
Locally Determined Logic Programs and Recursive Stable

Models

A. Douglas Cenzer (cenzer@ufl.edu)
University of Florida

B. Jeffrey B. Remmel (jremmel@ucsd.edu)
University of California at San Diego

C. Amy Vanderbilt (vanderbilt@xu.edu)
Xavier University

Abstract. In general, the set of stable models of a recursive logic program can be
quite complex. For example, it follows from results of Marek, Nerode, and Remme
[17] that there exists finite predicate logic programs and recursive propositional logic
programs which have stable models but no hyperarithmetic stable models. In this
paper, we shall define several conditions which ensure that a recursive propositional
logic program P has a stable model which is of low complexity, that is, a recursive
stable model, a polynomial time stable model, or a stable model which lies in a low
level of the polynomial time hierarchy.

Keywords: nonmonotonic logic, logic programming

68T27: 03B70

1. Introduction

The stable model semantics of logic programs has been extensively
studied. Unfortunately, the set of stable models of a recursive propo-
sitional logic program with negation or even a finite predicate logic
program with negation can be quite complex. For example, in [18],
Marek, Nerode, and Remmel showed that for any recursive proposi-
tional logic program P , there is an infinite branching recursive tree T
such that there is an effective one-to-one degree preserving correspon-
dence between the set of stable models of P and the set of infinite
paths through T . Marek, Nerode, and Remmel [17] also showed that
given any infinite branching recursive tree T , there exists a recursive
propositional logic program PT such that there is an effective one-to-
one correspondence between the set of infinite paths through T and the
set of stable models of P . Moreover, in [17], it is shown that the same
results hold if we replace recursive propositional logic programs by finite
predicate logic programs. It follows that the set of possible degrees of
the stable models of a recursive propositional logic program or a finite
predicate logic program are precisely the set of possible degrees of the

c© 2013 Kluwer Academic Publishers. Printed in the Netherlands.

amai4.tex; 10/09/2013; 11:14; p.1

2 Cenzer et al

infinite paths through some recursive infinitely branching tree. These
results imply that the set of stable models of a recursive propositional
logic program or a finite predicate logic program can be extremely
complex. For example, it follows from these results that there a finite
predicate logic program which has a stable model but which has no
stable model that is hyperarithmetic.

The main motivation of the paper is to find conditions on recursive
propositional logic programs P which guarantee the existence of well
behaved stable for P , i.e. a stable model of P which is recursive, polyno-
mial time, or in some low level of the polynomial time hierarchy. Since
we shall deal mainly with propositional logic programs, we shall refer
to propositional logic programs as simply logic programs. We should
note that are a number of conditions in the literature which guarantee
that a recursive logic program has a stable model of relatively low
complexity with respect to the arithmetic hierarchy. Clearly, the first
such condition is to consider recursive Horn logic programs. In that
case, it is implicit in [24] and explicitly proved in [1] that the least
model of a recursive Horn program is a recursively enumerable (r.e.)
set and that every r.e. set can appear as the least model of recursive
Horn Program. Another important class of logic programs is stratified
logic programs [3], where one can single out a particular model called
the perfect model which is the unique stable model of the program. In
that case, Apt and Blair [4] showed that recursive logic program with
n strata must have a perfect model which is Σ0

n and that there is a
recursive logic program P with n strata such that the perfect model of
P is Σ0

n complete. In [17], Marek, Nerode, and Remmel showed that
imposing the conditions which say that (i) each atom of the Herbrand
Base of P has at most finitely many minimal derivations from P (P is
locally finite in the language of Marek, Nerode, and Remmel), and (ii)
one can effectively find these possible derivations (P is an rsp program
in the language of Marek, Nerode, and Remmel), ensures that there is
highly recursive tree T such that there is an effective one-to-one corre-
spondence between the set of stable models of P and the set of infinite
paths through T . Here a tree T is highly recursive, if T is recursive,
finitely branching, and there is a effective procedure which given any
node η ∈ T , produces the set of nodes in T which immediately extend η.
One consequence of this fact is that a recursive rps logic program which
has a stable model always has a stable model M whose jump is recursive
in 0′. In addition, Marek, Nerode, and Remmel [20] generalized Reiter’s
concept of normal default theories to logic programs (FC-normal logic
programs in the language of [20]) and showed that FC-normal logic
programs always have a stable model which is r.e. in 0′.

amai4.tex; 10/09/2013; 11:14; p.2

Locally Determined 3

There are several key concepts introduced in this paper. One of the
main reasons that the set of stable models of a recursive logic program
can be so complex is that the analogue of the compactness theorem
which holds for propositional logic or first order predicate logic fails
badly for logic programs, see [21]. There are several ways to recover
from this failure and to introduce conditions which ensure that a kind
of compactness result holds for a logic program. One example of this
type of condition is the notion of locally finite logic programs described
above. In this paper, we introduce another such condition called locally
determined logic program. Essentially, a logic program P with Herbrand
base HP = {a0 < a1 < . . .} ⊆ ω is locally determined if for any
ai ∈ HP , there exists an ni ≥ i such that the question of whether
any aj with j ≤ ni lies in a stable model E is determined only by the
clauses of P which involve elements from {a0, . . . , ani}. Such an ni is
called a level of P . We say that P is effectively locally determined if
one can effectively find ni from i. We then show that any recursive
FC-normal effectively locally determined logic program always has a
recursive stable model. Another way in which the existence of a recur-
sive stable model can be guaranteed is to introduce a condition which
ensures that the lexicographically least stable model of P is recursive.
This idea leads to our second key concept which defines what we call
logic programs with effective witnesses.

The outline of this paper is as follows. In Section 2, we shall es-
tablish our notation. In addition we shall define the concept of proof
schemes and of FC-normal logic programs which will crucial for our
later developments. In Section 3, we shall introduce the new notion of
a locally determined logic program. Given a recursive logic program P
and an effective listing of the atoms of the Herbrand base, HP , of P ,
HP = {a0, a1, . . . }, we say that n is a level of P if, roughly, whenever
there is a proof scheme p for a sentence ai with i ≤ n, then there exists
a proof scheme q only involving elements from {a0, . . . , an} and such
that the restraint set of q is contained in the restraint set of p. We
then say that P is locally determined if for every k ≥ 0, there is an
nk ≥ k such that nk is a level of P . We say that P is effectively locally
determined if one can effectively find such an nk from k. We shall show
in Section 3, that if P is an effectively locally determined recursive
logic program, then there is a highly recursive tree T such that there
is an effective one-to-one correspondence between the stable models of
P and the set of infinite paths through T . Thus being effectively lo-
cally determined is another condition much like the rps property which
reduces the complexity of the set of stable models of P . In Section 4,
we shall introduce several strengthenings of local determinedness which
will ensure that a recursive logic program always has a recursive stable

amai4.tex; 10/09/2013; 11:14; p.3

4 Cenzer et al

model. In Section 5, we shall show how one can define polynomial
time versions of effectively locally determined recursive logic programs
and recursive logic programs with effective witnesses which will ensure
that a logic program P will have model which are NP, EXPTIME,
etc. In Section 6, we characterize the set of stable models of a locally
determined logic program.

The authors would like to thank Victor Marek for helpful comments
on this paper.

2. Logic programs, proof schemes, and normality

In this section, we shall introduce several key notions which will be
referred to in later section. In particular, we shall carefully define the
notion of recursive logic programs. Then we shall define the notion
of proof schemes which will lead to the definitions of locally finite
programs and locally finite programs with recursive proof structures.
Finally we shall describe the extension of the Reiter’s concept of normal
default theories to recursive logic programs following [20].

2.1. Basic Definitions

A program clause is an expression of the form

C = p← q1, . . . , qn,¬r1, . . . ,¬rm (1)

where p, q1, . . . , qn, r1, . . . , rm are atomic formulas possibly with vari-
ables in some first order language L. A program is a set of clauses of
the form (1). A clause C is called a Horn clause if m = 0. We let
Horn(P) denote the set of all Horn clauses of P . HP is the Herbrand
base of P , that is, the set of all ground atomic formulas of the language
of P . We let ground(P) denote the logic program that consists of the
set of ground Herbrand substitutions of clauses in P . For the rest of
this paper, we shall identify P with ground(P). If

C = p← q1, . . . , qn,¬r1, . . . ,¬rm (2)

is a clause of ground(P), we let h(C) = p denote the head of p and we
call the set {r1, . . . , rm} the set of constraints of C and denote it by
cons(C).

If P is a program and M ⊆ HP is a subset of the Herbrand base,
define the operator TP,M : P(HP) → P(HP) where TP,M (I) is the set
of all p such that there exists a clause C = p← q1, . . . , qn,¬r1, . . . ,¬rm
in P such that q1 ∈ I, . . . , qn ∈ I and {r1, . . . , rm} ∩M = ∅.

amai4.tex; 10/09/2013; 11:14; p.4

Locally Determined 5

With fixed M , the operator TP,M is a monotonic finitizable operator,
see [2], and hence possesses a least fixpoint FP,M . Given program P and
M ⊆ HP , the Gelfond-Lifschitz reduct of P is defined as follows. For
every clause C of P , execute the following operation: if some atom
a belongs to M and its negation ¬a appears in C, then eliminate C
altogether. In the remaining clauses that have not been eliminated by
the operation above, eliminate all the negated atoms. The resulting
program PGLM is a Horn propositional program (possibly infinite). The
program PGLM possesses a least Herbrand model. If that least model of
PGLM coincides with M , then M is called a stable model for P . The set
of stable models of P will be denoted by S(P). Gelfond and Lifschitz
[11] proved that every stable model of P is a minimal model of P and
that M is stable model of P if and only if M = FP,M .

The following was also proved in [11].

Proposition 2.1. Let P be a logic program. The set of stable models
of P form an antichain. That is, if M1 and M2 are stable models of P
such that M1 ⊆M2, then M1 = M2.

Having characterized stable models as fixpoints of (parametrized)
operators, consider the form of elements belonging to FP,M . A P,M -
derivation of an atom p is a sequence 〈p1, . . . , ps〉 such that (i) ps = p
and (ii) for every i ≤ s, either there is a clause “C = pi ← ¬r1, . . . ,¬rm”
where {r1, . . . , rm} ∩ M = ∅ is a member of P or there is a clause
D = “pi ← q1, . . . , qn,¬r1, . . . ,¬rm” such that D ∈ P , q1, . . . , qn ∈
{p1, . . . , pi−1} and {r1, . . . , rm} ∩M = ∅. It is easy to show that FP,M
is the set of all atoms possessing a P,M -derivation. Thus M is a stable
model of the program P if and only if M consists exactly of those atoms
which possess a P,M -derivation.

The property that a sequence 〈p1, . . . , ps〉 is a P,M -derivation of an
atom p does not depend on the whole set M but only on the behavior
of M on a finite set of atoms. In order that the sequence 〈p1, . . . , ps〉
be a P,M -derivation of an atom ps, some atoms must be left out of
the set M . Each derivation depends on a finite number of such omitted
atoms. In other words, if we classify the atoms according to whether
they are “in” or “out” of M , the property that a sequence 〈p1, . . . , ps〉 is
a P,M -derivation depends only on whether a finite number of elements
are out of M . The notion of a proof scheme formalizes this idea.

A (P-)proof scheme for an atom p is a sequence ψ = 〈〈pi, Ci, Ui〉〉si=1
of triples where for all i, pi ∈ HP , Ci ∈ P is a clause with the head pi
and Ui is a finite subset of HP such that (1) ps = p and
(2) for every i, Ci = pi ← q1, . . . , qn,¬r1, . . . ,¬rm, where {q1, . . . , qn} ⊆
{p1, . . . pi−1} and Ui = Ui−1∪{r1, . . . , rm}. Here by definition, U−1 = ∅.
We call p the conclusion of ψ, written p = cln(ψ), and the set Um the

amai4.tex; 10/09/2013; 11:14; p.5

6 Cenzer et al

support of ψ, written supp(ψ). We say that a subset M ⊆ HP admits
a proof scheme ψ = 〈〈pi, Ci, Ui〉〉si=1 if M ∩ Us = ∅.

The following proposition due to Marek, Nerode,and Remmel in [18]
characterizes of stability in terms of the existence of proof schemes.

Proposition 2.2. Let M ⊆ HP . Then M is a stable model of P if and
only if
(1) for every p ∈M , there is a proof scheme ψ for p such that M admits
ψ, and
(2) for every p /∈ M , there is no proof scheme ψ for p such that M
admits ψ.

As stated in the introduction, restrictions on the number of proof
schemes greatly reduce the possible complexity of the set of stable mod-
els of a recursive logic program P . But how many derivation schemes
for an atom p can there be? If we allow P to be infinite, then it is easy
to construct an example with infinitely many derivations of a single
atom. Moreover, given two proof schemes, one can insert one into the
other (increasing appropriately the sets Ui in this process, with obvious
restrictions). Thus various clauses Ci may be immaterial to the purpose
of deriving p. This leads us to introduce a natural relation ≺ on proof
schemes using a well-known device from proof theory. Namely, we define
S1 ≺ S2 if S1, S2 have the same conclusion and if every clause appearing
in S1 also appears in S2. Then a minimal proof scheme for p is defined
to be a proof scheme S for p such that whenever S′ is a proof scheme
for p and S′ ≺ S, then S ≺ S′. Note that ≺ is reflexive and transitive,
but ≺ is not antisymmetric. However it is wellfounded. That is, given
any proof scheme S , there is an S′ such that S′ ≺ S and for every S′′,
if S′′ ≺ S′ then S′ ≺ S′′. Moreover, the associated equivalence relation,
S ≡ S′, defined by S ≺ S′ and S′ ≺ S, has finite equivalence classes.

Example 2.3. Let P1 be the following program:
C1: p(0)← ¬q(Y).
C2: nat(0)← .
C3: nat(s(X))← nat(X).
Then atom p(0) possesses infinitely many minimal proof schemes. For
instance, each one-element sequence

ψi = 〈〈p(0), C1Θi, {q(si(0))}〉〉

where Θi is the operation of substituting si(0) for Y , is a minimal proof
scheme for p(0).

Example 2.4. Let P2 be the following program:
C1: q(s(Y))← ¬q(Y).

amai4.tex; 10/09/2013; 11:14; p.6

Locally Determined 7

C2: nat(0)← .
C3: nat(s(X))← nat(X).
It is easy to check that for P2, each atom possesses only finitely many
minimal proof schemes.

We shall call a program P locally finite if for every atom p, there are
only finitely many different supports of minimal proof schemes with
conclusion p. If P is locally finite and p ∈ HP , we let Dp denote the set
of all supports of minimal proof schemes of p. Clearly for any M ⊆ HP ,
the question of whether p has a P,M -derivation depends only on M ∩S
for S ∈ Dp. This implies that if P is locally finite, when we attempt to
construct a subset M ⊆ HP which is a stable model for P , we can apply
a straightforward (although still infinite) tree construction to produce
such an M , if such an M exists at all.

2.2. Recursive Logic Programs

Next, we need to make the notion of a recursive program precise. First,
assume that we have a Gödel numbering of the elements of the Her-
brand base HP . Thus, we can think of each element of the Herbrand
base as a natural number. If p ∈ HP , write c(p) for the code or Gödel
number of p. Let ω = {0, 1, 2, . . . }. Assume [,] is a fixed recursive
pairing function which maps ω×ω onto ω and has recursive projection
functions π1 and π2, defined by πi([x1, x2]) = xi for all x1 and x2
and i ∈ {0, 1}. Code a finite sequence 〈x1, . . . , xn〉 for n ≥ 3 by the
usual inductive definition [x1, . . . , xn] = [x1, [x2, . . . , xn]]. Next, code
finite subsets of ω via “canonical indices”. The canonical index of the
empty set, ∅, is the number 0 and the canonical index of a nonempty
set {x0, . . . , xn}, where x0 < . . . < xn, is

∑n
j=0 2xj . Let Fk denote the

finite set whose canonical index is k. Once finite sets and sequences of
natural numbers have been coded, we can code more complex objects
such as clauses, proof schemes, etc. as follows. Let the code c(C) of a
clause C = p ← q1, . . . , qn,¬r1, . . . ,¬rm be [c(p), k, l], where k is the
canonical index of the finite set {c(q1), . . . , c(qn)}, and l is the canonical
index of the finite set {c(r1), . . . , c(rm)}. Similarly, let the code c(ψ) of
a proof scheme

ψ = 〈〈pi, Ci, Ui〉〉si=1

be [s, [[c(p1), c(C1), c(U1)], . . . , [c(ps), c(Cs), c(Us)]]], where for each i,
c(Ui) is the canonical index of the finite set of codes of the elements
of Ui. The first coordinate of the code of a proof scheme is the length
of the proof scheme. Once we have defined the codes of proof schemes,
then for locally finite programs, we can define the code of the set c(Dp)
consisting of codes of the supports of all minimal proof schemes for

amai4.tex; 10/09/2013; 11:14; p.7

8 Cenzer et al

P . Finally we need codes for recursive sets of natural numbers. Let
φ0, φ1, . . . be an effective list of all partial recursive functions where φe
is the partial recursive function computed by the e-th Turing machine.
Similarly, if A ⊆ ω, we let φA0 , φ

A
1 , . . . be an effective list of all A-partial

recursive functions where φAe is the partial recursive function computed
by the e-th oracle Turing machine with oracle A. By definition, a (recur-
sive) index of a recursive set R is an e such that φe is the characteristic
function of R. Call a program P recursive if the set of codes of the
Herbrand universe HP is recursive and the set of codes of the clauses
of the program P is recursive. If P is a recursive program, then by an
index of P we mean the code of a pair [u, p] where u is an index of the
recursive set of all codes of elements in HP and p is an index of the
recursive set of the codes of all clauses in P .

For the rest of this paper we shall identify an object with its code
as described above. This means that we shall think of the Herbrand
universe of a program, and the program itself, as subsets of ω and
clauses, proof schemes, etc. as elements of ω.

We also need to define various types of recursive trees and Π0
1 classes.

Let ω<ω be the set of all finite sequences from ω and let 2<ω be the
set of all finite sequences of 0’s and 1’s. Given α = 〈α1, . . . , αn〉 and
β = 〈β1, . . . , βk〉 in ω<ω, write α v β if α is initial segment of β, i.e.
, if n ≤ k and αi = βi for i ≤ n. In this paper, we identify each
finite sequence α = 〈α1, . . . , αn〉 with its code c(α) = [n, [α1, . . . , αn]]
in ω. Let 0 be the code of the empty sequence ∅. When we say that a
set S ⊆ ω<ω is recursive, recursively enumerable, etc., what we mean
is that the set {c(α) : α ∈ S} is recursive, recursively enumerable,
etc. We say that a nonempty subset T of ω<ω is a tree if ∅ ∈ T
and T is closed under initial segments. Call a function f : ω → ω an
infinite path through T provided that for all n, 〈f(0), . . . , f(n)〉 ∈ T .
Let [T] be the set of all infinite paths through T . Call a set A of
functions a Π0

1-class if there exists a recursive predicate R such that
A = {f : ω → ω : ∀n(R(n, [f(0), . . . , f(n)])}. Say that a tree T ⊆ ω<ω

is highly recursive if T is a recursive finitely branching tree and also
there is a recursive procedure which, applied to α = 〈α1, . . . , αn〉 in T ,
produces a canonical index of the set of immediate successors of α in T .
Call a Π0

1-class A recursively bounded if there exists a recursive function
g : ω → ω such that (∀f ∈ A)∀n(f(n) ≤ g(n)). It is not difficult to see
that if A is a Π0

1-class, then A = [T] for some recursive tree T ⊆ ω<ω.
Then if A is a recursively bounded Π0

1-class, it is easy to show that
A = [T] for some highly recursive tree T ⊆ ω<ω, see [7]. We say that a
tree T is decidable if T is a recursive tree and the set of nodes η ∈ T
such that η is an initial segment of some path π ∈ [T] is recursive. A
Π0

1 class C is decidable if C = [T] for some decidable tree. For any set

amai4.tex; 10/09/2013; 11:14; p.8

Locally Determined 9

A ⊆ ω, let A′ = {e : {e}A(e) is defined} be the jump of A. Let 0′

denote the jump of the empty set ∅. We write A ≤T B if A is Turing
reducible to B and A ≡T B if A ≤T B and B ≤T A.

Formally, we say that there is an effective, one-to-one degree pre-
serving correspondence between the set of stable models S(P) of a
recursive logic program P and the set of infinite paths [T] through a
recursive tree T if there are indices e1 and e2 of oracle Turing machines
such that
(i) ∀f ∈ [T]({e1}gr(f) = Ef ∈ S(P)),
(ii) ∀S ∈ S(P)({e2}S = fS ∈ [T]), and
(iii) ∀f ∈ [T]∀S ∈ S(P)({e1}gr(f) = S if and only if {e2}S = f).
where {e}B denotes the function computed by the eth oracle machine
with oracle B. Also, write {e}B = A for a set A if {e}B is a characteris-
tic function of A, and for a function f : ω → ω, gr(f) = {[x, f(x)] : x ∈
ω}. Condition (i) says that the branches of the tree T uniformly produce
stable models via an algorithm with index e1. Condition (ii) says that
stable models of S uniformly produce branches of the tree T via an
algorithm with index e2. Condition (iii) asserts that if {e1}gr(f) = Ef ,
then f is Turing equivalent to Ef . In the sequel we shall not explicitly
construct the indices e1 and e2, but it will be clear that such indices
can be constructed in each case.

Now suppose that P is a locally finite program such that HP ⊆ ω.
There is no guarantee that the global behavior of the function p 7→ Dp,
mapping ω into ω, has any sort of effective properties. Thus we are led
to define the following.

Definition 2.5. We say that a locally finite recursive program P pos-
sesses a recursive proof structure (rps) if (1) P is locally finite,
and (2) the function p 7→ c(Dp) is recursive. A locally finite recursive
program with an rps is called an rps program.

If P is a finite predicate logic program, then we say that P is a
locally finite (rps, etc.) if ground(P) is a locally finite (rps, etc.) logic
program.

This given, we can now state some basic results from [18, 17, 20] on
the complexity of the stable models of recursive logic programs.

Theorem 2.6. For any rps logic program P , there is a highly recursive
tree TP such that there is an effective one-to-one degree preserving
correspondence between [TP] and S(P). Vice versa, for any highly
recursive tree T , there is a rps logic program PT such that there is
an effective one-to-one degree preserving correspondence between [T]
and S(PT).

amai4.tex; 10/09/2013; 11:14; p.9

10 Cenzer et al

Theorem 2.7. For any locally finite recursive logic program P , there
is a tree TP which is highly recursive in 0′ such that there is an effective
one-to-one degree preserving correspondence between [TP] and S(P).
Vice versa, for any highly recursive tree T in 0′, there is a locally finite
recursive logic program PT such that there is an effective one-to-one
degree preserving correspondence between [T] and S(PT).

Theorem 2.8. For any recursive logic program P , there is a recursive
tree TP such that there is an effective one-to-one degree preserving
correspondence between [TP] and S(P). Vice versa, for any recursive
tree T , there is a recursive logic P such that there is an effective one-
to-one degree preserving correspondence between [T] and S(PT).

We note that in [18], Marek, Nerode, and Remmel show that in
Theorem 2.6, 2.7, 2.8, one can replace recursive logic program by finite
predicate logic program.

Because the set of degrees of paths through trees have been exten-
sively studied in the literature, we can immediately derive a number
of corollaries about the degrees of stable models of recursive logic pro-
gram. We shall give a few of these corollaries below. We begin with
some consequences of Theorem 2.6. First there are some basic results
which guarantee that there are stable models of a rps logic program
which are not too complex. Call a set A ⊆ ω low if A′ ≡T 0′. This
means that A is called low provided that the jump of A is as small as
possible with respect to Turing degrees. The following corollary is an
immediate consequence of Theorem 4.1 and the work of Jockusch and
Soare [13].

Corollary 2.9. Let P be a rps logic program such that S(P) 6= ∅.
Then
(i) There exists a stable model S of S(P) such that P is low.
(ii) If P has only finitely many stable models, then every stable S of
S(P) is recursive.

In the other direction, there are a number of corollaries of the The-
orem 2.6 which allow us to show that there are rps programs P such
that the set of degrees realized by elements of S(P) are quite complex.
Again all these corollaries follow by transferring results of Jockusch and
Soare [13, 12].

Corollary 2.10. 1. There is a rps program P such that P has 2ℵ0

stable models but no recursive stable model.

2. There is a rps program P such that P has 2ℵ0 stable models and
any two stable models S1 6= S2 of P are Turing incomparable.

amai4.tex; 10/09/2013; 11:14; p.10

Locally Determined 11

3. If a is any Turing degree such that 0 <T a ≤T 0′, then there is a
rps program P such that P has 2ℵ0 stable models but no recursive
stable models and P has an stable model of degree a.

4. If a is any Turing degree such that 0 <T a ≤T 0′, then there is a
rps program P such that P has ℵ0 stable models, P has an stable
model S of degree a and if S′ 6= S is an stable model of P , then S′

is recursive.

5. There is a rps program P such that P has 2ℵ0 stable models and if
a is the degree of any stable model S of P and b is any recursively
enumerable degree such that a <T b, then b ≡T 0′.

6. If a is any recursively enumerable Turing degree, then there is a
rps program P such that P has 2ℵ0 stable models and the set of
recursively enumerable degrees b which contain an stable model of
P is precisely the set of all recursively enumerable degrees b ≥T a.

The situation for locally finite recursive logic programs P is very
similar to the situation for rps logic program except that the degrees
of stable models may be more complex. Essentially every result in
Corollaries 4.4 and 4.5 hold for locally finite logic programs where each
statement is taken relative to an 0′ oracle. See [18] for further details.
However, the situation for recursive logic programs is quite different.
That is, for recursive logic programs the set S(P) of stable models of P
may be extremely complex. For example, all we can say in the positive
direction is the following.

Corollary 2.11. 1. Every recursive logic program P which has a sta-
ble model has a stable model S such that S ≤T B where B is a
complete Π1

1-set.

2. If P is a recursive logic program with a unique stable model S, then
S is hyperarithmetic.

In the opposite direction we have the following results, see [18].

Corollary 2.12. 1. There a recursive logic program P such that P
has a stable model but P has no stable model which is hyperarith-
metic.

2. For each recursive ordinal α, there exists a recursive logic program
P possessing a unique stable model S such that S ≡T 0(α).

amai4.tex; 10/09/2013; 11:14; p.11

12 Cenzer et al

2.3. FC-normal logic programs

We end this section with the notion of FC-normal logic programs as
defined by Marek, Nerode, and Remmel [20].

Recall that Horn(P) is the set of Horn clauses of a logic program
P . We let THorn(P) denote the one-step provability operator associated
with Horn(P), see [2]. That is, if Q ⊆ HP , then THorn(P)(Q) equals

{p ∈ HP : (∃C = p← q1, . . . qm ∈ Horn(P)) (q1, . . . , qm ∈ Q)}.

Call a family of subsets of HP , Con, a consistency property over P
if it satisfies the following conditions:

1. ∅ ∈ Con.

2. If A ⊆ B and B ∈ Con, then A ∈ Con.

3. Con is closed under directed unions.

4. If A ∈ Con then A ∪ THorn(P)(A) ∈ Con.

Conditions (1)-(3) are Scott’s conditions for information systems.
Condition (4) connects “consistent” sets of atoms to the Horn part of
the program; if A is consistent then adding atoms provable from A
preserves “consistency”. The following fact is easy to prove.

Proposition 2.13. If Con is a consistency property with respect to P
and A ∈ Con, then THorn(P) ⇑ ω(A) ∈ Con.

Here, for a Horn program Q, TQ ⇑ ω(A) is the cumulative fixpoint
of TQ over A. Proposition 2.13 says that our condition (4) in the defi-
nition of consistency property implies that the cumulative closure of a
“consistent” set of atoms under TH(P) is still “consistent”.

Given a consistency property, we define the concept of an FC-
normal program with respect to that property. Here FC stands for
“Forward Chaining”.

Definition 2.14. (a) Let P be a program, let Con be a consistency
property with respect to P . Call P FC-normal with respect to
Con if for every clause C = p ← q1, . . . , qn,¬r1, . . . ,¬rm such that
C ∈ ground(P)−ground(Horn(P)) and every consistent fixpoint A of
THorn(P) such that q1, . . . , qn ∈ A and p, r1, . . . , rm /∈ A we have
(1) A ∪ {p} ∈ Con and
(2) A ∪ {p, ri} /∈ Con for all 1 ≤ i ≤ m.

(b) P is called FC-normal if there exists a consistency property Con
such that P is FC-normal with respect to Con.

amai4.tex; 10/09/2013; 11:14; p.12

Locally Determined 13

Example 2.15. Let the Herbrand base consist of atoms a, b, c, d, e, f .
Let the consistency property be defined by the following condition:
A /∈ Con if and only if either {c, d} ⊆ A or {e, f} ⊆ A.

Now consider the following program.

1) a←
2) b← c
3) c← b
4) c← a,¬d
5) e← c,¬f

It is not difficult to check that this program is FC-normal with respect
to the consistency property described above. Moreover, one can easily
check that P possesses a unique stable model M = {a, b, c, e}.
If we add to this program the clause f ← c,¬e, the resulting program is
still FC-normal but now there are two stable models, M1 = {a, b, c, e}
and M2 = {a, b, c, f}.

Marek, Nerode, and Remmel [20] showed that FC-normal normal
programs have many of the properties that are possessed by normal
default theories.

Theorem 2.16. If P is an FC-normal program, then P possesses a
stable model.

Theorem 2.17. If P is an FC-normal program with respect to the
consistency property Con and I ∈ Con, then P possesses a stable
model I ′ such that I ⊆ I ′.

Marek, Nerode, and Remmel proved Theorem 2.16 and 2.17 via
a generally forward chaining algorithm which can be applied to FC-
normal programs of any cardinality. Since in our case, we are dealing
with only recursive and hence countable programs, we shall give only
the countable version of their forward chaining construction. That is,
suppose we fix some well-ordering ≺ of ground(P) − ground(H(P))
of order type ω. Thus, the well-ordering ≺ determines some listing
of the clauses of ground(P) − ground(H(P)), {cn : n ∈ ω}. Their
forward chaining construction then defines an increasing sequence of
sets {T≺n }n∈ω in stages.

The countable forward chaining construction of T≺ =
⋃
n∈ω T

≺
n .

Stage 0. Let T≺0 = THorn(P) ⇑ ω(∅).

Stage n+ 1. Let `(n+ 1) be the least s ∈ ω such that
cs = ϕ← α1, . . . , αk,¬β1, . . . ,¬βm where α1, . . . , αk ∈ T≺n and

amai4.tex; 10/09/2013; 11:14; p.13

14 Cenzer et al

β1, . . . , βm, ϕ /∈ T≺n . If there is no such `(n + 1), let T≺n+1 = T≺n .
Otherwise let

T≺n+1 = THorn(P) ⇑ ω(T≺n ∪ {p`(n+1)})

where p`(n+1) is the head of c`(n+1).

Example 2.18. If we consider the final extended program of Example
2.15, it is easy to check that any ordering ≺1 in which the clause C1 =
e ← c,¬f precedes the clause C2 = f ← c,¬e will have T≺1 = M1

while any ordering ≺2 in which C2 precedes C1 will have T≺2 = M2.

This given, Marek, Nerode, and Remmel proved the following re-
sults.

Theorem 2.19. If P is a countable FC-normal program and ≺ is any
well-ordering of ground(P)− ground(H(P)) of order type ω, then :
(1) T≺ is a stable model of P where T≺ is constructed via the countable
forward chaining algorithm.
(2) (completeness of the construction). Every stable model model of
P is of the form T≺ for a suitably chosen ordering ≺ of ground(P) −
ground(H(P)) of order type ω where T≺ is constructed via the count-
able forward chaining algorithm.

Theorem 2.20. If P is an FC-normal logic program with respect to
Con, then every stable model M of P is in Con.

Theorem 2.21. Let P be an FC-normal logic program with respect to
a consistency property Con. Then if E1 and E2 are two distinct stable
models of P , then E1 ∪ E2 /∈ Con.

Given a logic program P and a stable model M , we let NG(M,P),
the set of non-Horn generating clauses of P be equal to the set of
all clauses c = ϕ ← α1, . . . , αk,¬β1, . . . ,¬βm in ground(P) such that
α1, . . . , αk ∈M and β1, . . . , βm /∈M .

FC-normal programs possess the following key “semi-monotonicity”
property.

Theorem 2.22. Let P1, P2 be two programs such that P1 ⊆ P2 but
H(P1) = H(P2). Assume, in addition, that both are FC-normal with
respect to the same consistency property. Then for every stable model
M1 of P1, there is a stable model M2 of P2 such that (1)M1 ⊆M2 and
(2) NG(M1, P1) ⊆ NG(M2, P2).

As mentioned in the introduction, a recursive FC-normal logic pro-
gram P is guaranteed to have at least one relatively well behaved stable
model which is in great contrast to Corollary 2.12.

amai4.tex; 10/09/2013; 11:14; p.14

Locally Determined 15

Theorem 2.23. Suppose that P is a recursive logic program and P is
FC-normal. Then P has a stable model S such that S is r.e. in 0′ and
hence E ≤T 0′′.

We note that Theorem 2.23 is in some sense the best possible. That
is, results from [20] show that the following holds. Given sets A,B ⊆ ω,
let A⊕B = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}.

Theorem 2.24. Let A be any r.e. set and B be any set which is r.e.
in A, i.e. B = {x : φAe (x) ↓}. Then there is a recursive FC-normal logic
program P such P has a unique stable model S and S ≡T A ⊕ B. In
particular, if B is any set which is r.e. in 0′ and B ≥T 0′, then there
is an FC-normal recursive logic program P such that P has a unique
stable model S and S ≡T B.

However if either Horn(P) or P −Horn(P) is finite, then one can
improve on Theorem 2.23. That is, the following was proved in [20].

Theorem 2.25. Let P be a FC-normal recursive logic program such
that P −Horn(P) is finite, then every stable model of S is r.e..

We say that a recursive logic program P is monotonically decid-
able if for any finite set F ⊆ H(P), THorn(P) ⇑ ω(F) is recursive and
there is a uniform effective procedure to go from a canonical index of
a finite set F to a recursive index of the THorn(P) ⇑ ω(F), i.e. if there
is a recursive function f such that for all k, φf(k) is the characteristic
function of THorn(P) ⇑ ω(Dk). It is easy to see that if Horn(P) is finite,
then the recursive program P is automatically monotonically decidable.

Theorem 2.26. Let P be a recursive logic program such that P is
FC-normal and monotonically decidable, then P has an stable model
which is r.e.

We end this section by giving complexity results for finite FC-normal
logic program where the forward chaining algorithm runs in polynomial
time.

For complexity considerations, we shall assume that the elements
of HP are coded by strings over some finite alphabet Σ. Thus every
a ∈ HP will have some length which we denote by ||a||. Next, for a
clause

r = c← a1, . . . , an,¬b1, . . . ,¬bm,
we define ||r|| = (

∑
i≤n ||ai||) + (

∑
i≤m ||bj ||) + ||c||. Finally, for a set Q

of clauses, we define

||Q|| =
∑
r∈Q
||r||.

amai4.tex; 10/09/2013; 11:14; p.15

16 Cenzer et al

Theorem 2.27. Suppose P is a finite FC-normal logic program and
≺ is some well-ordering of P −Horn(P). Then E≺ as constructed via
our forward chaining algorithm can be computed in time
O(||Horn(P)|| · ||P −Horn(P)||+ ||P −Horn(P)||2).

We note that none of the theorems above make any explicit assump-
tions that the underlying consistency property of a recursive FC-normal
logic P is in any way effective. Indeed none of the above results require
that the underlying consistency property has any effective properties.

Finally Marek, Nerode, and Remmel [20] proved the following result
about recursive FC-normal logic programs.

Theorem 2.28. Let T be a recursive tree in 2<ω such that [T] 6= ∅.
Then there is a FC-normal recursive logic program P such that there is
an effective one-to-one degree preserving correspondence between [T]
and S(P).

Reiter ([22]) proved that there is a recursive normal default theory
with no recursive extension. Theorem 2.28, which was originally proved
for nonmonotonic rule systems of which logic programs and default
theories are special cases, contains Reiter’s result as special case. In
addition, it gives much finer information even for recursive normal de-
fault theories since the set of degrees of paths through highly recursive
trees have been extensively studied. For example, our correspondence
allows us to transfer all results about the possible degrees of paths
through highly recursive trees to results about the degrees of stable
models of recursive FC-normal logic programs. That is, all the results
of Corollary 2.10 continue to hold if we replace recursive logic program
by FC-normal recursive logic program in each part of its statement.

3. Locally Determined Logic Programs

In this section, we shall introduce the key notion of a locally determined
logic program P . For the rest of this paper, we shall only consider
countable logic programs P . Thus whenever we say that P is a logic
program, we shall always assume that P is countable.

The informal notion of a locally determined logic program P is one
in which the existence of a proof scheme for an atom ai (or the lack
of existence thereof) can be determined by examining only clauses or
proof schemes involving some initial segment of the Herbrand base of
P . More formally, fix some countable logic program P and some listing
a0, a1, . . . of the atoms of Herbrand base of P without repetitions. (We
shall make the convention that if P is a recursive logic program, then

amai4.tex; 10/09/2013; 11:14; p.16

Locally Determined 17

there is some recursive function h : ω → ω such that h(i) = ai.)
Then given a proof scheme or a clause ψ, we write max(ψ) for the
max({i : ai occurs in ψ}). We shall write Pn for the set of all clauses
C ∈ P such that max(C) ≤ n and let An = {a0, . . . , an}.

Definition 3.1. We shall say that n is a level of P if for all S ⊆
{a0, . . . , an} and all i ≤ n, whenever there exists a proof scheme φ such
that cln(φ) = ai and supp(φ)∩S = ∅, then there exists a proof scheme
ψ such that cln(ψ) = ai, supp(ψ) ∩ S = ∅ and max(ψ) ≤ n. Note that
by definition, the Herbrand base HPn of Pn is contained in An. We let
lev(P) = {n : n is a level of P}.

The following result has essentially been proven in [9, 14]

Theorem 3.2. Suppose that n is a level of P and E is a stable model
of P . Then En = E ∩ {a0, . . . , an} is a stable model of Pn.

Proof. If E is a stable model of P , then for any ai ∈ En, there
is a proof scheme ψ such that cln(ψ) = ai and supp(ψ) ∩ E = ∅.
Thus, in particular, supp(ψ) ∩ En = ∅ so that since n is a level, there
exists a proof scheme ψ′ such that max(ψ′) ≤ n, cln(ψ′) = ai, and
supp(ψ′)∩En = ∅. Thus ψ′ is a proof scheme of Pn and En admits ψ′.
Vice versa, if i ≤ n and ai is not in En, then there can be no proof
scheme ψ of Pn such that cln(ψ) = ai, max(ψ) ≤ n, and supp(ψ)∩En =
∅ since this would violate the fact that E is a stable model of of P .
Thus En is a stable model of Pn.

Definition 3.3. We shall say that a logic program P is locally de-
termined if P is countable and there are infinitely many n such that
n is a level of P .

Example 3.4. Let P be the logic program with the following set of
clauses.

(1) a2i ← ¬a2i+1 for all i ∈ ω
(2) a2i+1 ← ¬a2i for all i ∈ ω

Thus the Herbrand base of P is {a0, a1, . . .}. It is easy to see that S is
stable model of P if and only if |S ∩ {a2i, a2i+1}| = 1 for all i ∈ ω. In
fact, one can easily prove that lev(P) = {2i + 1 : i ∈ ω}. Moreover, it
is clear that P is also locally finite.

amai4.tex; 10/09/2013; 11:14; p.17

18 Cenzer et al

Example 3.5. Let Q be the logic program with the following set of
clauses for all i ∈ ω.

(1) a3i ← ¬a3i+1,¬a3i−2, . . .¬a1,¬a3i+2,¬a3i−1, . . .¬a2,
(2) a3i+1 ← ¬a3i,¬a3i−3, . . .¬a0,¬a3i+2,¬a3i−1, . . .¬a2,
(3) a3i+2 ← ¬a3i,¬a3i−3, . . .¬a0,¬a3i+1,¬a3i−2, . . .¬a1,
(4) a3i ← a3i+3

(5) a3i+1 ← a3i+4

(6) a3i+2 ← a3i+5

The Herbrand base of Q is {a0, a1, . . .}. It is easy to see that P has
exactly 3 stable models, namely, S0 = {a3i : i ∈ ω}, S1 = {a3i+1 : i ∈
ω} and S2 = {a3i+2 : i ∈ ω}. In this case, Q is not locally finite since
for any i > 0, the following set of clauses can be used to construct a
minimal proof scheme of a0 with support equal to

{a3i+1, a3i−2, . . . , a1, a3i+2, a3i−1, . . . , a2}.

a3i ← ¬a3i+1,¬a3i−2, . . .¬a1,¬a3i+2,¬a3i−1, . . .¬a2

a3i−3 ← a3i

a3i−6 ← a3i−3

...

a0 ← a3.

However we claim that lev(P) = {3i+ 2 : i ∈ ω}. That is, fix n ≥ 0
and suppose that T ⊆ {ai : i ≤ 3n+ 2} and suppose that ψ is a proof
scheme with conclusion ar where supp(ψ) ∩ T = ∅ and r ≤ 3n+ 2. We
shall consider 3 cases.
Case 1 T = ∅.
In this case it is easy to see that every element of {ai : i ≤ 3n + 2}
which is the conclusion of a proof scheme of P3n+2 of length one using
one of the clauses (1), (2), and (3).
Case 2. There exist a3i+s and a3j+t in T where s 6= t and s, t ∈ {0, 1, 2}.
In this case it is easy to see that all clauses of the form (1), (2) or (3)
where the head of the clause is some ak with k > 3n+2 cannot be part
of a proof scheme ψ such that supp(ψ)∩T = ∅. Thus the only clauses of
the form (1), (2), or (3) that can be part of ψ are clauses from P3n+2.
However, in that case, the only clauses of the form (4), (5), and (6)
that can be part of ψ must also be in P3n+2 because there is no way
that we can derive an element ak with k ≥ 3n+2 that is in the body of

amai4.tex; 10/09/2013; 11:14; p.18

Locally Determined 19

a clause of the form (4), (5), and (6) if we can only use clauses in ψ of
type (1), (2), and (3) in ψ from P3n+2. Here we are using the fact that
ψ is a minimal proof scheme. It follows that ψ must be a proof scheme
for P3n+2.
Case 3. Conditions of Case 1 or Case 2 do not hold.
In this case, T must be contained in one of the stable models S0, S1, or
S2. We shall assume that T ⊆ S0 since the other two cases are similar.
Since T ∩S0 6= ∅, there can be no clause of type (2) and (3) in ψ which
in not in P3n+2. Now suppose that a clause of type (3) occurs in ψ with
head a3j where j > n. Then this clause combined with clauses of type
(4) in ψ can be used to derive elements of the form a3i with i ≤ n. But
for all i ≤ n, we can clearly immediately derive a3i form the clause

a3i ← ¬a3i+1,¬a3i−2, . . . ,¬a1,¬a3i+2,¬a3i−1, . . .¬a2 (3)

which lies in P3n+2 and whose constraints do not intersect T . It follows
that we can construct an minimal proof scheme ψ′ in P3n+2 with the
same conclusion as ψ such that supp(ψ′) ∩ T = ∅.

It follows that 3n + 2 is level of P for all n. Moreover it is clear from
the clauses of type (1) and (2) that 3n and 3n + 1 are not levels of P
so that lev(P) = {3n+ 2 : n ∈ ω} as claimed.

Example 3.6. In this example, we give a program which is very sim-
ilar to example 3.5, but is not locally determined. Let R be the logic
program with the following set of clauses.

(1) a3i ← ¬a3i+1,¬a3i+2 for all i ∈ ω
(2) a3i+1 ← ¬a3i,¬a3i+2 for all i ∈ ω
(3) a3i+2 ← ¬a3i,¬a3i+1 for all i ∈ ω
(4) a3i ← a3i+3 for all i ∈ ω
(5) a3i+1 ← a3i+4 for all i ∈ ω
(6) a3i+2 ← a3i+5 for all i ∈ ω

Just as in example 3.5, the Herbrand base of R is {a0, a1, . . .} and it
easy see that P has exactly 3 stable models, namely, S0 = {a3i : i ∈ ω},
S1 = {a3i+1 : i ∈ ω} and S2 = {a3i+2 : i ∈ ω}. In this case, R has no
levels. Again it is easy to see that the clauses of the form (1) and (2)
ensure that 3n and 3n + 1 are not levels of P . However in this case,
3n + 2 is also not a level of P . That is consider T = {a3n, a3n+1}. It
is easy to see that there is no minimal proof scheme ψ of P3n+2 such
that supp(ψ) ∩ T = ∅ and the conclusion of ψ is a3n+2. However the
following is a minimal proof ψ′ of P with conclusion a3n+2 such that

amai4.tex; 10/09/2013; 11:14; p.19

20 Cenzer et al

supp(ψ′) ∩ T = ∅.

〈 a3n+5, a3n+5 ← ¬a3n+3,¬a3n+4, {a3n+3, a3n+4}〉
〈 a3n+2, a3n+2 ← a3n+5〉, {a3n+3, a3n+4}〉〉.

Example 3.7. Suppose that we are given a set L = {l0 < l1 < . . .}.
Then we can construct a program P such that HP = {a0, a1, . . .} and
lev(P) = L as follows. Let l−1 = −1. Then for each n ≥ 0, we add the
clause

aln ←

to P if ln − ln−1 = 1. Otherwise we add the following clauses to P

aln−1+k ← ¬aln−1+1, . . . ,¬aln−1+k−1,¬aln−1+k+1, . . . ,¬aln−1+(ln−ln−1)

for all k = 1, . . . , ln − ln−1.

Definition 3.8. Suppose that P is a recursive logic program. Then we
say that P is effectively locally determined if P is locally deter-
mined and there is a recursive function f such that for all i, f(i) ≥ i
and f(i) is a level of P .

In [18, 17], Marek, Nerode, and Remmel showed that the problem
of finding a stable model of a locally finite recursive logic program
can be reduced to finding an infinite path through a finitely branching
recursive tree and the problem of finding a stable model of a rps logic
program can be reduced to finding an infinite path through a highly
recursive tree. A locally determined logic program is not always locally
finite since it is possible that a given atom has infinitely many proof
schemes which involves arbitrarily large atoms as in Example 3.5 above.
Vice versa, it is possible to give examples of locally finite logic programs
which is not locally determined. Nevertheless, we shall see that we
get similar results to those of Marek, Nerode, and Remmel for locally
determined and effectively locally determined recursive logic programs.

Theorem 3.9. Let P be a recursive logic program.

1. If P is locally determined, then there is a recursive finitely branch-
ing tree T and a one-to-one degree preserving correspondence be-
tween the set of stable models S(P) of P and [T] and

2. If P is effectively locally determined, then there is a highly recur-
sive finitely branching tree T and a one-to-one degree preserving
correspondence between the set set of stable models S(P) of P and
[T].

amai4.tex; 10/09/2013; 11:14; p.20

Locally Determined 21

Proof. There is no loss in generality in assuming that Hp = ω and
that a0 = 0, a1 = 1, Next observe that for each n, Pn has only
finitely many minimal proof schemes so that we can effectively list all
minimal proof schemes ψ0 < ψ1 < . . . in such a way that

1. if max(ψk) = i and max(ψl) = j and i < j, then k < l. (This says
that if i < j, then the proof schemes whose max is i come before
those proof schemes whose max is j.)

2. if max(ψk) = max(ψl) = i, k < l if and only if c(ψk) < c(ψl)
where c(ψ) denotes the index assigned to a proof scheme ψ under
our effective Gödel numbering of the proof schemes.

We shall encode a stable model M of P by a path πM = (π0, π1, . . .)
through the complete ω-branching tree ω<ω as follows. First, for all
i ≥ 0, π2i = χM (i). That is, at the stage 2i we encode the information
if i belongs to M . Next, if π2i = 0 then π2i+1 = 0. But if π2i = 1 so that
i ∈M , then π2i+1 = qM (i) where qM (i) is the least q such cln(ψq) = i
and supp(ψq) ∩M = ∅. Thus ψqM (i) is the least minimal proof scheme
which shows that i ∈ FP,M .

Clearly M ≤T πM since it is enough to look at the values of πM at
the even levels to read off M . Now given an M -oracle, it should be clear
that for each i ∈ M , we can use an M -oracle to find qM (i) effectively.
This means that πM ≤T M . Thus the correspondence M 7→ πM is an
effective degree-preserving correspondence. It is trivially one-to-one.

Next we construct a recursive tree T ⊆ ωω such that

[T] = {πE : E is a stable model of P}. (4)

Let Lk = max({i : max(ψi) ≤ k}). It is easy to see that since P is a
recursive logic program, we can effectively calculate Lk from k. We have
to say which finite sequences belong to our tree T . To this end, given a
sequence σ = (σ(0), . . . , σ(k)) ∈ ω<ω set Iσ = {i : 2i ≤ k ∧ σ(2i) = 1}
and Oσ = {i : 2i ≤ k ∧ σ(2i) = 0}. Now we define T by putting σ into
T if and only if the following four conditions are met:
(a) ∀i(2i+ 1 ≤ k ∧ σ(2i) = 0⇒ σ(2i+ 1) = 0).
(b) ∀i(2i + 1 ≤ k ∧ σ(2i) = 1 ⇒ σ(2i + 1) = q where ψq is a minimal
proof scheme such that cln(ψq) = i and supp(ψq) ∩ Iσ = ∅).
(c) ∀i(2i + 1 ≤ k ∧ σ(2i) = 1 ⇒ there is no c ∈ Lbk/2c such that
cln(ψc) = i, supp(ψc) ⊆ Oσ and c < σ(2i+ 1)).
(here b·c is the so-called number-theoretic “floor” function).
(d) ∀i(2i ≤ k∧σ(2i) = 0⇒ there is no c ∈ Lbk/2c such that cln(ψc) = i
and supp(ψc) ⊆ Oσ).

It is immediate that if σ ∈ T and τ v σ, then τ ∈ T . Moreover it is
clear from the definition that T is a recursive subset of ω<ω. Thus T is

amai4.tex; 10/09/2013; 11:14; p.21

22 Cenzer et al

a recursive tree. Also, it is easy to see that our definitions ensure that,
for any stable E of P , the sequence πE is a branch through T , that is,
πE ∈ [T].

We shall show now that every infinite branch through T is of the
form πE for a suitably chosen stable model E. To this end assume that
β = (β(0), β(1), . . .) is an infinite branch through T . There is only one
candidate for E, namely Eβ = {i : β(2i) = 1}. Two items have to be
checked, namely, (I) Eβ is a stable model of P and (II) π(Eβ) = β.

To prove (I), first observe that if i ∈ Eβ, then σ(2i) = 1 and σ(2i+
1) = q where ψq is a proof scheme such that cln(ψq) = i. Moreover
condition (b) and the fact that σn = (β0, β1, . . . , βn) ∈ T for all n ≥
2i + 1 easily imply that supp(ψq) ∩ Iσn = ∅ for all such n and hence
supp(ψq)∩Eβ = ∅. In addition, condition (c) ensures that ψq is the least
proof scheme with this property. Similarly if i /∈ Eβ, then condition (d)
and the fact that σn = (β0, β1, . . . , βn) ∈ T for all n ≥ 2i + 1 easily
imply that there can be no proof scheme ψq with cln(ψq) = i and
supp(ψq)∩Eβ = ∅. It then easily follows from Proposition 2.2 that Eβ
is a stable model of P and that π(Eβ) = β

The key fact that we need to establish the branching properties of T
is that for any sequence σ ∈ T and any i, either σ(2i) = σ(2i+ 1) = 0
or σ(2i) = 1 and σ(2i+1) codes a minimal proof scheme for i. To prove
this fact simply observe that when a proof scheme ψ = σ(2i+ 1) does
not correspond to a path πE , then there will be some k such that σ has
no extension in T of length k. This will happen once we either find a
smaller code for a proof scheme or we find some u > i in the support
of ψ such that all possible extensions τ of σ have τ(2u) = 1.

We claim that T is always finitely branching and that if P is effec-
tively locally determined, then T is highly recursive. Clearly the only
case of interest is when 2i+1 ≤ k and σ(2i) = 1. In this case we will let
σ(2i+ 1) = c where cln(ψc) = i and supp(ψc) ∩ Iσ = ∅ and there is no
a < c such that cln(ψa) = i and supp(ψa)∩Iσ = ∅. Now suppose that p
is a level and i < p. Then by definition, there must be a minimal proof
scheme ψ such that max(ψ) ≤ p, cln(ψ) = i, and supp(ψ) ∩ Iσ = ∅.
Thus ψ = ψq for some q ≤ Lp. It follows that c ≤ Lp where p is the least
level greater than or equal to i. Thus T is always finitely branching.
Now if P is effectively locally determined, which is witnessed by the
recursive function f , then it will always be the case that c ≤ Lf(i) so
that T will be highly recursive.

Corollary 3.10. Suppose that P is a countable locally determined
logic program such that there are infinitely many n such that Pn has a
stable model En. Then P has a stable model.

amai4.tex; 10/09/2013; 11:14; p.22

Locally Determined 23

Proof. Consider the tree T constructed for P as in Theorem 3.9.
Here we again can construct our sequence of minimal proof schemes
ψ0, ψ1, . . . recursive in P just as we did in Theorem 3.9. However, we can
only conclude that T is recursive in P . Nevertheless, we are guaranteed
that T is finitely branching, which is all we need for our argument.

Now fix some level n and consider some m ≥ n such that Pm has
a stable model Em. Then by the exact same argument as in Theorem
3.2, En = Em ∩ {0, . . . , n} will be a stable model of Pn. Now consider
the node σEn = (σ(0), . . . , σ(2n+ 1)) such that

1. σ(2i) = 0 if i /∈ En,

2. σ(2i) = 1 if i ∈ En,

3. σ(2i+ 1) = 0 if σ(2i) = 0, and

4. σ(2i + 1) = c where c is least number such that max(ψc) ≤ n,
cln(φc) = i, and supp(ψc) ∩En = ∅. (Note that it follows from our
ordering of minimal proof schemes that ψc is the least proof scheme
ψ such that cln(ψ) = i and supp(ψ) ∩ En = ∅.)

It is easy to check that our construction of T ensures that σ ∈ T . It
follows that T is infinite finitely branching tree and hence T has infinite
path π by König’s Lemma. Our proof of Theorem 3.9 shows that Eπ is
a stable model of P .

One can immediately apply a number of known results from the
theory of recursively bounded Π0

1 classes to derive corresponding re-
sults about the set of stable models of an effectively locally determined
recursive logic program.

Corollary 3.11. Suppose that P is an effectively locally determined
recursive logic program which has at least one stable model. Then

1. P has a stable model whose Turing jump is recursive in 0′.

2. If P has no recursive stable model, then P has 2ℵ0 stable models.

3. If P has only finitely many stable models, then each of these stable
models is recursive.

4. There is a stable model E of P in an r.e. degree.

5. There exist stable models E1 and E2 of P such that any function,
recursive in both E1 and E2, is recursive.

6. If P has no recursive stable model, then there is a nonzero r.e.
degree a such that P has no stable model recursive in a.

amai4.tex; 10/09/2013; 11:14; p.23

24 Cenzer et al

A similar corollary holds for locally determined recursive logic pro-
grams where the statements in Corollary 3.11 are replaced by versions
which are relativized to a 0′ oracle.

Our next result will be the converse to Theorem 3.9.

Theorem 3.12. Let T be a highly recursive tree contained in ω<ω.
There exists an effectively locally determined recursive logic program
PT such that there is an effective one-to-one degree preserving corre-
spondence between [T] and S(PT).

Proof. Intuitively, the Herbrand base of our program will simply be
the set of nodes of T plus an infinite set of distinguished elements.
However, we have to supply a coding of strings in T to formally make
our program into a recursive program. Thus we will let the code of
any string σ, c(σ), be defined by letting c(σ) = 2n if σ is the n-th
string in the effective listing of the nodes of T where we order the
strings of T first by length and then by lexicographic order. Since T
is highly recursive, it follows that we can effectively find c(σ). We will
always let our set of distinguished elements be the set of odd numbers
{2n + 1 : n ∈ ω}. Thus formally, the Herbrand base of P will be
HPT = {c(σ) : σ ∈ T} ∪ {2n + 1 : n ∈ ω}. Thus if T is infinite, then
HPT = ω and if T is finite, then HPT will consist of all odd numbers
plus some initial segment of the even numbers.

This given, for any k ≥ 0, let 2nk be the largest code of a string of
T of length k. It is easy to see that our coding ensures the set of codes
of strings of length k are precisely 2(nk−1 + 1), . . . , 2nk for all k ≥ 0.
Moreover 0 is the code of the empty string so that n0 = 0.

The idea is to have the stable models of PT to be the set of all
Sπ = {c(σ) : σ ∈ π} where π is an infinite path through T . Then clearly,
there will be an effective one-to-one degree preserving correspondence
between [T] and S(PT). Our desired program PT consists of four sets
of clauses.

(1) c(∅) ← (This clause ensures that c(∅) = 0 is in all stable
models.)

(2) For all σ in T which has at least one immediate successor in T ,
let σ_bσ0 , . . . , σ

_bσmσ be set of all immediate successors of σ in T where
bσ0 < . . . < bσmσ . Then for each such σ, we will have the following set of
clauses:

c(σ_bσj)← c(σ),¬c(σ_bσ0), . . . ,¬c(σ_bσj−1),¬c(σ_bσj+1), . . . ,¬c(σ_bσmσ
)

amai4.tex; 10/09/2013; 11:14; p.24

Locally Determined 25

for j = 0, . . .mσ.
(This set of clauses is designed to ensure that if c(σ) is in a stable model
M , then one of c(σ_bσj) is in M .)

(3) For all σ ∈ T such that σ is a terminal node of T , we add the
clause

2c(σ)− 1← c(σ),¬(2c(σ)− 1).

(This clause will ensure that c(σ) cannot be in any stable model of PT .
Recall that we identify the atoms with natural numbers, so there is an
atom 2c(σ)− 1.)

(4) For all k > 0 such that T has node of length k − 1 but no node of
length k, then we have the following clause.

2nk + 1← ¬2nk + 1.

(This clause is designed to ensure that PT has no stable model if T is
finite.)

First observe that since T is a highly recursive tree, then PT is a
recursive program. Moreover the only clauses that have a conclusion
corresponding to a node of length k > 0 in T are clauses the form (2),
which only involve codes of nodes of length k and k−1. It easily follows
that 2nk is a level of PT for all k ≥ 0. Thus if T is infinite, then PT
is effectively locally determined. If T is finite, then PT is finite so it
automatically is effectively locally determined.

Next we consider the possible stable models of PT . If T is finite,
then there is a clause of the form

C = 2n+ 1← ¬2n+ 1 (5)

in PT . Moreover this is the only clause involving 2n+1. This means that
PT can have no stable model. That is, if M is a stable model of PT , then
we cannot have 2n+ 1 in M , since the only clause C which has 2n+ 1
as a conclusion cannot be used in a P,M -derivation. Thus we must
assume that 2n + 1 /∈ M . But in that case, clause C is M -applicable,
so that M would not be closed under all M -applicable clauses. Hence
M is not a stable model.

Thus we are reduced to the case where T is infinite. In that case, T
has nodes of length k for all k ≥ 0 since T is finitely branching. This
means that there are no clauses of type (4) in PT . Now suppose that
M is a stable model of PT . We claim the clauses of type (2) and (3)
ensure that there is exactly one node σk of length k such that the code
of σk is in M . Clearly, there is only one clause C, namely the clause

amai4.tex; 10/09/2013; 11:14; p.25

26 Cenzer et al

of type (1), that has c(∅) as its conclusion and since C has no body,
c(∅) must be in M . Next suppose by induction that there is exactly
one node σ of length k such that c(σ) is in M . Then σ cannot be a
terminal node due to the clause Cσ of type (3) with c(σ) in its body.
That is, Cσ is the only clause of with 2c(σ)− 1 as its conclusion. Then
if 2c(σ)−1 ∈M , then Cσ is not M applicable so that there is no P,M -
derivation of 2c(σ)− 1. If 2c(σ)− 1 /∈M , then Cσ is M -applicable and
hence M is not closed under all M -applicable clauses which violates
our assumption that M is a stable model. Thus it must be the case
that σ has at least one successor.

Next it cannot be that none of codes of the successors of σ are in
M since otherwise all the clauses of type (2) with c(σ) in the body
are M -applicable which would imply that M is not closed under all
M -applicable clauses. On the other hand, if two or more of the codes
of the successors of σ are in M , then all the clauses of type (2) with
c(σ) in the body are not M -applicable. Since these are the only clauses
which have a code of successor of σ as its conclusion, there can be
no P,M -derivation of a code of a successor of σ. Hence none of the
codes of the successors of σ are in M which we have already shown
is impossible. Thus M must contain the code of exactly one of the
successors of σ. Moreover since σ is the unique node of length k such
that c(σ) ∈M , then any clause which has the code of a node in length
k+ 1 as its conclusion, is M -applicable only if c(σ) is in its body. Thus
there is exactly one node τ of length k+1 such that c(τ) ∈M and that
node must be a successor of σ. Thus if M is stable model of PT , then
M = {c(σ) : σ ∈ π} for some π ∈ [T]. On the other hand, it is easy
to see that if π ∈ [T], then M = {c(σ) : σ ∈ π} is stable model of PT .
Thus there is an effective one-to-one degree preserving correspondence
between the infinite paths through T and S(PT).

We note that just as in the case for rps programs, Theorem 3.12
allows us to transfer all the results of about the degrees of elements
of recursively bounded Π0

1-classes to result about the degrees of the
set of stable models of an effectively locally determined program. For
example, we have the following.

Corollary 3.13. 1. There is an effectively locally determined recur-
sive program P such that P has 2ℵ0 stable models but no recursive
stable model.

2. There is an effectively locally determined recursive program P such
that P has 2ℵ0 stable models and any two stable models S1 6= S2
of P are Turing incomparable.

amai4.tex; 10/09/2013; 11:14; p.26

Locally Determined 27

3. If a is any Turing degree such that 0 <T a ≤T 0′, then there is
an effectively locally determined recursive program P such that P
has 2ℵ0 stable models but no recursive stable models and P has a
stable model of degree a.

4. If a is any Turing degree such that 0 <T a ≤T 0′, then there is an
effectively locally determined recursive program P such that P has
ℵ0 stable models, P has a stable model S of degree a and if S′ 6= S
is a stable model of P , then S′ is recursive.

5. There is an effectively locally determined recursive program P such
that P has 2ℵ0 stable models and if a is the degree of any stable
model S of P and b is any recursively enumerable degree such that
a <T b, then b ≡T 0′.

6. If a is any recursively enumerable Turing degree, then there is an
effectively locally determined recursive program P such that P has
2ℵ0 stable models and the set of recursively enumerable degrees
b which contain a stable model of P is precisely the set of all
recursively enumerable degrees b ≥T a.

4. Ensuring the existence of recursive stable models

In this section, we give two conditions which ensure the existence of
recursive stable models.

Definition 4.1. 1. Let P be a locally determined logic program and
let lev(P) = {l0 < l1 < . . .}. Then we say say that P has the
level extension property if for all k, whenever Ek is a stable
model of Plk , there exists a stable model of Ek+1 of Plk+1

such that
Ek+1 ∩ {a0, . . . , alk} = Ek.

2. A level n of P is a strong level of P if for any levels m < n of P
and any stable model Em of Pm, if there is no stable model E of P
with E ∩ {a0, . . . , am} = Em, then there is no stable model En of
Pn with En ∩ {a0, . . . , am} = Em.

3. P has effectively strong levels if P has infinitely many strong
levels and there is a computable function f such that for each i,
i ≤ f(i) and f(i) is a strong level.

Consider the effectively locally determined recursive program PT of
theorem 3.12 where T is an infinite highly recursive tree T contained
in ω<ω. By essentially the same argument that was use in the proof of

amai4.tex; 10/09/2013; 11:14; p.27

28 Cenzer et al

Theorem 3.12, one can show that if k > 0 and σ is a non-terminal node
of length k in T , then {c(τ) : τ ≺ σ} is a stable model of (PT)2nk where
recall that 2nk is largest code of a node of length k in T . Now if all the
nodes of length k in T are extendible to an infinite path through T ,
then 2nk will be a strong level of PT . If not, 2nk is a level of PT but
not a strong level. Thus if T has the property that there are infinitely
many k such that every non-terminal node of length k is extendible to
an infinite path through T , then PT will have effectively strong levels.
However, if for every k > 0, there is a non-terminal node of length k
which is not extendible to an infinite path through T , then PT will
not have strong levels. Since it easy to construct highly recursive trees
with this property, there are many examples of programs which are
effectively locally determined but do not have strong levels. It is also
the case that if T has a non-terminal node of length k > 0 which is
not extendible to an infinite path through T , then PT will not have the
level extension property.

In general, it is not easy to ensure that a locally determined logic
program P has the level extension property. However, there are many
natural examples where this condition is satisfied. One way to gener-
ate such programs is to consider the following result from recursive
combinatorics. Bean [5] showed that there exists highly recursive con-
nected graphs which are 3-colorable but not recursively k-colorable for
any k. However, Bean also showed that every infinite connected k-
colorable highly recursive graph G is recursively 2k-colorable. Here a
graph G = (V,E) is highly recursive if the vertex set V is a recursive
subset of ω, the set of codes of the edges {x, y} ∈ E is recursive, G is
locally finite, i.e. the degree of any vertex v ∈ V is finite, and there
is an effective procedure which given any vertex v ∈ V produces a
code of N(x) = {y ∈ V : {x, y} ∈ E}. The recursive 2k-coloring of
G can be produced as follows. Given any set W ⊆ V , let N(W) =
{y ∈ V −W : (∃x ∈ W)({x, y} ∈ E)}. Then given any x ∈ V , define
an effective increasing sequence of finite sets: ∅ = A0, A1, A2, . . . where
A0 = N(x) ∪ {x} and for all k > 0, Ak = Ak−1 ∪ N(Ak−1). It is easy
to see that there can be no edge from an element of Ak to an element
of Ak+2 −Ak+1. Since G is k-colorable, the induced graph determined
by Ai − Ai−1 is k-colorable for all i ≥ 1. We then defined a recursive
2k-coloring of G as follows.
(Step 1) Find a coloring of A0 using colors {1, . . . k},
(Step 2) Find a coloring A1 −A0 using colors {k + 1, . . . , 2k},
(Step 3) Find a coloring of A2 −A1 using colors {1, . . . k},
(Step 4) Find a coloring A3 −A2 using colors {k + 1, . . . , 2k}, etc.
One can easily write a logic program to implement this procedure and

amai4.tex; 10/09/2013; 11:14; p.28

Locally Determined 29

it will naturally be effectively locally finite and have the level extension
property. This is the subject of our next example.

Example 4.2. Let G = 〈ω,E〉 be a highly recursive k-colorable graph.
Suppose that we have renumbered the nodes of our graph G above so
that our initial node x in the above algorithm is 0 and the elements
of A0−{0} are labeled with 1, 2, . . . , |A0|. More generally, assume that
under our renumbering, the elements of An − An−1 are labeled with
|An−1| + 1, . . . , |An| for all n > 0. Our idea is to construct an effec-
tively locally determined program PG such that stable models of PG
correspond to 2k-colorings of G that can be produced by the algorithm
described above. The Herbrand base of PG will consist of {2[n, j] : 1 ≤
j ≤ 2k}∪{2n+1 : n ∈ ω} where [,] : ω×{1, . . . , 2k} → ω is a recursive
pairing function given by [n, j] = 2kn+ j. Our idea is to interpret the
fact that 2[n, j] is in a stable model M as the fact that node n is colored
with color j in the coloring corresponding to M . Now a coloring that
can arise from our algorithm to color G with 2k colors would yield a
coloring ψ such that ψ : ω → {1, . . . , 2k} where ψ(n) ∈ {1, . . . , k} if
n ∈ A2i−A2i−1 for some i and ψ(n) ∈ {k+1, . . . , 2k} if n ∈ A2i+1−A2i

for some i. Here we set A−1 = ∅ by definition. We can construct an
effectively local determined logic program PG whose stable models are
exactly the set Mψ = {2[n, j] : ψ(n) = j} for such a coloring ψ as
follows. PG consists of 4 sets of clauses.

(1) For any n such that there is an i, n ∈ A2i −A2i−1, and j = 1, . . . k,
we add the following clause.

2[n, j]← ¬2[n, 1], . . . ,¬2[n, j − 1],¬2[n, j + 1], . . . ,¬2[n, k].

(These clauses are designed to ensure that for any stable model M of
PG and for any n ∈ A2i − A2i−1, there is precisely one j ∈ {1, . . . , k}
such that 2[n, j] is in M .)

(2) For all m < n such that {m,n} ∈ E and there is an i such that
m,n ∈ A2i −A2i−1, we add the following clauses for j = 1, . . . , k.

2[m, j]− 1← 2[m, j], 2[n, j],¬2[m, j]− 1.

(This clause will ensure that we cannot have both 2[m, j] and 2[n, j] in
a stable model M of PG so that any stable model of PG will correspond
to a proper coloring.)

(3) For any n such that there is an i, n ∈ A2i+1 −A2i, and j = 1, . . . k,
we add the following clause.

2[n, k+j]← ¬2[n, k+1], . . . ,¬2[n, k+j−1],¬2[n, k+j+1], . . . ,¬2[n, 2k].

amai4.tex; 10/09/2013; 11:14; p.29

30 Cenzer et al

(These clauses are designed to ensure that for any stable model M of
PG and for any n ∈ A2i+1 − A2i, there is precisely one j ∈ {1, . . . , k}
such that 2[n, k + j] is in M .)

(4) For all m < n such that {m,n} ∈ E and there is an i such that
m,n ∈ A2i+1 −A2i, we add the following clauses for j = 1, . . . , k.

2[m, k + j]− 1← 2[m, k + j], 2[n, k + j],¬2[m, k + j]− 1.

(This clause will ensure that we cannot have both 2[m, k + j] and
2[n, k + j] in a stable model M of PG so that any stable model of
PG will correspond to a proper coloring.)

By using the same type of arguments that we used in Theorem 3.12,
one can show that PG is a recursive program whose stable models are
precisely the set of Mψ = {2[n, j] : ψ(n) = j where ψ is a proper 2k-
coloring of G such that for all n, ψ(n) ∈ {1, . . . , k} if n ∈ A2i − A2i−1
for some i and ψ(n) ∈ {k + 1, . . . , 2k} if n ∈ A2i+1 −A2i for some i.

What are the possible levels of PG. First it is easy see that the only
possible levels of PG are of the form 2[m, k] if for some m ∈ A2i−A2i−1
by the clauses in (1) and (2) and 2[m, 2k] if for some m ∈ A2i+1−A2i1

by the clauses in (3) and (4). Moreover by the clauses in (2), 2[m, k]
is not a level if m ∈ A2i − A2i−1 and there is a p ≤ m such that
p ∈ A2i − A2i−1 and there is some n > m such that n ∈ A2i − A2i−1
and {p, n} ∈ E. However if there is no such p, n ∈ A2i − A2i−1, then
2[m, k] will be a level. In that case, it is not difficult to show that the
stable models of (PG)2[m,k] will correspond to the restriction of a stable
model Mψ for some coloring ψ as described above to {0, . . . , 2[m, k]}
and hence correspond to a proper coloring on the nodes 0, . . . ,m of
G which can be extended to a proper coloring of G. Similarly by the
clauses in (4), 2[m, 2k] is not a level if m ∈ A2i+1−A2i and there there
is a p ≤ m such that p ∈ A2i+1−A2i and there is some n > m such that
n ∈ A2i+1−A2i and {p, n} ∈ E. Again if there is no such level, 2[m, 2k]
will be a level of PG and in that case, one can show that the stable
models of (PG)2[m,2k] will correspond to the restriction of a stable model
Mψ for some coloring ψ described above to {0, . . . , 2[m, 2k]} and hence
correspond to a proper coloring on the nodes 0, . . . ,m of G which can
be extended to a proper coloring of G. Thus PG has the level extension
property.

Finally it follows that 2[|A2n|, k] and 2[|A2n+1|, 2k] will be levels of
PG for all n so that PG is effectively locally determined.

It also turns out that all locally determined FC-normal logic pro-
grams have the level extension property. That is, we can prove the
following.

amai4.tex; 10/09/2013; 11:14; p.30

Locally Determined 31

Theorem 4.3. Suppose that P is a locally determined FC-normal logic
program. Then P has the level extension property.

Proof. Let a0, a1, . . . be a listing of HP such that P is locally deter-
mined with respect to this listing. For each n ∈ ω, letAn = {a0, . . . , an}.
Let n be a level of P and En be a stable model of Pn. Let c0, . . . , ck be
the set of En-applicable clauses of the Pn−Horn(PN). Next, extend this
listing to a listing of all the clauses of P−Horn(P), c0, . . . , ck, ck+1,
We can use this listing to define an ordering ≺ of order type ω on
P −Horn(P) by declaring that ci ≺ cj if and only if i < j. Now recall
the countable forward chaining construction for P relative to ≺.

The countable forward chaining construction of T≺ =
⋃
n∈ω T

≺
n .

Stage 0. Let T≺0 = THorn(P) ⇑ ω(∅).
Stage n+ 1. Let `(n+ 1) be the least s ∈ ω such that
cs = ϕ← α1, . . . , αk,¬β1, . . . ,¬βm where α1, . . . , αk ∈ T≺n and
β1, . . . , βm, ϕ /∈ T≺n . If there is no such `(n + 1), let T≺n+1 = T≺n .
Otherwise let

T≺n+1 = THorn(P) ⇑ ω(T≺n ∪ {p`(n+1)}) (6)

where p`(n+1) is the head of c`(n+1).

We claim that T≺ is a stable model of P such that T≺ ∩ An = En.
Thus for any level q of P with q > n, T≺ ∩Aq = Eq is stable model of
Pq which extends En so that P has the level extension property.

Note that by Theorem 3.2, it is enough to show that T≺ ∩An ⊆ En
since we know that Dn = T≺∩An is a stable model of Pn. But for stable
models of Pn, Dn ⊆ En if and only if Dn = En by Proposition 2.1. Thus
we need only show by induction on s, that for all s, T≺s ∩An ⊆ En.

First consider T≺0 ∩ An. Since T≺0 = THorn(P) ⇑ ω(∅), if there is

an element x ∈ An such that x ∈ T≺0 ∩ An, then there is a proof
scheme ψ with conclusion x made up of entirely of Horn clauses. Thus
supp(ψ) ∩ An = ∅. But then since n is a level, there is a proof scheme
ψ′ of Pn such that supp(ψ′) ∩An = ∅. But this means that ψ′ is made
up entirely of Horn clauses of Pn so that ψ′ would witness that x is in
every stable model of Pn. Thus x ∈ En and T≺0 ∩An ⊆ En.

Now suppose that T≺s ∩An ⊆ En and there is an element x ∈ An such
that x ∈ T≺s+1−T≺s . We claim that it cannot be that T≺s ∩An = En, since
otherwise, x /∈ En and hence T≺∩An = Dn is a stable model of P which
contains En ∪ {x}. But then En and Dn would be stable models of Pn
such that En ⊂ Dn which is impossible by Proposition 2.1. Thus it must

amai4.tex; 10/09/2013; 11:14; p.31

32 Cenzer et al

be the case that T≺s ∩ An ⊂ En, However it is easy to see that En =
THorn(Pn) ⇑ ω({h(c0), . . . , h(ck)}) ⊆ THorn(P) ⇑ ω({h(c0), . . . , h(ck)})
where h(ci) is the head of clause ci for i = 1, . . . , k. Hence there must
be some i ≤ k such that h(ci) /∈ T≺s . But the ci has the property
that h(ci) /∈ T≺s and cons(ci) ∩ T≺s = ∅. It follows that `s+1 ≤ i so
that T≺s+1 = THorn(P) ⇑ ω(T≺s ∪ {h(c`s+1)}) where h(c`s+1) ∈ En since
c`s+1 is one of the En applicable rules for Pn by construction. Thus
there is a (Pn, En)-derivation of each element of T≺s ∪ {h(c`s+1)}. It
then easily follows that for each element of element y in THorn(P) ⇑
ω(T≺s ∪{h(c`s+1)}), there is a proof scheme ψ with conclusion y made up
of entirely of clauses from c0, . . . , ck plus Horn clauses. Thus supp(ψ)∩
(An − En) = ∅. But then since n is a level, there must exist a proof
scheme ψ′ of Pn such that supp(ψ′)∩ (An−En) = ∅. Thus ψ′ is a proof
scheme of Pn with conclusion y such that supp(ψ′)∩(An−En) = ∅ and
hence y ∈ En. It follows by that T≺s+1 ∩An ⊆ En as desired. Hence, by
induction, we must have T≺s ∩An ⊆ En for all s so that T≺ ∩An ⊆ En
as claimed.

Theorem 4.4. 1. Suppose that P is an effectively locally determined
recursive logic program with the level extension property. Then for
every level n and stable model En of Pn, there is a recursive stable
model of E of P such that E ∩ {a0, . . . , an} = En.

2. Suppose that P is a recursive logic program with effectively strong
levels. Then for every level n and stable model En of Pn, if there is
a stable model E of P with E ∩ {a0, . . . , an} = En, then there is a
recursive stable model of E of P such that E ∩ {a0, . . . , an} = En.

Proof. For (1), fix a level n of P and a stable model En of Pn.
Suppose that f is the function which witnesses the fact that P is
effectively locally determined. Then let b0, b1, b2, . . . be the sequence
n, f(n), f(f(n)), It is easy to see that our level extension property
implies that we can effectively construct a sequence of sets

Eb0 , Eb1 , Eb2 , . . .

such that (i) Eb0 = En, (ii) for all j > 0, Ebj is a stable model of Pbj ,
and (iii) for all j ≥ 0, Ebj+1

∩ {a0, . . . , abj} = Ebj . Now consider tree
T and the nodes σEbj as constructed in Corollary 3.10. It is easy to

check that for all i, σEbi ∈ T and that σEb0 v σEb1 v σEb2 v It

follows that there is a unique path β in [T] which extends all σEbi and

that Eβ =
⋃
i≥0 σEbi is a stable model of P . Moreover Eβ is recursive

because to decide if aj ∈ Eβ, one need only find k such that bk ≥ j, in
which case, aj ∈ Eβ if and only if aj ∈ σEbk .

amai4.tex; 10/09/2013; 11:14; p.32

Locally Determined 33

For (2), assume that f is the recursive function which witnesses
the fact that P has strong levels and let b0, b1, b2, . . . be defined as
above. We claim that the property of strong levels once again lets us
construct an effective sequence Eb0 , Eb1 , Eb2 , . . . such that (a) Eb0 =
En, (b) for all j > 0, Ebj is a stable model of Pbj , and (c) for all
j ≥ 0, Ebj+1

∩ {a0, . . . , abj} = Ebj . That is, suppose that we have
constructed Ebk such that there exists a stable model S of P such
that S ∩ {a0, . . . , abk} = Ebk . Now consider the strong level bk+2. Our
definition of strong level ensures that there must be some stable model
Fk+2 of Pbk+2

such that Fk+2 ∩ {a0, . . . , abk} = Ebk . Then let Ebk+1
=

Fk+2∩{a0, . . . , abk+1
}. The argument in Theorem 3.2 shows that Ebk+1

is a stable model of Pbk+1
. Moreover, since bk+2 is a strong level, there

must be a stable model S′ of P such that Ebk+1
= S′ ∩ {a0, . . . , abk+1

}
since otherwise, there can be no stable model F of Pbk+2

such that
Ebk+1

= F ∩ {a0, . . . , abk+1
}. This given, we can then construct our

desired recursive stable model Eβ exactly as in (1).

We end this section with another, more direct approach to producing
a recursive stable model.

Definition 4.5. We say that a recursive logic program P has wit-
nesses with effective delay if there is a recursive function f such
that for all n, f(n) > n and whenever there is a set S ⊆ {a0, . . . , an}
such that there is a stable model E of P with E ∩{a0, . . . , an} = S but
there is no stable model F of U such that F ∩ {a0, . . . , an, an+1} = S,
then either

(i) there is a proof scheme ψ′ with max(ψ′) ≤ n+1 such that cln(ψ′) =
an+1 and supp(ψ′) ⊆ {a0, . . . , an} − S, or

(ii) for all sets T ⊆ {an+2, . . . , af(n)}, there is a proof scheme ψT with
max(ψ) ≤ f(n) such that supp(ψT) ⊆ {a0, . . . , af(n)} − (T ∪ S)
and cln(ψT) ∈ {a0, . . . , af(n)} − (T ∪ S).

Note that in case (i), the proof scheme ψ′ witnesses that we must
have an+1 in any stable model E such that E∩{a0, . . . , an} = S. In case
(ii), the proof schemes ψT show that we can not have a stable model E
of P such that E ∩ {a0, . . . , af(n)} = S ∪ T so that we are again forced
to have an+1 in any stable model E such that E ∩ {a0, . . . , an} = S.

Theorem 4.6. Suppose that P is a recursive logic program which has
witnesses with effective delay and has at least one stable model. Then
the lexicographically least stable model E of P is recursive.

Proof. We can construct the lexicographically least stable model E
of P by induction as follows.

amai4.tex; 10/09/2013; 11:14; p.33

34 Cenzer et al

Suppose that for any given n we have constructed En = E∩{a0, . . . , an}.
Then En+1 = En unless either

(i) there is a proof scheme ψ of level n such that supp(ψ) ⊆ {a0, . . . , an}−
En and cln(ψ) = an+1 or

(ii) for all sets T ⊆ {an+2, . . . , af(n)}, there is a proof scheme ψT with
max(ψT) ≤ f(n) such that supp(ψT) ⊆ {a0, . . . , af(n)}− (T ∪En)
and cln(ψT) ∈ {a0, . . . , af(n)} − (T ∪ En).

in which case En+1 = En∪{an+1}. Note that since there are only finitely
many minimal proof schemes ψ with max(ψ) ≤ k for any given k, we
can check conditions (i) and (ii) effectively. Since there is a stable model,
it is easy to see that our definitions insure that En is always contained
in the lexicographically least stable model of P . Thus E =

⋃
nEn is

recursive.

5. Finding Stable Models with Low Complexity

Throughout this section, we shall assume that P is a recursive logic
program such that HP = ω = {0, 1, 2, . . .}. Moreover if P is locally
determined, we let {l0 < l1 < . . .} denote the set of levels of P and if P
has strong levels, then we let {s0 < s1 < . . .} denote the set of strong
levels of P .

In this section, we shall show how we can use the notions of levels
and strong levels to provide conditions which will ensure that P has a
stable model which has relatively low complexity. We shall distinguish
two representations of P , namely the tally representation of P , Tal(P),
and the binary representation of P , Bin(P). In the tally representation
of P , we shall identify each n ∈ HP , with its tally representation, tal(n),
where tal(0) = 0 and tal(n) = 1n for n 6= 0. In the binary representation
of P , we shall identify each natural number n with its binary represen-
tation, bin(n). Given a clause c = ϕ← α1, . . . , αn¬β1, . . . ,¬βm, we let
the tally and binary representations of r be given by

tal(c) = 2tal(α1)2 . . . 2tal(αn)3tal(β1)2 . . . 2tal(βm)3tal(ϕ)

bin(c) = 2bin(α1)2 . . . 2bin(αn)3bin(β1)2 . . . 2bin(βm)3bin(ϕ)

We then let Tal(P) = {tal(c) : c ∈ P} and Bin(P) = {bin(c) : c ∈ P}.
Given a finite set U {u0 < . . . < uk} of HP , let the tally and binary

representation of U be given by

tal(U) = 4tal(u0)4 . . . 4tal(uk)4

bin(ψ) = 4bin(u0)4 . . . 4bin(uk)4

amai4.tex; 10/09/2013; 11:14; p.34

Locally Determined 35

Similarly given a proof scheme ψ = 〈〈p1, C1, U1〉, . . . , 〈pn, Cn, Un〉〉, we
let the tally and binary representations of ψ be given by

tal(ψ) = 5tal(p1)6tal(C1)7tal(U1)5 . . . 5tal(pn)6tal(Cn)7tal(Un)5

bin(ψ) = 5bin(p1)6bin(C1)7bin(U1)5 . . . 5bin(pn)6bin(Cn)7bin(Un)5

Finally given a finite set of proof schemes proof Γ = {ψ1, . . . , ψs}, we
let the tally and binary representations of Γ be given by

tal(Γ) = 8tal(ψ1)8 . . . 8tal(ψs)8

bin(Γ) = 8bin(ψ1)8 . . . 8bin(ψs)8

Definition 5.1. We say that the logic program P is polynomial time
locally determined in tally if Tal(P) has the following properties.

1. There is a polynomial time function g such that for any i, g(tal(i)) =
tal(lki) where ki is the least number k such that lk ≥ i.

2. There is a polynomial time function h such that for any i and S ⊆
{tal(0), . . . , tal(lki)} where tal(lki) = g(tal(i)), h(tal(i), tal(S)) =
tal(ψ) where ψ is a minimal proof scheme ψ of Plki such that

cln(ψ) = i and supp(ψ) ∩ S = ∅ if such a ψ exists and
h(tal(i), tal(S)) = tal(0) otherwise.

Similarly we say that P is polynomial time locally determined in
binary, if definition (5.1) holds where we uniformly replace all tally
representations by binary representations. We can also define the no-
tions of P being linear time, exponential time, polynomial space, etc.
in tally or binary in a similar manner.

This given, we then have the following.

Theorem 5.2. 1. Suppose that P is a polynomial time locally deter-
mined logic program in tally which has the level extension property.
If l is a level of P and Ml is a stable model of Pl such that there is
a unique stable model M of P with M ∩ {tal(0), . . . , tal(l)} = Ml,
then M ∈ NP ∩ Co-NP .

2. Suppose that P is a polynomial space locally determined logic pro-
gram in tally which has the level extension property. If l is a level of
P and Ml is a stable model of Pl such that there is a unique stable
model M of P with M ∩ {0, . . . , l} = Ml, then E ∈ PSPACE

3. Suppose that P is a polynomial time locally determined logic pro-
gram in binary which has the level extension property. If l is a level
of P and Ml is a stable model of Pl such that there is a unique
stable model M of P with M ∩ {bin(0), . . . , bin(l)} = Ml, then
N ∈ NEXPTIME ∩ Co-NEXPTIME.

amai4.tex; 10/09/2013; 11:14; p.35

36 Cenzer et al

4. Suppose that P a is polynomial space locally determined logic
program in binary which has the level extension property. If l is
a level of P and Ml is a stable model of Pl such that there is a
unique stable model M of P with E ∩ {bin(0), . . . , bin(l)} = Ml,
then M ∈

⋃
c≥0(DSPACE(2n

c
).

Proof. For (1), suppose that l = lt where recall that the set of levels
of P is {l0 < l1 < . . .}. Then for any i > lt, consider the level lki where
g(tal(i)) = tal(lki). By the level extension property, it follows that there
is a stable model, Mlki

, of Plki such that Mlki
∩{tal(0), . . . , tal(l)} = Ml.

Moreover, it must be the case that M ∩ {tal(0), . . . , tal(lki)} = Mlki
since otherwise we could use the level extension property to show that
there is a sequence of stable models {Mlj : j ≥ ki} such that for each
j > ki, Mlj is a stable model of Plj where Mlj∩{tal(0), . . . , tal(lj−1)} =
Mlj−1

. One can then easily prove that M ′ = ∪j≥kiMlj is stable model
of P such that M ′ ∩ {tal(0), . . . , tal(l)} = Ml contradicting our as-
sumption that M is the unique stable model of P such that M ∩
{tal(0), . . . , tal(l)} = Ml.

It follows that to decide if i ∈ M , we need only guess Mlki
, ver-

ify that it is a stable model of Plki , and check whether i ∈ Mlki
.

We claim that this is an NP process. That is, we first guess the se-
quence χMlki

(tal(0)) . . . χMlki
(tal(lki)) where χMlki

is the characteristic

function of Mlki
. Note that our conditions ensure that there is some

polynomial p such that lki ≤ p(|tal(i)|). It follows that we can compute
lk0 = g(tal(0)), lk1 = g(tal(1)), . . . , lklki

= g(tal(lki)) in polynomial

time in |tal(i)|. Since for each j, lkj is the least level greater than or
equal to j, it follows that lk0 ≤ lk1 ≤ . . . ≤ lklki

= lki . Thus if ki = s,

we can find l0 < l1 < . . . < ls is polynomial time in |tal(i)|. Note
by assumption, t < s. Now consider Mr = Mlki

∩ {tal(0), . . . , tal(lr)}
for r = t, t + 1, . . . , s. By our definition of levels, it must be the case
that each Mr is a stable model of Plr . We claim that this can be
checked in polynomial time. That is, first, we can check that Mt =
Ml. Now assume by induction that we have checked that for a given
r ∈ {t+ 1, . . . , s} that Mr is a stable model of Plr . Then consider an x
such that lr−1 < x < lr. Now if x /∈Mr, there can be no proof scheme
ψ of Plr such that cln(ψ) = x and supp(ψ) ∩Mr = ∅ since otherwise
ψ would witness that x ∈ Ms and hence h(tal(x), tal(Mr)) must be
equal to tal(0). Vice versa, if x ∈ Mr, then since lr is a level, there
must be a proof scheme ψx such that max(ψx) ≤ lr, cln(ψx) = x, and
supp(ψx) ∩Mr = ∅. Hence h(tal(x), tal(Mr)) must equal tal(φ) where
φ is a proof scheme of Plr such that cln(φ) = x and supp(φ)∩Mr = ∅.
Since we can compute h(tal(x), tal(Mr)) for each lr−1 < x ≤ lr in poly-

amai4.tex; 10/09/2013; 11:14; p.36

Locally Determined 37

nomial time in |tal(i)|, it follows that we can check whether Mr is stable
model of Plr for each r = t, . . . , s in polynomial time in |tal(i)|. Hence
it follows that M ∈ NP . However since M is unique, it automatically
follows that M ∈ Co-NP .

The proof of part (2) is similar. However since in this case, the length
of the sequence χMlki

(0) . . . χMlki
(lki) is bounded by p(|tal(i)|) for some

polynomial p, we do not have to guess it. That is, in p(i) space, we check
all strings of {0, 1}lki to see if they are the characteristic function of a
stable model M∗ of Plki such that M∗∩{tal(0), . . . , tal(l)} = Ml. Since
there is only one such stable model with this property, we can search
until we find it. Thus our computations will require only polynomial
space.

The proof of parts (3) and (4) uses the same algorithms as in parts
(1) and (2). However in this case the string

χMlki
(bin(0)) . . . χMlki

(bin(lki))

may be as long as 2q(|bin(i)|) for some polynomial q. Thus the algorithm
could take on the order of 2|bin(i)|

c
steps in case (3) and require 2|bin(i)|

c

space in case (4).

We should note that if we replace the hypothesis of polynomial time
and polynomial space by linear time and linear space in parts (3) and
(4) of Theorem (5.2) respectively, then we get the following.

Theorem 5.3. 1. Suppose that P is linear time locally determined
logic program in binary which has the level extension property. If
l is a level of P and Ml is a stable model of Pl such that there is
a unique stable model M of P with M ∩{bin(0), . . . , bin(l)} = Ml,
then M ∈ NEXP ∩ Co-NEXP .

2. Suppose that P is linear space locally determined logic program
in binary which has the level extension property. If l is a level
of P and Ml is a stable model of Pl such that there is a unique
stable model M of P with M ∩ {bin(0), . . . , bin(l)} = Ml, then
M ∈ EXPSPACE.

It is easy to show that we can weaken the hypothesis in Theorems
5.2 and 5.3 that there is a unique stable model M of P extending Ml

to the assumption that there are only finitely many stable models of P
extending Ml and obtain the conclusion that all of the stable models
of Ml are in the same corresponding complexity classes. However, if we
do not make any assumption about the number of stable models of P
which extend Ml, then the only thing we can do is try to construct the

amai4.tex; 10/09/2013; 11:14; p.37

38 Cenzer et al

lexicographically least stable model of Ml. One can see that in cases
(2) and (4) there would be no change in the conclusion. However in
case (1), the computations could take 2n

c
steps and in case (3), the

computations could require 22
nc

steps.
Finally we note that similar results can be proven using strong lev-

els instead of the level extension property. We state the appropriate
definitions and results without proof. Recall that if P has strong levels,
then we let {s0 < s1 < . . .} denote the set of all strong levels of P .

Definition 5.4. We say that the logic program P has polynomial time
strong levels in tally, if the logic program Tal(P) has strong levels and
the following properties.

1. There is a polynomial time function g such that for any i, g(tal(i)) =
tal(ski) where ki is the least number k such that sk ≥ i.

2. There is a polynomial time function h such that for any i and S ⊆
{tal(0), . . . , tal(lsi)} where tal(lsi) = g(tal(i)), h(tal(i), tal(S)) =
tal(ψ) where ψ is a minimal proof scheme ψ of Plsi such that
cln(ψ) = i and supp(ψ) ∩ S = ∅ if such a ψ exists and
h(tal(i), tal(S)) = tal(0) otherwise.

The definition of a logic program P having polynomial time strong
levels in binary is obtained by replacing Tal(P) by Bin(P) and all
tally representations by binary representations in the definition above.
Similar definitions may be given for space complexity as in Definition
5.1.

This given, we then have the following.

Theorem 5.5. 1. Suppose that P is a logic program which has poly-
nomial time strong levels in tally. If l is a level of P and Ml is a
stable model of Pl such that there is a unique stable model M of
P with M ∩ {tal(0), . . . , tal(l)} = Ml, then M ∈ NP ∩ Co-NP .

2. Suppose that P is a logic program which has polynomial space
strong levels in tally. If l is a level of P and Ml is a stable model
of Pl such that there is a unique stable model M of P with M ∩
{tal(0), . . . , tal(l)} = Ml, then M ∈ PSPACE.

3. Suppose that P is a logic program which has polynomial time
strong levels in binary. If l is a level of P and Ml is a stable
model of Pl such that there is a unique stable model M of P
with M ∩ {bin(0), . . . , bin(l)} = Ml, then M ∈ NEXPTIME ∩
Co-NEXPTIME.

amai4.tex; 10/09/2013; 11:14; p.38

Locally Determined 39

4. Suppose that P is a logic program which has polynomial space
strong levels in binary. If l is a level of P and Ml is a stable model
of Pl such that there is a unique stable model M of P with M ∩
{bin(0), . . . , bin(l)} = Ml, then M ∈

⋃
c≥0(DSPACE(2n

c
)).

Definition 5.6. 1. We say that a logic program P is polynomial time
in tally with witnesses of polynomial time delay in tally if
there is a polynomial time function f : Tal(ω) → Tal(ω) such
that for all n, f(tal(n)) > tal(n) and whenever there is a set S ⊆
{tal(0), . . . , tal(n)} such that there is a stable model E of Tal(P)
with E ∩ {tal(0), . . . , tal(n)} = S but there is no stable model F
of Tal(Q) such that F ∩ {tal(0), . . . , tal(n), tal(n + 1)} = S, then
either

(i) there is a proof scheme ψ with max(ψ) ≤ n + 1 such that
cln(ψ) = tal(n+1) and supp(ψ) ⊆ {tal(0), . . . , tal(n)}−S, or

(ii) for all sets T ⊆ {tal(n+ 2), . . . , f(tal(n))}, there is a proof
scheme ψT with tal(max(ψT)) ≤ f(tal(n)) such that
supp(ψT) ⊆ {tal(0), . . . , f(tal(n))} − (T ∪ S) and
cln(ψT) ∈ {tal(0), . . . , f(tal(n))} − (T ∪ S).

2. There is a polynomial time function h such that for any i, h(tal(i)) =
tal(Γi) where for all S ⊆ {tal(0), . . . , tal(i)}, Γi contains the lexico-
graphically least minimal proof scheme ψ of Pi such that cln(ψ) =
tal(i) and supp(ψ) = S if such a ψ exists.

Similarly we say a logic program Q is polynomial time in binary
with witnesses of polynomial time delay in binary if (1) and (2) of
the definition of a logic program being polynomial time in tally with
witnesses of polynomial time delay in tally hold where we replace the
tally representation by the binary representation.

Theorem 5.7. 1. Suppose that P is a polynomial time logic program
in tally which has witnesses with polynomial time delay in tally
and has at least one stable model. Then the lexicographically least
stable model E of P is polynomial time.

2. Suppose that P is a polynomial time logic program in binary which
has witnesses with polynomial time delay in binary and has at least
one stable model. Then the lexicographically least stable model E
of P is EXPTIME.

Proof. For part (1), let f : Tal(ω) → Tal(ω) be the function which
witnesses that P is a polynomial time logic program in tally which has
witnesses with polynomial time delay in tally. We can construct the

amai4.tex; 10/09/2013; 11:14; p.39

40 Cenzer et al

lexicographically least stable model E of P by induction as follows.

Suppose that for any given n we have constructed

En = E ∩ {tal(0), . . . , tal(n)}.

Then En+1 = En unless either

(i) there is a proof scheme ψ of with max(ψ) ≤ n+ 1 such that
supp(ψ) ⊆ {tal(0), . . . , tal(n)} − En and cln(ψ) = tal(n+ 1) or

(ii) for all sets T ⊆ {tal(n+ 2), . . . , f(tal(n))}, there is a proof scheme
ψT with tal(max(ψT)) ≤ f(tal(n)) such that
supp(ψT) ⊆ {tal(0), . . . , f(tal(n))} − (T ∪ En) and
cln(ψT) ∈ {tal(0), . . . , f(tal(n))} − (T ∪ En).

in which case En+1 = En ∪ {tal(n+ 1)}.
Note that we can check conditions (i) and (ii) effectively. That

is, we can compute h((f(tal(n))) = tal(Γf(tal(n)) in polynomial time
in |tal(n)|. Thus for all S ⊆ {tal(0), . . . , f(tal(n))}, Γf(tal(n)) con-
tains the lexicographically least minimal proof scheme ψ of Pf(tal(n))
such that cln(ψ) = tal(i) and cons(ψ) = S is such a ψ exists. Here
h(tal(i)) = tal(Γi) is the polynomial time function which witnesses
that P is polynomial time in tally with witnesses with polynomial time
delay in tally. Thus Γf(tal(n)) contains at least one proof scheme of
every possible support for Pf(tal(n)) so that we can check conditions (i)
and (ii) by simply checking the proof scheme in Γf(tal(n)). It follows
that we can check whether conditions (i) or (ii) hold in polynomial
time in |tal(n)|. Thus we can extend En to En+1 in polynomial time
in |tal(n)| and hence we can compute E0, E1, . . . , En+1 in polynomial
time in |tal(n)|. Since there is a stable model, it is easy to see that our
definitions insure that En is always contained in the lexicographically
least stable model of P . Thus E =

⋃
nEn is polynomial time.

The proof of part (2) is similar.

The problem with Definition 5.6 is that condition 2 is very restric-
tive. That is, in principle, Γi could be required to contain 2i proof
schemes for each i which would mean that the function h(tal(i)) =
tal(Γi) could not possibly be polynomial time. However, in the case
where the delay is bounded by a constant, that is, when there is a fixed
constant k such that tal(n + k) ≥ f(tal(n)) > tal(n) for all n, we can
weaken condition 2 and get the same conclusion.

Definition 5.8. 1. We say that a logic program P is polynomial time
in tally with polynomial time witnesses of constant delay in

amai4.tex; 10/09/2013; 11:14; p.40

Locally Determined 41

tally if there is a fixed constant k and a polynomial time function
f : Tal(ω) → Tal(ω) such that for all n, tal(n + k) ≥ f(tal(n)) >
tal(n) and whenever there is a set S ⊆ {tal(0), . . . , tal(n)} such that
there is a stable model E of Tal(P) with E∩{tal(0), . . . , tal(n)} =
S but there is no stable model F of Tal(Q) such that
F ∩ {tal(0), . . . , tal(n), tal(n+ 1)} = S, then either

(i) there is a proof scheme ψ with max(ψ) ≤ n + 1 such that
cln(ψ) = tal(n+1) and supp(ψ) ⊆ {tal(0), . . . , tal(n)}−S, or

(ii) for all sets T ⊆ {tal(n+ 2), . . . , f(tal(n))}, there is a proof
scheme ψT with tal(max(ψT)) ≤ f(tal(n)) such that
supp(ψT) ⊆ {tal(0), . . . , f(tal(n))} − (T ∪ S) and
cln(ψT) ∈ {tal(0), . . . , f(tal(n))} − (T ∪ S).

2. There is a polynomial time function h such that for any i < n
and any S ⊆ {tal(0), . . . , tal(n)}, h(tal(i), tal(n), tal(S))) = tal(ψ)
where ψ is a minimal proof scheme of Pn such that cln(ψ) = tal(i)
and supp(ψ)∩S = ∅ if such a ψ exists and h(tal(i), tal(n), tal(S))) =
tal(0) otherwise.

Similarly we say a logic program Q is polynomial time in binary
with polynomial time witnesses of constant delay in binary if (1) and
(2) of the definition of a logic program being polynomial time in tally
with witnesses of polynomial time delay in tally hold where we replace
the tally representation by the binary representation.

Theorem 5.9. 1. Suppose that P is a polynomial time logic program
in tally which has polynomial time witnesses with constant delay in
tally and has at least one stable model. Then the lexicographically
least stable model E of P is polynomial time.

2. Suppose that P is a polynomial time logic program in binary which
has polynomial time witnesses with constant delay in binary and
has at least one stable model. Then the lexicographically least
stable model E of P is EXPTIME.

Proof. For part (1), let f : Tal(ω) → Tal(ω) be the function which
witnesses that P is a polynomial time logic program in tally which has
witnesses with polynomial time delay in tally. We can construct the
lexicographically least stable model E of P by induction as follows.

Suppose that for any given n we have constructed

En = E ∩ {tal(0), . . . , tal(n)}.

Then En+1 = En unless either

amai4.tex; 10/09/2013; 11:14; p.41

42 Cenzer et al

(i) there is a proof scheme ψ of with max(ψ) ≤ n+ 1 such that
supp(ψ) ⊆ {tal(0), . . . , tal(n)} − En and cln(ψ) = tal(n+ 1) or

(ii) for all sets T ⊆ {tal(n+ 2), . . . , f(tal(n))}, there is a proof scheme
ψT with tal(max(ψT)) ≤ f(tal(n)) such that
supp(ψT) ⊆ {tal(0), . . . , f(tal(n))} − (T ∪ En) and
cln(ψT) ∈ {tal(0), . . . , f(tal(n))} − (T ∪ En).

in which case En+1 = En ∪ {tal(n+ 1)}.
Note that we can check conditions (i) and (ii) effectively. That is, to

check condition (i), we simply compute h(tal(n+1), tal(n+1), tal(En∪
{tal(n + 1)})). If h(tal(n + 1), tal(n + 1), tal(En ∪ {tal(n + 1)})) =
tal(0), then there is no proof scheme ψ of with max(ψ) ≤ n + 1 such
that supp(ψ) ⊆ {tal(0), . . . , tal(n)} − En and cln(ψ) = tal(n + 1).
Otherwise, h(tal(n + 1), tal(n + 1), tal(En ∪ {tal(n + 1)})) = tal(ψ)
where ψ is a proof scheme max(ψ) ≤ n + 1 such that supp(ψ) ⊆
{tal(0), . . . , tal(n)} − En and cln(ψ) = tal(n + 1). Similarly, to check
condition (ii), we compute h(tal(i), tal(f(n)), tal(En ∪ T)) for all T ⊆
{tal(n+ 2), . . . , f(tal(n))} and all i ∈ {tal(0), . . . , f(tal(n))}−(T∪En).
Note that since tal(n) < f(tal(n)) ≤ tal(n + k), this means that we
need only compute at most 2k−1 · |f(tal(n))| possible values of h where
each of the arguments can be computed in polynomial time in |tal(n)|.
It follows that we can compute all these values of h in polynomial time
in |tal(n)|. Note that condition (ii) will hold unless there is a fixed
T ⊆ {tal(n+ 2), . . . , f(tal(n))} such that h(tal(i), tal(f(n)), tal(En ∪
T)) = tal(0) for all i ∈ {tal(0), . . . , f(tal(n))} − (T ∪ En). It follows
that we can check whether conditions (i) or (ii) hold in polynomial
time in |tal(n)|. Thus we can extend En to En+1 in polynomial time
in |tal(n)| and hence we can compute E0, E1, . . . , En+1 in polynomial
time in |tal(n)|. Since there is a stable model, it is easy to see that our
definitions insure that En is always contained in the lexicographically
least stable model of P . Thus E =

⋃
nEn is polynomial time.

The proof of part (2) is similar.

6. Characterizing the set of stable models of a locally
determined programs

In this section, we shall provide a characterization of the set of stable
models of an effectively locally determined recursive logic program P .
For arbitrary propositional logic programs, the possible sets of stable
models were characterized by A. Ferry [10] in terms of an inverse-Scott
topology.

amai4.tex; 10/09/2013; 11:14; p.42

Locally Determined 43

Let S(P) be the set of all stable models of P . Our first observation
is that if P is locally determined, then S(P) is closed in the natural
(Cantor) topology on subsets of HP . We note that it was shown in [16]
that, in general, S(P) is a Π0

2 set.

Proposition 6.1. If P is locally determined, then S(P) is a closed set.

Proof. Let HP = {u0, u1, . . .} where u0 <P u1 <P . . . is some order-
ing of HP which witnesses that P is locally determined. Let E1, E2, . . .
be a sequence of stable models with limit E in the usual product topol-
ogy on sets. Suppose that ui ∈ E. Then there must be some K such
that ui ∈ Ek for all k ≥ K. Thus for each k ≥ K, there is a proof
scheme θk such that cln(θk) = ui and Ek ∩ supp(θk) = ∅. Now let l
be the least level ≥ i. Then since P is locally determined, it follows
that for each k ≥ K, there is a minimal proof scheme ψk of Pl such
that cln(ψk) = ui and Ek ∩ supp(ψk) = ∅. But there are only finitely
many possible support sets for such minimal proof schemes in Pl so
that infinitely many of the ψk have the same support S. However since
S ∩ Ek = ∅ for infinitely many k, it must be the case that S ∩ E = ∅
and hence ui ∈ E. Vice versa, suppose that ui /∈ E. Thus there must
be some K such that for all k > K, ui /∈ Ek. Suppose, by way of
contradiction, that there is a proof scheme ψ with cln(ψ) = ui and
supp(ψ) = S with S ∩ E = ∅. Since S is finite, there must be some
M such that S ∩ Em = ∅ for all m ≥ M . But this would mean that ψ
would witness that ui ∈ Em for all m ≥M , contradicting our previous
assumption. (This direction applies even if P is not locally determined.)

We should note however that, in general, S(P) is not a closed set
for a logic program P .

Example 6.2. Let P consist of the following set of clauses.

uk ← ¬u2k(2n+1) (7)

for all n and k. Thus HP = {u0, u1, . . .}. This means that for any
stable model E of P and any k, uk ∈ E if and only if at least one of
the set {u2k(2n+1) : n = 0, 1, . . . } is not in E. It is not hard to see that
for any k, there will be a stable model E of P which contains all of
{u0, u1, . . . , uk}. Thus if S(P) were closed, then HP itself would be an
stable model, which is clearly false, since none of the clauses of P are
HP -applicable.

We say that a family E of sets is noninclusive if for any two sets
A,B ∈ E , neither A ⊆ B nor B ⊆ A. By Proposition 2.1, we know

amai4.tex; 10/09/2013; 11:14; p.43

44 Cenzer et al

that the set of stable models of logic program is a noninclusive family
of sets.

However, not every noninclusive family of sets can be the set of
stable models of a logic program as the following example shows.

Example 6.3. Let E = {{ui} : i = 0, 1, . . . }, that is, the family of all
singleton sets. This is clearly noninclusive. Now suppose that E were the
set of stable models of some logic program P . For the stable model {u0},
there must be a proof scheme ψ with finite support S and conclusion
u0. Now just choose some uk /∈ S. Then ψ is also Ek-applicable where
Ek = {uk}. But then Ek is not closed under all Ek-applicable clauses
of P so that Ek could not be a stable model of P .

It was shown in [10] that a family of sets is the set of stable models
of a propositional logic program if and only if it is noninclusive and it
is a Gδ subset of some closed set in a natural inverse Scott topology.

By combining the two ideas of closure and noninclusivity, we can
define a condition which guarantees that a family of sets is the set of
stable models of a logic program P with strong levels. Given a family
S of subsets of U , let Sn = {E ∩ {u0, . . . , un} : E ∈ S}.

Definition 6.4. Let S be a family of subsets of U .

1. We say that n is a level of S if Sn is mutually non-inclusive.

2. We say that S has levels if there are infinitely many n such that n
is a level of S.

3. We say that S has effective levels if there is a recursive function f
such that, for all i, f(i) > i and f(i) is a level of S.

There are many examples of families of set of U = {u0, u1, . . .} with
effective levels. For example, consider the family S of all sets S such that
for all n, |S ∩ {u0, . . . , u2n}| = n. It is easy to see that for all n, 2n is a
level of S. For a more general example, let U be the set of all finite truth
table functions on a countably infinite set {a0, a1, . . . } of propositional
variables. That is, for each sentence ψ of propositional calculus, U
contains exactly one sentence logically equivalent to ψ. These are listed
in order of the maximum variable ak on which the sentence depends.
Thus, u0 and u1 are the (constant) True and False sentences; u2 and u3
are the sentences a0 and ¬a0, u4, . . . , u15 list the sentences depending
on a0 and a1, and so on. Now let Γ be any consistent set of sentences
and let S(Γ) be the set of complete consistent models of Γ. The levels

of S = {U ∩S : S ∈ S(Γ)} are just the numbers 22
k−1. This is because

if two sets in S disagree on the first 22
k − 1 sentences, then there must

amai4.tex; 10/09/2013; 11:14; p.44

Locally Determined 45

be some i with i < k such that they disagree on ai, which means that
one of the sets contains ai but not ¬ai whereas the other set contains
¬ai but not ai. Thus the two sets are mutually noninclusive.

Theorem 6.5. If E is a closed family of subsets of U with levels, then
there exists a logic program P with strong levels such that HP = U and
E is the set of stable models of P . Furthermore, if E is a decidable Π0

1

class and has effective levels, then P may be taken to have effectively
strong levels.

Proof. Given the family E , we shall directly construct a logic program
P such that S(P) = E . First, if E is empty, we let P consist of the
single clause u0 ← ¬u0. It is easy to see in this case that P has no
stable models.

Thus we assume that E 6= ∅ and hence that each En is nonempty as
well. We then create a set of clauses for every level n of E . For each level
n, let En1 , . . . , E

n
kn

be the list of all sets of the form E ∩ {u0, . . . , un}
for E ∈ E . Then for each such Eni and each r ∈ Eni , P will contain a
clause

ci,r = r ← ¬β1, . . . ,¬βm (8)

where {β1, . . . , βm} = {u0, . . . , un} − Eni . It is then easy to see that
each Eni is a stable model of Pn and that n is a level of Pn. Moreover
it easily follows that the set of stable models of P is exactly E .

For the second part of the theorem, we use the same logic program.
We note that decidable Π0-class of sets has the property that there is
a highly recursive tree T contained in {0, 1}∗ such that set of infinite
paths through T correspond to the characteristic functions of elements
of P and T has no dead ends, i.e. every node η ∈ T can be extended
to an infinite path through T . Thus for any level n of E , the sets
En1 , . . . , E

n
kn

described above will just correspond to the set of nodes
of length n in the tree T . Because each of the nodes of length n can
be extended to infinite path through T , it follows that each stable
model Eni of Pn can be extended to a stable model E of P such that
E ∩ {u0, . . . , un} = Eni . It then easily follows that n is a strong level of
P . Thus P will have effectively strong levels in this case.

References

1. H. Andreka, I. Nemeti, The Generalized Completeness of Horn Predicate Logic
as a Programming Language, Acta Cybernetica 4(1978) 3-10.

2. K. R. Apt, Logic programming, in: Handbook of Theoretical Computer Science,
ed. J. van Leeuven, MIT Press, 1990.

amai4.tex; 10/09/2013; 11:14; p.45

46 Cenzer et al

3. K. Apt, H. A. Blair and A. Walker, Towards a theory of declarative knowledge,
in: Foundations of deductive databases and logic programming, ed. J. Minker,
Morgan Kaufmann, 1987, pp. 89-142.

4. K. R. Apt, H. A. Blair, Arithmetical Classification of Perfect Models of
Stratified Programs, Fundamenta Informaticae 13 (1990) 1-17.

5. D. R. Bean, Effective Coloration, J. Symbolic Logic 41 (1976), 469-480.
6. D. Cenzer and J. B. Remmel, Index Sets for Π0

1-classes, Annals of Pure and
Applied Logic 93 (1998), 3-61.

7. D. Cenzer and J. B. Remmel, Π0
1-classes in Mathematics, in: Handbook of Re-

cursive Mathematics: Volume 2, eds. Yu. L. Ershov, S.S. Goncharov, A. Nerode,
and J.B. Remmel, Studies in Logic and the Foundations of Mathematics, vol.
139, Elsevier, 1998, pp. 623-822.

8. D. Cenzer, J. B. Remmel, and A. K. C. S. Vanderbilt, Locally Determined Logic
Programs, in: Proceedings of the 6th international Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR99), Springer-Verlag, 1999,
pp. 34-49.

9. P. Cholewiński, Stratified default theories, in Proceedings of CSL’94, Lecture
Notes in Computer Science, vol. 933, Springer-Verlage, 1995.

10. A. Ferry, A topological characterization of the stable and minimal model classes
of propositional logic programs, Ann. Math. Artificial Intelligence 15 (1995),
325-355.

11. M. Gelfond and V. Lifschitz, The stable semantics for logic programs, in: Proc.
5th Int’l. Symp. Logic Programming, MIT Press, 1988, pp. 1070-1080.

12. C. G. Jockusch and R.I. Soare, Degrees of members of Π0
1 classes, Paciific

Journal of Mathematics 40(1972), 605–616.
13. C. G. Jockusch and R. I. Soare, Π0

1 classes and degrees of theories, Transactions
of American Mathematical Society 173(1972), 33–56.

14. V. Lifschitz and H. Turner, Splitting a logic program, in: Proceedings of
the Eleventh International Conference on Logic Programming, ed. P. Van
Hentenryck, 1994, pp. 23–37.

15. W. Marek, A. Nerode, and J. B. Remmel: Nonomonotonic rule systems I,
Annals of Mathematics and Artificial Intelligence 1 (1990), 241-273.

16. W. Marek, A. Nerode, and J. B. Remmel, Nonomonotonic rule systems II,
Annals of Mathematics and Artificial Intelligence 5 (1992), 229-264.

17. W. Marek, A. Nerode, and J. B. Remmel, How complicated is the set of stable
models of a recursive logic program? Ann. Pure and Appl. Logic 56 (1992),
119-135.

18. W. Marek, A. Nerode, and J. B. Remmel, The stable models of predicate logic
programs, in: Proceedings of International Joint Conference and Symposium
on Logic Programming, ed. K. R. Apt, editor, MIT Press, 1992, pp. 446–460.

19. W. Marek, A. Nerode, and J. B. Remmel, The stable models of predicate logic
programs. Journal of Logic Programming 21 (1994), 129-154.

20. W. Marek, A. Nerode, and J. B. Remmel, Context for belief revision: Forward
chaining-normal nonmonotonic rule systems, Annals of Pure and Applied Logic
67 (1994), 269-324.

21. W. Marek and J. B. Remmel, The failure of compactness in nonmonotonic
reasoning systems, in preparation.

22. R. Reiter, A logic for default reasoning. Artificial Intelligence 13(1980), 81-132.
23. D. Scott, Domains for denotational semantics, in: Proceedings of ICALP-82,

Springer-Verlag, 1982, pp. 577-613.

amai4.tex; 10/09/2013; 11:14; p.46

Locally Determined 47

24. R.M. Smullyan, Theory of Formal Systems, Annals of Mathematics Studies,
no. 47.

Address for Offprints: Department of Mathematics, University of Florida,
P.O. Box 118105, Gainesville, FL 32611-8105

amai4.tex; 10/09/2013; 11:14; p.47

amai4.tex; 10/09/2013; 11:14; p.48

