � f�n � � � n � Tal���g by the obvious isomorphism�
Now let c�� c�� � � � enumerate C in increasing order� Since C contains every odd
number� it is clear that cn � �n��� It follows from Lemma 
�� that C is p�time
isomorphic to Tal����

Next� A�Bin��� is certainly p�time isomorphic to �A�Tal����� �Bin���n
Tal����� Now by the preceding discussion� A � Tal��� is p�time isomorphic to
Tal���� It follows that A�Bin��� is p�time isomorphic to Tal���� �Bin��� n
Tal���� which is clearly p�time isomorphic to Bin����

�b� If A has only one element� this is obvious� If A has at least two elements�
let a be one of them� Then A�Tal��� is p�time isomorphic to �fag�Tal�����
��Anfag��Tal����� Now the �rst part of this sum is obviously p�time isomorphic
to Tal��� and the second part is p�time isomorphic to some p�time subset of
Tal���� It now follows from part �a� that the sum is p�time isomorphic to
Tal����

For the case of Bin���� again if A consists of single element� the result is
trivial� Otherwise� let a be the least element of A and consider the following
mapping� If b � A and b �� a� then let f�hb� �i� � ����b�� The idea is to de�ne

��



f so that the image of fag�Bin��� under f is Bin��� n f��A n fag��Bin����
by letting f�ha� bin�n�i� be the n�th element of Bin��� n f��A n fag��Bin�����
Observe that for any � � bin�q� � Bin���� which is not of the form ����b� for
some b � A n fag� we can �nd in polynomial time in j� j all strings of the form
�kb

�
��b� such that

�� b 	 ��

�� �b � A and

�� under the usual ordering on Bin���� �kb
�
��b� � � but �kb�����b� �� � �

That is� since A is a polynomial time subset of Tal���� we can test each element
of the �b with � � b � j� j for membership in A in bk steps for some �xed k
and hence �nd all strings of the form �b where q � b 	 � and �b � A in at

most
Pj�j

j�� j
k � �j� j�k�� steps� Thus in polynomial time in j� j� we can �nd all

the strings �kb�
�
��b��� � � � � �kbp

�
��bp� satisfying properties ������� above� This

mean that exactly
Pp

i�� �
ki elements of Bin��� which are less than or equal to �

are in the image of f��Anfag��Bin����� Thus we let f�ha� bin�q�
Pp

i�� �
kii� �

� � It follows that f�� is polynomial time� To see that f is polynomial time�
note that f�ha� bin�n�� � bin�n���� so a similar computation starting with � �
bin�n���� will allow us to �nd the n�th element ofBin���nf��Anfag��Bin����
in polynomial time in jbin�n�j� �

It follows easily from the lemmas above that any p�time relational structure
A is recursively isomorphic to a p�time structure B such that A and B are not
p�time isomorphic� �We assume that A has universe Bin�A� � fbin�a� � a � Ag
for some A 	 � and let B have universe Tal�A� � ftal�a� � a � Ag�� Now
these structures are actually exponential�time isomorphic� However� there is a
stronger result�

Lemma ��� For any p�time set A � fbin�a�� � bin�a�� � � � �g� there is a set
M � M �A� � fbin�m�� � bin�m�� � � � �g such that M is p�time and the map
which takes bin�mi� to bin�ai� is p�time� but there is no primitive recursive map
from A into M which maps at most k elements of A to any element of M � where
k is any �xed �nite number� Furthermore� M may be taken to be a subset of
Tal����

Proof� Let �e be the e�th primitive recursive function mapping Bin��� into
Bin��� and� for each e� let te be the total time required to test all numbers
up to ae for membership in A and to compute �i�bin�aj�� for all j� i � ae�
clearly te � te��� For each e� let me � �te� so that bin�me� � �te� and
jbin�me�j � te � �� It follows that �e�bin�ai�� � bin�mi� for all i � e� since
by convention it takes at least k steps to compute an output of length k� Let
A� � fbin�me� � e � �g�

Here is the p�time algorithm for testing whether x � A�� First check to see
that x � �t� for some n� Then start to test bin���� bin���� � � � for membership in
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A� As soon as we �nd that bin�n� is e�th member of A so that bin�n� � bin�ae��
then compute in order �e�a��� � � � � �e�ae��� and ���ae�� � � � � �e�ae� and then
return to testing whether bin�n���� bin�n���� � � � are in A� If the total number
of steps reaches t exactly when the computation of some �e�ae� has just been
completed� then t � te so that x � bin�me� belongs to A�� Otherwise� x 
� A��
This argument also shows that the map which takes bin�me� to bin�ae� is p�
time� Finally� let M � M �A� � fbin�mi� � � i � �g� Then M is also p�time
since we can clearly check in polynomial time whether i is a square if we discover
that x � bin�me� at the end of the computation� The map taking bin�mi� � to
bin�ai� is p�time since we can test all numbers � ai� for membership in A in
time � jbin�mi��j and therefore determine ai from bin�mi� ��

Suppose now by way of contradiction that �e were a map from A into M �

which were at most k to �� Since each primitive recursive function has in�nitely
many indices� we may assume that e � k� Then

f�e�bin�a���� � � � � �e�bin�ae���g

must contain at least e distinct elements� so that at least one of them is �
bin�me��� which contradicts the observation above that �e�bin�ai�� � bin�me�
for all i � e and thus establishes the result�

Since Bin��� and Tal��� are primitive recursively isomorphic via the stan�
dard map ��� it follows that we could replace M in this argument with the set
M� � ftal�m��� tal�m��� � � �g� �

Remark �� The only properties of the set of primitive recursive functions
needed for this result is that the primitive recursive functions is a class of total
recursive functions which can be e
ectively listed� Thus in the statement of
Theorem 
�� we can replace the primitive recursive functions by any class of
total recursive functions which can be e
ectively listed�

Remark �� Letting k � �� we see that there is no primitive recursive embed�
ding of A into M �A�� Furthermore� there is no primitive recursive embedding
� of a co�nite subset C of A into M �A�� since if jA nCj � k� �� then we could
extend � to a map from A into M �A� which is at most k to � by mapping all
elements of A nC to some �xed element of M �A��

� The Existence of Feasible Structures

In this section� we shall survey a number of model existence results for polyno�
mial time structures� In particular� we will consider four existence questions for
any class C of structures�

� Is every recursive structure in C isomorphic to a polynomial time struc�
ture�

� Is every recursive structure in C recursively isomorphic to a polynomial
time structure�
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� Is every recursive structure inC isomorphic to a polynomial time structure
with a speci�ed universe such as the binary or tally representation of the
natural numbers�

� Is every recursive structure in C recursively isomorphic to a polynomial
time structure with a speci�ed universe such as the binary or tally repre�
sentation of the natural numbers�

The fundamental result for relational structures is due to Grigorie
 ���� and
�for structures with in�nitely many relations� to Cenzer�Remmel ����� Recall
that a structure with no function is said to be relational�

Theorem ��� Every relational structure is recursively isomorphic to a real time
structure with universe a subset of Bin��� and to a linear time structure with
universe a subset of Tal����

Sketch of Proof� We may assume without loss of generality that the struc�
ture A has universe �� The element a is represented in the binary real time
model by ��a� � �a�����t� where t is the time required to compute whether
Rj�x�� � � � � xt�j�� for all j � a and all tuples �x�� � � � � xt�j�� from f�� � � � � agt�j��

The set B � f��a� � a � �g is real time by the following algorithm�

Given bin�n�� start to read bin�n� from left to right� If at any time
we discover that bin�n� is not of the form �a�����t for some a and
t� then bin�n� 
� B� Otherwise� having read the �rst � in bin�n� so
that we have found a such that bin�n� � �a�����t� start the com�
putation which tests for all j � a and for all tuples �x�� � � � � xt�j��

from f�� � � � � agt�j�� whether Rj�x�� � � � � xt�j��� If the total computa�
tion �nishes in exactly t steps� then bin�n� � B� If the computation
either �nishes in fewer steps� or has not �nished by t steps� then
bin�n� 
� B�

Each relation Rj is real time� by the following algorithm�

Given �bin�n��� � � � � bin�nt�j�� � Bt�j�� �rst compute ak and tk for
each k � j so that bin�nk� � �ak�����tk� Then let t � maxft�� � � � � tt�j�g�
Now by the construction we can test whether Rj�a�� � � � � at�j�� in
time � t�

The tally representation of A has universe ftal�n� � bin�n� � Bg and is linear
time by Lemma 
�
�e�� �

Note that Theorem ��� allows us to conclude that if G is a recursive graph�
i�e� G � �V�E� where V � the vertex set of G� is a recursive set of natural num�
bers and the edge relation E is also recursive� then G is recursively isomorphic
to a polynomial time graph G�� However if G has a recursive k�coloring� then
to conclude that G is recursively isomorphic to a polynomial time graph with a
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polynomial time k�coloring requires a stronger version of Theorem ���� We will
present an improved version of Theorem ��� due to Cenzer and Remmel ����
which is their primary tool in their analysis of polynomial time combinatorial
structures and ��

��classes� The improved version of the theorem presented ap�
plies to structures with two distinct types of objects� the �rst type being the
normal universe of the structure� and with functions which map the �rst type
into the second type� The type of example that we have in mind is a function
from the vertices of a graph into the natural numbers which computes the degree
of a vertex or the color assigned to a vertex� The universe of the graph is now
expanded by adding a p�time set which represents the natural numbers and the
degree function or coloring now becomes part of the structure� Naturally� the
new objects are not vertices and therefore are not joined to any other objects
by edges�

Theorem ��� Let

C � �C�A�B� fRCi gi�S � ff
C
i gi�T � ��

be a recursive structure such that

	i
 A and B are disjoint subsets of C with C � A � B and B is a polynomial
time set	

	ii
 there is a recursive isomorphism from Bin��� onto a subset of
Bin��� nB with a p�time inverse	

	iii
 for each i � T � fi maps C into B	

	iv
 for each i � S� the relation Ri is independent of B� that is� for any
�x�� � � � � xn� � Cn� where n � s�i�� any j � n such that xi � B� and
any b � B� RCi �x�� � � � � xn� holds if and only if
RCi �x�� � � � � xj��� b� xj��� � � � � xn� holds	

	v
 for each i � T � the function fi is independent of B� that is� for any
�x�� � � � � xn� � Cn� where n � t�i�� any j � n such that xi � B� and
any b � B� fCi �x�� � � � � xn� � fCi �x�� � � � � xj��� b� xj��� � � � � xn��

Then there is a recursive isomorphism � of C onto a p�time structure M such
that ��b� � b for all b � B�

��� Structures with Functions

In contrast to purely relational structures� recursive structures with functions
need not be e
ectively isomorphic to feasible structures� The following results
are Theorems ���� ��� and ��� of �����

Theorem ��� Let L� be the language with exactly one function symbol f which
is unary�
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	a
 There is a recursive structure A � �A� fA� which is not recursively isomor�
phic to any primitive recursive structure�

	b
 There is an exponential time structure D � �D� fD� which is not recursively
isomorphic to any polynomial time structure�

Proof� �a� Let �A�� f��� �A�� f��� � � � be an e
ective list of all primitive re�
cursive structures over L� and let ��� ��� � � � be a list of all one�to�one partial
recursive functions� We must meet the following set of requirements in our
construction of A�

Ri�j � �j is not a recursive isomorphism from A to �Ai� fi��

To meet the requirements Ri�j� recursively partition f�� �g� into in�nitely
many disjoint in�nite recursive sets Si�j � We then de�ne A so that A �S
i�j Si�j � f�� �g

� and for all i� j� fA maps Si�j into Si�j �

We now �x i� j and then we de�ne f � fA on Si�j in stages� We let a�� a�� � � �
be some e
ective listing of Si�j � At stage s� we shall de�ne f�as�� We start by
de�ning f�a�� � a� at stage �� At stage s � �� compute �sj�a��� If �sj�a�� �

or if �s��j �a�� �� then we de�ne f�as� � as��� Otherwise� that is� if �sj�a�� �

but �s��j �a�� �� let x � �sj�a�� and do the following� Compute the sequence

x� fi�x�� fi�fi�x��� � � � � f
�s���
i �x�� where here f �k�i denotes f composed with itself

k times� Note that if �j were an isomorphism� then it must be the case that

�j�ak� � f
�k�
i �x� for all k� Thus if �j were an isomorphism� then it must be the

case that
f�as� � a� �� f

�s���
i �x� � x�

Thus if f
�s���
i �x� � x� then we de�ne f�as� � as��� If f

�s���
i �x� �� x� then we

de�ne f�as� � a�� Note that in either case� we will have ensured that �j cannot
be an isomorphism from A onto �Ai� fi��

�b� The proof of part �a� must be modi�ed in several ways� First� let
�E�� f��� �E�� f��� � � � be an e
ective list of all p�time structures whose universe
is contained in f�� �g� over L�� Let ��� ��� � � � be a list of all one�to�one partial
recursive functions which map f�� �g� into f�� �g�� We shall build our structure
�D� fD� so that D 	 Tal��� and we meet the following set of requirements�

Ri�j � �j is not a recursive isomorphism from D to �Ei� fi��

To meet the requirements Ri�j� we construct D as a disjoint polynomial�time
union of in�nite p�time sets D �

S
i�j Ti�j� De�ne the function � � Tal��� �

Tal����Tal���� Tal��� by ���� tal�i�� tal�j�� � tal���i� j����� and ��tal�n�
��� tal�i�� tal�j�� � tal��p� if ��tal�n�� tal�i�� tal�j�� � tal�p��

Note that tal�x� � tal���i� j� � �� can be computed from input
�tal�i�� tal�j�� in time a�x for some �xed constant a and that the computation of
tal�y� � tal��x� from input tal�x� can be computed in time at most b�y for some

��



�xed constant b � a� Thus the computation of tal�z� � ��tal�n�� tal�i�� tal�j��
from input �tal�n�� tal�i�� tal�j�� takes at most the following number of steps�

b�i� j� � bx� b�x � b��
x

� � � �� bz � b�� � � � � � �� z� � bz��

For each i� j� we let Ti�j � f��n� i� j� � n � �g� Then we can test whether
tal�z� � ��tal�n�� tal�i�� tal�j��� perform the computation of

���� tal�i�� tal�j��� ���� tal�i�� tal�j��� � � � � ��tal�n�� tal�i�� tal�j��

for bz� steps and see if the computation converges to z by that time� It follows
that the sets Ti�j are uniformly p�time and that D is also p�time� since

tal�z� � Ti�j �� ��n � z� tal�z� � ��tal�n�� tal�i�� tal�j��

and
tal�z� � D �� ��i� j � z� tal�z� � Ti�j �

We now �x i� j and de�ne f � fD on Ti�j � ftal�a��� tal�a��� � � �g� where
tal�an� � ��tal�n�� tal�i�� tal�j��� For each m� perform the following series of
computations for at most �am steps�

	�
 Start to compute �j�tal�a���� If this converges in less than �am steps� let
b� � �j�tal�a����

	�
 Check that b� � Ei�

	�
 Compute the sequence b� � fi�b��� b� � fi�b��� � � � � bm�� � fi�bm��

Let s be the least m such that the computations can be successfully com�
pleted in at most �am steps� Assuming the existence of b� � �j�a��� we can show
that such an s must exist� That is� it takes some constant amount c� of time to
compute b�� Since fi is p�time� fi�y� can be computed in time bounded by jyjk

for some �xed integer k 	 � and any y � f�� �g� with jyj 	 �� Let c� be the time
required to compute fi�
�� fi��� and fi���� if needed� and let c � c� � c�� Then
to compute the sequence b� � �j�a��� b� � fi�b��� � � � � bm�� � fi�bm� takes time
at most

t�m� � c� jb�j
k � �jb�j

k�k � � � � � c� jb�j
k � jb�j

k� � � � �� jb�j
km �

We need to show that this sequence is eventually dominated by the sequence
a�� a� � �a� � � � � � am � �am�� � We may assume without loss of generality that
jb�j 	 �� Now if m is large enough so that both c and m are � jb�jk

m

� then

t�m� � �m � ��jb�j
km � jb�j

�km�

Now let m be large enough so that jb�j� � ��
m

� k � �m� and m� � m � �m�

Then km � �m
�
and t�m� � ��

m��m
�

� ��
m��m

� ��
�m

� exp	�m�� To show
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that the latter is dominated by am� note �rst that a� � � and that� for any m�
am � m � �� it follows that am�	 � exp	�m � ���

The de�nition of f now proceeds in stages� as in part �a�� Let s be the least
m such that the computations described above can be successfully completed�
Now for t �� s� we let f�at� � at��� To compute f�as�� we let x � �j�a��

and compute f
�s���
i �x�� Then if f

�s���
i �x� � x� we de�ne f�as� � as��� If

f
�s���
i �x� �� x� then we de�ne f�as� � a�� Note that in either case� we will have
ensured that �j cannot be an isomorphism from D onto �Ei� fi��

It remains to be seen that the computation of f can be done in exponential
time� Given tal�x� � D� we �rst compute the unique triple �n� i� j� such that
tal�x� � ��tal�n�� tal�i�� tal�j��� This can be done in polynomial time since n� i
and j are all less than x� Next we perform the computations ���� ��� and ��� for
m � �� �� � � � � n in turn� This can be done in exponential time since each series
of computations is bounded by time �am � The remainder of the computation
of f�x� takes little time� We look for the least n� if any� such that the n�th
series of computations has been successfully completed� If m � n� then we

check to see if f
�s���
i �x� � x and let f�tal�am�� � tal��am � if so� otherwise�

f�tal�am�� � tal�a��� �

We note here that the functions in the previous theorem may be taken to
be permutations of the sets A and D� Then next two results show that we can
diagonalize over ��

� isomorphisms if the underlying language has at least two
unary function symbol or at least one n�ary function symbol with n � ��

Theorem ��� Let L� be the language with exactly two function symbols f and
g which are unary�

	a
 There is a recursive structure A � �A� fA� gA� which is not ��
� isomorphic

to any primitive recursive structure�

	b
 There is an exponential time structure D � �D� fD� gD� which is not ��
�

isomorphic to any polynomial time structure�

Theorem ��� Let L� be the language with exactly one function symbol h which
is binary�

	a
 There is a recursive structure A � �A� hA� which is not ��
� isomorphic to

any primitive recursive structure�

	b
 There is an exponential time structure D � �D�hD� which is not ��
� iso�

morphic to any polynomial time structure�

Two natural types of structures with functions will be considered below in
more detail� These are permutation structures �A� fA�� where fA is a permuta�
tion of the set A� and Abelian groups�

Next we state an unpublished theorem due to H� Freidman and J� Remmel
which characterizes when structures which are �nitely generated are isomorphic
to polynomial time structures�
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De�nition ��
 	a
 We say that
A � �A� fRA

i gi�������k� ffAi gi�������n� fcAi gi�������m� is �nitely generated if A
equals the closure of fcAi gi������m under the set of functions ffAi gi�������n�

	b
 A �nitely generated structure A as above has a double exponential time
decision procedure if

�� A 	 f�� �g� is double exponential time�

�� There is an algorithm which given any two terms t��cA� � � � � � c
A
m� and

t��cA� � � � � � c
A
m� in the free term algebra generated by cA� � � � � � c

A
m and

fA� � � � � � f
A
n � decides in ��

dk�
steps for some constant k� if t��c

A
� � � � � � c

A
m� �

t��cA� � � � � � c
A
m� where d is equal to the maximum of the depth of t��cA� � � � � � c

A
m�

and the depth of t��cA� � � � � � c
A
m��


� There is an algorithm which given a relation RA
i and terms

t��cA� � � � � � c
A
m�� � � � � tp�c

A
� � � � � � c

A
m� in the free term algebra generated

by cA� � � � � � c
A
m and fA� � � � � � f

A
n � decides in ��

dk� steps for some con�
stant k� if RA

i �t��c
A
� � � � � � c

A
m�� � � � � tp�c

A
� � � � � � c

A
m�� holds where d is

equal to the maximum of the depths of tj�cA� � � � � � c
A
m� for j � �� � � � � p�

Theorem ��� Let A � �A� fRA
i gi�������k� ffAi gi�������n� fcAi gi�������m� be a �nitely

generated structure� Then A is isomorphic to a polynomial time model i� A has
a double exponential time decision procedure�

��� Linear Orderings

There are several results on the existence of p�time linear orderings�

Theorem ��� �Grigorie� ����� Every recursive linear ordering L is isomor�
phic to a real time linear ordering L� � �Bin���� �L� ��

Sketch of Proof� We sketch a proof showing that L is isomorphic to a
p�time ordering� There are two cases� The �rst case is where L has either a
recursive increasing sequence

S � �s� �L s� �L s� �L � � ��

such that S is co�nal or S has a limit or L has a recursive decreasing sequence

D � �d� 	L d� 	L d� 	L � � ��

such that D is co�nal or D has a limit�
In this case� we have a p�time copy of either S or D with universe Bin���

and we can make a p�time copy of L n S �or L nD� with universe a subset of
Tal��� by Theorem ���� Then we can apply Lemma 
�� to combine the two
orderings into one p�time ordering with universe Bin��� which is recursively
isomorphic to L�
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The second case is where no such sequences exist� In this case L is isomorphic
to � �Z� � � �� for some recursive ordinal �� Here Zis the order type of the
integers� Then there are two subcases� First if � has a �rst or last element
or has a pair of elements x �L y such y is an immediate successor of x� then
L contains an explicit recursive copy of D � � � �� which is isomorphic to a
p�time linear ordering with universe Bin���� We can make a p�time copy of
L n D with universe a subset of Tal��� by Theorem ���� Then we can apply
Lemma 
�� to combine the two orderings into one p�time ordering with universe
Bin���� The only other subcase is that � is a dense linear ordering without
endpoints so that � is isomorphic to the rationals Q� But in this case it is easy
to construct a p�time linear ordering with universe Bin��� which is isomorphic
to L� �

The natural question is whether the isomorphism in the previous theorem is
e
ective� It should be observed that the proof is not uniform� Indeed in case ��
we only constructed an isomorphic copy and not a recursively isomorphic copy
of L� The next result due to Remmel is Theorem ��� of ���� which shows that
in case � the isomorphism cannot be replaced by a recursive isomorphism�

Theorem ��� Let A 	 f�� �g� be any in�nite p�time set and let L be a recursive
linear ordering which is isomorphic to � �Z� � � �� for some linear ordering
�� Then there exists a recursive linear ordering K which is isomorphic to L but
which is not recursively isomorphic to any p�time linear ordering whose universe
is A�

Sketch of Proof�
We will not give the full proof as it requires an in�nite injury priority argu�

ment� However we will give the proof in the case where the L is isomorphic to
� � �� since in that case� a simple �nite injury priority argument su�ces�

Recall that �i is the i�th partial recursive function and let R�� R�� � � � be an
e
ective list of all polynomial time binary relations on f�� �g�� For simplicity�
we let hA�Rei denote the structure with universe A and relation R which is the
restriction of Re to A�A�

Let ��� ��� � � � be an e
ective enumeration of A in the usual order ��rst by
length and then by lexicographic order��

We shall construct our desired recursive linear ordering L in stages� Let
��� ��� � � � be an e
ective listing of f�� �g�� At any given stage s� we shall specify
two sequences as�� a

s
�� � � � � a

s
ns

and bs�� b
s
�� � � � � b

s
ns

for some ns � s such that Bs �
f��� � � � � ��ns��g � fas�� b

s
�� a

s
�� b

s
�� � � � � a

s
ns
� bsnsg� Moreover� at stage s we shall

de�ne the ordering � � �L on Bs � Bs so that

as� � as� � � � � � asns � bsns � bsns�� � � � � � bs��

Our construction will ensure that for all i� lims a
s
i � ai and lims b

s
i � bi

exist� Moreover� our construction will ensure that f�� �g� � fa�� b�� a�� b�� � � �g
and that
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	a
 for all i� ai � ai�� and bi�� � bi and

	b
 for all i and j� ai � bj�

Thus �f�� �g�� �L� will have order type � � ��� To ensure that L is not
recursively isomorphic to �A�Re� for any e� we shall meet the following set of
requirements

P
e�k�� There exist n and m such that one of the following four conditions
holds�

	i
 �k�an� � or �k�an� � x 
� A�

	ii
 �k�bm� � or �k�bm� � x 
� A�

	iii
 �k�an� � x � A and there exist n � � elements v�� � � � � vn of A such that
�vi� x� � Re for i � �� � � � � n�

	iv
 �k�bm� � y � A and there exist m � � elements w�� � � � � wm�� of A such
that �wi� y� 
� Re for i � �� � � � �m� ��

We write �wi� y� 
� Re rather than �y� wi� � Re in clause �iv� to allow for the
possibility that Re is not actually a linear ordering�

It is easy to see that if requirement P
e�k� is satis�ed� then �e is not a re�
cursive isomorphism from L � �f�� �g�� �L� onto �A�Re�� Thus meeting all the
requirements P
e�k� ensures that L is not recursively isomorphic to any p�time
linear ordering with universe A�

Our basic strategy for meeting a requirement Pz� where z � �e� k�� is as
follows� Let us assume that s 	 z is a stage large enough so that requirements
P�� � � � � Pz�� no longer require action at any stage t � s� Then at stage s� we
consider asz� Our construction will then ensure that asj � atj for all j � z and
t � s unless there is a stage u � s such that �uk�a

s
z� �� Of course if there is no

such u� then asz � az and az will witness that requirement Pz is satis�ed �by
virtue of clause �i���

Now if there is such a stage u� then let x � �uk�a
s
z�� If x 
� A� then again we

will simply ensure asz � az so that once again az will witness that requirement
Pz is satis�ed� If x � A� then we will compare x to the �rst 
nu��� 
 elements
of A �in the �xed order ��� ��� � � � prescribed above� with respect to the binary
relation Re� Note that since A and Re are polynomial time� we can e
ectively
make these 
nu�� � 
 comparisons� There are two possibilities�

	i
 There are h � �nu�� � � of these elements v of A such that �v� x� � Re  
denote these elements by v�� � � � � vh���

	ii
 There are h � �nu�� � � of these elements w of A such that �w� x� 
� Re  
denote these elements by w�� � � � � wh���
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In case �i�� we will simply ensure asz � az� But then az is preceded by exactly
z elements in L� where z � nu��� whereas x � �k�az� is preceded by at least
�nu�� � � elements in hA�Rei� Thus �k is not an isomorphism from L onto
�A�Re��

In case �ii�� we will switch asz � au��z from the � side of L to the �� side
of L� That is� we shall let nu � �nu�� � z � � and let bunu���i � anu���i��

for i � �� � � � � nu � nu��� We also let bui � bu��i for i � nu��� Then our
construction will ensure that for all t � u� btnu � bunu � asz� Thus in this
case� there will be precisely nu � � elements w �namely b�� � � � � bnu� such that
�w� bnu� 
��L� However� in �A�Re� there are at least �nu��� � elements x such
that �x� �k�bnu�� 
� Re� But nu � � � �nu�� � � � z � �nu�� � �� so that �u
cannot be an isomorphism from L onto �A�Re�� Our construction will ensure
that asz can switch from the � side to the ���side of L only for the sake of
requirements P�� � � � � Pz� The usual priority argument will then show that asz
!switches sides" for at most �nitely many s�

We shall employ a set of movable markers �e to help us keep track of which
requirements we have acted on� The idea is that if we have taken an action as
described above which ensures auz will witness that requirement Pz is satis�ed�
then we will place a �z marker on auz � Thus at any given stage s� either �z is
inactive� i�e�� �z does not rest on any element at stage s� or �z is active� i�e�� �z
rests on some element x � fas�� b

s
�� � � � � a

s
ns
� bsnsg� If �z is active� we let �z�s� � x�

where x is the element on which �z is placed�

CONSTRUCTION�

Stage ��

Let a�� � ��� b�� � ��� and declare a�� � b��� We let �z be inactive for all z
at stage ��

Stage s� �� Assume we have de�ned n � ns� as�� b
s
�� � � � � a

s
n� b

s
n so that n � s

and
fas�� b

s
�� � � � � a

s
n� b

s
ng � f��� � � � � ��n��g � Bs�

Moreover� assume we have de�ned a linear order � � �L on Bs �Bs so that

as� � as� � � � � � asn � bsn � bsn�� � � � � � bs��

Look for a p � s such that �p is inactive at stage s and �
s
k�a

s
p� �� where p � �e� k��

If there is no such p� then for all z� let �z be inactive at stage s�� if and only
if �z is inactive at stage s� If �z is active� let �z�s � �� � �z�s�� In addition�
let as��

i � asi and bs��
i � bsi for all i � n � ns� Finally� let ns�� � n � ��

��n�� � as��
n�� and ��n�	 � bs��

n�� and extend our de�nition of � � �L to
Bs�� � Bs�� by declaring

as��
� � � � � � as��

n�� � bs��
n�� � � � � � bs��

� �

��



If there is such a p� let p � p�s��� � �e�s���� k�s���� � �e� k� be the least such
p and x � x�s��� � �k�asp�� If x�s��� 
� A� then proceed exactly as in the case
where p�s��� is not de�ned� except declare �p active and let �p�s��� � as��

p �
If x�s � �� � A� then �nd the �rst 
ns � 
 elements of A� Now compare these
elements to x with respect to Re� We will then be in one of two cases�

Case �� There are h � �ns � � elements v�� � � � � vh�� among the �rst 
ns � 

elements of A such that �vi� x� � Re for i � �� �� � � � � h � �� In this case� we
proceed exactly as in the case where x�s� �� 
� A�

Case �� Otherwise� there must be h�� elements w�� � � � � wh��� among the �rst

ns�
 elements of A� such that �wi� x� 
� Re for all i� Then we let as��

i � asi for
i � p and bs��

j � bsj for all j � n � ns� Set ns�� � �n���p� Let bs��
n�i � asn�i��

for i � �� � � � � n���p and let as��
p�j � ��n���j for j � �� � � � � �n����p� Activate

the �p marker and place it on bs��
ns��

� asp� Remove any markers �z that were on
elements among asp� � � � � a

s
n and make them inactive� Any marker �z which was

active at stage s where �z�s� � fas�� � � � � a
s
p��� b

s
�� � � � � b

s
ng is still active at stage

s � � and �z�s � �� � �z�s�� Markers �z where z �� p which were inactive at
stage s remain inactive at stage s� �� Finally� extend � � �L to Bs�� �Bs��

by declaring

as��
� � � � �� as��

ns��
� bs��

ns��
� � � � � bs��

� �

This complete our construction� Because A is a polynomial time set and each
Re is a polynomial time relation� it easily follows that each stage is completely
e
ective� The following facts are easily proved by induction�

	�
 For all s� ns � s�

	�
 For all s� fas�� b
s
�� � � � � a

s
ns
� bsnsg � f��� � � � � ��ns��g�

	�
 Our de�nition of �L is consistent� that is� if i� j � �ns � � and stage s� we
declare �i �L �j� then for all t � s� we declare �i �L �j at stage t�

Note that these facts imply that L � �f�� �g�� �L� is a recursive linear
ordering� because to decide if �i � �j� we simply go to stage s � maxfi� jg and
then �i � �j if and only if at stage s� we declare �i � �j�

Next we prove two lemmas which will complete the proof that L has the
desired properties�

Lemma ���� For each z� lims a
s
z � az and lims b

s
z � bz exist and there is a

stage tz such that either �z is inactive at stage s for all s � tz or �z is active
at stage s and �z�s� � �z�tz� for all s � tz�

Proof� We proceed by induction on z � �e� k�� By induction� we can assume
that there is a stage u 	 z large enough so that

��



	i
 asj � auj and bsj � buj for all j � z and s � u and

	ii
 for each j � z� either �j is inactive at stage s for all s 	 u or for all s � u�
�j is active at stage s and �j�s� � �j�u��

Note that our construction ensures that a �j marker can be removed from
an element at stage s only if �j�s � �� � ask for some k and we take action to
meet a requirement �p�s� at stage s where p�s� � k� Similarly� the only way

ask �� as��
k is if p�s � �� � k and we act according to Case � at stage s � ��

Moreover� our construction ensures that if j � ns� then btj � bsj for all s � t� It
follows that lims b

s
z � buz � Now if �z is active at stage s� then our choice of u

ensures p�s� 	 z for all s 	 u so that lims a
s
z � auz and �z is active for all s 	 u�

If �z is not active at stage u� then either

	i
 �sk�a
u
z � � for all s � u� in which case� for all s � u� �z is inactive at stage s�

p�s� 	 z and asz � auz � or

	ii
 There is an s 	 u such that �sk�a
u
z � ��

In case �ii�� let t be the least s 	 u such that �tk�a
u
z � �� Then our choice

of u ensures that� for all u � s � t� p�s� 	 z and �z is inactive at stage s�
so that p�t � �� will be de�ned and p�t � �� � z� But then at stage t � �� �z
becomes active and is placed on either at��

z or bt��
nt��

� If �z is placed on at��
z �

then at��
z � atz and �z will never be removed from at��

z � This is because �z can
be removed from at��

z only if p�s� � z for some s 	 t� �� which is ruled out by
our choice of u� If �z is placed on bt��

nt��
� then again �z can never be removed

from bt��
nt��

� Thus in either case �z will remain active for all s � t� �� But this

means p�s� 	 z for all s � t� �� so that asz � as��
z for all s � t� �� �

Lemma ���� Requirement Pp is satis�ed for all p�

Proof� Let p � �e� k� and let sp be a stage such that sp 	 p and

	i
 ��s � sp���j � p��asj � a
sp
j and bsj � b

sp
j � and

	ii
 sp � maxfto� � � � � tpg� where tz is a stage such that either

	a
 for all s � tz� �z is active at s� or

	b
 for all s � tz� �z is inactive at s�

It then easily follows from our construction that if �p is inactive at stage sp�
then �sk�a

s
p� � and asp � a

sp
p for all s � sp� Thus �k�ap� �� where ap � lims�a

s
p��

Hence� the requirement Pp is automatically satis�ed� If �p is active at stage sp�
then there are two possibilities� The �rst is that �p�s� � asp � ap� in which case
our construction guarantees that either �sk�ap� 
� A or �sk�ap� � A but there are
at least p�� elements v�� � � � � vp � A such that �vi� �k�ap�� � Re for i � �� � � � � p�

��



The second possibility is that �p�s� � bsm � bm for some m � nsp � In this case�
our construction ensures that �sk�b

s
m� � A and there are at least m�� elements

w�� � � � � wm�� � A such that �wi� �k�bm�� 
� Re for i � �� � � � �m� Thus in any
case� Pp is satis�ed� �

It now follows from Lemma ���� that ai �L ai�� and bi�� �L bi for all i and
that ai �L bj for all i and j� so that L is isomorphic to ����� By our remarks
preceding the construction of L� it follows that meeting all the requirements
Pp ensures that L is not recursively isomorphic to any polynomial time linear
ordering over A�

In the general case� if � is a recursive linear ordering� then a �nite injury
priority argument very similar to the one given above for � � �� will prove
the theorem� However� the only thing that we can conclude from the fact that
��Z� �� �� is a recursive linear ordering is that � is a ��

� linear ordering and
in that case� a more complicated in�nite injury priority argument is required�
�

We note that in the special case of � � ��� one can make K have universe
Tal��� when A � Bin��� �This is Theorem ��� of ������

Cenzer and Remmel ���� gave a general condition which implies that a re�
lational structure is recursively isomorphic to a p�time structure with universe
Bin���� This condition can be thought of as a generalization of the argument
in case � of Gregorie
	s Theorem on linear orderings�

De�nition ���� Let A be a recursive substructure with universe A of the re�
cursive relational structure M with universe M � Then A is said to be a highly
recursive relatively indiscernible binary substructure of M if

��� There is a recursive map f from A to Bin��� which induces a p�time

model fM� �Let ai � f���bin�i����
��� For any m�ary relation R�x�� � � � � xm� of M� any �xed sequence

b�� � � � � bk �M nA with k � m and any �xed sequence � � I� � � � � � Ik � m� let

Rb������bk
I������Ik

denote the �m� k��ary relation on M �A which results by substituting
bIj for xIj for j � �� � � � � k�

Then� for any such R� � � I� � � � � � Ik � m and b�� � � � � bk �M nA� either

Rb������bk
I������Ik

holds for all but �nitely many elements in �M � A�m�k� or �Rb������bk
I������Ik

holds for all but �nitely many elements in �M �A�m�k�
Furthermore� there is a uniform e�ective algorithm which� given an index for

R and sequences b�� � � � � bk �MnA and I�� � � � � Ik� will compute whether Rb������bk
I������Ik

holds for all but �nitely many elements in �M � A�m�k or �Rb������bk
I������Ik

holds for

all but �nitely many elements in �M � A�m�k� along with with a complete list
of the �nitely many sequences of �M � A�m�k which are exceptions�

Theorem ���� Suppose that A is a highly recursive relatively indiscernible bi�
nary substructure of the relational structureM� ThenM is recursively isomor�
phic to a p�time structure with universe Bin��� �and therefore also recursively
isomorphic to a p�time structure with universe Tal�����
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Proof� There is no loss in generality in assuming the universe ofM is the set
of natural numbers �� Let S�� S�� � � � be an e
ective list of all relations of A and
assume that there is a recursive function F such that Si is an F �i��ary relation�

Let A with universe A � fa�� a�� � � �g be isomorphic to fM as described above
and let � nA � fb� � b� � � � �g� For any x � � n A� let t�x� be the total time
needed to search all elements y � x and determine if y � A and to compute the
commonvalue of all relations of the formRb������bk

I������Ik
and the �nite list of exceptions

where R � Si for some i � x and b�� � � � � bk are elements of M � A which are
less than or equal to x� Let ��x� � �
x�t�x�� and let P � f��x� � x �M nAg� It
is clear that P is a p�time subset of Tal����

We de�ne a polynomial time model D with universe Bin��� by de�ning
the relation SDq for D as follows� Given an element bin�i�� search the strings

of the form �k for k � jbin�i�j and determine whether each such string is in
P � If bin�i� � P � then let r�bin�i�� � bin�n� where bin�i� � �
bn�t�bn��� If
bin�i� 
� P � then let r�bin�i�� � bin�m� where bin�i� is the m�th element of
Bin��� n P � Note that because P is a polynomial time set� there is a �xed
polynomial p such that we can compute whether x � P in p�jxj� steps� It

thus takes at most
Pjbin�i�j

j�� p�j� steps to search the strings of the form �k for
k � jbin�i�j for membership in P so that the function r is polynomial time�
Then SDq �s�� � � � � sF �q�� holds if either

�A� no si � P and Sq�r�s��� � � � � r�sF �q��� holds in fM� or
�B� there is some si in P and Sq�Z�� � � � � ZF �q�� holds in M where Zj � bk�

if sj � P and r�sj� � bin�k�� and Zj � ak� if sj 
� P and r�sj� � bin�k��
Note that in case �A� we can compute whether SDq �s�� � � � � sF �q�� holds in

time polynomial in js�j� � � �� jsF �q�j since fM is a polynomial time model� In
case �B�� let n be the maximumvalue such that there is an sj � P with j � F �q�
and r�sj� � bin�n�� If n � q� then sj � �
bn�t�bn�� and in t�bn� steps we can
compute whether Rq�s�� � � � � sF �q�� holds by the de�nition of t� Thus in case
�B�� the only cases in which we can not directly compute in linear time whether
SDq �s�� � � � � sF �q�� holds is if n � q� However it is easy to see that our assumptions
ensure that it takes only a �nite amount of information to determine whether
SDq �s�� � � � � sF �q�� holds in all such cases� Thus SDq is a polynomial time relation�

Finally it is easy to see that our de�nitions ensure that we have de�ned
the map g where g�bin�i�� � bn� if bin�i� � P and r�bin�i�� � bin�n�� and
g�bin�i�� � an� if bin�i� 
� P and r�bin�i�� � bin�n�� is an isomorphism from D
ontoM�

The model C with universe Tal��� simply has relations RC de�ned by

RC�tal�i�� � � � � tal�in�� �� RD�bin�i��� � � � � bin�in���

The relation RC is p�time since bin�i� can be computed from tal�i� in polynomial
time and jbin�i�j � jtal�i�j� �

For a simple example� consider a well�ordering M � �M��M � of type 	 �
and let A � �A��M � be the �rst � elements of M� A is a recursive set since
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x � A �� x �M w where w is the ��th element of M� A is certainly
recursively isomorphic to the standard ordering on Bin��� and is indiscernible
since for all a � A and all x � M n A� a �M x� Thus by Theorem ����� M is
recursively isomorphic to a p�time model with standard universe Bin���� This
is a special case of Theorem ��� above�

��� Boolean Algebras

There are some cases of structures with function symbols where we can get some
positive results� For example� every recursive Boolean algebra is recursively
isomorphic to a polynomial time Boolean algebra�

De�nition ���� 	i
 The language L of Boolean algebras consists of two binary
function symbols � �meet� and � �join�� one unary function symbol �
�complement� and two constant symbols � �zero� and � �unity�� A Boolean
algebra B is a structure �B��B��B��B� �B� �B� for this language which
satis�es the usual axioms�

	ii
 Given a linear ordering M � �M� �� with a �rst element� the interval
algebra Intalg�M� is the Boolean algebra of subsets of M generated by the
left�closed� right�open intervals of M� �a�b� � fx � a � x � bg�

The partial ordering �B of a Boolean algebra B is de�ned by a �B b if and
only if b � a� c for some c �� �� An element a of a Boolean algebra is said to be
an atom if whenever b � a� either b � � or b � a� The Boolean algebra A is said
to be atomic if for any b �� �� there exists some atom a with a � b� A element
x � B is atomless if x is not the zero of B and there is no atom a of B such that
a �B x� B is said to be non�atomic if B contains an atomless element�

The following is Lemma ��� of �����

Lemma ���� For any p�time linear ordering L with a �rst element� the interval
algebra Intalg�L� is a p�time Boolean algebra�

Sketch of Proof� The nonzero elements of Intalg�L� are given the natural
representation �a�� a�� � �a	� a�� � � � � �a�n��� a�n�� where a� �L a� �L � � � �L

a�n�� and either a�n �� or a�n � L and a�n�� � a�n� �

This lemma is used to prove the following result from �����

Theorem ���
 Every recursive Boolean algebra B is recursively isomorphic to
a p�time Boolean algebra�

Sketch of Proof� First observe that the classical proof that every count�
able Boolean algebra is isomorphic to the interval algebra of a countable linear
ordering is e
ective� �See Remmel ������ Thus every recursive Boolean algebra
is recursively isomorphic to Intalg�M� where M is a recursive linear ordering�

��



However by Theorem ���� M is recursively isomorphic to a polynomial time
linear ordering P� The interval algebra of P is thus recursively isomorphic to B
and is polynomial time by Lemma �����

�

The next two theorems are unpublished results due to Cenzer and Remmel�

Theorem ���� Every in�nite non�atomic recursive Boolean algebra is recur�
sively isomorphic to a p�time Boolean algebra �a� with universe Bin���	 �b� with
universe Tal����

Theorem ���� Let A 	 f�� �g� be an in�nite p�time set and let B be an in�nite
atomic recursive Boolean algebra� Then there is a recursive Boolean algebra D
which is isomorphic to B but is not recursively isomorphic to any p�time Boolean
algebra with universe A�

��� Graphs

Next we give two applications of Theorem ���� to recursive graphs due to Cenzer
and Remmel in �����

De�nition ���� 	i
 A graph G � �V�E� is locally �nite �respectively locally
co�nite� if for every v � V � the set NB�v� of neighbors of v is �nite �resp�
co�nite��

	ii
 A graph G � �V�E� is locally �nite�co�nite if for every v � V � either
the set NB�v� of neighbors of v is �nite or V nNB�v� is �nite�

	iii
 A locally �nite�co�nite recursive graph G is highly recursive if there are
algorithms for deciding whether a given v � V has �nite degree and for
computing NB�v� is the degree is �nite and V nNB�v� if not�

Theorem ���� Every in�nite highly recursive locally �nite�co�nite graph G is
recursively isomorphic to a p�time graph H with universe Bin����

Sketch of Proof� If there are in�nitely many vertices of G whose degree
is �nite� then we can construct a recursive subset of such vertices U such that
G restricted to U is the empty graph� Moreover we can construct U so that it
will be the highly recursive relatively indiscernible binary substructure required
to apply Theorem ����� If there are in�nitely many vertices of �nite co�degree�
We can construct a a complete subgraph C which will be the highly recursive
relatively indiscernible binary substructure needed for Theorem ����� �

Theorem ���� Every in�nite recursive graph G which is either locally �nite
or locally co�nite� is recursively isomorphic to a p�time graph H with universe
Bin����
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Sketch of Proof� Suppose that all vertices have �nite co�degree� Then
we again pick out a complete subgraph C � �fv�� v�� � � �g� E�� now with the
additional property that vi is not joined to any vertex from f�� �� � � � � i� �g� �

The next result shows that the hypotheses of the two preceding theorems
are needed�

Theorem ���� Let A be any in�nite polynomial time subset of f�� �g�� Then
there is a recursive graph� having every vertex of either �nite degree or �nite
co�degree� which is not recursively isomorphic to any p�time graph with universe
A�

��� Trees

A connected graph G with no cycles is said to be a tree� The vertices of T are
called nodes� We will assume that any tree T has a designated root �� Then any
node v of T can be reached from the root by a path� that is� a sequence of edges
��� v��� �v�� v��� � � � � �vn��� v�� We say that v is a successor of vn��� It is clear
that the successor relation is recursive� since the path from the root to a node
v may be computed from v in a uniform fashion� The partial ordering u �T v�
which says that there is a path from the root to v which passes through u� is
also recursive� On the other hand� if T is a p�time tree� then this computation
of the path from � to v might not be in polynomial time in jvj� so that the
successor relation and the relation �T need not be p�time� Thus we say that
T is fully p�time if both the successor relation and the relation �T are p�time�
Similar notions may be de�ned for any bounded resource class�

T is said to be highly recursive if there is a recursive function which computes
from any node v a list of successors of v� The corresponding notion of a highly
feasible tree �or more generally� of a highly feasible graph� is more di�cult to
formulate� Several inequivalent notions are studied in ���� ��� ���� In particular�
a graph is said to be locally p�time� if there is a p�time function which computes
from any node v a list of successors of v and is said to be highly p�time if there
is a p�time function which computes from a vertex v and a tally number tal�n�
a list of all vertices at distance n from v�

The following results are Theorems �� �� and �� of �����

Theorem ���� Any in�nite recursive tree T is recursively isomorphic to a p�
time tree with universe Bin����

Sketch of Proof� There are two cases� First� every node of T may have only
�nitely many successors� In this case� Theorem ���� may be applied� Second�
some node v of T may have an in�nite set A of successors� In this case� the set A
plays the role of the highly recursive relatively indiscernible binary substructure�
so that Theorem ���� may be applied� �

Theorem ���� There is a highly recursive tree T which is not recursively iso�
morphic to any fully primitive recursive tree P with a standard universe Bin����
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Theorem ���� There is a highly recursive binary tree which is not isomorphic
as a directed graph to any highly primitive recursive tree with universe Bin����

A similar but stronger result for graphs was given in Theorem ��� of �����

Theorem ���
 There is a highly recursive graph G which is not isomorphic to
any locally primitive recursive graph�

��	 Equivalence Structures

Another type of relational structure is an equivalence structure� �A�RA�� where
RA is an equivalence relation on A� A recursive equivalence structure �A�RA�
is said to be highly recursive if the set of elements that belong to in�nite equiv�
alence classes is recursive� and there is a recursive function f such that f�a� is
the cardinality of �a�R when �a�R is �nite �so that the equivalence class �a�R can
be computed from a�� We say that �A�RA� is highly p�time if A is a p�time
subset of Bin���� the set of elements that belong to in�nite equivalence classes
is p�time� and there is a p�time function f such that f�a� codes �a�R when it is
�nite� The full spectrum of of �A�RA� is the set of pairs ��� n� such that there
are at least n � � in�nite equivalence classes in �A�RA� and pairs �q� n� such
that q 	 � and there are at least n � � equivalence classes of size q in �A�RA��

The following results are Theorems ��� �
 and �� of �����

Theorem ���� Any recursive equivalence structure �A�RA� is recursively iso�
morphic to a p�time model with universe Bin����

Sketch of Proof� There are two cases� If all equivalence classes of �A�RA�
are �nite� then Theorem ���� can be applied to �A�RA� viewed as a graph� If
�A�RA� has an in�nite equivalence class� then this class is a highly recursive
relatively indiscernible substructure so that Theorem ���� may be applied� �

Theorem ���� For any equivalence structure �A�RA� with full spectrum S
such that S� � fhtal�q�� tal�r�i � �q� r� � Sg is p�time� there is a highly re�
cursive� p�time equivalence structure �Bin���� R� isomorphic to �A�RA��

Theorem ���� There is an in�nite recursive full spectrum S of � such that no
highly primitive recursive equivalence structure with universe Bin��� has full
spectrum a subset of S�

We now turn to the study of some structures with functions� There are three
basic models which we have been considered� �rst� models of some fragment of
arithmetic� second� Abelian groups� and� third� permutation structures�

��



��
 Models of Arithmetic

Our �rst result� taken from ����� demonstrates that the unary exponential func�
tion �x may be adjoined to the standard model of arithmetic while being rep�
resented by a p�time function�

Theorem ���� N � ��� S����� �� �x� �� �� is isomorphic to a p�time structure
M�

Sketch of Proof� The elements of M are terms in the language
f�� A� I� Eg� The natural number n is represented by the expression ��n� de�ned
as follows�

���� � �
���k� � E��k�
���k �m� � AE��k���m� for � � �m � �k�
���k �m� � IE��k���m� for � � �m � �k�
It is easy to see that the universe ofM is a linear time set and that the term

��n� which represents n can be computed from bin�n� in polynomial time� It
can be shown by induction that j��n�j � �jbin�n�j� and that
j��M � j � j�j� j� j� �� �

We note that it is an open question whether ��� S����� �� exp��� �� is is
isomorphic to a polynomial time model where exp�m�n� � mn is the general
exponential or even whether ��� S����� �� �x� �x� �� �� is isomorphic to a poly�
nomial time� B#auerle ��� proved that in the model of Theorem ���� the function
�x is not polynomial time�

We also note that the model of Theorem ���� can be used to build aEXPTIME
group isomorphic to the integers under �� Z� �Z���� which is not q�time iso�
morphic to the standard model of Zwhere the positive integer n is coded as
bin��n� and a negative integer �n is coded as bin��n� ��� see section ����

��� Injection Structures

The simplest type of structure with a function is an injection structure �A� fA�
where fA is a one�to�one mapping fromA into itself� If fA maps A onto A� then
we say that �A� fA� is a permutation structure� The orbit O�a� of an element
a of A is fb � A � ��n � ���fn�a� � b � fn�b� � a�g� There are two types of
in�nite orbits� one of type � which is isomorphic to ��� S� and the other of type
Zwhich is isomorphic to �Z� S�� The order jaj of a is card�O�a�� if O�a� is �nite
and is either � or Zotherwise� The full spectrum of �A� fA� is the set of pairs
��� n� such that there are at least n� � orbits of type �� pairs ��� n� such that
there are at least n � � orbits of type Z� and pairs �q� n� such that q 	 � and
there are at least n� � orbits of size q � � in �A� fA��

It is easy to see that the full spectrum of a recursive injection structure is
always a recursively enumerable set� It is shown in Theorem ��
 of ��
� that
any r�e� spectrum can be realized by a p�time injection structure� Thus every
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recursive injection structure is isomorphic to a p�time structure� However� we
know by Theorem ��� that this isomorphism need not be recursive� Now we
consider the question of when we can obtain a p�time injection structure with
a standard universe Bin��� or Tal����

The basic result here is Theorem ��� of �����

Theorem ���� Any recursive permutation structure �A� fA� with all �nite or�
bits is recursively isomorphic to an honest p�time structure with universe a sub�
set of Tal����

Sketch of Proof� The element a � A is represented by tal�n�� where
bin�n� � �a�t and t is the total time required to compute the orbit of a� The
details follow as in the proof of Theorem ��� above� �

Theorems ��
 and ��� of ���� give two cases in which we can improve this
result to obtain a standard universe�

Theorem ���� Let B � Bin��� or Tal���� Any recursive injection struc�
ture �A� f� with at least one but only �nitely many in�nite orbits is recursively
isomorphic to a p�time structure with universe B�

Sketch of Proof� Let F � fa � A � jaj is �niteg and let I � A n F � Since
there are only �nitely many orbits in I� both F and I are recursive� It is easy
to see that �I� f� is recursively isomorphic to a p�time structure with universe
B� By Theorem ����� �F� f� is recursively isomorphic to a p�time structure with
universe a subset of Tal���� The result now follows from Lemma 
��� �

Theorem ���� Let B � Bin��� or Tal���� Any recursive injection structure
�A� f� with in�nitely many orbits of size q� for some �nite q� is recursively
isomorphic to a p�time structure with universe B�

Sketch of Proof� Let C � fa � A � jaj � qg and let D � A n C� It follows
from Theorem ���� that �D� f� is recursively isomorphic to a p�time structure
with universe a subset of Tal���� It therefore su�ces by Lemma 
�� to show
that C is recursively isomorphic to a p�time structure �B� g�� For B � Bin����
the permutation g is simply de�ned by g�bin�nq � i�� � bin�nq � i � ��� if
i� � � q� and g�bin�nq � q � �� � bin�nq�� The tally de�nition is similar� �

A general result on the existence of p�time injection structures is given by
Theorems ��
 and ��� of ��
��

Theorem ���� �a� For any r�e� full spectrum S� there is a p�time injection
structure �A� f� with full spectrum S�

�b� If fhtal�q�� tal�r�i � �q� r� � Sg is p�time� then A may be taken to be
either Bin��� or Tal����
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Sketch of Proof� We sketch the proof of part �b� for B � Tal���� assuming
that all orbits will be �nite� Let q�� q�� � � � enumerate in non�decreasing order
the set of orbit sizes �with repetitions�� Then the permutation f may be de�ned
by

f�tal�q� � q� � � � �� qk�� � r�� � �tal�q� � q� � � � �� qk�� � r � ��� if r � qk�
and � tal�q� � q� � � � �� qk�� � qk��� if r � qk�

An in�nite orbit of type � is given by the standard successor function on Tal���
and an orbit of type Zis given by f�tal��n�� � tal��n � ��� f��� � � and
f�tal��n���� � tal��n���� Multiple in�nite orbits and a combination of �nite
and in�nite orbits may then be obtained by Lemma 
��� �

Corollary ���� Any recursive injection structure is isomorphic to a p�time
injection structure�

Finally� we consider some negative results� The �rst is Theorem ���� of ����
and deals with structures with a �xed universe�

Theorem ���
 There is a recursive set M such that no injection structure with
full spectrum M is isomorphic to any primitive recursive structure with universe
Bin��� or Tal����

Sketch of Proof� Let fe enumerate all primitive recursive unary functions
and let Be � �Bin���� fe�� Construct a set R � fr� � r� � � � �g by a diagonal
argument so that� for all e� either

��� fe is not one�to�one� or
��� Be has an in�nite orbit� or
��� Be has two disjoint orbits of the same �nite size� or
�
� Be has an orbit of size q 
� R�
We establish this requirement� given r� � � � � � re�� by computing enough

of Be to either �nd two orbits of the same size� or an orbit �perhaps incomplete�
of size r 	 re��� If the orbit is complete� we let re � r � �� thus ensuring that
Be has an orbit of size r 
� R� If the orbit is incomplete� we continue to build the
orbit at later stages and take a similar action when the orbit becomes complete�
If this never happens� then the orbit is in�nite� so that ��� is satis�ed�

It follows that no primitive recursive permutation structure with all �nite
orbits can have M � f�r� �� � r � Rg as a subset of its full spectrum� �

The �nal result here is Corollary ���� of ���� and deals with the question of
recursive isomorphism� The proof is omitted�

Theorem ���� For any recursive injection structure �C� f� with in�nitely many
in�nite orbits� there is a recursive structure �A� fA� which is isomorphic to
�C� f� but is not recursively isomorphic to any primitive recursive structure�
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��� Abelian Groups

We now turn to the study of feasible versus recursive Abelian groups� The results
here are parallel to those for permutation structures� We begin by recalling some
basic notation� For any natural number n 	 ��Z�n� is the cyclic group of order
n� For a prime number p� the group Z�p�� is the inverse limit of the sequence
Z�pn�� or more concretely� the set of rational numbers with denominator equal
to a power of p and where the group operation is addition modulo �� The group
Z�p�� is said to be quasi�cyclic� The additive group of rational numbers is
denoted by Q�

For any element a of an Abelian group A � �A��A��A� �A� and any integer
n� n � a is de�ned recursively by � � a � � and �n � �� � a � a �A n � a� Then
��n� � a � �A �A n � a� The order jajA of a is the least n such that n � a � ��
A is said to be torsion if all elements have �nite order and torsion�free if all
elements �except the identity� have in�nite order�

We will frequently be concerned with products of Abelian groups�

De�nition ���� For any sequence A��A�� � � � of Abelian groups� where Ai �
�Ai��i��i� ei� and Ai 	 f�� �g�� the direct product A � �nAn is de�ned to
have domain

A � fh��� ��� � � � � �ki � k � �� �i � Ai for � � i � k and �k �� ekg�

The identity of A is eA � 
� and addition �A and subtraction �A are de�ned
as follows
 for � � h��� ��� � � � � �mi and � � h��� ��� � � � � �ni� ��A 
�A � � 
 �
h
�� 
�� � � � � 
ki� where k � maxfi � �i � m � i � n � �i �i 
 �i �i �� ei� �m �
i � n � n � i � mg and� for i � k�


i �

��
�

�i �i 
�i �i� for i � min�m�n�
�i� for n � i � k
�i� for m � i � k�

In particular� we write �i��G to be the direct product of a countably in�nite
number of copies of G�

De�nition ���� Let B be either Bin��� or Tal���� For any complexity class
�� the sequence A��A�� � � � of groups� where An � �An��n��n� en� is said to be
uniformly ��computable over B if

	i
 fhb�n�� ai � a � Ang is a ��computable subset of B�B� where b�n� � bin�n�
if B � Bin��� and b�n� � tal�n� if B � Tal����

	ii
 The functions F �b�n�� a� b� � a �n b and G�b�n�� a� b� � a �n b are both
the restrictions of ��computable functions from B	 into B where we set
F �b�n�� a� b� � G�b�n�� a� b� � 
 if either a or b is not in An�

	iii
 The function from Tal��� into B given by e�tal�i�� � ei is ��computable�
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The following is Lemma 
�� of �����

Lemma ���� Let B be either Bin��� or Tal��� and let � be one of the following
complexity classes
 recursive� primitive recursive� exponential time� polynomial
time� Suppose that the sequence Ai � �Ai��i��i� ei� of Abelian groups is ��
computable over B� Then

	a
 The direct product A of the sequence is recursively isomorphic to a ��
computable group with universe contained in B�

	b
 If Ai is a subgroup of Ai�� for all i and if there is a ��computable function
f such that� for all a � �iAi� a � Af�a�� then the union �iAi is recursively
isomorphic to a ��computable group with universe contained in B�

	c
 If the sequence is �nite and one of the components has universe B� then the
product is recursively isomorphic to a ��computable group with universe
B�

	d
 If the sequence is in�nite and if each component has universe B� then the
product is recursively isomorphic to a ��computable group with universe
Bin����

	e
 If each component has universe Tal��� and there is a uniform constant
c such that for any i and any a� b � Ai� ja �i bj and ja �i bj are both
� c�jaj� jbj�� then the product is recursively isomorphic to a ��computable
group with universe Tal����

If a torsion Abelian group G is isomorphic to a direct sum �iZ�q
ni
i � of prime

power cyclic groups� then we de�ne the characteristic ��G� to be

f�pm� k� � qnii � pm for at least k � � distinct values of ig�

Khisamiev shows in Corollary ��
 of �
�� that for any k � � and any torsion
Abelian p�group G� G � ��i�kZ�p��� is isomorphic to a recursive group if and
only if ��G� is a ��

� set� We will say that a subset Q of � � � is hereditary if
�m� k � �� � Q implies �m� k� � Q for all m� k� It is clear that a subset Q of
� � � is the characteristic ��G� for some Abelian torsion group G if and only if
Q is hereditary and �m� k� � Q implies m is a prime power� Therefore we will
say that any such set Q is a characteristic�

The following are results 
�� and 
�
 of �����

Theorem ���� Each of the groups Z� �i��Z�k�� Z�p�� and Q are isomor�
phic to polynomial time groups �a� with universe Bin��� and �b� with universe
Tal����

Theorem ���� Any �nitely generated recursive Abelian group is recursively
isomorphic to a p�time Abelian group �a� with universe Bin��� and �b� with
universe Tal����


�



The simplest torsion groups are primary groups� or p�groups� in which every
element has order a power of p where p is a prime� In ��
�� Smith characterized
the recursively categorical p�groups as follows�

Theorem ���� �Smith� A recursive p�group G is recursively categorical i� ei�
ther

��� G � �i�nZ�p�� �F or

��� G � �i�nZ�p����i��Z�pm��F where F is a �nite p�group and m and
n are nonnegative integers�

Corollary ���� Any recursively categorical p�group is recursively isomorphic
to a polynomial time group �a� with universe Bin��� and �b� with universe
Tal����

Note that not every product of cyclic groups is recursively categorical� For
example� consider �i��Z�����i��Z�
�� The following fundamental result from
���� shows that this group is recursively isomorphic to a p�time group�

Theorem ���� Any recursive Abelian torsion group G � �G��G��G� eG� is
recursively isomorphic to a polynomial time group H with universe a subset of
Tal����

Sketch of Proof� It su�ces� by the remarks following Lemma 
�
� to de�ne
a p�time group H with universe a subset of Bin��� such that both a �H b and
a�H b have length bounded by some constant multiple of jaj� jbj�

Let Ak be the subgroup generated by f�� �� � � �� kg� Renumber the elements
of A as a�� a�� � � � so that the elements of Ak precede the elements of Ak�� nAk�
This can be done so that the map taking i to ai is a recursive isomorphism� Now
map ak � A to ��ak� � �k�t�k�� where t�k� is the total time required to compute
the operation table for Ak� The key to the proof is that whenever ai�G aj � ak�
where i � j� then we have t�k� � t�j�� since ak will be in the group generated
by fa�� � � � � ajg� Furthermore j��ak�j � k�t�k� � �t�j� � ��j��ai����j�j� since
k � t�k�� �

We need an e
ective version of the Fundamental Theorem of Abelian groups�
which states that every torsion Abelian group is a direct product of primary
groups� This is Lemma 
�� of �����

Theorem ���
 Any recursive Abelian torsion group G is recursively isomorphic
to a p�time direct product of primary groups over B where B may be taken to
be either Tal��� or Bin����

The main result on the existence of feasible groups with standard universe
is the following theorem from �����
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Theorem ���� Let G be an in�nite recursive Abelian group with bounded or�
der� Then G is recursively isomorphic to a polynomial time group with universe
Tal��� and to a polynomial time group with universe Bin����

Sketch of Proof� Let B be either Bin��� or Tal���� We may assume that
G is p�time by Theorem ��
�� Since the orders are bounded� there is no loss
of generality in assuming that G is a p group for some prime p� Let pm be
the largest order of an element of G� The proof is by induction on m� We can
express G as a product H� K� where H is generated by some independent set
of elements of order pm and K is maximal independent of H with no elements
of order pm� There are two cases�

Case �� If H is �nite� then K is in�nite and may be assumed to have universe
B by induction� The result now follows from Lemma 
���

Case �� If H is in�nite� then H is isomorphic to �i��Z�pm� and is therefore
recursively isomorphic to a p�time group with universe B by Theorem ��

�
Since K is recursively isomorphic to a p�time group with universe a subset of
Tal��� by Theorem ��
�� the result again follows from Lemma 
��� �

Next we state some results on characteristics� The �rst result here follows
from Theorem ��
� together with the theorem of Khisamiev cited above�

Theorem ���� For any ��
� characteristic Q� there is a p�time Abelian group

with characteristic Q�

We will show in Theorem ���� that not all recursive characteristics can be
realized by p�time groups� The next result shows that any p�time characteristic
can be so realized�

Theorem ���� ���� Let Q be a nonempty� in�nite characteristic such that
tal�Q� � ftal��pm� k�� � �pm� k� � Qg is a p�time set� Then there exists a p�
time Abelian group with characteristic Q and universe B where �a� B � Bin���
or �b� B � Tal����

Theorem ���� ���� There is a recursive characteristic M such that no recur�
sive group G with characteristic Q is can be isomorphic to any primitive recursive
group with universe Bin��� or Tal����

Proof� Let A��A�� � � � be an e
ective enumeration of the primitive recursive
structures ��� fe� with one binary operation fe� Let Qe � fp � �p� �� � ��Ae�g
and for any a � Ae� let jaje be the order of a in Ae� Construct a set R � fr� �
r� � � � �g of prime numbers such that� for any e� Ae either

�� is not an Abelian group with identity �� or

�� has an element of in�nite order� or

�� has an element of order p� for some prime p� or
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� has two subgroups of the same prime order� or

�� has an element of prime order p 
� Q�

Now the order jaje of an element a may not be a prime� Therefore we need
some way to control the prime factors of jaje� We will now de�ne a recursive
function � such that for any q and any r 	 ��q�� r either is divisible by p� for
some prime p or r has a prime factor bigger than q� Given q� ��q� is simply the
product of all of the prime numbers p � q�

We will de�ne the set Q in stages� At stage s� we will have s � � elements
q� � q� � � � �qs in Qs along with a certain �nite subset Is of ��� of restraints
which will prevent numbers from coming into Q at stage s or at any later stage�
Let q� � �� Q� � f�g and I� � 
�

The initial stage of the construction proceeds as follows� Compute f���� ���
There are then two cases�

�Case �� If f���� �� � �� then we have � � Q� or else A� is not an Abelian
group with identity �� Thus we can ensure that Q is not the characteristic of
A� by setting q� � � and restraining � from ever coming into Q� We let I� � 
�

�Case �� If f���� �� �� �� then we know that either A� is not an Abelian group
with identity � or j�j� 	 � and therefore either has a prime factor q 	 � or is
divisible by 
� Now let q� � � and let I� � f��� ��g� This means that either
A� will have an element of order 
� thus satisfying part �
� of the requirement�
or we will eventually restrain at least one of the prime factors of j�j� from ever
coming into Q�

At stage s��� we are given q� � � � � � qs and the set Is of previous restraints�
Moreover� assume by induction that for every �a� e� � Is� either

	i
 jaje � ��qs� and there is a prime factor q � qs of jaje such that q �� qi for
any i � s� or

	ii
 jaje � ��qs� and jaje is divisible by the square of a prime� or

	iii
 jaje 	 ��qs��

Now let k � ����qs�� and compute i �a in As for each a � k and each i � k�
This will produce a set of equivalence classes �a�� where a and b are equivalent
if either b � i � a or a � i � b for some i � k� Note that every number a � k
belongs to some equivalence class� but numbers greater than k can also belong�
Now all we need is that the computation of i � a in As produces a sequence of
distinct elements up until it produces �� If this is ever violated� then As is not
an Abelian group� so that we will have satis�ed the e�th requirement� In this
case� we let Is�� � Is and we choose qs�� to be the least prime p 	 qs which
does not violate any of the restraints �t� b� � Is��� That is� qs�� is the least q
such that �i�� �ii� or �iii� above are satis�ed for all restraints in Is��� Otherwise�
there are two further cases�
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�Case �� There is some equivalence class which has more than ��qs� elements�
In this case� let a be the least such that �a� has more than ��qs� elements� It
follows that jajs 	 ��qs�� Now put �a� s� into the set of restraints� so that
Is�� � Is � f�a� s�g� Since we will keep this restraint active throughout the
construction� it will be the case that either jajsj � � or else it is �nite and has
a prime factor p such that either p 
� Q or p� divides jajs�

Then let qs�� be the least prime p 	 qs which does not violate any of the
restraints �t� b� � Is��� That is� qs�� is the least q such that �i�� �ii� or �iii�
above are satis�ed for all restraints in Is���

�Case �� Each class has ��qs� or fewer elements� In this case� jajs � ��qs�
for all a � k and each equivalence class is a cyclic subgroup of As� Now� since
k � ����q�s�� there must be at least ��qs� di
erent subgroups among the classes�
Since there are no more than ��qs� possible orders �that is� numbers between
� and ��qs�� for these subgroups� there must be two distinct subgroups of the
same order in As� It follows from this that As has two distinct subgroups of
some prime order and hence part ��� of the s�th requirement will be satis�ed�

Then we again let qs�� be the least q 	 qs which does not violate any of the
restraints �t� b� � Is���

This completes the construction� The set Q � fq�� q�� � � �g is recursive since
q � Q �� ��s � q��q � qs�� Let M � Q� f�g�

Now suppose that ��As� � M for some s� Then As does not have two
distinct subgroups of the same order so that Case � does not apply at stage
s��� Thus Case � must apply and hence there is an element a with �nite order
jajs � q 	 ��qs� such that �a� s� is in It for all t 	 s� Thus there must be a
stage t 	 s such that either condition �i� or �ii� is satis�ed� That is� jajs � ��qt�
and there is a prime factor q � qt of jajs such that either

	i
 q �� qi for any i � t or

	ii
 jaje is divisible by q��

In case �i�� we have �q� �� � ��As� but q 
� Q� In case �ii�� we have �q�� �� � ��As�
but �q�� �� 
�M � In either case� we see that ��As� is not a subset of M � �

Corollary ���� There is a recursive torsion Abelian group A which is not
isomorphic to any primitive recursive Abelian group with universe Bin��� or
Tal����

For groups of unbounded order� Theorem ��� of ���� and Theorem 
��� of
���� give di
erent results�

Theorem ���� ����

�a� There is a recursive Abelian group A which is not recursively isomorphic
to any primitive recursive group�







�b� There is an exponential�time Abelian group B which is not recursively
isomorphic to any polynomial�time group�

Theorem ���� ���� There is a recursive torsion�free Abelian group which can�
not be embedded into any p�time Abelian group�

� Uniqueness of Feasible Structures

In this section� we shall survey results on feasible categoricity� Again we shall
concentrate mainly on polynomial time structures� As we shall see� unlike re�
cursive model theory where there are many beautiful classi�cation results on
recursively categorical structures� there are very few examples of polynomial
time categorical structures even if we restrict the universe� Thus most of the
results on polynomial time categoricity are negative� Recall that a structure A
with universe B is said to be p�time categorical over B if any structure D with
universe B which is isomorphic to A is in fact p�time isomorphic to A� A similar
de�nition can be given for other notions of feasibility� We note that restricting
the universe is crucial if we are to have any positive results due to the following
general theorem of Cenzer and Remmel ��
��

Theorem 
�� For any p�time relational structure A � �A� fRA
i gi�S�� there

are in�nitely many p�time structures B� � A� B� � �B�� fR�
igi�S�� B� �

�B�� fR�
igi�S�� � � � which are each recursively isomorphic to A and such that�

for each m � n� there is a p�time map taking Bn one�to�one and onto Bm but
there is no primitive recursive map from Bm into Bn which is at most c to ��
for some �nite number c� Furthermore� the universes Bn may be taken to be
subsets of Tal��� for each n � ��

Sketch of Proof� Let B� � A and B� � A� Given Bn � fbin�b�� �
bin�b�� � � � �g� let Bn�� � M �Bn� � fbin�m�� � bin�m�� � � � �g as de�ned
above in the proof of Lemma 
�� and de�ne the relations Ri on Bn�� to make
the map taking bin�be� to bin�me� an isomorphism� �

	�� Linear Orderings

In this subsection� we survey results of Remmel ����� which was the �rst paper
on polynomial time categoricity� Remmel essentially showed that there are no
polynomial categorical linear orderings over either Tal��� or Bin����

The classic back�and�forth method of Cantor which shows that any two
dense linear orderings without end points are isomorphic is crucial to the study
of categoricity in linear orderings� The key step in de�ning an isomorphism
between two structures requires a way to select� given two elements a � b of one
structures� an element c � a� an element d 	 b and an element e with a � e � b�
Thus we are led to the following e
ective notion of density functions in the e
ort
of �nding conditions which will provide some form of feasible categoricity�
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De�nition 
�� A ��computable dense linear ordering L � �D��� without end
points is said to have ��computable density functions if there are ��computable
functions fa� fb and fi such that for any x and y in D� fb�x� � x � fa�x� and
x � fi�x� y� � y�

By carefully following the back�and�forth argument and keeping track of the
number of steps required� we obtain the following� Theorems ���� ��� and ��� of
�����

Theorem 
�� Suppose L� � �B���� and L� � �B���� are polynomial�time
dense linear orderings without endpoints with polynomial�time density functions�
Then

	a
 if B � Tal���� L� and L� are double�exponential�time isomorphic and

	b
 if B � Bin���� L� and L� are triple�exponential�time isomorphic�

Theorem 
�� Suppose L� � �B���� and L� � �B���� are polynomial�time
dense linear orderings without endpoints with linear�time density functions�
Then

	a
 if B � Tal���� L� and L� are exponential�time isomorphic and

	b
 if B � Bin���� L� and L� are double�exponential�time isomorphic�

Theorem 
�� Suppose L� � �Bin���� ��� and L� � �Bin���� ��� are
polynomial�time dense linear orderings without endpoints with quasi�real�time
density functions� Then L� and L� are exponential�time isomorphic�

Note that the standard ordering on the dyadic rationals in the interval ��� ��
is in fact a p�time linear ordering with quasi�real density functions and has
universe p�time isomorphic to Bin���� Details are given in Theorem ��
 of �����
On the other hand� there are p�time structures without nice density functions�
as shown by Corollary ��� of �����

Theorem 
�
 There exist p�time dense linear ordering without end points with
universe B for B � Bin��� and B � Tal��� which have no primitive recursive
density functions�

We note that there is a possible positive result� namely one can show that
any two p�time linear orderings with universe Tal��� which have quasi�real�time
density functions are polynomial time isomorphic� However Ash showed that
there are no p�time linear orderings with universe Tal��� which have quasi�real�
time density functions� see �����

Examination of the previous theorems shows that the complexity of the back�
and�forth isomorphism falls within the scope of exponential iteration� Thus we
have the following�
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Theorem 
�� Suppose L� � �B���� and L� � �B���� are polynomial�time
dense linear orderings without endpoints with q�time density functions� Then
for B � Bin��� or B � Tal���� L� and L� are q�time isomorphic�

The main result of ���� improves Theorem ��� above by obtaining models
with a �xed universe� This result shows that there really are no categorical
linear orderings�

Theorem 
�� Let L be a p�time linear ordering with universe B� either Tal���
or Bin���� Then

	a
 There exists a p�time linear ordering L� with universe B which is not prim�
itive recursively isomorphic to L�

	b
 If L is not recursively categorical� then there exists a p�time linear ordering
L�� with universe B which is not recursively isomorphic to L�

Sketch of Proof� We just sketch the proof of part �a�� If L is recursively cat�
egorical� then L contains a copy of a dense linear ordering without end points�
Then by Theorems ��� and ���� there exist p�time orderings L� and L� with
universe B� one having p�time density functions and one without primitive re�
cursive density functions� Thus L may not be primitive recursively isomorphic
to both structures� �

	�� Injection Structures

For injection structures� Cenzer and Remmel classi�ed in Theorem ��� of ��
�
the recursively categorical injection structures�

Theorem 
�� A recursive injection structure �A� f� is recursively categorical if
and only if it has only �nitely many in�nite orbits�

The feasible categoricity results for injection structures depend on the spec�
trum of orbits� For example� there is one very nice positive result� Theorem ���
of �����

Theorem 
��� Let A � �A� f� and B � �B� g� be two �nitary permutation
structures such that all but �nitely many orbits have the same size q for some
�nite q�

	a
 If A and B are both p�time over Tal���� then A is p�time isomorphic to B�

	b
 If A and B are both p�time over Bin���� then A is exponential time iso�
morphic to B�

	c
 If A and B are both q�time over either Bin��� or Tal���� then A is q�time
isomorphic to B�
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Sketch of Proof� We sketch the argument for Tal���� We may assume with�
out loss of generality that all orbits have the same size q� The desired isomor�
phism � is de�ned in stages �s� in which we enumerate s orbits A�� A�� � � � � As

andB�� B�� � � � � Bs of each structure� by de�ning a sequence of elements a�� � � � � as
and b�� � � � � bs so that Ai � fai� f�ai�� � � � � fq���ai�g and similarly for Bi� Then
we let �k�fn�ai�� � fn�bi�� The key to measuring the complexity of this map�
ping is that since each orbit has q members� ak � tal�m� for some m � kq�
�

The general negative result is analogous to Theorem ��� above for linear
orderings� except that we cannot specify the universe for the non�recursively
categorical structures� since as seen by Theorem ���� there actually are some
p�time categorical structures� Our next result combines Corollaries ��� and ���
of ��
��

Theorem 
��� Let A be a p�time injection structure with universe B where B
is either Tal��� or Bin���� Then

	a
 There exists an in�nite family Ai of p�time structures each recursively iso�
morphic to A which are pairwise not primitive recursively isomorphic�

	b
 If A is not recursively categorical� then there exists a p�time structure A��

with universe B which is not recursively isomorphic to A�

The most general result for recursively categorical structures is the following�
This combines Theorems ��� and ���� of ��
��

Theorem 
��� Let B be either Bin��� or Tal��� and let A be an injection
structure such that either

	a
 A has an in�nite orbit or

	b
 A has in�nitely many orbits of size q for some �nite q and has in�nitely
many other orbits�

Then there is an in�nite family Ai of p�time structures each with universe
B and isomorphic to A which are pairwise not primitive recursively isomorphic�

Sketch of Proof� There are two distinct arguments� We �rst sketch the
proof in the case that A has either an in�nite orbit or in�nitely many orbits
of �nite size q� together with an in�nite set of other elements� We partition
the structure into two parts� The �rst part B is either the in�nite orbit or
the in�nitely many orbits of size q and may be assumed to have universe B
by Theorem ���� and ����� The second part C has an in�nite family of copies
Ci with universe Ci such that B cannot be primitive recursively embedded in
any Ci and such that� by Theorem ����� and for any i �� j� Ci is not primitive
recursively isomorphic to Cj � Now just let Ai � B � Ci�
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For the case of a single in�nite orbit� we appeal directly to Lemma 
��� Here
is the construction of a copy of ��� S� with universe Bin��� but not primitive
recursively isomorphic to the standard structure� Let m� � m� � � � � be the set
from Lemma 
��� where A � Bin���� and assume m� � ��

We de�ne �� fB���� fB�fB ����� � � � in blocks so that the k�th block is in three
parts�

�mk� �mk � �� � � � � �mk�� � ��

followed by
�mk�� � �� �mk�� � �� � � � � �mk � ��

and then

�mk � �� �mk � �� � � � � �mk�� � ��

The unique isomorphism� from ��� S� to �B� fB� maps �mk�� to �mk���
mk � � and is not primitive recursive by Lemma 
��� �

Finally� we note that if A has no in�nite orbits and the spectrum of A is
p�time in tally as in Theorem ���
� then the conclusion of Theorem ���� also
applies by Theorem ��� of ��
��

	�� Models of Arithmetic

Before focusing on the categoricity of torsion Abelian groups� we brie$y present
two results for the groupZof integers� These are Theorems 
���� 
��� and 
���
of ��
��

Theorem 
��� Let B be Tal��� or Bin���� There is a p�time structure �B� SB ��B�
isomorphic to �Z� S��� but not exponential time isomorphic�

Sketch of Proof� �Binary case� Let � �� bin�n� 	 represent n � � and let

� �� bin��n
�

� 	 represent �n � �� �

Theorem 
��� There is a fully p�time group A isomorphic toZbut not q�time
isomorphic�

Sketch of Proof� This is a corollary of ����� since the model de�ned there
is not q�time isomorphic to N � To see this� observe that the term En�� which
has length n � � is mapped to the iterated exponential ��

���

� �

Let Bin�Z� be the standard structure ofZwith universe p�time isomorphic
to Bin��� and similarly for Tal�Z��

Theorem 
��� There is an EXPTIME �respectively� exponential�time�
group A with universe Bin��� �Tal���� which is isomorphic to Bin�Z�
�Tal�Z�� but not q�time isomorphic�
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	�� Torsion Abelian Groups

The results for Abelian groups are parallel to those given above for injection
structures� We begin with the positive results� Theorems 
��
 and 
��� of ��
��

Theorem 
��
 Let p be a prime� and let A and B be two groups with universe
B� where B � Tal��� or B � Bin���� both isomorphic to �n��Z�p��

�a� If A and B are p�time� then A and B are EXPTIME isomorphic if B �
Tal��� and double�exponential�time isomorphic if B � Bin����

�b� If A and B are q�time� then A and B are q�time isomorphic�

Sketch of Proof� We sketch the proof of �a� for universe Tal���� The
standard structure B may be viewed as an in�nite dimensional vector space
over Z�p�� where the general element �c�� � � � � cn� is represented by tal�c� � c� �
p�� � ��cn �pn���� The arbitrary structure A will have a basis de�ned recursively
by letting an be the least element independent of fa�� � � � � an��g� It can then be
seen that the map taking tal�c�� c� �p� � � �� cn � pn��� to c� � a�� � � �� cn � an
is exponential time and its inverse is EXPTIME� �

The next result� Theorem 
��� of ��
� shows that a p�time isomorphism is
not always possible in Theorem �����

Theorem 
��� For any prime p and for B � Tal��� or B � Bin���� there
exist two p�time groups with universe B and which are isomorphic to �i��Z�p�
but which are not p�time isomorphic to each other�

The case of ��Z�pm� where m 	 � requires a stronger hypothesis� The
di�culty is that only elements not divisible by p� can be used for the generators
a�� a�� � � � and these may all be very large� �This is the basis for the proof of
Theorem ���� above�� What is needed is the ability to compute a divisor of an
element x which is divisible by p� Let us say that the group A has recursive
divisors if there is an algorithm which� for any a � A� determines whether a
is divisible and which computes a divisor of a if there is one� if the algorithm
runs in polynomial time� then we say that A has p�time divisors� Note that the
standard models of the recursively categorical groups all have p�time divisors�

Theorem 
��� Let p be a prime� let m 	 � be �nite and let A and B be
two groups with universe B� B � Tal��� or B � Bin���� both isomorphic to
��Z�pm��

�a� If A and B are p�time and have p�time divisors� then A and B are EXP�
TIME isomorphic if B � Tal��� and double�exponential�time isomorphic
if B � Bin����

�b� If A and B are q�time and have q�time divisors� then A and B are q�time
isomorphic�
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The next result� Theorem 
��� of ��
� shows that the hypothesis of p�time
divisibility is needed in Theorem �����

Theorem 
��� Let B be either Bin��� or Tal���� let p be a prime and let
m 	 � be �nite� Then there exists an in�nite family of p�time groups Gi each
recursively isomorphic to �i��Z�pm� and having universe B such that there is
no primitive recursive structure preserving embedding from Gi into Gj for any
i � j�

The basic non�categoricity result for torsion groups is Theorem 
��� of ��
��

Theorem 
��� For any in�nite recursive Abelian torsion group A� there is
an in�nite family Ai of p�time groups each recursively isomorphic to A and
having universe a subset of Tal��� which are pairwise not primitive recursively
isomorphic�

It is also the case that if some p�primary component of A is in�nite and has
bounded order� or is isomorphic to Z�p��� then each Ai in Theorem ���� may
be taken to have standard universe�

Next we give two results for p�groups� Theorems 
�� and 
��� of ��
�� The
�rst is the fundamental result for non�recursively categorical p�groups and the
second is a summary of results for products of basic p�groups�

Theorem 
��� Let G be a recursive p�group which is not recursively categor�
ical� Then there exist p�time groups H� and H� both isomorphic to G but not
recursively isomorphic to each other� If G has bounded order� then we may take
H� and H� to have universe B where either B � Tal��� or B � Bin����

Theorem 
��� Let p be a prime number� let B � Tal��� or Bin���� and let
C be an in�nite recursive group which is a product of cyclic and quasi�cyclic
p�groups and which is not isomorphic to ��i��Z�p���F for any �nite group F
and either C has a quasicyclic factor or is a product of cyclic groups such that
��C� is p�time in tally�

�a� Then there exists an in�nite family Ai of p�time groups with universe B
and isomorphic to C which are pairwise not primitive recursively isomor�
phic�

�b� If C is not recursively categorical� then there exist p�time groups A� and
A�� each with universe B and isomorphic to C� which are not recursively
isomorphic to each other�

The group Q of rationals is closely related to the quasicyclic groups Z�p���
since Q� ��� �� is isomorphic to the product of the quasicyclic groups� We use
this to obtain the following result� Theorem 
��� of ��
��

Theorem 
��� Let B be either Bin��� or Tal���� Then there is an in�nite
family of p�time groups Hi each with universe B and isomorphic to Q but not
pairwise primitive recursively isomorphic�
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	�� Scott Families

We now consider some general� syntactic conditions which lead to some feasi�
ble categoricity results� Nurtazin ���� and Goncharov ���� provided su�cient
conditions to ensure that a model A with universe A is recursively categor�
ical� namely if there is a �nite sequence �c�� � � � � ck��� of elements of A and
a recursive sequence �called a Scott family � of recursive existential formulas
f�n�x�� � � � � xm� c�� � � � � ck��� � n � �g in the extended language with names for
c�� � � � � ck�� satisfying the following two conditions�

	�
 Every a�� � � � � am � A satis�es one of the formulas �n�

	�
 For each n and for any �a�� � � � � am� and �d�� � � � � dm�� ifA satis�es �n�a�� � � � � am� c�� � � � � ck���
and �n�d�� � � � � dm� c�� � � � � ck���� then
�A� a�� � � � � am� c�� � � � � ck��� is isomorphic to �A� d�� � � � � dm� c�� � � � � ck���
via the map which sends ai to di for i � � to m and ci to ci for i � k�

Several notions of feasible Scott families were developed in ���� and applied
to the feasible structures we have studied� We will present one such formulation
here�

A Scott family f�n�x�� � � � � xm� c�� c�� � � � � ck��� � n � �g of p�time existen�
tial formulas� for a p�time model A with universe A� satisfying ��� and ��� as
described above is said to be strongly p�time if there is some �xed integer r 	 �
such that the following conditions are satis�ed� for each m � ��

	�
 For any �nite sequence a�� � � � � am of elements of A� we can compute in
time � �maxf��m� ja�j� � � � � jamjg�r a formula �t from the list such that
�t�a�� � � � � am� c�� c�� � � � � ck��� holds in A�

	�
 For each formula �t�x�� � � � � xm� c�� � � � � ck��� and each
a�� � � � � am � A� if there exists a such that A satis�es
�t�a�� � � � � am� a� c�� c�� � � � � ck���� then there exists such an a with
jaj � �m� ��r �maxfja�j� � � � � jamjg�

	�
 For each �t�x�� � � � � xm� c�� c�� � � � � ck��� and each
a�� � � � � am � A� if there exists a such that A satis�es
�t�a�� � � � � am� a� c�� c�� � � � � ck���� then we can compute an a as described
in �
� in time � �maxf��m� ja�j� � � � � jamjg�r�

Note that clause �
� above implies that the structure A has only �nitely
many types of each arity� The following theorem is proved by a careful analysis
of the back�and�forth method�

Theorem 
��� If A and B possess a common strongly p�time Scott family� then
A and B are p�time isomorphic if both have universe Tal��� and are exponential
time isomorphic if both have universe Bin����
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Theorem ��� can be proved directly from this general result� We give one
other corollary here which provides some additional feasible categoricity for
permutation structures�

Corollary 
��� Let A � �Tal���� f� and B � �Tal���� g� be two isomorphic
p�time permutation structures such that for some �xed integer k�

	i
 for any a and a� in the same orbit�

ja�j � jaj� k

and

	ii
 for any a�� a�� � � � � am�� � B and any �nite q� if there is an orbit of size q
not containing any of a�� � � � � am��� then there is such an orbit containing
an element a of size

jaj � maxfja�j� � � � � jam��jg� �m � ��k�

Then A and B are p�time isomorphic�

Weaker notions of Scott families de�ned in ���� include the strongly expo�
nential time Scott family� which leads to exponential time isomorphism for uni�
verse Tal��� and double exponential time isomorphism for universe Bin��� and
the strongly EXPTIME Scott family�which leads to EXPTIME isomorphism for
universe Tal��� and double exponential time isomorphism for universe Bin����
The following applications are given in �����

Corollary 
��
 Let A � �B�
A� and B � �B�
B� be two polynomial time
models of an equivalence relation 
 such that� for some �xed integer k� both
models satisfy the following


	i
 for any a and a� in the same equivalence class�

ja�j � k � jaj if B � Tal���

or �where a � bin�n� and a� � bin�n���

n� kjaj � n� � n� kjaj if B � Bin���

and

	ii
 for any a�� � � � � am�� � B and any �nite q� if there is an equivalence class
of size q not containing any of a�� � � � � am��� then there is such a class
containing an element b of size

jbj � k �maxfkm� ja�j� � � � � jam��jg if B � Tal���

or
jbj � k �maxf��mg if B � Bin����
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Then A and B are exponential time isomorphic if B � Tal���� and double
exponential time isomorphic if B � Bin����

Corollary 
��� Let A and B be two isomorphic p�time torsion Abelian groups
with the same universe Tal��� such that for some �xed integer k


	i
 for any a� b�
ja� bj � k �maxfjaj� jbjg

and

	ii
 for any a�� � � � � am�� in either A or B and any �nite q� if there is an
element of order q not in G�a�� � � � � am��� �that is� the subgroup generated
by fa�� a�� � � � � am��g�� then there is such an element b of size

jbj � km �maxfja�j� � � � � jam��jg�

Then A and B are EXPTIME isomorphic if B � Tal��� and are double expo�
nential time isomorphic if B � Bin����

� Complexity Theoretic Algebra

In this section� we introduce the second theme of our survey� That is� instead
of focusing on problems of comparing polynomial time versus recursive models�
we will �x a given polynomial time model such as an in�nite dimensional vec�
tor space over a polynomial time �eld or a polynomial time atomless Boolean
algebra and consider the internal structure of that model� Once again we shall
use established results from recursive algebra as a guide�

In recursive algebra� one studies the e
ective content of results like the fact
that every independent subset of a vector space V can be extended to a basis�
If the vector space V is in�nite dimensional� then all known proofs of this fact
use some version of the axiom of choice� e�g� Zorn	s Lemma� which is known to
be non�constructive� Thus one would expect that it is not the case that every
recursive independent set can be extended to a recursive basis in in�nite dimen�
sional recursive vector space� Indeed� Metakides and Nerode �
�� proved that
not every recursive independent set of a recursively presented in�nite dimen�
sional vector space over a recursive �eld could be extended to a recursive basis�
Another theme in the study of recursive algebra has been to study the lattice
of r�e� substructures of various recursive structures structures� see the survey
article by Nerode and Remmel ����� Nerode and Remmel began the study of
complexity theoretic algebra in a series of papers� ����� ����� ��
�� and ����� We
survey their results as well as results by B#auerle ��� in the next two sections�

The overriding paradigm of Nerode and Remmel	s study of complexity the�
oretic algebra was to use the admittedly $awed analogy that !recursive is to
r�e�" as !P is to NP" to formulate natural complexity theoretic analogues of
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theorems in recursive algebra� For example� Dekker ��
� proved that every r�e�
subspace of a recursively presented in�nite dimensional vector space over a re�
cursive �eld with a dependence algorithm has a recursive basis� The natural
complexity theoretic analogue of Dekker	s Theorem is that in a suitable poly�
nomial time in�nite dimensional vector space V over a polynomial time �eld
with a polynomial time dependence algorithm� every NP subspace of V has a
basis in P � It turns out that the proof of Dekker	s Theorem is not uniform in
that the proof breaks up into two cases depending on whether the underlying
�eld of V is �nite or in�nite� The complexity theoretic analogue of Dekker	s
Theorem behaves very di
erently in these two cases� That is� Nerode and Rem�
mel ���� proved that if the underlying �eld is in�nite and has a polynomial time
representation with certain nice properties� then every NP subspace of V has
a basis in P � However if the underlying �eld is �nite� then Dekker	s Theorem
is oracle dependent� That is� there is an oracle X such that PX �� NPX and
every NPX subspace of V has a basis in PX and there is an oracle Y such
that PY �� NPY and there is a subspace W of V which is NP Y but has no
basis in PY � This presents us with two general themes� Sometimes the com�
plexity theoretic analogue of a theorem of recursive algebra is true but must
be proved by more delicate methods which take into account the bounds of the
resources used in a computation� Sometimes the complexity theoretic analogue
is false or oracle dependent because the proof of the recursive algebra result
uses unbounded resources available in a recursive construction in a crucial way�
Thus complexity theoretic algebra is not just a mere translation of the results
of recursion theoretic algebra�

Another problem that complicates the study of complexity theoretic algebra
is that fact that not all polynomial time models are equivalent� as we have seen
in the previous sections� That is� Metakides and Nerode showed that all in��
nite dimensional recursive vector spaces with an e
ective dependence algorithm
are recursively isomorphic� Similarly� Cantor	s basic back and forth argument
which shows that all countable free Boolean algebras are isomorphic is e
ective
so that all recursive free Boolean algebras are recursively isomorphic� As we
have seen in the previous section it is certainly not the case that all polynomial
time free Boolean algebras are polynomial time isomorphic� Thus in complexity
theoretic algebra� one �xes a polynomial time presented structure over a natural
universe such as the tally representation of the natural numbers or the binary
representation of the natural numbers and studies that particular structure� In�
deed� Nerode and Remmel studied two basic models of vector spaces� the tally
representation of an in�nite dimensional vector space of a polynomial time �eld
with a polynomial time dependence algorithm� Tal�V��� where the underlying
universe is the tally representation of the natural numbers and the binary rep�
resentation of an in�nite dimensional vector space of a polynomial time �eld
with a polynomial time dependence algorithm� Bin�V��� where the underlying
universe is the binary representation of the natural numbers� Similarly they
consider a tally representation and a binary representation of the free Boolean
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algebra� The results for the tally representation and standard representation of
a structure are not always the same�

Another basic question in the study of complexity theoretic algebra is whether
the priority method which was so useful in the study of recursive algebra would
again play a central role� In ����� Metakides and Nerode �
�� initiated the sys�
tematic study of recursion theoretic algebra and introduced the use of the �nite
injury priority method from recursion theory as a uniform tool to meet algebraic
requirements� Prior to that time the priority method has been limited primar�
ily to internal applications within recursion theory in the theory of recursively
enumerable sets and in the theory of degrees of unsolvability and their gener�
alizations� Recursion theoretic algebra has been developed since� in depth� by
many authors in such subjects as commutative �elds� vector spaces� orderings�
and Boolean algebras �see Crossley ���� for references and a cross�section of re�
sults before ������ Recursion theoretic algebra yielded as a byproduct a theory
of recursively enumerable substructures �see the survey article Nerode�Remmel
���� for references��

Simultaneously in computer science there was a vast development of P and
NP problems in complexity theory� This subject started out as a tool for mea�
suring the relative di�culties of classes of computational problems �see Cobham
����� Cook ����� Hartmanis and Stearns ������ Many papers in this area have
dealt with coding a given problem M into a calibrated problem to �nd an up�
per bound on the complexity of M � and coding a calibrated problem into a
given problem M to �nd a lower bound the complexity of M �see Hopcroft
and Ullman ���� and Garey and Johnson ������ Due to the intractability of
the fundamental problem P � NP � Baker�Gill�Solovay �
� began a line of in�
quiry using diagonal arguments to produce sets �!oracles"� R�� R� such that
PR� � NPR�� PR� �� NPR�� Typical of recent work in this direction is the con�
struction by Yao ���� of oracles relative to which none of the polynomial time
hierarchy collapses� and the result of Cai ��� that this holds for oracles with
probability �� The Baker�Gill�Solovay� Yao� and Cai results are fundamental�
but they do not use the priority method which was used systematically with
success in recursion�theoretic algebra�

Priority arguments have been used by many authors in the study of PA

and NPA sets for recursive or recursively enumerable oracles A� For example�
Homer andMaass ����� used priority arguments to investigate the lattice ofNPA

sets� Shinota and Slaman ���� and Shore and Slaman ���� have used priority
argument to study the structure of the polynomial time Turing degrees relative
to a recursive oracle� Downey and Fellows ���� used priority arguments to study
the density of their �xed parameter complexity classes� Nerode and Remmel
������ ����� ��
�� and ����� showed that indeed priority methods play a central
role in the study of complexity theoretic algebras as we will bring out in the
following sections�

We will start by surveying results of Nerode� Remmel and B#auerle on poly�
nomial time vector spaces�
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� Polynomial Time Vector Spaces

In this section� we shall study the structure of an in�nite dimensional vector
space V� over a polynomial time �eld� We will start by giving some basic de��
nitions and de�ning the binary or standard representation of V� and the tally
representation of V�� Our de�nitions of the standard and tally representation
of V� will be broken down into two cases depending on whether the underlying
�eld F is �nite or in�nite�

A recursive �eld F � hUF ��F � �F � AIf �MIF i consists of a recursive subset
UF of the natural numbers � and partial recursive functions �F ��eld addition��
�F ��eld multiplication��AIF ��eld additive inverse�� andMIF ��eld multiplica�
tive inverse� such that these operations restricted to F turn UF into a �eld� A
recursively presented vector space V � hUV ��V � �V i consists of a recursive sub�
set UV of the natural numbers and partial recursive functions �V �vector space
addition� and �V � UF � UV � UV �scalar multiplication� which turn UV into
a vector space� V is said to have a dependence algorithm if there is a uni�
form e
ective procedure which given any n�tuple v�� � � � � vn�� will determine if
v�� � � � � vn�� are dependent�

We say that a recursive �eld F � hUF ��F � �F � AIf �MIF i is a polynomial
time �eld if UF is a polynomial time subset of f�� �g� and the operations
�F � �F � AIF �MIF are the restrictions of total polynomial time functions� We
will always assume that �� � � UF and that � is the zero of F and that � is the
multiplicative identity of F �

Let V� be the in�nite dimensional vector space over a polynomial time �eld
F which consists of all �nite sequences � a�� � � �an 	 of elements of F where
an �� � together with the empty sequence 
 which is the zero of the vector space�
The operations on V� are induced by coordinate�wise addition and scalar mul�
tiplication� Finally we say that a vector v �� a�� � � �an 	 of V� where ai � F
for � � i � n and an �� � has height n� We say that the zero vector of V� has
height ��

Case � F is �nite�

Suppose that F � f�� �� � � � � k � �g is a �nite �eld where � is zero of F and
� is the multiplicative identity of F � The space V� can be coded into the natu�
ral numbers � � f�� �� �� � � �g as a polynomial time vector space in many ways�
We refer to e�� e�� � � � as the standard basis of V� where en is the sequence of
the length n� h�� � � � � �� �i with n � � zeros and � denotes the unit of F � Now
the question of whether V� is polynomial time� recursive� etc�� depends on how
we code the sequences ha�� � � � � ani� Following ���� ���� we will distinguish two
speci�c polynomial time representations of V� which we call the tally and bi�
nary �or standard� representations of V�� We identify each vector v � V� with

��



a natural number R�v� by R���� � � and

R�ha�� � � � � ani� � a� � a�k � � � �ank
n�� if an �� ��

Next� with a slight abuse of notation� we de�ne maps bk � V� � Bk���� bin �
V� � Bin��� and tal � V� � Tal��� by bk�v� � bk�R�v��� bin�v� � bin�R�v��
and tal�v� � tal�R�v���

Then Bk�V�� consists of the set Bk��� with the operations of vector addi�
tion �Bk

and scalar multiplication �Bk
induced by the corresponding operations

from V�� Similarly� bin�V�� consists of the set Bin��� � fbin�v� � v � V�g
with corresponding induced operations �bin and �bin and tal�V�� consists of the
set Tal��� with the induced operations �tal and scalar multiplication �tal� It is
easy to see that Bk�V��� bin�V�� and tal�V�� are polynomial time structures
and it follows from Lemma 
�
 that Bk�V�� and bin�V�� are p�time isomor�
phic� We shall normally refer to either of these two structures as the standard
representation st�V�� of V� and write the operations as �st and �st�
Case � F is in�nite�

Recall the p�time coding functions h��� � � � � �kik de�ned in section 
� Now
suppose that F � hUF ��F � �F � AIf �MIF i is an in�nite polynomial time �eld
of characteristic �� Let � and � denote the zero and � of F respectively� For
any positive integer n� let n � �� � � �� � where there are n summands and let
�n � AIF �n�� For any integers n and m �� �� let n
m � n �F MI�m�� Then
set

Q� � fn
m � n � N�m � N n f�gg�

Thus Q� is a copy of the nonnegative rationals inside of F � We say that Q is
properly embedded in F if

	i
 Q� is a polynomial time subset of f�� �g� and

	ii
 the map f � Q� � f�� �g� given by f�n
m� � �bin�n�� bin�m�� � bin��n�m��
is the restriction of polynomial time function from f�� �g� to f�� �g��

Now suppose that F � hUF ��F � �F � AIf �MIF i is a polynomial time �eld
where Q� is properly embedded and UF � f�� �g�� De�ne bin � V� � Bin���
by bin���� � � and

bin�� a�� � � �an 	� � ha�� � � �anin for a�� � � � � an in F with an �� ��

In this case� we let st�V�� � �Ub��b� �b�� where Ub � fbin�v� � v � V�g
and where the operations �b and �b are de�ned so that bin is an isomorphism
from V� onto st�V��� It is easy to see that the operations �b and �b are
the restrictions of polynomial time functions and that Ub is polynomial time
isomorphic to f�� �g�� We call st�V�� the binary representation �or the standard
representation� of V� in this case�
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The tally representation of V� is de�ned by observing that that if � �
�� � � ��n is any string of Ust other than the empty string� then � ends in a ��
Hence there is an integer n� such that bin�n�� � �n � � ����

Now de�ne a map tal � V� � Tal��� by tal�v� � tal�nv�� where nv is the
natural number such that bin�v� � bin�n� and let tal�V�� � �Ut��t� �t�� where
Ut � ftal�v� � v � V�g and the operations �t and �t are de�ned so that tal is an
isomorphism from V� onto tal�V��� It is easy to see that the operations �t and
�t are the restrictions of polynomial time functions and that Ut is polynomial
time isomorphic to Tal���� We call tal�V�� the tally representation of V� in
this case�

Finally we argue that both the standard and tally representation of V�
have polynomial time dependence algorithms� First the decoding functions �ki
de�ned in section 
 allow us to recover the coe�cients a�� � � � � ak from any
vector bin�v� � ha�� � � � � akik � st�V��� We can then similarly recover the
coe�cients from tal�v� by �rst computing bin�v�� It follows that� given any
set v�� � � � vn of vectors in either of our representations of V�� we can recover
the matrix of coe�cients of v�� � � � � vn corresponding to the expansions of those
vectors in terms of the standard basis e�� e�� � � � of V� in polynomial time in
the sums of the lengths jv�j� � � �� jvnj� We can then use Gaussian elimination
on the matrix of coe�cients to determine whether or not fv�� � � � � vng is an
independent set� Since Gauss elimination is polynomial time over the coe�cients
�since the operations of F are polynomial time�� it follows that in each of our
representations� there is a polynomial p such that we can decide if fv�� � � � � vng
is dependent in p�jv�j� � � �� jvnj� steps�

We end this section with some basic de�nitions and notations for vector
spaces� Let V be either V�� st�V�� or tal�V��� We shall abuse notation and
let �� denote the zero vector for V�� st�V��� and tal�V�� even though technically
the zero vectors of the three vector spaces are distinct objects� Given a subset
A of V � we let space�A� denote the subspace of V generated by A� Given two
subspaces U and W of V � we let U � W denote the subspace generated by
U �W � We shall write W � U� � U� if W�U� and U� are subspaces of V such
that W � U� � U� and U� � U� � f��g� We say U is a complementary subspace
of W if U �W � V � Given x � V � we let ht�x� denote the height of x� We
note that if x � st�V��� then in polynomial time in jxj� we can produce the
binary representations of the integers a�� � � � � an such that x � bin�ha�� � � � � ani�
with an �� � so that we can �nd the height of x in polynomial time in jxj�
Similarly if x � tal�V��� then in polynomial time in jxj� we can produce the
tally representations of the integers a�� � � � � an such that x � tal�ha�� � � � � ani�
with an �� � so that we can �nd the height of x in polynomial time in jxj�
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��� Subspaces and Bases over in
nite polynomial time

elds

We shall see that there is a vast di
erence between the theory of bases and
subspaces of st�V�� or tal�V�� when the underlying �eld is in�nite as opposed
to when the underlying �eld is �nite� For example� Nerode and Remmel proved
the following strengthening of Dekker	s Theorem that every r�e� subspace of
a recursively presented vector space over a recursive �eld with a dependence
algorithm has a recursive basis�

Theorem ��� ������
Let F be a polynomial time �eld where Q is properly embedded� Then

	a
 every r�e� subspace V of tal�V�� has a basis in P and

	b
 every r�e� subspace W of st�V�� has a basis in P �

B#auerle ��� proved the existence of simple and maximal subspaces of tal�V��
which are in P � To properly state B#auerle	s results� we �rst need some de�ni�
tions�

In the lattice� E � of recursively enumerable �r�e�� sets of natural numbers� a
r�e� set S is simple if � nS is in�nite and for any in�nite r�e� set W � W �S �� 
�
A r�e� set M is maximal if � n M is in�nite and for any r�e� set W  M �
either � nW or W nM is �nite� The analogues of these notions in the lattice of
NPA sets� ENPA � for any oracle A are the following� A NPA set S 	 f�� �g� is
NPA�simple if f�� �g� n S is in�nite and for any in�nite NPA set W 	 f�� �g��
W � S �� 
� A NPA set M 	 f�� �g� is NPA�maximal if f�� �g� nM is in�nite
and for any NPA set W  M � either f�� �g� nW or W nM is �nite�

It was shown by Homer and Maass ����� that there exists oracles A and B
such that NPA �� PA and no NPA�simple sets exist and NPB �� PB and there
exist NPB�simple sets� It follows from a result of Briedbart ��� that there are
no NPA�maximal sets for any A�

In the lattice� L�V��� of r�e� subspaces of a recursively presented copy of V��
a r�e� subspace S of V� is simple if the dimension of the quotient space V�
S
is in�nite and for any in�nite dimensional r�e� subspace W of V�� W �S �� f��g�
A r�e� subspace M is maximal if the dimension of V�
M is in�nite and for
any r�e� subspace W  M � either the dimension of V�
W or the dimension of
W
M is �nite� A r�e� subspace M is supermaximal if the dimension of V�
M
is in�nite and for any r�e� subspace W  M � either V� � W or the dimension
of W
M is �nite� The NP analogues of these notions in st�V�� and tal�V��
are the following� Let A be an oracle� then a NPA subspace S of st�V�� �
tal�V��� is NPA�simple if the dimension of st�V��
S �tal�V��
S � is in�nite
and for any in�nite NPA subspace W of st�V�� � tal�V���� W � S �� fbin����g
� W � S �� ftal����g�� A NPA subspace M is NPA�maximal if the dimension
of st�V��
M �tal�V��
M � is in�nite and for any NPA subspace W of st�V��
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� tal�V���� either the dimension of st�V��
W � tal�V��
W � or the dimension
of W
M is �nite� A NPA subspace M is NPA�supermaximal if the dimension
of st�V��
M �tal�V��
M � is in�nite and for any NPA subspace W of st�V��
� tal�V���� either st�V�� � W � tal�V�� � W � or the dimension of W
M is
�nite�

Nerode and Remmel ���� introduced a slightly weaker notion than NPX�
simple subspace which they called PX�simple subspace� Note that in the case
of simple sets or simple subspaces� we can replace the in�nite r�e� set W or
the in�nite dimensional r�e� subspace W by an in�nite recursive set W or
an in�nite dimensional recursive subspace� That is� every in�nite r�e� set W
contains an in�nite recursive set and every in�nite dimensional r�e� subspace
V of V� contains an in�nite dimensional recursive subspace� Thus a r�e� set S
is simple i
 � n S is in�nite and for any in�nite recursive set W � W � S �� 
�
Similarly an r�e� subspace S of V� is simple i
 the dimension of V�
S is in�nite
and for any in�nite dimensional recursive subspace W of V��W�S �� f��g� Thus
we make the following de�nition� Let A be an oracle� then a NPA subspace S
of st�V�� � tal�V��� is PA�simple if the dimension of st�V��
S �tal�V��
S� is
in�nite and for any in�nite dimensional PA subspace W of st�V�� � tal�V����
W � S �� fbin����g � W � S �� ftal����g�� It follows from results of Nerode
and Remmel ���� that there exists oracles A such that there exists an in�nite
dimensionalNPA subspace V of tal�V�� such that V has no in�nite dimensional
subspace W � PA� Thus while a subspace W which is NPA�simple is certainly
PA�simple� it is not clear that every PA�simple subspace of tal�V�� is NPA�
simple�

Given a subspace V of st�V�� �tal�V���� we let

Dn�V � � fhv�� � � � � vnin � v�� � � � � vn are dependentg

D�V � �
�
n��

Dk�V ��

The Turing degree ofDn�V � is called the n�th dependence degree and the Turing
degree ofD�V � is called the dependence degree of V � �The sets Dn�V � andD�V �
can be de�ned for any subspace of a recursively presented vector space over a
recursive �eld using a suitable coding of the �nite sequences of N �� Nerode and
Remmel ���� proved the following�

Theorem ��� Assume the underlying �eld F of tal�V�� is an in�nite recursive
�eld� Let A�� A�� A�� � � � be any e�ective sequence of r�e� sets such that A� �T
A� �T � � � �T A� and A� is not recursive� Then there is a supermaximal
subspace V in tal�V�� such that D�V � 
T A� and Dk�V � 
T Ak�

There is a nice application of Theorem ��� in the case where we pickA�� A�� � � �
to be recursive and A� to be nonrecursive� In that case� the supermaximal space
V of Theorem ��� is recursive so the quotient space W � tal�V��
V is a recur�
sively presented vector space such that
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	i
 every r�e� independent set I of W is �nite�

	ii
 for any �xed n� there is an e
ective procedure which given an n�tuple
w�� � � � � wn will determine if w�� � � � � wn are dependent� but

	iii
 W has no dependence algorithm�

B#auerle ��� proved the following result for tal�V���

Theorem ��� ����� Let F be a polynomial time �eld where Q is properly em�
bedded and � be any nonzero r�e� degree� Then for any �nite k � �� there is a
supermaximal subspace V of tal�V�� such that

	i
 D��V �� � � � � Dk�V � are polynomial time�

	ii
 for all j� Dj�V � � PSPACE �DEXT � and

	iii
 D�V � � ��

Thus in particular� there exist a polynomial time supermaximal subspace
W of tal�V�� which is of course automatically NP �simple and NP �maximal�
Moreover if we consider the quotient space U � tal�V�
W �� then it is easy to
see that U is a polynomial time vector space� That is� if we identify U with the
set of minimal elements in each equivalence class of tal�V�
W �� the Q will be a
polynomial time set and the operations of tal�V�� will induce polynomial time
operations on U which will make it isomorphic to tal�V�
W �� Thus we have
the following

Theorem ��� There exists a polynomial time presented vector space U such
that the only r�e independent sets of U are �nite�

As we shall see in the next section� the analogues of Theorems ��� and ���
are oracle dependent�

��� Subspaces and Bases over 
nite 
elds

In this section� we shall state several results on the relation between the com�
plexity of a subspace V of either st�V�� or tal�V�� and the complexity of a
basis of that subspace when the underlying �eld is �nite� These results turn out
to be essential for many of the more complicated results and constructions in
polynomial time vector spaces�

Note that since the universe of st�V�� is Bin���� there is a natural order �
on the elements of st�V�� inherited from the standard ordering of the natural
numbers� Similarly since the universe of tal�V�� is Tal���� there is a natural
order � on the elements of st�V�� inherited from the standard ordering of the
natural numbers� This given� we can now state some very useful de�nitions
for our purposes� Recall that e�� e�� � � � is the standard basis for V�� Thus
R�en� � kn���

We start with the de�nition of a height increasing basis�
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De�nition ��� Let V be a subspace of st�V�� or tal�V���

	�
 Call B a height increasing basis of V if B is a basis for V and for all
n � �� B has at most one element of height n�

	�
 The standard height increasing basis of V � BV � is de�ned by declaring
that x � BV i� x � V and there is no y � V such that y � x and
ht�y� � ht�x��

	�
 The standard height increasing complementary basis of V 	 tal�V���
BV � is de�ned in tal�V�� by declaring that tal�en� � BV i� tal�en� 
� V
and there is no y � V such that ht�y� � n� Similarly the standard
height increasing complementary basis of V 	 st�V��� B

V
� is de�

�ned in st�V�� by declaring that bin�en� � B
V

i� bin�en� 
� V and there
is no y � V such that ht�y� � n�

	�
 We call the space�B
V
�� the standard complement of V �

There is a crucial di
erence between st�V�� and tal�V�� with respect to
searches� That is� the vector of height n with the smallest R value is en and
R�en� � kn��� The vector of height n with the largest R value is �k � ��e� �
� � �� �k � ��en and

R��k � ��e� � � � �� �k � ��en� �
NX
i��

�k � ��ki�� � kn � ��

Thus in tal�V��� given a vector v of height n� we can produce in polynomial
time in jvj� a list of all vectors of height n in tal�V��� However in st�V���
given a vector v of height n� it takes exponential time in jvj to produce a list
of all vectors of height n in st�V��� For this reason� the relation between the
complexity of V � BV � BV

� and space�B
V
� is very di
erent in tal�V�� than in

st�V��� For this reason� we shall divide this subsection into two parts� one for
tal�V�� and one for st�V��� and discuss the relation between the complexity of
bases and subspaces for each case separately�

����� Bases and Subspaces for tal�V���

Nerode and Remmel in ���� studied bases of NP �subspaces of tal�V��� so we
start by listing a number of results from that paper�

Theorem ��
 ������
Let V be a subspace of tal�V���

	a
 If B is a height increasing basis of V � then V �PT B�

	b
 BV �PT V and BV �
P
T V �
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Proof� The key point here is that in our tally representation� card�fx �
V� � ht�x� � ng� � k � � � �k � ��k � � � �� �k � ��kn�� � kn � �� Moreover�
if ht�y� � n� then jyj � kn� Given x � V� such that ht�x� � n� we know that
jxj � kn��� So there are at most kjxj elements of tal�V�� with height less than
or equal to ht�x�� For q �xed we can run any �uniform� computation which take
at most nq steps on strings of length n for all the elements of tal�V�� of height
less than or equal to ht�x� in polynomial time� This is because

X
y�tal�V���ht�y��ht�x�

jyjq �

�kjxj�qX
i��

i �
� �kjxj�q��kjxj�q � ��

�

�
� k�jxj�q�

Given these observations it is immediate from our de�nitions of BV and B
V

that BV �PT V and B
V
�PT V �

To prove Theorem ��� �a�� note that if B is a height increasing basis for V �
then x � V i
 x � space�fy � B � ht�y� � ht�x�g�� Thus to decide if x � V �
we simply search all the elements y in V� with ht�y� � ht�x� and produce all
vectors y�� � � � � yk in fy � B � ht�y� � ht�x�g� We can then use the polynomial
time dependence algorithm to determine if y � space�fy � B � ht�y� � ht�x�g�
in polynomial time in jyj� Thus V �PT B� �

An immediate corollary of Theorem ��� is the following�

Corollary ��� ������

	i
 A subspace V of tal�V�� is in P i� V has a height increasing basis B in P �

	ii
 If V is a subspace of tal�V�� and V � P � then V has a complementary
subspace W in P �

We note that one cannot replace �PT by �Pm in the statement of Theorem
��� due to the following result of Nerode and Remmel �

Theorem ��� ������
There exists a subspace V of tal�V�� such that neither BV �mP V nor V �mP BV �

Next we observe that height increasing bases in NP generate NP spaces�

Theorem ��� ����� Suppose that A is a height increasing independent set of
tal�V�� in NP � Then space�A� � NP �

Proof� Note that if A is a height increasing independent set� then x �
space�A� i
 x � space�fy � A � ht�y� � ht�x�g�� Thus x � space�A� i

there are elements b�� � � � � bn of height � ht�x� and ��� � � � � �n � F such that
x �

Pn
i�� �ibi� Moreover� if ht�x� � m� then km�� � jxj � km � � so that each

bi must have length � kjxj� Thus in nondeterministic polynomial time� we can
guess ��� � � � � �n� b�� � � � � bn� and computations which show that bi � A and then
verify that x �

Pn

i�� �ibi� Thus space�A� is in NP if A � NP � �

Similarly one can show that if NPX � co�NPX � then we have the following�

�




Theorem ���� ������
Suppose NPX � co�NPX and V is a subspace of tal�V��� Then

	i
 V � NPX i� V has a height increasing basis in NPX	

	ii
 V � NPX implies V has a complementary subspace W in NPX �

Our next result will allow us to show that the property of a subspace V
of tal�V�� having a basis in P does not necessarily tell us anything about the
complexity of V other than that V is recursively enumerable�

Theorem ���� ������
Let V be a recursively enumerable in�nite dimensional subspace of tal�V���
Then the following are equivalent


	�
 V has a basis C in P 	

	�
 V contains an in�nite dimensional subspace W in P 	

	�
 V contains an in�nite height increasing independent subset S in P �

Another consequence of a subspace containing an in�nite independent subset
in P is the following�

Theorem ���� Let V be a recursive subspace of tal�V�� such that V contains
an in�nite height increasing independent set C in P � Then if the dimension of
tal�V��
V is in�nite� there is an in�nite height increasing independent set D
in P such that V � space�D� � f��g�

Proof� Note that B
V

is recursive� Let b�� b�� � � � be a list of the elements
of B

V
such that h�b�� � h�b�� � � � �� Let f be a recursive function such that

f��n� � bn� Similarly let c�� c�� � � � be a list of the elements of C such that
h�c�� � h�c�� � � � �� Then let ds � bs �tal cr�s� where

r�s� � � �
sX

i��

h�bi� � the number of steps to compute f���� � � � � f�s��

Then we claim that D � fd�� d�� � � �g is our required height increasing in�
dependent set� First observe that by our de�nition of r�s�� r�s� 	 h�bs�
so that h�ds� � h�cr�s��� Also it is clear that r��� � r��� � � � � so that
h�d�� � h�d�� � ���� Thus D is a height increasing basis� Moreover it is easy to
see that D is independent over V � Thus we need only show that D is p�time�
To decide whether a given x � tal�V�� is in D� we �rst compute which elements
y with h�y� � h�x� are in C� Now C is a p�time set so that for all z we can
determine whether z � C in max��� jzj�m steps for some �xed m� Moreover� if
h�x� � n� then x � �jxj where kn�� � jxj � kn � � so that it requires at most
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�m � �m �
Pkn��

j�� jm �
Pkjxj��

j�� jm � ��kjxj � ��m�� � �kjxj � ���m steps to
�nd the elements of C of height less than or equal to h�x�� If no element of
height h�x� is in C� then clearly x 
� D� If there is an element of height h�x�
in C� then in polynomial time in jxj� we can �nd r such that h�cr� � h�x�� At
this point� we start to compute the sequence of elements f���� f���� � � � in order
for r steps� Suppose that end the end of r steps� we have successfully computed
f���� � � � � f�t�� Note that if we are not successful in computing f��� by the end
of r steps� then x 
� D� Otherwise� see if there is some s � t such that

r � � �
sX
i��

h�bi� � the number of steps to compute f���� � � � � f�s��

If there is no such s� then x 
� D and if there is such an s� then x � D i

x � f�s� �tal cr� It follows that we can decide if x � D in polynomial time in
jxj� so that D is a p�time height increasing independent set which is independent
over V � �

Next we show that having a basis in P does not restrict the degree of a
subspace other than ensuring the subspace is recursively enumerable�

Theorem ���� Let � be any r�e� degree� Then there there exists a r�e� subspace
V in tal�V�� such that V has a basis in P �

Proof� Let B� be an in�nite subset of fe�n � n � �g in P and for any given
r�e� degree �� let B	 be an in�nite r�e� subset of fe�n�� � n � �g of degree
�� Then it is easy to see that the Turing degree of V	 � space�B� � B�� is ��
By Theorem 
� V	 has a basis in P since space�B�� is an in�nite dimensional
subspace of V	 which is in P � �

It is also easy to construct spaces with no basis in P � In fact� Nerode and
Remmel ���� gave a general construction which� given any e
ective list of r�e�
independent sets of tal�V�� A�� A�� � � �� produced a subspace V of tal�V�� such
that V �Ai is �nite for all� Their construction can be specialized to prove the
following results�

Theorem ���� 	�
 There is a subspace V of tal�V�� in DEXT such that V
has no basis in P �

	�
 There is a recursive subspace V of tal�V�� such that V has no primitive
recursive basis�

	�
 There is a subspace V of tal�V�� which is recursive in �� such that for any
r�e� independent set I� I � V is �nite�

We should also note that every r�e� subspace has a basis which has high
complexity�
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Theorem ���� ������
Let V be an r�e� subspace of either tal�V�� or st�V��� Then V has a recursive
basis B which is not primitive recursive�

All of the results so far do not settle the question of whether every subspace
V of tal�V�� which is in NP has a basis in P � In fact� this question is oracle
dependent� To prove the existence of an oracle B such that every subspace V
of tal�V�� which is in NPB has a basis in PB� Nerode and Remmel proved the
following result which strengthens a similar result of Homer and Maass �����

Theorem ���
 ������ There is a recursive oracle B such that PB �� NPB and
such that every in�nite set X which is p�time Turing reducible to a set Y in
NPB contains an in�nite subset in PB�

We note that in light of Theorem ����� it also follows that for the oracle B
of Theorem ����� every NPB subspace V of tal�V�� has a basis in PB� Thus
we have the following�

Theorem ���� ������ There is a recursive oracle B such that PB �� NPB and
every every NPB subspace V of tal�V�� has a basis in PB�

Via a delayed diagonal argument� Nerode and Remmel also proved the fol�
lowing�

Theorem ���� ������ There is a recursive oracle A such that

	a
 there is an in�nite dimensional subspace V in NPA such that V has no
basis in PA �and hence NPA �� PA� and

	b
 NPA � co�NPA�

Combining Theorems ���� and ����� we have the following

Theorem ���� ������ Arguments valid under relativization are not su�cient
to prove

�� P �� NP �	 every subspace of tal�V�� in NP has a basis in P and

�� P �� NP �	 there is a subspace V of tal�V�� in NP which has no basis
in P �

We end this section with some results of B#auerle ���� We say a set A 	 f�� �g�

is PX�immune if there are no in�nite subset of A in PX � The next results show
that a subspace V 	 tal�V�� can have a basis in P without the standard basis
being in P �

Theorem ���� ����� There exists an exponential time subspace V of tal�V��
which has a basis in P but for which the standard height increasing basis of V �
BV � is P �immune�
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Theorem ���� ����� There exists a recursive oracle A such that there exists a
subspace V of tal�V�� which is in NPA n PA� has a basis in PA� and yet the
standard hieght increasing basis of V � BV � is PA�immune�

Theorem ���� �����
There exists a recursive oracle B such that there exists a subspace V of

tal�V�� in NPB nPB and such that� for all NPB nPB subspaces V of tal�V���
the standard height increasing basis BV has an in�nite subset in PB�

Theorem ���� Let F be �nite and V � tal�V��� If V has an in�nite dimen�
sional subspace in P � then V has a height increasing basis D with a subset in P
such that BV 


P
T D�

Theorem ���� ����� Let A be an oracle such that NPA n PA�subspaces of
tal�V�� exist� Then if V has an in�nite dimensional subspace in PA� then
V has a height increasing basis D with a subset in PA such that BV 
PT D�

����� Bases and Subspaces of st�V���

It will be convenient to think of st�V�� via the representation Bk�V�� de�ned
above� The advantage is that for nonzero x � Bk�V��� ht�x� � jxj� The
standard basis for Bk�V�� is given by en � bk�kn��� � �n��

As pointed out in the introduction to this section� there is a signi�cant
di
erence between st�V�� and tal�V�� with regard to searches� Indeed many
of the proofs of the propositions and theorems in the previous subsection relied
on the fact that given an x � tal�V��� we could produce a list of all elements
tal�V�� of height � ht�x� in polynomial time in jxj� This is no longer the case
in st�V��� That is� if x � tal�V�� and ht�x� � n� then kn�� � jxj � kn � �
while if x � st�V��� then ht�x� � jxj so that there are kjxj�� elements of height
less than or equal to ht�x� in st�V��� Thus in st�V��� we can not �nd all the
elements of height less than or equal to ht�x� in a p�time height increasing set S
in polynomial time in jxj� However there is a special class of p�time independent
sets of st�V��� which we call strongly p�time independent sets� which do have
most of the useful properties possessed by p�time height increasing bases of
tal�V���

De�nition ���� An independent set B 	 st�V�� is called strongly p�time if

	i
 B is a p�time set�

	ii
 B is height increasing� and

	iii
 if B � fb�� b�� � � �g where ht�b�� � ht�b�� � � � �� then there is a polynomial
time function f such that for all n 	 �

	iiia
 f��n� � bk if ht�bk� � n and B has an element of height n�

��



	iiib
 f��n� � � if B has no element of height n�

We note that condition �iii� allows us to �nd� for any x � st�V��� all elements
of b of height � ht�x� in polynomial time in jxj� That is� given x � st�V���
ht�x� � jxj and we can compute f���� f����� � � � � f��ht�x�� in polynomial time
in jxj� Then fb � b � B � ht�b� � ht�x�g � ff��n� � n � jxj � f��n� �� �g� As
noted above� any p�time height increasing independent set B in tal�V�� also
has the property that� for any x� we can �nd all elements of B of height � ht�x�
in polynomial time in jxj� Thus condition �iii� is speci�cally designed to give
us this property which holds for all p�time height increasing bases in tal�V��
automatically� It is easy to see that our standard basis fe�� e�� e	� � � �g of st�V��
is strongly p�time�

Our next proposition lists several basic properties of subspaces generated by
subsets of a strongly p�time basis�

Theorem ���
 Let B be a strongly p�time basis of st�V�� and suppose that
S 	 B� Then

	i
 S � P i� space�S� � P �

	ii
 S � NP i� space�S� � NP �

	iii
 S � co�NP i� space�S� � co�NP �

	iv
 S 
PT space�S��

Proof� Since S � space�S� � B� it follows that S �PT space�S� and S is in
P �NP� co�NP � if space�S� is in P �NP� co�NP ��

Let f be the p�time function such that f��n� � bn� where bn is the element
of height n in B� Then� given an x � st�V�� of height n� we can compute
f��� � b�� � � � � f��n� � bn and test b�� � � � � bn for membership in S� all in time
polynomial in jxj� Thus in polynomial time in jxj� we can �nd fs�� � � � � skg�
where fbs�� � � � � bskg � fy � S � ht�y� � ht�x�g� Moreover the fact that B is

a height increasing basis means that x �
Pjxj

i�� �ibi for some ��� � � � � �jxj in F �
Now suppose that jxj � n� then we can write x � x� � � � xn where all xi � F
and and each bi � bi�� � � � bi�n where bi�j � F � Then we can solve the matrix
equation over F

BY � X

where B � �bi�j�� Y is a column vector of unknowns� and X is the column vector
�x�� � � � � xn� in polynomial time in n � jnj� Thus in polynomial time in jxj� we

can �nd ��� � � � � �k such that x �
Pjxj

i�� �ibi� This given�

x � space�S� i
 fi � �i �� �g 	 fs�� � � � � skg�

It then easily follows that space�S� �PT S and space�S� is in P �NP� co�NP � if
S is in P �NP� co�NP �� �

Our next result is a weak analogue for st�V�� of Theorem ����
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Theorem ���� Let V be a subspace of st�V�� with strongly p�time basis R�
Then R �B
V is a strongly p�time basis for st�V�� and both V and space�B
V �
are in P �

Our next theorem shows that no extra condition on a height increasing basis�
such as condition �iii�� is required to generate subspaces of st�V�� in NP �

Theorem ���� Let B be a height increasing independent set of st�V�� which
is in NP � Then space�B� is in NP �

Proof� The key property of a height increasing basis is that if x � space�B��
then x � space�fb � B � ht�b� � ht�x�g�� That is� x must be generated
by the elements of height � ht�x� in B if x � space�B�� Thus to see that
space�B� � NP � we simply guess the elements of B of height � ht�x�� say
fb�� � � � � bkg � fb � B � ht�b� � ht�x�g� where ht�b�� � � � � � ht�bk�� Now� for
all nonzero y � st�V��� ht�y� � jyj so jbij � jxj for all i and k � jxj� Then we
perform a nondeterministic polynomial time computation to check if b�� � � � � bk
are all in B� Finally� we use our polynomial time dependence algorithm to
check whether x � space�fb�� � � � � bkg�� Thus space�B� is in NP � �

Theorem ���� Suppose NPX � co�NPX and V is a subspace of st�V���
Then

�i� V � NPX i� V has a height increasing basis in NPX �

�ii� V � NPX implies V has a complementary subspace W in NPX �

Our next result is a weak analogue of Theorem ���� of ���� for st�V���

Theorem ���� Let V be an r�e� in�nite dimensional subspace of st�V��� Sup�
pose that there exists an in�nite strongly p�time independent subset I 	 V �
Then V has a basis in P �

Our next next result is the analogue of Theorem ���� for st�V���

Theorem ���� Let V be a recursive co�in�nite dimensional subspace of st�V��
such that V contains an in�nite strongly p�time height increasing independent
set C� Then there is an in�nite strongly p�time height increasing independent
set D such that V � space�D� � f��g�

Theorem ���� Given any r�e� Turing degree �� there exists an r�e� subspace
V of st�V�� such that V has degree � and V has a basis in P �

Again one can show that exists an exponential time subspace of st�V��
which has no basis in P �

Theorem ���� There is a subspace V of st�V�� such that V � DEXT and V
has no basis in P�
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����� The semilattice of NPX subspaces

In this section we shall study various properties of the lower semilattice of NPX�
subspaces of tal�V�� and st�V�� for various oracles X� Our �rst result shows
that in contrast to the collection of r�e� subspaces which is closed under both
intersection ��� and sum ��� and hence forms a lattice� the collection of NPX�
subspaces of either tal�V�� and st�V�� is only closed under intersection and
hence only forms a lower semilattice�

Theorem ���� There exist two polynomial time subspaces W and V of
tal�V�� �st�V��� such that W � V � f��g and W � V is not recursive�

Proof� The proof that we present below works equally well for both tal�V��
and st�V��� Thus we shall write a generic proof where V� may be interpreted
as either tal�V�� or st�V�� and the standard basis e�� e�� � � �may be interpreted
as either the standard basis tal�e��� tal�e��� � � � of tal�V�� or the standard basis
st�e��� st�e��� � � � of st�V�� as appropriate�

By a result of Metakides and Nerode �
��� a subspace V of V� is recursive
i
 V is r�e� and V has an r�e� complementary space� It is easy to see that
we can form an e
ective list �A�� B��� �A�� B��� � � � of all pairs of r�e� subspaces
Wi and Wj of V� such that Wi � Wj � f��g� That is� if W��W�� � � � is an
e
ective list of all r�e� subspaces of V� and Wn

i denotes the set of elements
enumerated into Wi after n steps� then �Ai� Bi� is the pair of r�e� subspaces
given by letting �Ai� Bi� be �Wk�W
� i
 i � �k� �� and Wk � W
 � f��g or
letting �Ai� Bi� be �space�Wn

k �� space�W
n

 �� where n is the least m such that

space�Wm��
k � � space�Wm��


 � �� f��g if Wk �W
 �� f��g�
Given the list �A�� B��� �A�� B��� � � � � we shall construct W and V so that

W � V �� Ai for any i such that Ai � Bi � V�� Thus W � V will not be
recursive� In the construction that follows we will in fact construct two p�time
height increasing disjoint independent sets K and L so that W � space�K� and
V � space�L� will be our desired polynomial time subspaces� Let r�� r�� � � � be
a list of all prime numbers in increasing order� Our idea is to use the vectors
eri � eri ��n� eri ��n where n � � to help us ensure that Ai ��W � V if Ai �Bi �
V�� The only vectors which will be placed into K will be of the form eri �eri ��n

for some i � � and n � �� and the only vectors which will be placed into L will
be of the form eri ��n for some i � � and n � �� In fact� for any �xed i either

K � feri � eri ��n � n � �g � 


and
L � feri ��n � n � �g � 


or there will be an m such that

K � feri � eri ��n � n � �g � feri � eri ��mg

��



and
L � feri ��n � n � �g � feri ��mg�

Note that in the standard representation of V�� L will be a polynomial time
subset in the strongly p�time height increasing basis fst�en� � n 	 �g and K will
be a polynomial time subset of the strongly p�time height increasing independent
set fek�ek��n � k is odd and n � �g so that L and K themselves will be strongly
p�time independent sets� Thus by Theorem ����� W and V will be polynomial
time subspaces of st�V��� In the tally representation of V�� K and L will be
polynomial time height increasing independent sets so that by Theorem ���� W
and V will be polynomial time subspaces of tal�V���

Now to decide if eri � eri ��m � K and eri ��m � L� we run the enumerations
of Ai and Bi for m steps� Let Am

i and Bm
i denote those elements enumerated

into Ai and Bi respectively after m steps� If m 	 jeri j and �space�Am
i � �

space�Bm
i �� n �space�Am��

i �� space�Bm��
i �� �� 
� then we place eri � eri ��m into

K and eri ��m into L i
 eri � �space�Am
i � � space�Bm

i �� n space�Am
i �� Otherwise

we place neither eri � eri ��m into K nor eri ��m into L� Using the fact that in
m steps� we can at most enumerate m vectors which are of length at most m
and the fact that Gaussian elimination is polynomial time in the dimensions of
the matrix� it is easy to see that both K and L are p�time height increasing
independent sets�

Now suppose eri �eri ��m � K and eri ��m � L� Since Ai�Bi � f��g� we know
that each element v � space�Ai��space�Bi� has a unique expression in the form
v � a� b with a � space�Ai� and b � space�Bi�� By our construction� it follows
that eri � �space�Am

i � � space�Bm
i �� n �space�Am

i �� so that eri 
� space�Ai�� But
clearly eri � space�K� � space�L�� so that Ai �� space�K� � space�L��

Suppose there is no m such that eri � eri ��m � K and eri ��m � L� Then
either there is no m such that eri � space�Am

i � � space�Bm
i � in which case

space�Ai� � space�Bi� �� V� so that we don	t have to worry about Ai and Bi�
or eri � space�Am

i � for some m �in which case eri �� space�K� � space�L� so
again space�K� � space�L� �� Ai�� �

Next we make some observations about the existence of subspaces V of
tal�V�� which are in NP n P � We note that even with the assumption P ��
NP � the existence of NP n P �subspaces requires further complexity theoretic
assumptions� That is� in ��
� Hartmanis proved that the existence of sparse sets
in NP nP is equivalent to the separation of deterministic and nondeterministic
exponential time DEXT �� NEXT � Thus if DEXT � NEXT � then no NP n
P subspaces of tal�V�� can exist even if NP �� P � Since the existence of an
oracle such that NPA �� PA and DEXTA � NEXTA was proven by Wilson
in ����� we have the following theorem�

Theorem ���� There exists an oracle A such that NPA �� PA and no NPA n
PA�subspaces of tal�V�� exist�
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As a consequence of this theorem it follows that showing the existence of
NP n P �subspaces is at least as hard as separating DEXT and NEXT � On
the other hand it is su�cient to separate DOUBDEXT and DOUBNEXT to
show the existence of NP n P �subspaces�

Theorem ���
 ����� IfDOUBDEXT �� DOUBNEXT � then NPnP �subspaces
of tal�V�� over �nite �elds exist�

Sketch of Proof� Let A � DOUBNEXT nDOUBDEXT and assume the
underlying �eld F has k elements� De�ne A� � f�k

n

j�x � A�n � �x�g� Since
A � DOUBNEXT nDOUBDEXT � it follows that A� � NP n P � But clearly
A� � ftal�e��� tal�e��� � � �g and and hence A� is a height increasing independent
subset in NP n P � It thus follows from Theorem ��� and ��� that space�A�� is
in NP n P � �

Corollary ���� There exist recursive oracles A such that there are NPAnPA�
subspaces of tal�V���

Furthermore Mahaney �
�� has shown that the existence of a sparse NP �
complete set with respect to �Pm implies NP � P � Thus� if P �� NP � then
there cannot be a subspace V of tal�V�� which is NP �complete�

Next we turn our attention to the question of whether NP �maximal or NP �
simple subspaces exist� We note that Breitbart ��� proved that ifR is any in�nite
recursive set in f�� �g�� then there exists a set S in P such that both S �R and
R n S are in�nite� This results shows that there can be no NP �maximal sets
since if M � NP and R � f�� �g� nM is in�nite� then certainly R is an in�nite
recursive set� Thus there is a set S � P such that both S � R and R n S are
in�nite� But then W � S � M is a set in NP such that both W nM and
f�� �g�nM are in�nite so that M is not NP �maximal� Nerode and Remmel ����
proved that the analogue of Breidbart	s splitting theorem holds for recursive
subspaces of tal�V�� and st�V���

Theorem ���� Let V be an in�nite dimensional recursive subspace of
tal�V�� �st�V���� Then there exist subspaces B� and B� in P such that
B� �B� � f��g� B� �B� � tal�V�� �B� � B� � st�V���� and both B� � V and
B� � V are in�nite dimensional�

We note that unlike the set case� Theorem ���� does not exclude the possi�
bility of the existence of NP �maximal sets� That is� suppose V is an in�nite and
co�in�nite dimensional subspace of tal�V��� Then the complementary subspace
of V � space�B

V
�� is certainly recursive so that there exists a pair of polyno�

mial time complementary subspaces� U and W � so that U � space�B
V
� and

W � space�BV � are in�nite dimensional� However in this case� we can not make
the conclusion that V �U is a NP subspace which witnesses that V is not NP �
maximal for two reasons� First there is no guarantee that V � U is co�in�nite
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dimensional and second� in light of Theorem ���
� there is no guarantee that
U � V is in NP � Indeed our next results will show that there are oracles A for
which NPA�maximal sets exists� Similar remarks holds for st�V���

First we show that the assumption that NPX � co�NPX also eliminates
the possibility of the existence of NPX�simple and NPX�maximal subspaces of
tal�V���

Theorem ���� Suppose that NPX � co�NPX and V is an NPX subspace of
tal�V�� such that tal�V��
V is in�nite dimensional� Then V is not NPX�
simple and V is not NPX�maximal�

Proof� By Theorem ����� it follows that space�BV � � NPX so that V
is not NPX�simple� To see that V is not NPX maximal� note that by our
argument in Theorem ����� it follows that for any given x � NPX� we can
nondeterministically from an X oracle �nd a list of all elements u� � � � � � us
of height � ht�x� which are in BV and a list of all elements v� � � � � � vt of
height� ht�x� which are in BV � Thus we can form a new NPX height increasing
independent set C where x � C i
 x � ui for some i � s or x � v�k for some
�k � t� It is then easy to see that both tal�V��
space�C� and space�C�
V are
in�nite dimensional� It also follows from Theorem ���� that space�C� � NPX

so that C witnesses that V is not NPX�maximal� �

Since Baker� Gill and Solovay �
� produced recursive oracles X such that
NPX �� PX but NPX � co�NPX � we have the following�

Theorem ���� There exists a recursive oracle A such that NPA �� PA and
there are no NPA�simple or NPA�maximal subspaces of tal�V���

We note that the construction of Theorem ���� does not construct a PX�
subspace W such that W �V � f��g since it is a priori possible that space�B

V
�

does not contain an in�nite dimensional subspace in PX� Thus we do not
automatically rule out the possibility of the existence of PX�simple subspaces
of tal�V�� with the assumption that NPX � co�NPX � We shall see a bit
later that there exist oracles A such that no NPA�simple� PA�simple� or NPA�
maximal subspaces exists in tal�V���

It is also the case that if a subspace V of tal�V�� has an in�nite height
increasing independent subset in P � then V is not P �simple or NP �simple�

Corollary ���� ������ Let V � NP be subspace of tal�V�� such that V con�
tains an in�nite height increasing independent set C in P � Then V is not
NP �simple or P �simple

Proof� We may assume that V is co�in�nite dimensional since otherwise V
cannot be NPA�simple or PA�simple� We can thus use the proof of Theorem
���� to construct a p�time in�nite height increasing independent set D such that
D is independent over V � It follows by Theorem ���� that space�D� is a p�time
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subspace of tal�V��� Since D is independent over V � space�D� � V � f��g so
that V is not NP �simple or P �simple� �

To prove that there exists a recursive oracle B such that NPB �� PB and
yet no NPB�maximal�NPB�simple� or PB�simple subspaces exist� we can again
use the oracle from Theorem �����

Theorem ���� There is a recursive oracle B such that PB �� NPB and no
NPB�maximal� NPB�simple� or PB�simple subspaces of tal�V�� exist�

Proof� Let B be the recursive oracle of Theorem ����� Let V be a NPB

subspace of tal�V�� such that the dimension of tal�V��
V is in�nite� By The�
orem ���� B

V
is p�time Turing reducible to V so that B

V
contains an in��

nite subset E in PB� Thus E is an in�nite height increasing independent
set in PB so that by Theorem ���� space�E� is an in�nite dimensional sub�
space in PB� Clearly� space�E� � V � f��g so that space�E� witnesses that
V is not PB�simple or NPB�simple� Moreover� since we can test whether
tal�e��� � � � � tal�en� are in E in polynomial time in jtal�en�j� the set E� �
ftal�en� � E � card�E � ftal�e��� � � � � tal�en�g� is eveng is also a p�time height
increasing independent set� We claim that W � space�V � E�� is a subspace
of tal�V�� which witnesses that V is not NPB�maximal� Note that BV � E�

is a height increasing basis for W and that E n E� 	 B
W
� Thus W  V and

the dimensions of both tal�V��
W and W
V are in�nite� Because BV �E� is
a height increasing basis for W � it follows that x � W i
 there exists a b � V
and an e � space�E�� such that x � b �tal e and ht�b�� ht�e� � ht�x�� Thus
given a B�oracle� we can nondeterministically guess b and e of length � kjxj
and the computation which shows that b � V � and then verify in polynomial
time that x � b�tal e and e � space�E��� Thus W � NPB and hence V is not
NPB�maximal� �

Nerode and Remmel ���� showed that the assumption that
NPX � co�NPX also eliminates the possibility of the existence of NPX�simple
and NPX�maximal sets in st�V��
V �

Theorem ���� Suppose that NPX � co�NPX and V is an NPX subspace of
st�V�� such that st�V��
V is in�nite dimensional� Then V is not NPX�simple
and V is not NPX�maximal�

As was the case for tal�V��� we can use the Baker�Gill�Solovay results to
prove the following�

Theorem ���� There exists a recursive oracle A such that NPA �� PA and
there are no NPA�simple or NPA�maximal subspaces of st�V���

The analogue of Theorem ��
� for st�V�� is the following�

Theorem ���� ������
Let V be a NP co�in�nite dimensional subspace of st�V�� such that V contains
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an in�nite strongly p�time height increasing independent set C� Then V is not
NP �simple or P �simple

Proof� Use the proof of Theorem ���� to construct a strongly p�time in�nite
height increasing independent set D such that D is independent over V � It
follows by Theorem ����� that space�D� is a p�time subspace of �V��� Since
D is independent over V � space�D� � V � f��g so that V is not NP �simple or
P �simple� �

One can again use the oracle of Theorem ���� to prove that there is an oracle
B where no NPB�maximal� NPB�simple� nor PB�simple subspaces of st�V��
exist�

Theorem ���
 There is a recursive oracle B such that PB �� NPB and no
NPB�maximal� NPB�simple� or PB�simple subspaces of st�V�� exist�

In contrast to the set case� there are oracles X for which NPX�maximal
subspaces of tal�V�� and st�V�� exists� The proof requires a priority argument
for the construction of the oracle� Such arguments are easier in tal�V�� than
in st�V��� In tal�V��� one can naturally follow the usual practice in oracle
constructions and make the desired NPX�maximal subspace V be given by

V � f�n � ��� � X� � j�j � ng�

This is not possible in st�V��� In st�V��� one constructs X so that there is a
NPX independent set which generates the desired NPX�maximal subspace� To
see the di
erence between these two type of construction� we will give the full
argument for tal�V�� and give just the construction for st�V��� We note that
similar techniques are used to prove results in the standard and tally represen�
tations of the free Boolean algebra which are given in the next section�

Theorem ���� There exists an r�e� oracle Y and a subspace V of tal�V��
which is both PY �simple and NP Y �maximal�

Proof� We shall construct Y so that

M � f�g � f�n � n 	 � % ��� � f�� �g���j�j � n and � � Y �g

is our desired subspace� Clearly M � NPY �
To ensure that M is co�in�nite dimensional we must meet the following set

of requirements�

Tj � card�fnj Y contains no strings � with kn � j�j � kn�� � �g� � j

Thus Tj says there are at least j heights n so that M contains no strings of
height n� So meeting requirement Tj ensures dim�V�
M � � j�

To ensure that M is P Y �simple� we shall meet the following two sets of
requirements� Given any subset V 	 tal�V��� let ht�V � � fn � ��x � V �ht�x� �
ng
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Sj � If NY
j is an in�nite dimensional subspace of tal�V�� such that

ht�NY
j � n ht�M � is in�nite� then M �NY

j �� f��g�

Now suppose that PY
i is an in�nite dimensional subspace of tal�V��� Note

that meeting all the requirements Sj will ensure that either PY
i �M �� f��g or

ht�P Y
i � 	� ht�M � where for any two sets A and B where we write A 	� B i


there is a �nite set F such that A 	 �B � F �� Now suppose that ht�PY
i � 	�

ht�M � and let Bi be the standard height increasing basis for PY
i � By Lemma

���� Bi is in P Y � Then clearly we can modify Bi by possibly deleting a �nite
set of elements to form a new height increasing basis Ci such that ht�M �  fn �
��x � Ci�ht�x� � ng� Thus Ci will also be in PY and by Lemma ���� space�Ci�
will also be in P Y � Hence if ht�PY

i � 	� ht�M �� then there exists some j such
that PY

j is an in�nite dimensional subspace of tal�V�� and ht�PY
j � 	 ht�M ��

Thus to ensure that M is PY simple� it will be enough to ensure that we meet
the following set of requirements�

Ri� If PY
i is an in�nite dimensional subspace of tal�V��� then

ht�PY
i � �	 ht�M ��

Finally� to ensure M is NP �maximal� we shall meet the following set of
requirements�

Q
i�n� � If N
Y
i 
M is in�nite dimensional and NY

i  M � then there is an
x � NY

i such that x� tal�en� �M �

Note that if NY
i  M and dim�NY

i 
M � is in�nite� then meeting all the require�
ments Q
i�n� will ensure that tal�en� � NY

i for all n so that NY
i � tal�V���

Thus in fact� M will be NPY �supermaximal�
We shall rank our requirements with those of highest priority coming �rst

as T�� S�� R�� Q�� T�� S�� R�� Q�� � � ��
In the construction that follows� we shall let Ys denote the set of elements

enumerated into Y by the end of stage s and

Ms � f�g � f�

 � l 	 � % ��� � f�� �g���j�j � � % � � Ys�g�

We shall ensure that for each s� Ms is a �nite dimensional subspace of tal�V��
and that ht�Ms� is contained in f�� � � � � sg� For any stage s� we let CHs � fns� �
ns� � � � �g be set of complementary heights for Ms� i�e� the set of all heights n
so that there are no elements of tal�V�� of height n in Ms�

At any given stage s� we shall pick out at most one requirement Aj where Aj

will be one of the requirements Sj � Rj� or Qj and take an action to meet that
requirement� The fact that the requirements Tj will be satis�ed follows from
the construction described below� For the other requirements� we shall then say
that Aj received attention at stage s�

The action that we take to meet the requirement Aj of the form Sj or Qj

will always be of the same form� That is� we shall put some elements into Y
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at stage s and possibly restrain some elements from entering Y for the sake
of the requirement� We shall let res�Aj � s� denote the set of elements that are
restrained from entering Y at stage s for the sake of requirementAj � We say that
requirement Aj of the form Sj or Qj is satis�ed at stage s� if there is a stage
s� � s such that Aj has received attention at stage s� and res�Aj � s

�� � Ys � 
�
The actions that we take to meet the requirements Rj will be slightly dif�

ferent� First� we shall declare that all Rj are in a passive state at the start of

our construction� We would like to �nd an element x � PYs
j of height n such

that n 
� ht�Ms�� If we can �nd such an x� then we will restrain all y such that
kn�� � jyj � kn�� plus all elements not in Ys which are queried of the oracle Ys
during the computation of PYs

j �x� from entering Y for the sake of requirement
Rj� Thus if we ensure that res�Rj � s� � Y � 
� then M will have no elements
of height n and x � PY

j so that ht�PY
j � �	 ht�M �� If we take such an action for

Rj at stage s� then we will say that Rj has received attention at stage s and
declare the state of Rj to be active� Then for all t 	 s� we will say that an
active Rj is satis�ed at stage t� if res�Rj � s��Yt � 
� However if Rj is injured
at some stage t 	 s in the sense that res�Rj � s��Yt �� 
� then Rj will return to
a passive state� If we cannot �nd such an x� we will attempt to force ht�PY

j �
to be �nite� That is� since we will ensure that ht�Ms��� 	 f�� � � � � s � �g for
all s� Ms�� will have no elements of height s� Recall that we are assuming that
for n � �� the run time of computations of PX

j �y� for any oracle X is bounded

max��� n�j for any string of length n� Then for n � �� we let bn be the largest
i such that for all kn�� � r � kn � ��

�kn��i��� � �k
n��

�

Note that it is easy to see that lims	�bs ��� Our idea is that elements of
height n in tal�V�� are of the form �r where kn�� � r � kn � �� Our strategy
at the end of stage s � � for s � � will be to ensure that for all Rj with j � bs

which are in a passive state and have the property that P
Ys��
j ��r� � � for all

ks�� � r � ks��� we restrain all elements which are not in Ys�� and which are
queried of the oracle Ys�� in such computations from entering Y for the sake
of Rj� This action will force ht�PY

j � to be �nite if Rj is in a passive state at
stage s for all but �nitely many s� For any �xed j � bs� the maximum restraint
imposed for Rj is if we restrained all elements not in Ys�� which are queried of

the oracle Ys�� in some computation P
Ys��
j ��r� � � with � � r � kn� �� Since

the total number of steps used in all these computations is at most

�j �
ksX
i��

ij � ks � �ks�j � �ks��j����
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then clearly we could have restrained at most �ks��j��� elements from entering
Y for the sake of Rj� Thus at stage s� we will have restrained at most

bsX
i��

�kn��i��� � �kn��bs��� � �k
�n���

elements for entering Y for the sake of some passive requirement Rj with j � bs
at stage s � �� Hence for any given r with kn�� � r � kn � �� we will have
restrained at most �r�� elements of length r from entering Y for such Rj	s�

CONSTRUCTION�

Stages �� ��

Let Y� � Y� � 
 so that M� � M� � f��g� Let res�Aj � �� � res�Aj � �� � 
 for
all requirements Aj of the form Sj � Rj� or Qj �

Stage s with s � ��
Let Aj be the highest priority requirement among S�� R�� Q�� � � � � Ss� Rs� Qs such
that
Case �� Aj � Sj and Sj is not satis�ed at stage s � � and there exists an �
with � � ht��
� � s such that

	a
 �
 � N
Ys��
j �

	b
 ht��
� � CHs�� and ht��
� 	 ns��j � and

	c
 for each �n � space�f�
g�Ms���nMs��� there is a string �n � f�� �g� such
that j�nj � j�nj � n and �n is not restrained from Y by any requirement
of higher priority than Sj at stage s� � nor is �n queried of the oracle in

some �xed computation of N
Ys��
j which accepts �
�

Case �� Aj � Rj and Rj is not satis�ed at stage s � � and there exists an �
with � � ht��
� � s such that

	i
 �
 � P
Ys��
j and

	ii
 ht��
� � CHs�� and ht��
� 	 ns��j �

Case �� Aj � Qj and Qj is not satis�ed at stage s � �� and if j � �e� n�� there
exists an � with � � ht��
� � s such that

	I
 �
 � N
Ys��
e �

	II
 ht��
� � CHs�� and ht��
� 	 max�n� ns��j �� and

	III
 For each �m �� space�f�
�tal tal�en�g�Ms���nMs��� ht��
m� 	 ns��j and

there is a string �m of length m in f�� �g� which is not restrained from
Y by any requirement of higher priority than Qj at stage s� � nor is �m
queried in some �xed computation of N

Ys��
e which accepts �
�
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If there is no such requirement Aj � let Ys � Ys��� Also for all requirements
Aj of the form Sj or Qj and for all requirements Aj of the form Rj where
either Rj is satis�ed at stage s � � or j 	 bs��� let res�Aj � s� � res�Aj � s� ���
Declare that a requirement Rj is active at stage s i
 Rj is active at stage s� ��
For any Rj with j � bs�� which is currently passive and has the property that

PYs
j ��r� � � for all ks � r � ks�� � �� let res�Rj � s� equal res�Rj � s � ��

union the set of all y 
� Ys such that y is queried of the oracle in one of the
computations P Ys

j ��r� where ks � r � ks�� � ��
If there is such a requirement Aj � we have three cases�

Case �� Aj � Sjs �
Let �s denote the least � corresponding to Sjs � Then for each
�n � space�f�
sg�Ms���nMs��� pick the least string �n such that j�nj � n� �n
is not restrained from Y by any requirement of higher priority than Sjs at

stage s � �� nor is �n queried of the oracle Ys�� in the computation of N
Ys��
j

which accepts �
s� and put �n into Y � This will ensure that if Ms�� is a �nite
dimensional subspace of V�� then Ms will also be a �nite dimensional sub�
space of V�� Note that the assumption that ht��
s� � CHs�� ensures that all
�n � space�f�
sg�Ms���nMs�� have the property that ht��n� � ht��
s�� That
is� such a �n must be of the form �n � � �tal �
s �tal m where m � Ms�� and
� � F � Then since ht�m� �� ht��
s�� it must be the case that ht��n� � ht��
s��
Thus ht�Ms� � fn

s��
� � � � � � ns��js

g � 
 and hence for all i � js� n
s��
i � nsi � Let

res�Sjs � s� equal the set of all strings not in Ys�� which are queried of the or�

acle Ys�� in the computation of N
Ys��
js

which accepts �
s� and say Sjs receives
attention at stage s� Also for all requirements Aj of the form Sj or Qj and for
all requirements Aj of the form Rj where either Rj is satis�ed at stage s � �
or j 	 bs��� let res�Aj � s� � res�Aj � s � �� if Ys � res�Aj � s � �� � 
 and let
res�Aj � s� � 
 if Ys�res�Aj � s��� �� 
� Declare that a requirement Rj is active
at stage s i
 Rj is active at stage s� � and Ys � res�Rj � s� �� � 
� For any Rj

with j � bs�� which is currently passive and has the property that PYs
j ��r� � �

for all ks � r � ks�� � �� let res�Rj � s� equal res�Rj� s � �� union the set of
all y 
� Ys such that y is queried of the oracle Ys in one of the computations
PYs
j ��r�� where ks � r � ks�� � ��

Case �� Aj � Rjs �
Let �s denote the least � corresponding to js and ns � ht��
s�� We then say
that Rjs is active and receives attention at stage s� We let Y s � Y s�� and
res�Rjs � s� consist of all elements y with kns�� � jyj � kns � � and all elements
which are not in Ys�� and which are queried of the oracle Ys�� in the computa�

tion P
Ys��
js��

��
s�� Note that if res�Rjs � s��Y � 
� then M will have no elements

of height ns � ht��
s� but �
s � PY
js
� Also for all requirements Aj of the form

Sj or Qj and for all requirements Aj of the form Rj where j �� js and where
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either Rj is satis�ed at stage s � � or j 	 bs��� let res�Aj � s� � res�Aj � s� ���
For j �� js� declare that a requirement Rj is active at stage s i
 Rj is active
at stage s � �� For any Rj with j � bs�� which is currently passive and has

the property that PYs
j ��r� � � for all ks � r � ks�� � �� let res�Rj � s� equal

res�Rj� s� �� union the set of all y 
� Ys such that y is queried of the oracle Ys
in one of the computations PYs

j ��r� where ks � r � ks�� � ��

Case �� Aj � Qjs �
Let js � �es� ns� and �s denote the least � corresponding to js� Then for each
�m � space�f�
s�tal tal�ens�g�Ms���nMs��� pick the least string �m such that
j�mj � m� and �m is not restrained from Y by any requirement of higher prior�

ity than Qjs at stage s�� nor is �m queried in the computation of N
Ys��
es which

accepts �
s and put �m into Y � Once again this will ensure that Ms is a �nite
dimensional subspace of V�� Note that since ht��
s� 	 ns � ht�tal�ens ��� it fol�
lows that ht��
s �tal tal�ens �� � ht��
s�� Thus as in case �� the assumption that
ht��
s� � CHs�� ensures that all �n � space�f�
s �tal tal�ens�g�Ms��� nMs��

have the property that ht��n� � ht��
s�� Let res�Qjs � s� equal the set of all
strings which are not in Ys�� which are queried of the oracle in the compu�

tation of N
Ys��
es which accepts �
s and say Qjs receives attention at stage s�

Also for all requirements Aj of the form Sj or Qj and for all requirements
Aj of the form Rj where either Rj is satis�ed at stage s � � or j 	 bs��� let
res�Aj � s� � res�Aj � s � �� if Ys � res�Aj � s � �� � 
 and let res�Aj � s� � 

if Ys � res�Aj � s � �� �� 
� Declare that a requirement Rj is active at stage s
i
 Rj is active at stage s � � and Ys � res�Rj � s � �� � 
� For any Rj with

j � bs�� which is currently passive and has the property that PYs
j ��r� � �

for all ks � r � ks�� � �� let res�Rj � s� equal res�Rj� s � �� union the set of
all y 
� Ys such that y is queried of the oracle Ys in one of the computations
PYs
j ��r�� where ks � r � ks�� � ��

This completes the construction of Y �

Lemma ���� Each requirement of the form Sj � Rj� or Qj receives attention
at most �nitely often�

Proof� We proceed by induction on j� Suppose that s� is such that there is
no stage s � s� such that one of S�� R�� Q�� � � � � Sj � Rj� Qj receives attention at
stage s� Then if there is a t 	 s� such that Sj�� receives attention at stage t� then
by construction Sj�� is satis�ed at stage t and res�Sj��� t� � Yt � 
� However
it is easy to see from our construction that for s 	 t� res�Sj��� s� � res�Sj��� t�
and res�Sj��� s�� Ys � 
 unless some requirement of higher priority than Sj��

receives attention at stage s� Since this never happens by our choice of s�� Sj��

will be satis�ed for s 	 t� Thus Sj�� can receive attention at most once after
stage s�� Thus there must be a stage s� such that there is no stage s � s�
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such that one of S�� R�� Q�� � � � � Sj � Rj� Qj� Sj�� receives attention at stage s� A
similar argument will show that Rj�� can receive attention at most once after
stage s�� Thus there must be a stage s� such that there is no stage s � s� such
that one of S�� R�� Q�� � � � � Sj� Rj� Qj� Sj��� Rj�� receives attention at stage s
Finally a similar argument will show that Qj�� can receive attention at most
once after stage s�� Thus each of the requirements Sj � Rj� or Qj can receive
attention only �nitely often� �

Lemma ���� dim�tal�V��
M � is in�nite�

Proof� We prove by induction that dim�tal�V��
M � � k for all k� That
is� let t� be a stage such that no requirement S�� R�� Q�� � � � � Sk� Rk� Qk receives
attention at any stage s � t�� Since Mt� is �nite dimensional� nt�i is de�ned for
all i� Hence Mt contains no strings of height n for n � nt�� � � � � � n

t�
k � But no

requirement Sj � Rj� or Qj with j 	 k can force elements of height n � nsk into
M at any stage s� Hence by our choice of t�� there can be no strings of heights
n for n � nt�� � � � � � n

t�
k in M � Thus dim�tal�V��
M � � k� �

Lemma ���� M is PY �simple�

Proof� First we show that if NY
j is a subspace of tal�V�� such that ht�NY

j �n

ht�M � is in�nite� then NY
j �M �� f��g� For a contradiction assume NY

j is such

that ht�NY
j � n ht�M � is in�nite and NY

j �M � f��g� Note that since M is co�
in�nite dimensional by Lemma ��
�� it follows that ni � lims	�n

s
i exists for

all i� Let s� be a stage large enough so that nsi � ni for i � j and none of the
requirements S�� R�� Q�� � � � � Sj��� Rj��� Qj�� receives attention after stage s��
Let Us� denote the set of all �n such that there exists a requirement Ai among
S�� R�� Q�� � � � � Sj��� Rj��� Qj�� which is satis�ed at stage s�� such that there
exists an � � res�Ai� s�� with j�j � n� Our choice of s� ensures that if n 
� Us� �
then no string � of length n is ever restrained from Y by a requirement of higher
priority than Sj which is satis�ed at some stage t 	 s�� Also our choice of s�
ensures that ni � nti for all i � j and t 	 s�� Next let t� 	 s� be such that

�� t� 	 max�fht�y� � y � Us�g � f�� s�� njg��

�� bt� 	 j� and

�� �r�� 	 rj for all r 	 t��

Note that for any t 	 t�� our construction ensures that the number of strings
of length r where kt�� � r � kt � � which are restrained by some requirement
Ri with i � j which is passive at stage t is less than �r��� Moreover we are
assuming that any successful computation of the oracle machine NX

j for any

oracle X on a string of length r 	 � takes at most rj steps� Thus our choice
of t� ensures that if t 	 t� and �x � NYt

j is string of height 	 t�� then there
is at least one string �x � f�� �g� of length x which is not restrained from

��



Y by any requirement of higher priority than Sj at stage t� nor is queried

of the oracle Yt in some �xed computation which shows that �x � NYt
j � Since

ht�NY
k �nht�M � is in�nite� there must exist a �n � NY

k such that ht��n� 	 t� and

ht��n� �� ht�M �� Then there must be some stage s 	 t� such that �n � N
Ys��
j �

Note that at stage s� each �m � space�f�ng �Ms��� nMs�� has the property
that ht��m� � ht��n� 	 t� and thus there is at least one string �m of length
m which is not restrained from Y by any requirement of higher priority than
Sj at stage s � �� nor is queried of the oracle Ys�� in some �xed computation

which shows that �n � N
Ys��
j � Thus �n witnesses that Sj is a candidate to

receive attention at stage s� Thus either Sj is satis�ed at stage s � � or Sj is
highest priority requirement among S�� R�� Q�� � � � � Ss� Rs� Qs which can receive
attention at stage s� In either case� it follows that Sj will be satis�ed at stage

s� Thus there will be some �n � �NYs
j �Ms� n f��g such that all elements which

are queried of the oracle Ys in some computation which shows that �n � NYs
j �

and which are not in Ys� are in res�Sj � s�� However our choice of t� ensures that
we can never put any element of res�Sj � s� into Y after stage s so that �n will

witness that NY
j �M �� f��g�

Remark� We note that the assumption that ht�NY
j �nht�M � is in�nite seems

to be crucial in this argument� That is� if we merely assume that dim�NY
j 
M �

is in�nite� then it may be the case that whenever there exists a �n � NY
k such

that ht��n� 	 t� and �n ��M � then at a stage s 	 t� where �n � N
Ys��
k � there is

some �m � Ms�� such that hy��m� � ht��n�� In such a situation it is possible
that ht��n �tal �

m� is much less than ht��n�� That is� it may be possible that
some element in �x � space�f�ng �Ms��� nMs�� has height so small that all
strings of length x are queried of the oracle during any computation which shows

that �n � N
Ys��
k � Then it will be impossible to put a string of length x into Ys

so as to ensure that �x �Ms while maintaining the computation to ensure that
�n � NY

k �
To continue our proof of the lemma� we can now assume that if PY

r is
an in�nite dimensional subspace of tal�V�� such that PY

r �M � f��g� then
ht�P Y

r � nht�M � is �nite� By our argument preceding the construction� it would
then follow that there is some j such that PY

j is an in�nite dimensional subspace

of tal�V�� and ht�P Y
j � 	 ht�M �� We shall now show that there can be no such

j� For a contradiction� assume that PY
j is an in�nite dimensional subspace of

tal�V�� and ht�PY
j � 	 ht�M �� Let s� be a stage large enough so that ns�i �

ni for i � j and none of the requirements S�� R�� Q�� � � � � Sj��� Rj��� Qj��� Sj
receives attention after stage s�� Let Us� denote the set of all �n such that
there exists a requirement Ai among S�� R�� Q�� � � � � Sj��� Rj��� Qj��� Sj which
is satis�ed at stage s� and there exists an � � res�Ai� s�� with j�j � n� Our
choice of s� ensures that if n 
� Us� � then no string � of length n is ever restrained
from Y by a requirement of higher priority than Rj which is satis�ed at some
stage t 	 s�� Also our choice of s� ensures that ni � nti for all i � j and t 	 s��

��



Next let t� be such that

�� t� 	 max�fht�y� � y � Us�g � f�� s�� ni��g��

�� bt� 	 j� and

�� �r�� 	 rj for all r 	 t��

Now we claim that there can be no stage t 	 t� at which Rj is satis�ed
at stage t� That is� if Rj is satis�ed at stage t� there must be some s � t

such that Rj receives attention at stage s� and there is a �x � P
Ys��
j such that

q � ht��x� � CHs��� and res�Rj � s� � res�Rj � t� contains all strings of length
r where kq�� � r � kq � �� and contains all strings which are not in Ys��
which are queried of the oracle Ys�� in the computation P

Ys��
j ��x� � �� and

res�Rj� s��Yt � 
� But then our choice of t 	 t� ensures that res�Rj� s��Y � 
�
which means that M can have no strings of height q while �x � PY

j � But

then �x witnesses that ht�PY
j � �	 ht�M � which contradicts our assumption that

ht�P Y
j � 	 ht�M �� Thus it must be the case that for all stages t 	 t�� Rj

is in a passive state� It follows that for all t 	 t�� there can be no r with
kt � r � kt�� � � such that PYt

j ��r� � � since otherwise at stage t � �� there

is some r with kt � r � kt�� � � such that PYt
j ��r� � �� But then at stage

t��� �r witnesses that Rj is a candidate to receive attention at stage t��� By
our choice of t 	 t�� it would follow that Rj is the highest priority requirement
among S�� R�� Q�� � � � � St��� Rt��� Qt�� which could receive attention at stage
t � � so that Rj would receive attention at stage t � � which we have already
ruled out� Thus it must be the case that for all r with kt � r � kt�� � ��
PYt
j ��r� � �� But then our choice of t 	 t� ensures that j � bt�� and hence all

elements which are not in Yt which are queried of the oracle Yt during one of
the computations PYt

j ��r� � � where kt � r � kt�� � � are put into res�Rj � t��
Again the fact that t 	 t� ensures that res�Rj � t�� Y � 
 so that for all r with
kt � r � kt�� � �� PY

j ��r� � �� That is� PY
j has no strings of length t � �

for any t 	 t� and hence ht�PY
j � is �nite� Thus there can be no such PY

j such

that PY
j is an in�nite dimensional subspace of tal�V�� and ht�PY

j � 	 ht�M ��

But this means that there can be no r such that PY
r is an in�nite dimensional

subspace of tal�V�� and P Y
r �M � f��g� Thus M is PY �simple as claimed� �

Lemma ���� M is NP Y �maximal�

Proof� By our remarks preceding the construction� we need only show that
we meet all the requirements Q
e�n�� So assume NY

e is a subspace of tal�V��
such that �NY

e 
M � is in�nite dimensional and NY
e  M � Let j � �e� n� and

let s� be a stage such that ni � ns�i for i � j and none of the requirements
S�� R�� Q�� � � � � Sj��� Rj��� Qj��� Sj� Rj receive attention after stage s�� Let
Us� denote the set of all �n such that there exists a requirement Ai among
S�� R�� Q�� � � � � Sj��� Rj��� Qj��� Sj� Rj which is satis�ed at stage s� and there

�




exists an � � res�Ai� s�� with j�j � n� Our choice of s� ensures that if n 
� Us� �
then no string � of length n is ever restrained from Y by a requirement of higher
priority than Qj which is satis�ed at some stage t 	 s�� Also our choice of s�
ensures that ni � nti for all i � j and t 	 s�� Next let t� be such that

�� t� 	 max�fht�y� � y � Us�g � f�� s�� ni��g��

�� bt� 	 j� and

�� �r�� 	 rj for all r 	 t��

Note that for any t 	 t�� our construction ensures that the number of strings
of length r� where kt�� � r � kt� �� which are restrained by some requirement
Ri with i � j which is passive at stage t� is less than �r��� Moreover we are
assuming that any successful computation of the oracle machine NX

j for any

oracle X on a string of length r � � takes at most rj steps� Thus our choice of
t� ensures that if t 	 t� and �x � NYt

j is string of height 	 t�� then there is at
least one string �x � f�� �g� of length x which is not restrained from Y by any
requirement of higher priority than Qj at stage t� nor is queried of the oracle Yt
in some �xed computation which shows that �x � NYt

j �

Next observe that since dim�NY
e 
M � is in�nite and NY

e  M � it must be the
case that ht�NY

e � nht�M � is in�nite� That is� let A � fa�� a�� � � �g be an in�nite
set of elements of NY

e which is independent over M � Then consider some �xed
ai � A and suppose ai �

Pq
i�� �i � tal�eji� where �i � F for i � �� � � � � q� �q �� ��

and j� � � � � � jq� Thus ht�ai� � jq� Now if there exists an m� �M such that
ht�m� � ht�ai�� then m� �

P

�jq

�
 � tal�e
� where �
 � F for all � and �jq �� ��

But then a�i � ai �tal
�jq
�jq

m� is an element of NY
e nM such ht�a�i � � ht�ai��

Now if there exists an m� � M such that ht�a�i � � ht�m��� then once again
there is some � � F such that a�i � a�i �tal � �m� is an element of NY

e nM with
ht�a�i � � ht�a�i � � ht�ai�� If we continue in this fashion� we must eventually
�nd some aki � ai �tal vk where vk �M such that ht�aki � 
� ht�M �� That is� we
can replace our original independent set A over M by a set A� � fa��� a

�
�� � � �g

where for all i� ai �tal a�i � M and ht�a�i� 
� ht�M �� But then A� is an in�nite
subset of NY

e which is independent over M � Thus there is no �nite set F
such that space�M � F �  A�� This implies that ht�A�� � fht�a�i� � i � �g
must be in�nite� since otherwise there clearly would be a �nite set F such that
space�M � F �  A�� But by construction ht�A�� 	 ht�NY

e � n ht�M � so that
ht�NY

e � n ht�M � must be in�nite�
Since ht�NY

e � n ht�M � is in�nite� there must exist a �q � NY
e such that

ht��q� 	 t�� ht��
q� 	 n� and ht��q� �� ht�M �� Then there must be some stage

s 	 t� such that �q � N
Ys��
e � Note that at stage s� each �m � space�f�q �tal

tal�en�g �Ms��� nMs�� has the property that ht��m� � ht��q �tal tal�en�� �
ht��q� 	 t�� and thus there is at least one string �m of length m which is not
restrained from Y by any requirement of higher priority than Qj at stage s� ��

��



nor is queried of the oracle Ys�� in some �xed computation which shows that

�q � N
Ys��
j � Thus �q witnesses that Qj is a candidate to receive attention at

stage s� Hence either Qj is satis�ed at stage s � � or Qj is highest priority re�
quirement among S�� R�� Q�� � � � � Ss� Rs� Qs which can receive attention at stage
s� In either case� it follows that Qj will be satis�ed at stage s� Thus there will

be some �q � NYs
j such that �q �tal tal�en� � Ms and all elements which are

queried of the oracle in some computation which shows that �q � NYs
j and which

are not Ys� are in res�Qj � s�� However our choice of t� ensures we can never
put any element of res�Qj � s� into Y after stage s so that �q � NY

j and hence

requirement Qj is meet� Thus M will be NPY �supermaximal and hence will be
NPY �maximal� This completes the proof of Lemma ���� and of Theorem ��
�
� �

We note that M constructed in Theorem ��
� has a number of interesting
properties besides being NP Y �maximal and PY �simple� First of all� it is easy
to check that in meeting the requirements Sj � we made no use of the fact that
NY
j was a subspace of tal�V��� but only that NY

j was a subset of tal�V���
Similarly� it is easy to check that in meeting the requirements Rj we made no
use of the fact that P Y

j was a subspace of tal�V��� but only that PY
j was a

subset of V�� Thus meeting all the requirements Rj ensures that there is no
in�nite subset W of tal�V�� in PY such that ht�W � 	 ht�M �� Thus M does
not contain any in�nite P Y set and hence M does not have a basis in PY � We
also claim that tal�V�� nM does not have any in�nite subsets in PY � That
is� suppose that PY

j 	 tal�V�� nM � Now it cannot be that ht�PY
j � n ht�M � is

in�nite� since otherwise there is an i such that PY
j � NY

i and the fact that we

met requirement Si would mean that PY
j �M �� f��g� Thus ht�PY

j � 	� ht�M ��

Let Q � ht�space�A�� n ht�PY
j �� Then clearly

S � fx � PY
j � ht�x� 
� Qg

is an in�nite set in PY such that ht�S� 	 ht�space�A��� Since meeting all
the requirements Rj rules out the existence of such an S� tal�V�� nM does
not contain an in�nite set in PY � Recall that a set of strings S is called PY �
immune if S has no in�nite subset in PY � Thus both M and tal�V�� nM are
PY �immune

Note also that by Theorem ��
�� the fact that M is NPY �maximal implies
that NPY �� co�NPY and hence that PY �� NP Y � Thus we have proved the
following�

Corollary ���� There exists an r�e� oracle Y and a subspace M of tal�V��
such that

	�
 PY �� NP Y and NP Y �� co�NPY �

	�
 M � NPY �

��



	�
 M is PY �immune and hence has no basis in PY �

	�
 tal�V�� nM is PY �immune� and

	�
 M is both PY �simple and NP Y �supermaximal�

We next give an analogue of Theorem ��
� for st�V��� Once again we shall
think of st�V�� as the k�ary representation Bk�V�� so that for all x � st�V���
jxj � ht�x��

Theorem ���� � There exists a r�e� oracle D such that there exists an NPD�
supermaximal PD�simple subspace in st�V���

Proof� The construction again proceeds in stages� We let Ds be the set of
elements enumerated into D by the end of stage s� For any given x � f�� � � � � k�
�g� with jxj � �� we let Cx denote the set of all strings of length �jxj � � of
f�� � � � � k � �g� of the form x���jxj�� where � is any string of length �jxj in
f�� � � � � k� �g�� Note that there are k	jxj strings in Cx for any x � st�V��� Let
C
 � f
g� It is then easy to see that if x �� y� then Cx �Cy � 


We then de�ne A � fx � Cx �D �� 
g� Thus A will be in NPD� Our idea is
to de�ne D so that A is a height increasing independent subset of st�V��� Then
by the relativized version of Theorem ����� space�A� � NPD� Our construction
of D will ensure that space�A� is our desired PD�simple NPD�supermaximal
space� Let As � fx � Cx �Ds �� 
g� At each stage s� we shall let Bs � fst�en� �
As has no element of height ng� Our construction will ensure that at each stage
s� As �Bs is a height increasing basis of st�V��� We de�ne bsi for all i and s so
that Bs � fbs�� b

s
�� � � �g where ht�bs�� � ht�bs�� � � � ��

To ensure that space�A� is co�in�nite dimensional we mustmeet the following
set of requirements�

Tj � card�fn � D contains no strings � with j�j � �n� �g� � j

Thus Tj says there are at least j heights n so that A contains no strings of
height n� So meeting requirement Tj ensures dim�V�
space�A�� � j�

To ensure that space�A� is PD�simple� we shall meet the following two sets
of requirements�

Sj � If ND
i is an in�nite dimensional subspace of st�V�� such that

ht�ND
i � n ht�space�A�� is in�nite� then space�A� �ND

i �� f��g�

Now suppose that PD
j generates an in�nite dimensional subspace of st�V��

which is in NPD� Note that meeting all the requirements Sj will ensure that ei�

ther space�PD
i ��space�A� �� f��g or ht�space�PD

i �� 	� ht�space�A��� Now sup�
pose that ht�space�PD

i �� 	� ht�space�A�� and let U � ht�PD
i � n ht�space�A���

If U � 
� then ht�PD
i � 	 ht�space�A��� Otherwise� U is a �nite set so let

U � fn�� � � � � nqg and let x�� � � � � xq be elements of space�PD
i � such that ht�xi� �

��



ni� Note that any x � st�V�� is a string of the form x � a� � � �ajxj where
aj � f�� � � � � k � �g� Then we de�ne the full height of x� fh�x� � fn � � � n �
jxj and an �� �g� Then it is easy to see that given any x � space�PD

i �� there
exists some ��� � � � � �q in F such that fh�x �st

Pq
i�� �ixi� � U � 
� That

is� if x � a� � � �ajxj where jxj � nq and anq �� � and xq � a��q � � �anq�q
where anq�q �� �� then x� � x �st

aq
anq�q

xq � b� � � �bjxj where bnq � � so

that nq 
� fh�x��� Now if bnq�� �� � and xq�� � a��q�� � � �anq���q�� where

anq���q�� �� �� then x�� � x� �st
bq

anq���q��
xq�� � c� � � �cjxj where cnq � bnq � �

and cnq�� � � so that neither nq nor nq�� is in fh�x���� Continuing on in
this way we can construct our desired linear combination

Pq
i�� �ixi such that

fh�x �st
Pq

i�� �ixi� � U � 
� Now let Q � fx � space�PD
i � � fh�x� � U �


g� It is easy to see that Q is a subspace of PD
i and our argument above

shows that space�PD
i � � space�fx�� � � � � xqg� � Q� Thus Q is an in�nite di�

mensional subspace of st�V�� such that ht�Q� 	 ht�space�A��� Let T be
the set of all y such that fh�y� � U � 
� jyj 	 kjxq j� and there exists an
x � PD

i and z � space�fx�� � � � � xqg� such that x �st z � y� Note that
space�fx�� � � � � xqg� has exactly kq elements since fx�� � � � � xqg is a height in�
creasing basis for space�fx�� � � � � xqg�� Thus given any y with jyj 	 kjxq j� in
polynomial time in jyj� we can �nd all y�stw such that w � space�fx�� � � � � xqg��
Now for any w � space�fx�� � � � � xqg�� ht�w� � ht�xq� � jxqj � kjxqj so that
ht�y �st w� � ht�y�� Thus it take at most kq�jyjj� steps to test all such y �st w
for membership in PD

j given an oracle D� But then

y � T i
 fy �st w � w � space�fx�� � � � � xqg�g � P
D
j �� 
�

Thus it follows that T is in PD and clearly T generates an in�nite dimen�
sional subspace of Q� Thus there must be some j such that PD

j generates an

in�nite dimensional subspace of st�V�� and ht�space�PD
j �� 	 ht�space�A���

Thus to ensure that space�A� is PD simple� it will be enough to ensure that we
meet the following set of requirements�

Ri� If PD
i generates an in�nite dimensional subspace of st�V��� then

ht�PD
i � �	 ht�space�A���

Finally� to ensure that space�A� is NP �supermaximal� we shall meet the
following set of requirements�

Q
i�n� � If N
D
i 
space�A� is an in�nite dimensional and ND

i  space�A�� then
there is an x � ND

i such that x� st�en� � space�A��

Note that if ND
i  space�A� and dim�ND

i 
space�A�� is in�nite� then meeting
all the requirements Q
i�n� will ensure that st�en� � ND

i for all n so that ND
i �

st�V���
We shall rank our requirements with those of highest priority coming �rst

as T�� S�� R�� Q�� T�� S�� R�� Q�� � � ��

��



As in the construction of Theorem ��
�� at any given stage s� we shall pick
out at most one requirement Ej where Ej will be one of the requirements Sj� Rj�
or Qj and take an action to meet that requirement� We shall then say that Ej

received attention at stage s� The action that we take to meet the requirement
Ej of the form Sj or Qj will always be of the same form� That is� we shall
put some elements into D at stage s and possibly restrain some elements from
entering D for the sake of the requirement� We shall let res�Ej � s� denote the
set of elements that are restrained from entering D at stage s for the sake of
requirement Ej� We say that requirement Ej of the form Sj or Qj is satis�ed
at stage s� if there is a stage s� � s such that Ej has received attention at stage
s� and res�Ej � s

�� �Ds � 
�
The actions that we take to meet the requirements Rj will essentially the

same as in the construction of Theorem ��
�� First� we shall declare that all Rj

are in a passive state at the start of our construction� We would like to �nd an
element x � PDs

j of height n such that n 
� ht�space�As��� If we can �nd such
an x� then we will restrain all y such that jyj � �n � � and y � Cx for some
x � st�V�� of height n plus all elements not inDs which are queried of the oracle
during the computation of PDs

j �x� from entering D for the sake of requirement
Rj� Then if we ensure that res�Rj � s��D � 
� A will have no elements of height
n and x � PD

j so that ht�PD
j � �	 ht�space�A��� If we take such an action for

Rj at stage s� then we will say that Rj has received attention at stage s and
declare the state of Rj to be active� Then for all t 	 s� we will say that an
active Rj is satis�ed at stage t� if res�Rj � s��Dt � 
� However if Rj is injured
at some stage t 	 s in the sense that res�Rj� s��Dt �� 
� then Rj will return to
a passive state� If we cannot �nd such an x� we will attempt to force ht�PD

j � to
be �nite� That is� since we will ensure that ht�space�As���� 	 f�� � � � � s��g for
all s� As�� will have no elements of height s� Recall that we are assuming that
for n � �� the run time of computations of PX

j �y� for any oracle X is bounded

max��� n�j for any string of length n� Then for n � �� we let dn be the largest
i such that for all r�

n�i��� � kn�

Note that it is easy to see that lims	�ds � �� Our idea is that elements
of height n in st�V�� are just the elements of length n� Our strategy at the end
of stage s � � for s � � is that for all Rj with j � ds which are in a passive

state and have the property that P
Ds��

j �x� � � for all x � st�V�� of length s�
we will restrain all elements which are not in Ds�� and which are queried in
such computations from entering D for the sake of Rj� This action will force
ht�PD

j � to be �nite if Rj is in a passive state at stage s for all but �nitely many
s� For any �xed j � ds� the maximum restraint imposed for Rj occurs if we
restrained all elements not in Ds�� which are queried of the oracle Ds�� in some

computation P
Ds��

j �x� � � with � � jxj � n and x � st�V��� Since the total

��



number of steps used in all these computations is at most

�j �
sX
i��

kiij � sks � �s�j � kss�j����

then clearly we could have restrained at most kss�j��� elements from entering
D for the sake of Rj� Thus at stage s� we will have restrained at most

dsX
i��

kss�i��� � kss�ds��� � ksks � k�s

elements from entering D for the sake of some passive requirement Rj with
j � bs at stage s � �� Hence for any given x with jxj � n� we will have
restrained less than k�s elements of Cx from entering D for such Rj	s�

CONSTRUCTION�

Stages �� ��
Let D� � D� � 
 so that A� � A� � 
� Let res�Ej � �� � res�Ej � �� � 
 for all
requirements Ej of the form Sj � Rj� or Qj�

Stage s with s � ��
Let Ej be the highest priority requirement among S�� R�� Q�� � � � � Ss� Rs� Qs such
that
Case �� Ej � Sj and Sj is not satis�ed at stage s � � and there exists an
x � st�V�� with � � jxj � s such that

	a
 x � N
Ds��

j �

	b
 jxj 
� ht�space�As���� and jxj 	 jb
s��
j j� and

	c
 there exists a y � Cx such that y is not restrained from D by any require�
ment of higher priority than Sj at stage s � � and y is not queried of the

oracle Ds�� in some �xed computation which shows that x � N
Ds��

j �

Case �� Ej � Rj and Rj is not satis�ed at stage s � � and there exists an
x � st�V�� with � � jxj � s such that

	i
 jxj 
� ht�space�As��� and

	ii
 x � P
Ds��

j �

Case �� Aj � Qj and Qj is not satis�ed at stage s � �� and if j � �e� n�� there
exists an x with � � jxj � s such that

	I
 x � N
Ds��
e �

��



	II
 jxj 
� ht�space�As���� jxj 	 jb
s��
j j� and jxj 	 n� and

	III
 there exists a y � Cx�stst�en� such that y is not restrained from D by any
requirement of higher priority than Sj at stage s� � and y is not queried

of the oracle Ds�� in some �xed computation which shows that N
Ds��
e �x��

If there is no such requirement Ej� let Ds � Ds��� Also for all requirements
Ej of the form Sj or Qj� and for all requirements Ej of the form Rj where
either Rj is satis�ed at stage s� � or j 	 ds��� let res�Ej � s� � res�Ej � s � ���
Declare that a requirement Rj is active at stage s i
 Rj is active at stage s� ��
For any Rj with j � ds�� which is currently passive and has the property that

PDs

j �x� � � for all x � st�V�� of length s��� let res�Rj � s� equal res�Rj� s���
union the set of all y 
� Ds such that y is queried of the oracle Ds in one of the
computations PDs

j �x� where x � st�V�� of length s � ��
If there is such a requirement Ej� we have three cases�

Case �� Ej � Sjs �
Let xs denote the least x corresponding to Sjs � Then pick the least string
�xs � Cxs such that �xs is not restrained from D by any requirement of higher
priority than Sjs at stage s � �� nor is �xs queried of the oracle Ds�� in the

computation of N
Ds��

j which accepts xs� and put �xs into D� Let res�Sjs � s�
equal the set of all strings not in Ds�� which are queried of the oracle Ds�� in

the computation of N
Ds��

js
which accepts xs� and say Sjs receives attention at

stage s� Also for all requirements Ej of the form Sj or Qj� and for all require�
ments Ej of the form Rj where either Rj is satis�ed at stage s� � or j 	 ds���
let res�Ej � s� � res�Ej � s� �� if Ds � res�Ej � s � �� � 
 and let res�Ej � s� � 

if Ds � res�Ej � s � �� �� 
� Declare that a requirement Rj is active at stage s
i
 Rj is active at stage s � � and Ds � res�Rj � s � �� � 
� For any Rj with

j � ds�� which is currently passive and has the property that PDs

j �z� � � for
all z � st�V�� of length s � �� let res�Rj � s� equal res�Rj � s � �� union the set
of all y 
� Ds such that y is queried of the oracle Ds in one of the computations
PDs

j �z�� where z � st�V�� and jzj � s � ��

Case �� Ej � Rjs�
Let xs denote the least x corresponding to js� We then say that Rjs is active
and receives attention at stage s� We let Ds � Ds�� and res�Rjs � s� consist of
all elements y of length �jxsj�� which are in some Cz such that z � st�V�� and
jzj � jxsj� and all elements which are not in Ds�� and which are queried of the

oracle Ds�� in the computation P
Ds��

js��
�x� � �� Note that if res�Rjs � s��D � 
�

then A will have no elements of height jxsj but xs � PD
js
� Also for all require�

ments Ej of the form Sj or Qj� and for all requirements Ej of the form Rj

where j �� js and where either Rj is satis�ed at stage s � � or j 	 ds��� let
res�Ej� s� � res�Ej � s� ��� For j �� js� declare that a requirement Rj is active
at stage s i
 Rj is active at stage s � �� For any Rj with j � ds�� which is

��



currently passive and has the property that PDs

j �x� � � for all x � st�V�� of
length s� �� let res�Rj � s� equal res�Rj � s� �� union the set of all y 
� Ds such

that y is queried of the oracle Ds in one of the computations PDs

j �x�� where
x � st�V�� and jxj � s� ��

Case �� Ej � Qjs�
Let js � �es� ns� and xs denote the least x corresponding to js� Then pick the
least string �xs � Cxs such that �xs is not restrained from D by any require�
ment of higher priority than Qjs at stage s� �� nor is �xs queried of the oracle

Ds�� in the computation of P
Ds��
es �xs�� and put �xs into D� Let res�Qjs � s�

consists of all strings which are not in Ds�� which are queried of the oracle

Ds�� in the computation of PDs��
es �xs�� and say Qjs receives attention at stage

s� Also for all requirements Ej of the form Sj or Qj and for all requirements
Ej of the form Rj� where either Rj is satis�ed at stage s � � or j 	 ds��� let
res�Ej� s� � res�Ej � s � �� if Ds � res�Ej� s � �� � 
 and let res�Ej � s� � 

if Ds � res�Ej � s � �� �� 
� Declare that a requirement Rj is active at stage s
i
 Rj is active at stage s � � and Ds � res�Rj � s � �� � 
� For any Rj with

j � ds�� which is currently passive and has the property that PDs

j �x� � � for
all x � st�V�� of length s � �� let res�Rj � s� equal res�Rj � s� �� union the set
of all y 
� Ds such that y is queried of the oracle Ds in one of the computations
PDs

j �x�� where x � st�V�� and jxj � s � ��

This completes the construction of D� We note that A is a height increasing
independent set in NP Y since our construction ensures that we can never put
two elements of the same height in A� Thus by Theorem ����� space�A� � NPY �
We then have to prove the same sequence of lemmas as in Theorem ��
� to
complete the proof the theorem� The details may be found in ����� �

Again the space�A� constructed in Theorem ���� has a number of interest�
ing properties besides being NPD�supermaximal and PD�simple� First of all�
meeting all the requirements Rj ensures that space�A� is PD�immune� That
is� if PD

i is an in�nite subset of space�A�� then certainly PD
i generates an

in�nite dimensional subspace of st�V�� and ht�PD
i � 	 ht�space�A��� which

would violate requirement Ri� Also as in the construction of Theorem ��
�� it
is easy to check that in meeting the requirements Sj we made no use of the
fact that ND

j was a subspace of st�V��� but only that ND
j was a subset of

st�V��� We claim that st�V�� n space�A� does not have any in�nite subsets in
PD� That is� suppose that PD

j 	 st�V�� n space�A�� Now it cannot be that

ht�PD
j �nht�space�A�� is in�nite since otherwise there is an i such that PD

j � ND
i

and the fact that we met requirement Si would mean that PD
j �space�A� �� f��g�

Thus ht�PD
j � 	� ht�space�A��� Let Q � ht�space�A�� n ht�PD

j �� Then clearly

S � fx � PD
j � ht�x� 
� Qg

��



is an in�nite set in PD which generates an in�nite dimensional subspace of
st�V�� and ht�S� 	 ht�space�A��� Since meeting all the requirements Rj rules
out the existence of such an S� st�V�� n space�A� does not contain an in�nite
set in PD� Thus space�A� and st�V�� n space�A� are PD�immune�

Note also that by Theorem ��
�� the fact that space�A� is NPD�maximal
implies that NPD �� co�NPD and hence that PD �� NPD� Thus we have
proved the following�

Corollary ���� There exists an r�e� oracle D and a subspace V of st�V�� such
that

	i
 PD �� NPD and NPD �� co�NPD�

	ii
 V � NPD�

	iii
 V is PD�immune and hence has no basis in PD�

	iv
 st�V��� V is PD�immune� and

	v
 V is both PD�simple and NPD�supermaximal�

Finally we observe that results about NP and P subspaces of tal�V�� natu�
rally extend to results aboutNEXT andDEXT subspaces of st�V�� by Lemma

�� For a typical example� say that a subspaceM of st�V�� is NEXTA�maximal
ifM � NEXTA� dim�st�V��
M � is in�nite� and for any subspace W of st�V��
in NEXTA containing M � either dim�st�V��
W � is �nite or dim�W
M � is
�nite� Then Theorem ��
� and Theorem ���� show that the question of the
existence of NEXT �maximal subspaces is oracle dependent�

Theorem ���� There is a recursive oracles A and an r�e� oracle B such that
the following hold�

	i
 NEXTA �� DEXTA and NEXTB �� DEXTB �

	ii
 There are no NEXTA�maximal subspaces of st�V���

	iii
 There is an NEXTB �maximal subspace W of st�V���

In the same way� all the results in this paper about PX and NPX subspaces
of tal�V�� can be transfered to results DEXTX and NEXTX subspaces of
st�V���

Next we consider some results on splitting theorems for tal�V�� due to
B#auerle� We note a result of Ash and Downey ��� that every r�e� subspace of
V� is the direct sum of two decidable spaces� In tal�V�� the property of being
a direct sum of two p�time subspaces is equivalent to having a p�time basis�

Theorem ���
 ����� A subspace of V of tal�V�� can be split into two polyno�
mial time subspaces if and only if V has a basis in P �

��



Note that by the results on bases and subspaces of tal�V��� we immediately
get the following corollaries�

Corollary ���� There is an exponential time subspace W of tal�V�� that can�
not be split into two polynomial time subspaces�

Corollary ���� For all r�e� degrees � there is an r�e�subspace V of tal�V��
such that deg�V � � � and V can be split into two polynomial time subspaces�

Corollary ���� There exists a recursive oracle A such that every NPA n PA

subspace V of tal�V�� can be split into two PA�vector spaces�

Corollary ��
� Let F be �nite� There exists a recursive oracle B such that
there is a NPB n PB subspace V of tal�V�� that cannot be split into two PB

vector spaces�

Corollary ��
� Arguments valid under relativization are not su�cient to show
NP �� P �� every NP �subspace of tal�V�� can be split into two P �time sub�
spaces� NP �� P �� there exists an NP n P �subspace of tal�V�� which cannot
be split into two P �time subspaces�

In fact� B&auerle identi�es three types of splittings by polynomial time sub�
spaces of tal�V���

De�nition ��
� Let V be an r�e� vector space�

�� V allows a P �splitting if there exist P �time spaces W� and W� such that
W� �W� � f��g and W� �W� � V � We say that W� and W� P �split V �

�� V allows an induced P �splitting if there exist P �time spaces W� and W�

such that W��W� � f��g� W��W� � V�� dim�V �W�� � dim�V �W�� �
�� and �W� � V � � �W� � V � � V � We say that W� and W� induce a
P �splitting of V �


� V allows an induced weak P �splitting if there exist r�e� vector spaces
W� and W� such that W� and W� have bases in P � W� � W� � f��g�
W� �W� � V�� dim�V �W�� � dim�V �W�� � �� and �W� � V � �
�W� � V � � V � We say that W� and W� induce a weak P �splitting of V �

Theorem ��
� ����� Let V be a subspace of tal�V���

	i
 If V allows a P �splitting� then V allows an induced P �splitting�

	ii
 If V allows an induced P �splitting� then V allows an induced weak P �
splitting�

Theorem ��
� �����

�




	i
 There exists an exponential time subspace V of tal�V�� that allows an in�
duced P �splitting but no P �splitting�

	ii
 There exists an exponential time subspace V of tal�V�� that does not allow
an induced weak P �splitting

This shows that three notions of De�nition ���� are increasingly weaker�
We end this section� we some results on B#auerle ��� on subspaces and super�

spaces of NP n P �subspaces of tal�V���

Theorem ��
� ����� Every NP n P �subspace V of tal�V�� has a non�trivial
NP n P �subspace W �

Theorem ��

 ����� Let V be a subspace of tal�V�� such that V � NP n P �
If V has a non�trivial superspace in P � then V has a non�trivial superspace in
NP n P �

Theorem ��
� ����� There exists a recursive oracle C such that there exists a
vector space V � tal�V�� that satis�es the following properties


�� V � NPC n PC

�� V has a non�trivial superspace in NPC n PC


� V has no non�trivial superspaces in PC

Theorem ��
� ����� There is a recursive oracle C such that all non�trivial
NPC n PC�subspaces of tal�V�� have non�trivial superspaces in PC and in
NPC n PC�

Finally under the assumption that NPA � co�NPA�

Theorem ��
� ����� Let A be an oracle such that NPA n PA�subspaces of
tal�V�� exist and such that NPA � co�NPA� Then the following is true�

�� For all NPAnPA�subspaces V of tal�V�� their standard height increasing
basis BV is in NPA n PA�

�� For all NPAnPA�subspaces V of tal�V�� their standard height increasing
complementary basis BV and their standard complement �BV �

� are in
NPA n PA�


� Every NPA nPA�subspace V of tal�V�� can be split into two disjoint �PT
incomparable NPA n PA�subspaces�

�� The set of �PT degrees with NPA�subspaces of tal�V�� is dense�

�� There exists a pair V�W of NPnPA�subspaces of tal�V�� such that if
U �PT V and U �PT W � then U � PA�

�� The set of rationals Q can be embedded in the structures of �Pm and �PT �
degrees of NPA�subspaces of tal�V���

��



	 Polynomial Time Boolean Algebras

In this section� we shall survey the results of Nerode and Remmel on the lower
semilattice of NP �ideals of a polynomial time presentation of the free Boolean
algebra� Again we consider two natural representations of the free Boolean
algebra called the tally and standard representation� We start by describing
these two representations�

Let P���� ��� denote the Boolean algebra of all subsets of the rational left�
closed right�open interval ��� �� in the rational number Q� The Boolean opera�
tions of meet� join� and complementation on P���� ��� are respectively intersec�
tion� union� and relative complement in ��� ��� Let B���� ��� be the subalgebra
of P���� ��� generated by the left�closed right�open intervals of the form

�
i

�n
�
j

�n
�

with n � � and � � i � j � �n� For any subset S 	 B���� ���� �S�� denotes the
subalgebra of B���� ��� generated by S and I�S� denotes the ideal generated by
S� Given a subalgebra D 	 B���� ���� we let At�D� denote the set of atoms of
D�

Next we de�ne a natural generating sequence a�� a�� � � � for B���� ��� by in�
duction�

a� � ��� ��

a�n���m�� � ��m�n �
�m��
�n � if n � � and � � m � �n���

Thus

a� � ���
�

�
�� a	 � ���

�



�� a� � �

�

�
�
�



�� a� � ���

�

�
��

a� � �
�



�
�

�
�� a� � �

�

�
�
�

�
�� a� � �

�



�
�

�
�

Let An � fa�� � � � � ang�� Then it is not di�cult to see that A�� A�� A	� � � � is
a strictly increasing sequence of subalgebras such that for each n � �� there is
a unique atom xn � At�An� such that an�� splits xn� i�e� 
 � an�� � xn� In
fact� one can easily show by induction that if k is of the form �n�� �m with
� � m � �n��� then

At�Ak� � f�
i

�n
�
i� �

�n
� � � � i � �mg � f�

j

�n��
�
j � �

�n��
� � m � j � �n��g�

Hence ak�� � ��m�n �
�m��
�n � splits the atom xk � � m

�n�� �
m��
�n�� � of Ak� It follows

that An has exactly n atoms for each n � �� so that An has exactly �n elements�
We use this generating sequence and its corresponding sequence of subalge�

bras
A� � A� � A	 � � � �

��



to de�ne the standard and tally representations of B���� ����

The Standard Representation of B���� ���

First we describe a coding of the elements of B���� ��� which we call that stan�
dard representation of B���� ���� Our idea is to use binary numbers of length n
to code the elements of An n An�� for n 	 �� Formally� we de�ne a ��� corre�
spondence � � s	 between Bin��� and B���� ��� by induction�

For the base step� set
s� � 
� s� � ��� ���

For the induction step� assume that the correspondence bin�k� � sk has
been de�ned between fbin�k� � � � k � �ng and An� We then extend our
correspondence to An�� as follows� Given a binary number m of length n� ��
let m � k � �i where k is odd� so that bin�m� � �i�bin�k�� and let

sm �

�
sk � an�� if sk � an�� � 

sk n an�� if sk  an���

���

Now let At�An� � fx�� � � � � xn��� xng where xn is the atom of An which is
split by an��� Then it is easy to see that every element of An�� n An is either
of the form

an�� �
�
i�S

xi

or
�xn n an��� �

�
i�S

xi

for some set S 	 f�� � � � � n� �g� Thus ��� de�nes a ��� correspondence between
fk � �n � k � �n��g and An�� nAn�

Indeed it is quite easy to use ��� to recursively construct sn� We write sbin�n�
for sn in the following�

Example ��� Suppose bin�n� � �������� Then sn can be constructed as fol�
lows�

s� � 
�

s�� � a� � ��� ��� since a� � s� � 
�

s���� � s�� � a� � ��� ��� � ��� �
	
� � ��� 	�� since a� � s�� � 
�

s����� � s���� n a� � ��� 	� � n ���
�
� � ��� �

	
� � since a� 	 s�����

s������� � s����� n a� � ��� 	� � n �
�
� �

�
� � ��� �

�
�� � ��� �

	
� � since a� 	 s������

��



It is not di�cult to show that given two � and � in Bin��� with j�j � j� j�
we can �nd �� � and � in Bin��� such that

s
 � s� � s� � s� � s� � s� � s� � ��� �� n s�

in polynomial time in j� j� Furthermore� note that each of �� � and � has length
� �j� j� since each of s
� s� and s� belongs to An if s� � An� See ��
� for details�
It follows that if we then de�ne

� �s � � � ���

� �s � � � ���

�s� � � �
�

Then st�B� � �Bin�����s��s��s� is a polynomial time representation of the
countable atomless Boolean algebra B���� ��� which we call the standard repre�
sentation of B���� ����

The Tally Representation of B���� ���

The tally representation tal�B� of B���� ��� can easily be de�ned from the
binary representation st�B���� ��� to be the isomorphic image under the map
taking bin�n� to tal�n� and is therefore a p�time structure by Lemma 
�
 in
light of the note above�

Nerode and Remmel ��
� studied three basic properties of ideals in a recursive
Boolean algebras� Here given a Boolean algebra B � �B��B��B��B�� we say
I 	 B is an ideal if the zero of B� �B is in I� for all x� y � I imply x �B y � B�
and for x � I and z � B� x�B z � I� I is a maximal ideal if for all z � B� either
z � I or �Bz � I�

Nerode and Remmel studied polynomial time analogues of the following well
known results on r�e� ideals in a recursive presentation of B���� ����

A� In a recursive Boolean algebra� every r�e� maximal ideal is recursive�

B� Every proper recursive ideal is contained in a recursive maximal ideal�

C� There exists an r�e� ideal of B���� ��� which is not extendible to a recursive
ideal�

We note that C is equivalent to the proposition that there is an r�e� axiom�
atizable theory which is not contained in any decidable theory�

First consider A� The fact that every r�e� maximal ideal of a recursive
Boolean algebra is based on Kleene	s lemma that a set which is r�e� and co�
r�e� is automatically recursive� The obvious p�time analogue of A is that every
NP maximal ideal of p�time Boolean algebra is polynomial time� However

��



in this case� it is a long standing open problem whether NP � co�NP � P �
Moreover is well known results of Baker�Gill Solovay �
�� there exists recursive
oracle X and Y such that NPX � co�NPX �� PX and NP Y � co�NP Y � PY

but PY �� NPY � Thus it should come as no surprise that the analogue of
A is oracle dependent� That is� Nerode and Remmel were able of modify the
Baker�Gill�Solovay constructions to prove the following�

Theorem ��� There exists a recursive oracle X such that there exist a maximal
ideal I of tal�B� such that I � NPX n PX �

Our next corollary immediately follows from Theorem ��� and Lemma 
���

Corollary ��� There exists a recursive oracle X such that there exists a re�
cursive oracle X such that there exist a maximal ideal I of st�B� such that
I � NEXTX nDEXTX �

Theorem ��� There exists a recursive oracle Y such that there exist a maximal
ideal J of st�B� such that J � NPX n PX �

Theorem ��� There exists a recursive oracle E such that PE �� NPE and the
following hold�

	i
 Every maximal ideal I of tal�B� which is in NPE is in PE�

	ii
 Every maximal ideal J of st�B� which is in NEXTE is in DEXTE �

	iii
 Every maximal ideal K of st�B� which is in NPE is in PE �

Theorems �������
� then yield the following results�

Theorem ��� Arguments which remain valid under relativization to oracles do
not su�ce to prove any of the following�

	�
 P �� NP implies that every NP maximal ideal of tal�B� is in P �

	�
 P �� NP implies that there is an NP maximal ideal of tal�B� which is not
in P �

	�
 P �� NP implies that every NP maximal ideal of st�B� is in P �

	�
 P �� NP implies that there is a NP maximal ideal of st�B� which is not in
P �

Next we turn to the analogues ofB� In this case� Nerode and Remmel proved
that the obvious analogues of B are true for both tal�B� and st�B� although the
argument requires a great deal more care� That is� Nerode and Remmel ��
�
proved the following�

��



Theorem ��
 Every proper ideal I of st�B� which is in P can be extended to
maximal ideal J of st�B� which is in P �

Theorem ��� Every proper ideal I of st�B� which is in NP � co�NP can be
extended to maximal ideal J of st�B� which is in NP � co�NP �

Theorem ��� Every proper ideal I of st�B� which is in DEXT can be extended
to maximal ideal J of st�B� which is in DEXT �

Theorem ��� Every proper ideal I of st�B� which is in NEXT � co�NEXT
can be extended to maximal ideal J of st�B� which is in NEXT � co�NEXT �

Theorem ���� Every proper ideal I of tal�B� which is in P can be extended
to maximal ideal J of tal�B� which is in P �

Theorem ���� Every proper I of tal�B� which is in NP � co�NP can be ex�
tended to maximal ideal J of tal�B� which is in NP � co�NP �

Finally we turn to the analogues of C� In this case� the analogues are oracle
dependent despite Theorems ��� � �����

Theorem ���� There exists a recursive oracle A such that PA �� NPA and

	�
 every proper ideal I� of st�B� which is in NPA is extendible to maximal
ideal J� of st�B� which is in NPA�

	�
 every proper ideal I� of tal�B� which is in NPA is extendible to maximal
ideal J� of tal�B� which is in NPA�

	�
 every proper ideal I	 of st�B� which is in NEXTA is extendible to maximal
ideal J	 of st�B� which is in NEXTA�

Proof� Homer and Maass ���� constructed a recursive oracle A such that
PA �� NPA but NPA � co�NPA� Thus we can use the relativized version of
Theorem ��� to prove part ��� and we can use the relativized version Theorem
���� to prove part ���� Finally part ��� follows from part ��� and Lemma 
���
�

The proof of the other direction of the oracle dependence requires a new
construction is much more subtle than any of the previous theorems on ideals
in our p�time representation of B���� ���� The actual proofs can be found in ��
��

Theorem ���� 	�
 There exists a recursive oracle C and an ideal J� of tal�B�
which is in NPC which is not contained in any maximal ideal of tal�B�
which is in NPC �

	�
 There exists a recursive oracle B and an ideal J� of st�B� which is in NPB

which is not contained in any maximal ideal of st�B� which is in NPB�
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Of course� we can combine Lemma 
�� and Theorem ���� ��� to prove the
following�

Theorem ���� There exists a recursive oracle C and an ideal J	 of st�B� which
is in NEXTC which is not contained in any maximal ideal of tal�B� which is
in NEXTC �

�
 Conclusions and Future Directions

In this survey� we have presented the basic de�nitions of complexity theoretic
algebra and model theory and have attempted to outline the current state of
knowledge in the �eld� There is a great deal more which remains to be done�
We will just mention four possible themes for future research�

First� we observe that the results on complexity theoretic algebra were lim�
ited to the study of ideals in the free Boolean algebras and and subspaces of an
in�nite dimensional vector spaces� There are many other algebraic structures
that have been studied in recursive algebra including �elds� modules� subal�
gebras of Boolean algebras� subgroups of groups� etc�� Cenzer� Downey and
Remmel ��� have recently investigated torsion�free Abelian groups� We have
also given complexity theoretic results in combinatorics� Other related areas of
mathematics such as geometry and number theory should also provide fruitful
basis for investigation�

Second� most of our results concerned the notions of polynomial time com�
plexity� with some results given on linear time and on exponential time com�
plexity� There are many other interesting notions of complexity� including for
example� PSPACE and LOGSPACE� which should provide both comparable
and contrasting results�

Third� we gave only a few results involving the important complexity hy�
potheses of theoretical computer science� such as whether P � NP or NP �
PSPACE� In the complexity theory of real functions� Ko �
�� has provided
many such results� For example� he gives a condition �not involving complexity�
on a real function f and shows that if P � NP and if f is a p�time computable
function on the unit interval which satis�es this condition� then all roots of f
are p�time computable� There should be similar results in complexity theoretic
algebra�

Fourth� we have only begun the study of complexity theoretic model theory
with a few results on relational structures and with the general notion of Scott
sentences and categoricity� If one studies the recursive model theory survey by
Harizanov ����� many problems suggest themselves� For example� the authors
have recently investigated complexity theoretic versions of the e
ective com�
pleteness theorem in ����� Decidability is also of interest in the study of prime
and saturated models and in stability theory�
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