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Abstract

We study the proof theoretic strength of several infinite versions of
finite combinatorial theorem with respect to the standard Reverse Math-
ematics hierarchy of systems of second order arithmetic. In particular,
we study three infinite extensions of the stable marriage theorem of Gale
and Shapley. Other theorems studied include some results on partially
ordered sets due to Dilworth and to Dushnik and Miller.

1 Introduction

In this paper, we shall study the proof theoretic strength of several combinatorial
theorems in the standard Reverse Mathematics hierarchy of systems of second
order arithmetic, RCA0, WKL0, ACA0, ATR0, etc. as introduced by Friedman
and Simpson [20]. In section 2, we shall study the proof theoretic strengths of
several infinite extensions of the so-called stable marriage problem introduced
by Gale and Shapley [5]. We will show that there are three natural infinite
extensions of the Gale-Shapley theorem for the existence of stable marriages
that are equivalent to WKL0, ACA0, and ATR0, respectively, over RCA0.
We should note that there are a number of papers devoted to studying the
logical strength of various infinite extensions of finite combinatorial theorems in
Reverse Mathematics, see for example [1, 7, 8, 9, 10, 11, 12, 19]. In particular,
a closely related problem, the Philip Hall Marriage Theorem has been studied
by Hirst [8]. It is rare to have one combinatorial problem where there are
natural infinite versions that are equivalent to WKL0, ACA0, and ATR0 over
RCA0. We should note that the results of [1, 19] show that another related
theorem, namely the countable version of König’s duality theorem, is equivalent
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to Π1
1-CA0 over RCA0 and hence is proof theoretically stronger than any of the

countable versions of stable marriage problem presented in this paper.
In section 3, we shall show how many standard combinatorial theorems can

code up separating sets for pairs of disjoint r.e. sets. These codings allow
for simple proofs that these combinatorial theorems are equivalent to WKL0

over RCA0. Furthermore, many of the combinatorial problems that we shall
consider have an even stronger property. That is, for any recursively bounded
tree T , there is an instance IT of the problem P such that there is an effective
1:1 correspondence between the set of infinite paths through T and the set of
solutions to IT . However, there are other combinatorial problems that do not
have this stronger property. For example, we show that there is a combinatorial
matching problem which is equivalent to WKL0 over RCA0 and which has the
property that for any instance of the problem, there are either finitely many or
2ℵ0 solutions; hence such a matching problem cannot encode the set of paths
through a recursive tree which has a countably infinite set of paths. Thus there
are combinatorial problems which have the same proof theoretic strength over
RCA0, but the structure of the set of solutions to instances of the problems are
radically different. These results show that there are inherent limitations in the
equivalence relation of equivalent proof theoretic strength over RCA0. Namely,
such an equivalence relation groups together combinatorial problems that can
be easily distinguished via natural properties of the structure of the possible
sets of solutions to instances of the problems.

Before proceeding with our analysis of various combinatorial problems, we
shall state three theorems concerning the equivalence of various results over
RCA0 that we will use in this paper. The proofs of all these results can be
found in Simpson’s book [20].

Theorem 1.1 The following are equivalent over RCA0.

1. ACA0.

2. If f : N→ N is an injection, then the range of f is a set.

3. (Konig’s Lemma) If T is an infinite, finitely branching tree, then there is
an infinite path through T .

Theorem 1.2 The following are equivalent are equivalent over RCA0

1. WKL0, i.e. every infinite tree T ⊂ {0, 1}<N has an infinite path.

2. (Bounded Konig’s Lemma) If T ⊂ NN is an infinite tree and there is a
function g such that for all τ ∈ T and all m < |τ |, τ(m) < g(m), then T
has an infinite path.

3. The completeness theorem for propositional logic with countably many
variables.

4. The compactness theorem for propositional logic with countable many vari-
ables.

2



5. (Σ0
1 separation) Let φi(n), i = 0, 1 be Σ0

1 formulas in which X is does not
occur freely. If ¬∃n(φ0(n) ∧ φ1(n)), then

∃X∀n((φ0(n)→ n ∈ X) ∧ (φ1(n)→ n /∈ X)).

As pointed out in [20], we can define the notion of a well-ordering in RCA0

as follows. Let X ⊂ N2 be reflexive. We say X is well founded if it has no
infinite descending sequence. That is, there is no f : N → field(X) such that
f(n+ 1) <X f(n) for all n ∈ N. We say that X is a countable linear ordering if
it is a reflexive linear ordering of its field. That is, if the following hold.

1. ∀i∀j∀k(i ≤X j ∧ j ≤X k → i ≤X k),

2. ∀i∀j(i ≤X j ∧ j ≤X i→ i = j) and

3. ∀i∀j(i, j ∈ field(X)→ i ≤X j ∨ j ≤X i).

We say that X is a countable well ordering if it is both well founded and a
countable linear ordering. We let WO(X) be the formula that expresses that
X is a well ordering. The following is proved in [20].

Theorem 1.3 The following are equivalent over RCA0.

1. Arithmetic transfinite recursion, ATR0.

2. CWO, the comparability of countable well orderings, i.e. the statement

∀X∀Y ((WO(X) ∧WO(Y ))→ ((|X| ≤ |Y |) ∨ (|Y | ≤ |X|)

where |X| ≤ |Y | mean that there is an order preserving isomorphism from
(field(X), X) onto an initial segment of (field(Y ), Y ).

3. Σ1
1 Separation. Let φi(n), i = 0, 1 be Σ1

1 formulas in which X is does not
occur freely. If ¬∃n(φ0(n) ∧ φ1(n)), then

∃X∀n((φ0(n)→ n ∈ X) ∧ (φ1(n)→ n /∈ X)).

2 The Proof-Theoretic Strength of Infinite Ex-
tensions of the Stable Marriage Theorem

The Stable Marriage Problem was introduced by Gale and Shapley [5] in 1962
and is related to the problem of college admissions. They gave an algorithm for
solving the finite problem, which was later discovered to have been used in the
matching of graduate medical students with hospitals since 1952. Other variants
of the problem have been studied in computer science, economics, game theory
and operations research. For example, Knuth [16] related the stable marriage
problem to finding the shortest path on a graph and to searching a table by
hashing.
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An instance of the stable marriage problem of size n is consists of two disjoint
finite sets B = {b1, b2, . . . , bn} (the set of boys) and G = {g1, g2, . . . , gn} (the
set of girls). In addition, each boy bi has a ranking or a linear ordering <i of
G which reflects his preference for the girls that he wants to marry. That is, if
gj <i gk, then bi would prefer to marry gj over gk. Similarly each girl gj has
a ranking or linear ordering <j of B which reflects her preferences in the boys
she would like to marry. A matching (or marriage) M is a 1:1 correspondence
between B and G. We say that b and g are partners in M if they are matched
in M and write pM (b) = g and also pM (g) = b. A matching M is unstable if
there is a pair (b, g) from B ×G such that b and g are not partners in M but b
prefers g to pM (b) and g prefers b to pM (g). Such a pair (b, g) is said to block
the matching M and is called a blocking pair for M . A matching M is stable if
there is no blocking pair for M .

One can also consider a stable marriage problem where the two finite sets
B and G have a different cardinalities. For example, suppose |B| < |G|. In this
case, a matching M is a 1:1 correspondence between B and some subset G′ of G
of cardinality |B|. We say (b, g) a blocking pair for M if b prefers g over pM (b)
and either g /∈ G′ or g prefers b over pM (g). Once again a matching is stable
if there is no blocking pair for M . The definition of blocking pairs and stable
marriages in the case where |G| < |B| are defined similarly.

The result of Gale and Shapley is that any finite marriage problem has a
solution. In fact, they give an algorithm which produces a solution in n stages
and takes ≤ o(n3) steps. As we want to extend this algorithm to the infinite
case, we will give some details here. Let B = {b1, b2, . . . } and G = {g1, g2, . . . }
and assume that |B| ≤ |G|.

The matching M is produced in stages Ms so that bt always has a partner
at each stage s ≥ t and pMt(bt) ≤t pMt+1(bt) ≤t · · · . On the other hand, for
each g ∈ G, if g has a partner at stage t, then g will have a partner at each
stage s ≥ t and pMt

(g) ≥t pMt+1(g) ≥t · · · . Thus as s increases, the partners of
bt become less preferable and the partners of g become more preferable.

The Gale-Shapley Algorithm

Stage 1. At stage 1, b1 chooses the first girl g in his preference list and we
set M1 = {(b1, g)}.

Stage s+1. At the end of stage s, assume that we have produced a match-
ing Ms = {(b1, gi(1,s)), . . . , (bs, gi(s,s))}. We will say that partners in Ms are
“engaged”. The idea is that at stage s + 1, bs+1 will try to get a partner by
“proposing” to the girls in G in his order of preference. When bs+1 proposes
to a girl gj , gj accepts his proposal if either gj is not currently engaged or is
currently engaged to a boy b such that bs+1 <

j b. In the case where gj prefers
bs+1 over her current partner b, then gj breaks off an engagement with b and b
then has to search for a new partner. To be more precise, we begin stage s+ 1
by letting M = Ms and letting b∗ = bs+1. Then we apply the following routine.
We have b∗ propose to the girls in order of his preference until one accepts. Here
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g will accept the proposal as long as she is either not engaged or prefers b∗ to
her current partner pM (g). Then we add (b∗, g) to M and proceed according to
one of the following two cases.

Case I: If g was not engaged, then we terminate the procedure and let Ms+1 =
M ∪ {(b∗, g)}.

Case II: If g was engaged to b, then we set M = (M − {(b, g)}) ∪ {(b∗, g)}
and b∗ = b and we continue.

It is easy to prove that there is exactly one girl that was not engaged at step
s but is engaged at stage s+ 1 and that, for each girl gj that is engaged in Ms,
gj will be engaged in Ms+1 and that pMs+1(gj) ≤j pMs

(gj). That is, for any girl
gj , once she becomes engaged, she will remain engaged and her partners will
only gain in preference as the stages proceed. Moreover, it is easy to see that
each b need only propose at most once to each g during stage s+ 1, which gives
an upper bound of (s+ 1)2 steps in the procedure.

We note that if |B| = n, that at the end of stage n, Mn will be a stable
marriage. That is, suppose (bi, gj) is a blocking pair for Mn. We claim that
it must be the case that bi proposed to gj during the procedure. That is, bi
proposes to the girls in order of his preference and hence if bi never proposed to
gj , then bi must prefer pM (bi) over gj which would violate the assumption that
(bi, gj) is blocking pair. But now consider the time at which bi proposed to gj .
Then either gj first accepted and then moved to a more preferred partner or
gj did not accept because she preferred her current partner to bi. Since every
time gj changes partners, she moves to a boy which is more preferred than her
current partner, it would follow that pM (gj) <j bi which again contradicts that
fact that (bi, gj) is a blocking pair for Mn. Thus there can be no such blocking
pair and hence Mn is a stable matching.

In the case where |G| < |B|, we can simply reverse the roles of the girls and
boys in the above algorithm. Finally, it is easy to check that this proof only
requires Σ0

1 induction and hence can be carried out in RCA0.
Next we will formulate several infinite versions of the Gale-Shapley Theorem

for the existence of stable matchings. Throughout this paper, our concern will
be with countable societies so that when we say that a society is infinite, we
mean that either the set of boys B, the set of girls G or both are countably
infinite.

An infinite instance of the stable marriage problem consists of a countably
infinite set of boys B = {b0, b1, b2, . . . }, a countably infinite set of girls G =
{g0, g1, g2, . . . }, preference orders ≤i for each bi among G, and preference orders
≤j for each gj among B. The instance is recursive if B and G are recursive sets
of natural numbers ω and the orderings ≤i and ≤j are uniformly recursive. The
instance is listed if each ordering ≤i and ≤j has order type ω and is effectively
listed if there are functions P (i, n) and Q(j, n) such that for all i and j, gP (i,0) <i
gP (i,1) <i gP (i,2) <i . . . enumerates the preference order of bi and, similarly,

5



bQ(i,0) <
j bQ(i,1) <

j bQ(i,2) <
j . . . enumerates the preference order of gj .

For an infinite instance of the stable marriage problem, a stable matching
M consists of either a 1:1 mapping M : B → G such that there is no blocking
pair for M or a 1:1 mapping M : G→ B such that there is no blocking pair for
M . Thus in a stable matching, either all the boys have a partner or all the girls
have a partner. A stable matching in which every boy has a partner and every
girl has a partner is called a symmetric stable matching.

Theorem 2.1 Suppose that 〈B,G, {<i}bi∈B , {<j}gj∈G〉 is an infinite instance
of the stable marriage problem where for all i and j, the order type induced by
the orderings <i and <j is ω. Then there is a stable matching for M .

Proof: We claim that we can simply extend the Gale-Shapley algorithm to
the infinite case. That is, consider the following construction.

Stage 0. At stage 0, b0 chooses the first girl g in his preference list and we
let M0 = {(b0, g)}.

Stage s+1. At the end of stage s, assume that we have produced a match-
ing Ms = {(b1, gi(1,s)), . . . , (bs, gi(s,s))}. We start stage s+ 1 by letting M = Ms

and letting b∗ = bs+1. Then we apply the following routine. We have b∗ propose
to the girls in order of his preference until one accepts. Here g will accept the
proposal as long as she is either not engaged or prefers b∗ to her current partner
pM (g). We then have two cases.

Case I: If g was not engaged, then we terminate the procedure and let Ms+1 =
M ∪ {(b∗, g)}.

Case II: If g was engaged to b, then we set M = (M − {(b, g)}) ∪ {(b∗, g)}
and b∗ = b and we continue.

It is easy to prove by induction that there is exactly one girl who is not
engaged at stage s but becomes engaged at stage s + 1 and that, for each girl
gj that is engaged in Ms, gj will be engaged in Ms+1 and that pMs+1(gj) ≤j
pMs

(gj). Thus, for any girl gj , once she becomes engaged, she will remain
engaged and her partners will only gain in preference as the stages proceed.
Hence there will be some finite stage tgj and a boy b(gj) such that for all
s ≥ tgj , (b(gj), gj) ∈Ms. Thus we let

M = {(b(gj), gj) : there is a stage s such that gj is engaged at stage s}.

We claim that M is a stable matching. First observe that if there is a
boy bi such that bi has no partner relative to M , then there must be infinitely
many stages s ≥ i such that bi was engaged to pMs(bi) at the end of stage
s, but is not engaged to pMs(bi) at the end of stage s + 1. It follows that bi
must have proposed to every girl in G since every time bi loses a partner, bj
proposes to the next girl on his preference list. But this means that every girl
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gj eventually becomes engaged and hence every girl G has a partner under M .
It thus follows that either (i) every boy has a partner under M or (ii) every girl
has a partner under M . M is a 1:1 correspondence because at each stage s, Ms

is a 1:1 correspondence. Finally to see that M is a stable matching, suppose for
a contradiction that (bi, gj) is a blocking pair for M . There are two cases. First
if bi has no partner under M , then we can argue as above that there must have
been a stage s such that bi proposed to gj . But then either gj preferred her
current partner to bi at the time bi proposed or gj accepted bi’s proposal and
then latter switched to a new partner which she preferred over bi. In either case,
there is a stage t such that gj preferred pMt

(gj) over bi. But then we know that
pMt(gj) ≥j pMt+1(gj) ≥j pMt+2(gj) ≥j . . .. Thus bi >j pMt(gj) ≥j pM (gj) and
hence (bi, gj) could not be a blocking pair for M . Hence it must be the case that
bi has a partner relative to M . However, by the same argument above, there can
not be a stage at which bi proposed to gi since the fact that bi is not matched
to gj , implies that either gj rejected bi’s proposal or gj accepted bi’s proposal
but later switched partners. But then we would be able to conclude that gj
prefers pM (gj) over bi. Thus it must be the case that bi never proposed to gj .
But this means that for all stages s ≥ i, pMs

(bi) <i gj . Hence pM (bi) <i gj so
that (bi, gj) is not a blocking pair for M .

Thus there can be no blocking pair for M and M is stable matching. �

It is important to note that even a recursive infinite instance of the stable
marriage problem may have no symmetric solution. For example, suppose that
each bn+1 prefers gn first and that each gn prefers bn+1 first. Then any stable
marriage must match all of these pairs which leaves no partner for b0. In this
example, the Gale-Shapley algorithm will have pMs

(b0) = gs for each s and thus
will not converge. In fact, this is a more general phenomenon, as indicated by
the following result.

Theorem 2.2 Let T be a recursive tree contained in ω<ω. Then there is a
recursive instance of the stable marriage problem 〈B,G, {<i}bi∈B , {<j}gj∈G〉
such that there is an effective 1:1 correspondence between the set of infinite
paths through T and the set of symmetric stable matchings of
〈B,G, {<i}bi∈B , {<j}gj∈G〉.

Proof: We let ∅ denote the empty sequence which is in every tree T ⊆ ω<ω
by definition. We let B = {bη : η ∈ T} and G = {gη : η ∈ T − {∅}}. Given two
sequences α, β ∈ ω<ω, we write α_β for the concatenation of α and β and we
write α_i for α_(i). For any α, β ∈ ω<ω, we let |α| denote the length of α and
we write α v β if α is an initial segment of β.

To define the preference orderings <η and <η, we first fix some recursive
ω ordering ≺ of the nodes of T . For example, we say that ∅ ≺ η for all η ∈
T − {∅} and define η = (η0, . . . , ηk) ≺ γ = (γ0, . . . , γn) if and only if either
(i)
∑k
i=0 ηi + 1 <

∑n
i=0 γi + 1 or (ii)

∑k
i=0 ηi + 1 =

∑n
i=0 γi + 1 and η is

lexicographically less than γ. We shall specify a preference ordering <η either
by giving a recursive sequence Sη = α0, α1, . . . of nodes of T without repetitions
or by giving a pair 〈Sη, δ〉 where Sη = α0, α1, . . . is a recursive sequence of nodes
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of T without repetitions and δ is a node of T which is not in Sη. That is, in the
first case, <η is the ordering defined by setting gβ <η gγ if and only if either (a)
β ∈ Sη and γ ∈ T − Sη, (b) β = αs and γ = αt and s < t, or (c) β, γ ∈ T − Sη
and β ≺ γ. In the second case, <η is the ordering defined by setting gβ <η gγ
if and only if either (a) β ∈ Sη ∪ {δ} and γ ∈ T − (Sη ∪ {δ}), (b) β = αs and
γ = αt and s < t, (c) β = αs and γ = δ or (c) β, γ ∈ T − (Sη ∪ {δ}) and β ≺ γ.
We shall specify the preference ordering <η in a similar manner.

This given, we define the orderings <η and <η as follows.

1. We let <∅ be the ordering determined by S∅ = (i0), (i1), . . . where
i0 < i1 < . . . consists of the set of all i such that (i) is in T . (Thus b∅’s
preference order starts out with the girls g(i0), g(i1), . . ., followed by the
rest of girls in G in the standard order induced by ≺.)

2. If η 6= ∅, then we let <η be the ordering determined by the pair 〈Sη, η〉
where Sη = η_i0, η

_i1, . . . and i0 < i1 < . . . consists of the set of all i
such that η_i are in T . (Thus bη’s preference order starts out with the
girls gη_i0 , gη_i1 , . . . followed by gη and then followed by the rest of girls
in G in the standard order induced by ≺.)

3. For all η_i ∈ T , we let Sη
_i = η_i, η. Thus gη_i’s preference order starts

out with the boys bη_i, bη and then is followed by the rest of the boys in
B in the standard order induced by ≺.)

It is easy to see that since T is a recursive tree, 〈B,G, {<i}bi∈B , {<j}gj∈G〉
is a recursive instance of the stable marriage problem. Moreover, we can assume
that T is an infinite tree since otherwise, |B| > |G| so that automatically there
can be no symmetric stable matching.

Let π = (π0 = ∅, π1, π2, . . .) be some infinite path through T . That is, for
each i, |πi| = i and for all i < j, πi @ πj . Then let Mπ be the matching

{(bπn , gπn+1) : n ≥ 0} ∪ {(bη, gη) : η ∈ T − π}.

We claim that Mπ is symmetric stable matching. That is, suppose for a con-
tradiction that (bα, gβ) is a blocking pair for Mπ. It cannot be that β /∈ π since
otherwise (bβ , gβ) ∈ Mπ and bβ is the first choice of gβ . Thus it must be the
case that β = πn for some n > 0. But in that case, gβ = gπn is married to her
second most preferred partner bπn−1 . Thus the only way that (bα, gβ) can be a
blocking pair is if bα = bπn . However bπn is matched to gπn+1 in Mπ which he
prefers over gπn . Thus there can be no blocking pair and for each infinite path
π through T , Mπ is a stable matching.

We claim that every symmetric stable matchingM is of the formMπ for some
infinite path through T . That is, suppose that M is a symmetric stable matching
for 〈B,G, {<i}bi∈B , {<j}gj∈G〉. First we claim that b∅ must be married to g(i)

for some i ∈ T . That is, suppose for a contradiction that pM (b∅) = g(η1,...,ηk)

for some k > 1. Then we claim that for all j < k, b(η1,...,ηj) must be married
to g(η1,...,ηj). That is, since g(η1)’s preference list starts out b(η1), b∅ and b∅
prefers g(η1) over g(η1,...,ηk), (b∅, g(η1)) would be a blocking pair of M unless
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(b(η1), g(η1)) ∈M . Next assume by induction that pM (b(η1,...,ηi)) = g(η1,...,ηi) for
i < s. Then the preference list of g(η1,...,ηs) starts out with b(η1,...,ηs), b(η1,...,ηs−1)

and b(η1,...,ηs−1) prefers g(η1,...,ηs) over g(η1,...,ηs−1). Hence (b(η1,...,ηs−1), g(η1,...,ηs))
is blocking pair for M unless pM (b(η1,...,ηs)) = g(η1,...,ηs). Thus it follows by
induction that b(η1,...,ηk−1) must be matched with g(η1,...,ηk−1) in M . But then
b(η1,...,ηk−1) prefers g(η1,...,ηk) over g(η1,...,ηk−1) and g(η1,...,ηk) prefers b(η1,...,ηk−1)

over b∅ which means that (b(η1,...,ηk−1), g(η1,...,ηk)) is a blocking pair for M . Thus
b∅ must be married to some g(i) for some (i) ∈ T .

Next, we claim that every boy bη such that η 6= ∅ must be married to gη or
to a girl gη_i for some η_i in T . That is, if bη is not married to gη, then bη
is gη’s first choice and hence (bη, gη) would be a blocking pair for M unless bη
is married to a girl g which he prefers over gη. However the only girls that bη
prefers over gη are of the form gη_i where ηfrowni is in T . Thus since each boy
bη is married to either gη or some girl gη_i and M is symmetric, then each girl
gβ_i must be married to either bβ_i or to bβ . Now let π be the set of nodes η
such that bη is married to a girl of the form gη_i for some i. We claim that π
is an infinite path through T and hence M = Mπ. That is, suppose that there
exist distinct nodes α and β in π such that neither α @ β nor β @ α. Then let
γ be the longest common initial segment of α and β and suppose that α = γ_µ
and β = γ_ν. Then M cannot be symmetric since the |γ| + |µ| + |ν| − 1 girls
of the form gη where η v α or η v β can only marry the |γ|+ |µ|+ |ν| − 2 boys
bδ such that δ @ α or δ @ β. Thus all the nodes in π must be comparable with
respect to v. Now suppose that η ∈ π but there is no node of the form η_i in
π. But this means that (bη_i, gη_i) ∈ M for all i such that η_i ∈ T . But this
contradicts the fact that bη must be matched to some gη_i for some i. Thus it
must be the case that π is an infinite path through T . �

Let φe be the partial recursive function computed by the e-th Turing machine
and We = {n : φe(n) is defined}. Then we have the following corollary of
Theorem 2.2.

Corollary 2.3 The set U of all 〈a, b, c, d〉 such that
〈Wa,Wb, {Wφc(n)}n∈Wa

, {Wφd(n)}n∈Wb
〉 is a recursive instance of the stable mar-

riage problem which has a symmetric stable matching is Σ1
1 complete.

Proof: It is easy to see that U is a Σ1
1 set. On the other hand, it is well

known that the set InfPath of indices of primitive recursive functions which are
the characteristic functions of trees in ω<ω which have an infinite path through
them is Σ1

1 complete. Our proof of Theorem 2.2 shows that InfPath is 1:1
reducible to U so that U is Σ1

1 complete. �

We note that the orderings used in Theorem 2.2 are all well orderings of either
order type ω or ω + ω. If fact, our next results will show that as long as the
preference orderings are well orderings, then any infinite instance of the stable
marriage problems has a stable matching. We start with a very simple version
of this result which will be relevant for our results on Reverse Mathematics.
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Theorem 2.4 Suppose that 〈B,G, {<i}bi∈B , {<j}gj∈G〉 is an infinite instance
of the stable marriage problem where for all i, <i and <i are countable well
orderings and for all i and j, <i=<j and <i=<j. Then there is a unique stable
matching for M .

Proof: Suppose that <i has order type β and <i has order type α for all
i. Since α and β are countable ordinals, then either α ≤ β or β ≤ α. Suppose
that α ≤ β. Then we can relabel the boys in B = {bη : η ∈ α} so that for
all γ and δ in α, bγ <i bδ ⇐⇒ γ < δ. Similarly we can relabel the girls in
G = {gη : η ∈ β} so that for all γ and δ in β, gγ <i gδ ⇐⇒ γ < δ.

This given, it is then easy to see that Mα = {(bη, gη) : η ∈ α} is a stable
matching and that it is the only stable matching. That is, suppose that M is
a stable matching. Now if (b0, g0) /∈M , then (b0, g0) will be a blocking pair for
M since g0 is b0’s first preference and b0 is g0’s first preference. Now assume by
induction that for all γ < δ, (bγ , gγ) ∈M . Then we claim that (bδ, gδ) must be
in M since otherwise (bδ, gδ) would be a blocking pair for M . That is, if (bδ, gδ)
is not in M , then either bδ has no partner in M or is married to some gη such
that δ < η. Similarly, either gδ has no partner in M or is married to some bη
such that δ < η. It is then easy to see that under such circumstances, (bδ, gδ)
would be a blocking pair for M . Thus it follows that M = Mα.

In the case where β < α, we can show that Mβ = {(bη, gη) : η ∈ β} is the
unique stable matching. �

Finally, our next result will show that if the orderings <i and <i are well
orderings for every i, then we can show that there is a transfinite version of the
Gale-Shapley algorithm that will produce a stable matching.

Theorem 2.5 Suppose that 〈B,G, {<i}bi∈B , {<j}gj∈G〉 is an infinite instance
of the stable marriage problem where for all i and j, the orderings <i and <j

are well-orderings. Then there is a stable matching for M .

Proof: Let B = {b0, b1, b2, . . . } and G = {g0, g1, g2, . . . }.
We define the stable matching M by transfinite induction. For any ordinal

α, we will have a set Mα ⊂ B×G of partners at stage α and a set Rα ⊂ B×G
of rejected proposals. At stage 0, R0 = ∅ and M0 = {(b0, g)}, where g is the
least girl relative to the ordering <0. In general, at any successor stage α+1, we
check whether there is a b ∈ B without a partner at stage α such that there is
some g ∈ G such that (b, g) /∈ Rα. If not, then we will terminate the procedure
and Mα will be the desired stable matching. For the sake of completeness, we
let Mα+1 = Mα and Rα+1 = Rα and terminate the procedure. If there is such
a boy, then let b = bi where i is the least k such that bk has no partner at
stage Mα and there is some g ∈ G such that (bk, g) /∈ Rα. Then let g = gj
be the ≤i-least member of G − {g : (b, g) ∈ Rα}. Then at stage α + 1, b
proposes to g with three possible outcomes. First if g has no partner in Mα,
then we set Mα+1 = Mα ∪ {(b, g)} and Rα+1 = Rα. Second, if g has a partner
in Mα but pMα

(g) <j b, then we set Mα+1 = Mα and Rα+1 = Rα ∪ {(b, g)}.
Third, if b′ = pMα

(g) >j b, then we set Mα+1 = (Mα ∪ {(b, g)}) − {(b′, g)}
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and Rα+1 = Rα ∪ {(b′, g)}. For limit ordinals λ, we let Rλ = ∪α<λRα and
Mα = limα→λM

α. By this limit, we mean that (b, g) ∈Mλ if and only if there
exists β < λ such that (b, g) ∈Mα for all α > β.

Next observe that for α < β, Range(Mα) ⊂ Range(Mβ) and for any
gj ∈ Range(Mα), pMβ

(gj) ≤j pMα(gj). It then easily follows by cardinality
arguments, that there must be a countable ordinal γ such that Dom(Mγ+1) =
Dom(Mγ), Range(Mγ+1) = Range(Mγ) and Rγ+1 = Rγ .

We claim thatM = Mγ is a stable matching. It is clear from the construction
that M is a partial matching, that is, each b ∈ B is paired with at most one
g ∈ G and vice versa. Suppose by way of contradiction that there is a blocking
pair (bi, gj) for M . If bi has no partner in M , then it must be the case that
(bi, gj) ∈ Rγ . But the only way that (bi, gj) can turn up in some Rγ is if
there is some stage α + 1 with α < γ and (bi, gj) ∈ Rα+1 − Rα. But this
means that gj has a partner in Mα+1 and pMα+1(gj) <j bi. It follows that
pMγ

(gj) ≤j pMα+1(gj) <j bi. Thus bi must have a partner in Mα. But then we
can argue exactly as above that it cannot be the case the (bi, gj) ∈ Rγ . However
if (bi, gj) /∈ Rγ , then it is easy to see that pMγ

(bi) <i gj . Thus, in fact, (bi, gj)
is not a blocking pair for M . �

Next we want to consider the proof theoretic strengths of the Theorems 2.1,
2.4 and 2.5 in the standard systems of second order arithmetic considered in
Reverse Mathematics.

First we observe that we can express the concept of having order type ω
in a weak second order system by just mimicking the axioms for the natural
numbers. To be more precise, the preference order of <i has order type ω if the
following are all true.

1. WO(<i), i.e., <i is a well ordering, and

2. if gk is not the most preferred partner of bi, then there exists some gj <i gk
such that gk is the most preferred partner of bi after gj .

We shall say that an infinite instance of the stable marriage problem is N-listed if
B,G ⊆ N and all the orderings <i for bi ∈ B and all the orderings <i for gi ∈ G
are of order type ω. Moreover, we assume that we can uniformly compute B,
G, and the orderings <i and <j for all i ∈ B and j ∈ G. That is, we assume
that there is a single recursive set D ⊆ N2 such that B = {n : 〈0, n〉inD}, G =
{n : 〈1, n〉 ∈ D}, and for all i ∈ B and j ∈ G, <i= {〈a, b〉 : 〈〈a, b〉, 2(i+1)〉 ∈ D}
and <j= {〈a, b〉 : 〈〈a, b〉, 2(j + 1) + 1〉 ∈ D}.

Theorem 2.6 (RCA0) The following are equivalent:

1. ACA0;

2. Any N-listed stable marriage problem has a solution.

Proof: To prove that (1) implies (2), we use the Gale-Shapley algorithm.
Given that the stable marriage problem is N-listed, we use ACA0 to find a listing
for each ≤i and ≤j . That is, P (i, 1) is the unique gj such that (∀k)gj ≤i gk and
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then P (i, n+1) is the unique gj such that for all gk other than P (i, 0), . . . , P (i, n),
gj ≤i gk. Thus the Gale-Shapley algorithm can be applied. Now let pMs

:
{b1, b2, . . . , bs} → G be the mapping defined by stage s and define a partial
matching M by M(bi, g) if lims→∞pMs(bi) = g. This definition is arithmetical
and hence can be done in ACA0. Our proof of Theorem 2.1 shows that M is a
stable matching.

For the reverse direction, suppose that every N-listed stable marriage prob-
lem has a solution. By Theorem 1.1, it suffices to show that the range of an
arbitrary function f mapping N one-to-one into N is defined. We construct an
instance of the stable marriage problem such that f may be defined from any
solution. The construction is a variation of one that given by Hirst [8].

First we let B = G = N. To avoid confusion, we shall use bi in place of i when
we are considering boys and use gi in place of i when we are considering girls.
There are several cases in the definition of the orderings <i and <j for each i and
j. Much like in the proof of Theorem 2.2, we shall fix a standard ordering of the
girls and boys to be the usual ordering of N. We shall then specify a preference
ordering for bi by giving a finite sequence of girls Si = gj0 , gj1 , . . . , gjn . That is,
we define g <i g′ if and only if either

1. g ∈ Si and g′ ∈ G− Si,

2. g, g′ ∈ G− Si and g < g′ or

3. g = gjk and g′ = gjl and k < l.

We shall specify a preference order for gj in a similar manner by specifying a
sequence Sj = bi0 , bi1 , . . . , bin .

Case 1. For i = 2m, Si = g2n+1, g2m if there is an n such that m < n and
f(n) = m and Si = g2m if there is no n such that n > m and f(n) = m.
That is, if there is an n such that n > m and f(n) = m, then g2n+1 is the
most preferred girl of bi, followed by g2m, who are then followed by the
rest of the girls in standard order. If there is no n such that m < n and
f(n) = m, then g2m is the first girl preferred by bi who is followed by the
rest of the girls in standard order.

Case 2 If i = 2n + 1, Si = g2m, g2n+1 if f(n) = m < n and Si = g2n+1 if
f(n) ≥ n. Thus if f(n) = m < n, then g2m is the most preferred girl
of bi, followed by g2n+1, who are then followed by the rest of the girls in
standard order. If f(n) ≥ n, then g2n+1 is the first girl preferred by bi
and then the rest of the girls follow in standard order.

Case 3 If j = 2m, then <j is defined by setting Sj = b2n+1, b2m if there is an
n such that m < n and f(n) = m and setting Sj = b2m if there is no n
such that n > m and f(n) = m. Thus if f(n) = m < n, then b2n+1 is the
most preferred boy of gj , who is followed by b2m, who are then followed
by the rest of the boys in standard order. If there is no n such that n > m
and f(n) = m, then then b2m is the first boy preferred by gj who is then
followed by the rest of the boys in standard order.
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Case 4 If j = 2n+1, then <j is determined by the sequence Sj = b2m, b2n+1, if
f(n) = m < n and is determined by the sequence Sj = b2n+1 if f(n) ≥ n.
Thus if f(n) = m < n, then b2m is the most preferred boy of gj , who
is followed by b2n+1, who are then followed by the rest of the boys in
standard order. If f(n) ≥ n, then b2m is the first boy preferred by gj who
is then followed by the rest of the boys in standard order.

It is easy to see that our definitions yield an N-listed stable marriage problem.
Hence, by assumption, there must be a solution. Let M be any stable marriage
for this problem. We claim that m is not in the range of f if and only if
(b2m, g2m) ∈ M and there does not exist an p such that p ≤ m and f(p) = m.
That is, suppose there is no n such that n > m and f(n) = m. Then g2m

is the most preferred girl of b2m and b2m is the most preferred boy of g2m.
Since either b2m or g2m must have a partner in M , (b2m, g2m) would be a
blocking pair for M unless (b2m, g2m) ∈ M . One the other hand, if there is
an n such that m < n and f(n) = m, then g2n+1 is the most preferred girl of
b2m and b2m is the most preferred boy of g2n+1 so that by the same argument,
(b2m, g2n+1) ∈ M . Thus (b2m, g2m) ∈ M if and only if there is no n such that
n > m and f(n) = m. Thus if (b2m, g2m) ∈ M , then m in is the range of f if
and only if m ∈ {f(0), . . . , f(m)}. It follows that we can define the range of f
from any solution M of our stable marriage problem. �

Next we consider results about stable marriage problems which are equiv-
alent to ATR0. Let us say that an instance of the stable marriage problem
P = 〈B,G, {<i}bi∈B , {<j}gj∈G〉 is ordered if B,G ⊆ N and for all i and j,
<i=<j is a well ordering and <i=<j is a well ordering. We say that P has
levels if B,G ⊆ N and there are countable well-orderings ≤B of order type β on
B and ≤G of order type γ on G such that

(i) for each limit ordinal λ < γ, every boy b ∈ B prefers any girl g ∈ G with
|g|G < λ to any girl g′ with |g′|G ≥ λ and vice versa, for each limit ordinal
λ < β, every girl g ∈ G prefers any boy b ∈ B with |b|B < λ to any boy b′

with |b′|B ≥ λ where |b|B is the order type of {b′ ∈ B : b′ <B b} and |g|G
is the order type of {g′ ∈ G : g′ <G g},

(ii) for each girl gj and each limit ordinal λ, the restriction of the preference
order <j to the set of boys in {b : λ ≤ |b|B < λ + ω} is of order type ω,
and

(iii) for each boy bi and each limit ordinal λ, the restriction of the preference
order <i to the set of girls in {g : λ ≤ |g|G < λ+ ω} is of order type ω.

.

Theorem 2.7 The following are equivalent over RCA0.

(i) ATR0.

(ii) Any stable marriage problem with levels has a solution.
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(iii) Any ordered stable marriage problem has a solution.

Proof: The implication from (ii) to (iii) is immediate.

To show that (iii) implies (i), we use the equivalence of ATR0 with the CWO
principle that any two well-orderings are comparable. Let <(1) and <(2) be two
well-orderings of N and define the stable marriage problem P so that B = G = N

and each bi ∈ B has order <i=<(2) and each gj ∈ G has order <j=<(1). This
is an ordered stable marriage problem. Hence, by assumption, there must be a
solution. Our proof of Theorem 2.4 shows that there is a unique stable match-
ing in this case, which either induces an order isomorphism from (N, <(1)) onto
an initial segment of (N, <(2)), or induces an order isomorphism from (N, <(2))
onto an initial segment of (N, <(1)).

To prove that (i) implies (ii), suppose that we are given

P = 〈B,G, {<i}bi∈B , {<j}gj∈G〉

satisfying the hypothesis of (ii). Let ≤B and ≤G be the associated well-orderings
of B and G respectively. Suppose that β is the order type of ≤B and γ is the
order type of ≤G. We can assume that both B and G are infinite since otherwise,
the result follows by applying a finite version of the Gale-Shapley algorithm. We
shall also assume, without loss of generality, that β ≤ γ. Then for each α < β,
let bα be the boy b ∈ B such that |b|B = α. Similarly for each δ < γ, let gδ be
the girl g ∈ G such that |g|G = δ. Finally for each λ, we let B(λ) = {bα : α < λ}
and G(λ) = {gδ : δ < λ}.

We then use a modified version of the Gale-Shapley algorithm to construct
a stable matching for the given instance of the stable marriage problem.

Stage 0. Consider the society

〈B(ω), G(ω), {<i� G(ω)}bi∈B(ω), {gj � B(ω)}gj∈G(ω)〉.

This is a society where all the orderings are of order type ω so that we can
run the infinite version of the Gale-Shapley algorithm of Theorem 2.1 to pro-
duce a matching M0. Then by the proof of Theorem 2.1, we know that either
Dom(M0) = B(ω) or Range(M0) = G(ω). We set β0 = 1 if Dom(M0) = B(ω)
and β0 = 0 otherwise. Similarly, we set γ0 = 1 if Range(M0) = G(ω) and
γ0 = 0 otherwise.

There are a couple of crucial properties about M0 that follow from our proof
of Theorem 2.1. Namely, if Dom(M0) 6= B(ω), then every girl g ∈ Range(M0)
prefers her partner in M0 over all boys in B(ω) − Dom(M0). Similarly, if
Range(M0) 6= G(ω), then every boy in Dom(M0) prefers his partner in M0

over all girls in G(ω)−Range(G). Finally we claim that M0 is in fact a stable
matching for P in the sense that there can be no blocking pair (b, g) where either
b ∈ Dom(M0) or g ∈ Range(M0). That is, we know that there is no blocking
pair in B(ω)×G(ω) so that either (i) b ∈ B −B(ω) and g ∈ Dom(M0) ⊆ G(ω)
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or (ii) b ∈ Dom(M0) ⊆ B(ω) and g ∈ G − G(ω). But case (i) cannot hold
because pM0(g) ∈ B(ω) and, by assumption, g prefers any boy in B(ω) over any
boy in B −B(ω). Similarly, (ii) cannot hold since then pM0(b) ∈ G(ω) and, by
assumption, b prefers any girl in G(ω) over any girl in G−G(ω).

Stage σ + 1. We assume that we have constructed a matching Mσ such that
there are ordinals βσ and γσ such that their ordinal products with ω, βσω and
γσω are such that either

1. Dom(Mσ) = B(βσω) and Range(Mσ) = G(γσω),

2. Dom(Mσ) = B(βσω) ∪ B∗σ where B∗σ ⊂ B(βσω + ω) − B(βσω) and
Range(Mσ) = G(γσω) or

3. Range(Mσ) = G(γσω) ∪ G∗σ where G∗σ ⊂ G(γσω + ω) − G(γσω) and
Dom(Mσ) = B(βσω)

Moreover we assume that Mσ is stable for P in the sense that there is no blocking
pair (b, g) where either b ∈ Dom(Mσ) or g ∈ Range(Mσ). This implies that for
any b ∈ Dom(M), b prefers his partner in Mσ over all girls in G−Range(Mσ).
Similarly any g ∈ Range(M), g prefers her partner in Mσ over all boys in
B −Dom(M). Then we have several cases.

Case 0. Either B = B(βσω) or G = G(γσω).
In this case, we terminate the construction since Mσ is a stable matching for
〈B,G, {<i}bi∈B , {<j}gj∈G〉.

Case 1. B −Dom(Mσ) and G−Range(Mσ) are both infinite.

There are three subcases here.

Subcase 1A. B(βσω + ω)) − Dom(Mσ) and G(γσω + ω) − Range(Mσ) are
both infinite.

In this case, we consider the society where the boys are B′ = B(βσω+ ω)−
Dom(Mσ) and the girls are G′ = G(γσω+ ω)−Range(Mσ) and the preference
orders are the restrictions of the preference orders from P . Our assumptions
ensure that the restricted preference orders are all of order type ω so that we
can apply the infinite version of the Gale-Shapley algorithm of Theorem 2.1.
This will produce a relative stable matching M such that either Dom(M) = B′

or Range(M) = G′. We then let Mσ+1 = Mσ ∪M . We also let βσ+1 = βσ + 1
if Dom(M) = B′ and βσ+1 = βσ otherwise. Similarly, we let γσ+1 = γσ + 1 if
Range(M) = G′ and we let γσ+1 = γσ if otherwise.

Next we observe that Mσ+1 is stable in the sense that there is no blocking
pair (bi, gj) for Mσ+1 such that either bi ∈ Dom(Mσ+1) or gj ∈ Range(Mσ+1).
That is, suppose for a contradiction that there is such a blocking pair (bi, gj).
First we claim that it cannot be the case that bi ∈ Dom(Mσ). For if bi ∈
Dom(Mσ), then it cannot be the case that gj ∈ Range(Mσ) since other-
wise (bi, gj) would be a blocking pair for Mσ. However it cannot be the
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case that gj ∈ G − Range(Mσ) because bi prefers his partner to all girls in
G − Range(Mσ). Next suppose that bi ∈ Dom(M). Thus pMσ+1(bi) is in
G′ = G(γσω + ω)−Range(Mσ). Then it cannot be that gj ∈ G−G(γσω + ω)
since by the definition of levels, bi prefers every girl in G(γσω+ω) to every girl in
G−G(γσω+ω). Similarly it cannot be that gj ∈ G′ since M is a stable match-
ing in our restricted society. Thus it must be the case that gj ∈ Range(Mσ).
But then by our assumption, we know that gj prefers her partner b in Mσ to bi.
Thus (bi, gj) cannot be a blocking pair. The argument that gj /∈ Range(Mσ+1)
is similar.

Subcase 1B. B(βσω + ω)−Dom(Mσ) is finite.

Then (2) holds where (B(βσω + ω)−B(βσω))−B∗σ is finite and Range(Mσ) =
G(γσω). In this case, we consider the restricted matching problem on B′ =
B(βσω + 2ω)−Dom(Mσ) and G′ = G(γσω + ω)−G(γσω). Again we see that
each preference order has order type ω. In particular the preference order of
each gj begins with a finite sequence from B(βσω + ω) − B∗σ and is followed
by an ω-sequence from B(βσω + 2ω) − B(βσω + ω). The Gale-Shapley algo-
rithm can thus be applied to produce a relative stable matching M such that
either Dom(M) = B′ or Range(M) = G′. In this case, it is important to note
that the finite set B(βσω + ω) − Dom(Mσ) is included in Dom(M). To see
this, first observe that since G′ is infinite and B(βσω+ω)−Dom(Mσ) is finite,
there must be some pair (b, g) ∈ M such that b ∈ B(βσω + 2ω)− B(βσω + ω).
Choose such a pair (b, g) and suppose for a contradiction that there is some
bi ∈ (βσω + ω) − Dom(Mσ) which is not in Dom(M). Then we claim that
(bi, g) is a blocking pair for M . That is, by our definition of levels, g prefers
bi to b and hence (bi, g) is blocking pair because we are assuming that bi has
no partner. We now let Mσ+1 = Mσ ∪ M . We also let βσ+1 = βσ + 2 if
Dom(M) = B′ and βσ+1 = βσ + 1 otherwise. Similarly, we let γσ+1 = γσ + 1 if
Range(M) = G′ and we let γσ+1 = γσ if otherwise.

Next we show as in Subcase 1A that Mσ+1 is stable in the sense that there
is no blocking pair (bi, gj) for Mσ+1 such that either bi ∈ Dom(Mσ+1) or
gj ∈ Range(Mσ+1). The stability of Mσ implies that bi /∈ Dom(Mσ) and
gj /∈ Range(Mσ). If bi ∈ Dom(M), then we can argue as before that since
pMσ+1(bi) ∈ G(γσω + ω)−Range(Mσ), it cannot be that gj ∈ G−G(γσω + ω)
by the definition of levels, it cannot be that gj ∈ G′ = G(γσω+ω)−Dom(Mσ)
since M is a stable matching in our restricted society, and it cannot be that
gj ∈ Range(Mσ) by the stability of Mσ. Thus there can be no such blocking
pair (bi, gj) with bi ∈ Dom(Mσ+1). Finally, suppose that gj ∈ Range(M).
Then pMσ+1(gj) ∈ B(βσω + 2ω)− Range(Mσ). Since bi /∈ Dom(Mσ), we must
have either bi ∈ B′ or bi ∈ B−B(βσω+ω+ω). The former is not possible since
M is a stable matching and the latter is not possible by the definition of levels.

Subcase 1C. G(γσω + ω)−Range(Mσ) is finite.

Then (3) holds where (G(γσω + ω)−G(γσω)) − G∗σ is finite and Dom(Mσ) =
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B(βσω). As above, we let Mσ+1 = Mσ ∪ M where M is produced by the
Gale-Shapley algorithm applied to the restricted preference orders on B′ =
B(βσω+ω)−Dom(Mσ) and G′ = G(γσω+ 2ω)−Range(Mσ). The details are
similar to Subcase 1B.

Case 2. Either B −Dom(Mσ) is finite or G−Range(Mσ) is finite.

Subcase 2A. B−Dom(Mσ) is finite and |B−Dom(Mσ)| ≤ |G−Range(Mσ)|.

Let B′ = B−Dom(Mσ) and n = |B′|. Our idea is to let Mσ+1 = Mσ∪M where
M is the matching that results by running n steps of the Gale-Shapley algorithm
for a restricted society whose set of boys isB′, whose set of girls is some appropri-
ate subset of G(γσω+2ω)−G(γσω), and where the ordering are the restrictions
of the ordering from our original ordered society 〈B,G, {<i}bi∈B , {<j}gj∈G〉. If
we are in cases (1) or (2), then Range(Mσ) = G(γσω) and hence we can let
G′ = G(γσω+ ω)−Range(Mσ). That is, in these cases, our assumptions guar-
antee that |G′| ≥ |B′| and that any boy in B′ prefers any girl g′ ∈ G′ to any girl
g ∈ G−G(γσω+ω). Moreover the restrictions of the ordering <i and <j will ei-
ther be finite or of order type ω. If we are in case (3), then there are two possible
subcases. That is, it could be that the cardinality of G(γσω+ω)−Range(Mσ)
is greater than or equal to n in which case we let G′ = G(γσω+ω)−Range(Mσ)
as we did in cases (1) and (2). If the cardinality of G(γσω + ω) − Range(Mσ)
is less than n, then we let G′ = G(γσω + 2ω) − Range(Mσ). In this situation,
again it is easy to see that our assumptions guarantee that |G′| ≥ |B′| and that
any boy in B′ prefers any girl g′ ∈ G′ to any girl g ∈ G−G(γσω + 2ω). More-
over the restrictions of the ordering <i and <j will either be finite or of order
type ω. In any case, we can run the Gale-Shapley algorithm for the restricted
society determined by B′ and G′ and construct a stable matching M such that
Dom(M) = B′. We then let Mσ+1 = Mσ ∪M and we terminate the algorithm.

Since Dom(M) = B′, it is clear that Dom(Mσ+1) = B. We claim that
Mσ+1 is a stable matching for 〈B,G, {<i}bi∈B , {<j}gj∈G〉. That is, suppose
that (bi, gj) is a blocking pair for Mσ+1. Then since the domain of Mσ+1 = B,
either bi ∈ Dom(Mσ) or bi ∈ Dom(M). By assumption, Mσ has no blocking
pair (b, g) with either b ∈ Dom(Mσ) or g ∈ Range(Mσ), so that we cannot
have bi ∈ Dom(Mσ). Thus it must be the case that bi ∈ Dom(M). Then it
cannot be that gj ∈ G′, or (bi, gj) would be a blocking pair for M . Also, gj
cannot be in Range(Mσ) since this would make (bi, gj) a blocking pair for Mσ.
Thus the only possibility left is that gj ∈ G − (G′ ∪ Range(Mσ)). But then
pM (bi) ∈ G′, so that by our observations above, bi prefers pM (bi) to gj . It
follows that there can be no blocking pair for Mσ+1 and hence Mσ+1 is a stable
matching of 〈B,G, {<i}bi∈B , {<j}gj∈G〉.

Subcase 2B. G−Range(Mσ) is finite and |G−Range(Mσ)| ≤ |B−Dom(Mσ)|.

Let G′ = G − Range(Mσ) and n = |G′|. Our idea is to let Mσ+1 = Mσ ∪M
where M is the matching that results by running n steps of the Gale-Shapley al-
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gorithm with the roles of the boys and the girls reversed for a restricted society
whose set of boys B′ is some appropriate subset of B(βσω + 2ω) − B(βσω)
and the ordering are the restrictions of the ordering from our original or-
dered society 〈B,G, {<i}bi∈B , {<j}gj∈G〉. If we are in cases (1) or (3), then
Dom(Mσ) = B(βσω) and hence we can let B′ = B(βσω+ω)−Dom(Mσ). That
is, in these cases, our assumptions guarantee that |G′| ≤ |B′| and that any girl
in G′ prefers any boy b′ ∈ B′ to any boy b ∈ B − B(βσω + ω). Moreover the
restrictions of the ordering <i and <j will either be finite or of order type ω.
If we are in case (2), then there are two possible subcases. That is, it could be
that the cardinality of B(βσω + ω) − Dom(Mσ) is greater than or equal to n
in which case we let B′ = B(βσω + ω) −Dom(Mσ) as we did in cases (1) and
(3). If the cardinality of B(βσω + ω) − Dom(Mσ) is less than n, then we let
B′ = B(βσω + 2ω) −Dom(Mσ). In this situation, again it is easy to see that
our assumptions guarantee that |B′| ≥ |G′| and that any girl in G′ prefers any
boy b′ ∈ B′ to any boy b ∈ B − B(βσω + 2ω). Moreover the restrictions of
the ordering <i and <j will either be finite or of order type ω. In all cases, we
can run the Gale-Shapley algorithm for the restricted society determined by B′

and G′ with the roles of the boys and the girls reversed and construct a stable
matching M such that Range(M) = G′. We then let Mσ+1 = Mσ ∪M and we
terminate the algorithm.

Since Range(M) = G′ it follows that Range(Mσ+1) = G. We claim that
Mσ+1 is a stable matching for 〈B,G, {<i}bi∈B , {<j}gj∈G〉. That is, suppose
that (bi, gj) is a blocking pair for Mσ+1. Then since the range of Mσ+1 = G,
either gj ∈ Range(Mσ) or gj ∈ Range(M). By assumption, Mσ has no block-
ing pair (b, g) with either b ∈ Dom(Mσ) or g ∈ Range(Mσ), so that we cannot
have gj ∈ Range(Mσ). Thus it must be the case that gj ∈ Range(M). Then
it cannot be that bi ∈ B′, or (bi, gj) would be a blocking pair for M . Also,
bi cannot be in Dom(Mσ) since this would make (bi, gj) a blocking pair for
Mσ. Thus the only possibility left is that bi ∈ B − (B′ ∪Dom(Mσ)). But then
pM (gj) ∈ B′, so that by our observations above, gj prefers pM (gj) to bi. It
follows that there can be no blocking pair for Mσ+1 and hence Mσ+1 is a stable
matching of 〈B,G, {<i}bi∈B , {<j}gj∈G〉.

Stage λ, λ a limit ordinal

In this case, let λ0 < λ1 < . . . be a sequence of ordinals such that limiλi = λ.
Then we let Mλ =

⋃
iMλi , βλ = limiβλi and γλ = limiγλi . We can assume by

induction that if α < η < λ, then Mα ⊆Mη. Hence it follows that if it is the case
that for infinitely many i, Dom(Mλi) = B(βλiω), then Dom(Mλ) = B(βλω).
Similarly, if for infinitely many i, Range(Mλi) = G(γλiω), then Range(Mλ) =
G(γλω). Since for each i, either Dom(Mλi) = B(βλiω) or Range(Mλi) =
G(γλiω), it follows that either Dom(Mλ) = B(βλω) or Range(Mλ) = G(γλω).
Now suppose that there is some n ≥ 0 such that for all m > n, βλi = βλ and
Dom(Mλi) = B(βλω) ∪ B∗λi where B∗λi ⊆ B(βλω + ω) − B(βλω). Then we let⋃
iB
∗
λi

= B∗λ ⊂ B(βλω+ ω)−B(βλω). Then clearly Dom(Mλ) = B(βλω)∪B∗λ
and it must be the case that Range(Mλ) = G(γλω). Similarly, if there is some
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n ≥ 0 such that for all m > n, γλi = γλ, Range(Mλi) = G(γλω) ∪ G∗λi where
G∗λi ⊆ G(γλω+ω)−G(γλω), we let

⋃
iG
∗
λi

= G∗λ ⊂ G(γλω+ω)−G(γλω). Then
Range(Mλ) = G(γω) ∪G∗λ and it must be the case that Dom(Mλ) = B(γλω).

We claim that there can be no blocking pair (bi, gj) such that either bi ∈
Dom(Mλ) or gj ∈ Range(Mλ). That is, if there is such a blocking pair (bi, gj),
then first consider the case where bi ∈ Dom(Mλ). Then bi ∈ Dom(Mλk) for
some k. But then (bi, gj) would be a blocking pair for Mλk , contrary to our in-
ductive assumptions. Similarly, if gj ∈ Range(Mλ), then gj ∈ Range(Mλk) for
some k, so that (bi, gj) is a blocking pair for Mλk , contradicting our assumptions.

This completes the construction. It is easy to see by induction that for
all σ < η, we either have βσ < βη or γσ < γη and that for all σ, we must
have βσ ≤ β and γσ ≤ γ. Furthermore, if σ < τ , then (βσ, γσ) < (βτ , γτ ) in
the usual lexicographic order on β × γ, which has order type βγ. Thus the
construction will stop after at most βγ steps and produce a stable matching
for 〈B,G, {<i}bi∈B , {<j}gj∈G〉. Since we have a well-ordering long enough to
accomplish the construction, it follows that arithmetical transfinite recursion
(ATR0) is enough to imply the existence of our stable matching. �

To ensure that an infinite instance, 〈B,G, {<i}bi∈B , {<j}gj∈G〉, of the stable
marriage problem has a symmetric stable matching or a stable matching M
with domain B, we need some additional hypotheses. We consider the following
conditions.

Condition 1(a) For each boy b ∈ B, there exists finite sets
B(b) = {b = bi1 , bi2 , . . . , bin} ⊆ B and G(b) = {gj1 , gj2 , . . . , gjn} ⊆ G such
that, for each k ≤ n, B(b) is the set of the first n most preferred boys of
gjk .

Condition 1(b) For each girl g ∈ G, there exists finite sets
B(g) = {bi1 , bi2 , . . . , bin} ⊆ B and G(g) = {g = gj1 , gj2 , . . . , gjn} ⊆ G such
that, for each k ≤ n, G(g) is the set of the first n most preferred girls of
bjk .

We will say that a stable marriage problem is B-bounded if it satisfies Condi-
tion 1(a), G-bounded if it satisfies 1(b) and bounded if it satisfies both conditions.
If there is a function which gives the finite sets described above from the inputs
b and/or g, then the problem is said to be highly B-bounded (highly G-bounded,
highly bounded). Note that for an N-listed problem, we can always find the de-
sired finite sets for b ∈ B (g ∈ G) if they exist by searching through all possible
sets and checking against the list.

Our example in the proof of Theorem 2.6 is in fact highly bounded if f is
recursive and has a recursive range. That is, if m is not in the range of f , then
G(b2m) = G(g2m) = {g2m} and B(b2m) = B(g2m) = {b2m} satisfy conditions
1(a) and 1(b). If m is in the range of f , then we can find n such that f(n) = m.
If f(n) = m < n, then the sets B(b2n+1) = B(b2m) = B(g2n+1) = B(g2m) =
{g2n+1, g2m} and G(b2n+1) = G(b2m) = G(g2n+1) = G(g2m) = {b2n+1, b2m}
satisfy conditions 1(a) and 1(b). Finally if f(n) ≥ n, then the sets B(b2n+1) =
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B(g2n+1) = {b2n+1} and G(b2n+1) = G(g2n+1) = {g2n+1} satisfy conditions
1(a) and 1(b).

A special case of being B-bounded is when, for each i, there is a j such
that gj prefers bi first because in that case we can simply let B(bi) = {bi} and
G(bi) = {gj}.

Our next two results concern properties of either B-bounded or bounded
instances of the stable marriage problem.

Theorem 2.8 (RCA0) The following are equivalent:

1. ACA0

2. Every B-bounded N-listed stable marriage problem has a solution with do-
main B.

3. Every bounded N-listed stable marriage problem has a symmetric solution.

Proof: Given that the problem is B-bounded, the Gale-Shapley algorithm
will produce a stable matching as above. We claim that the domain must be all
of B. To see this, we show that the sequence pM (b) converges for each b ∈ B.
Let B(b) = {bi1 , . . . , bin} and G(b) = {gj1 , . . . , gjn} be the sets which witness
that condition 1(a) holds for b. Suppose by way of contradiction that some bik
is not in the domain of M for some k ≤ n. Then each of the gjl ’s must reject bik
at some stage s. But this can only happen if gjl prefers pM (gjl) over bik for each
l ≤ n since in the Gale-Shapley algorithm, the preferences for gjl only improve.
But the boys that gjl prefer over bik must be among B(b)−{bik}. However this
is impossible since the n girls in G(b) cannot all be matched to the n− 1 boys
in B(b)− {bik}.

For the symmetric solution, we add the assumption that the problem is
also G-bounded. Then we claim that the matching produced by the Gale-
Shapley algorithm will be symmetric. That is, fix any girl g ∈ G and let
B(g) = {bi1 , . . . , bin} and G(g) = {gj1 , . . . , gjn} be the sets which witness that
condition 1(b) holds for g. Suppose by way of contradiction that some gjl is
not in the range of M for some j ≤ n. It follows that, for each k ≤ n, bik
never proposed to gjl , which means that for each k ≤ n, bik prefers pM (bik) over
gjl . But this means pM (bik) must be in G(g) − {gil} which is impossible since
|B(g)| = n > |G(g)− {gil}| = n− 1

For the reverse direction, note that by our remarks preceding this theorem,
the construction of the society Sf = 〈B,G, {<i}bi∈B , {<j}gj∈G〉 given in The-
orem 2.6 which allows us to construct the range of a function f : N → N is a
bounded instance of the stable marriage problem. �

Theorem 2.9 (RCA0) The following are equivalent:

1. WKL0

2. Every highly B-bounded, effectively N-listed stable marriage problem has
a stable matching with domain B.
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3. Every highly bounded, effectively N-listed stable marriage problem has a
symmetric stable matching.

Proof: Fix some highly B-bounded effectively N-listed infinite instance of
the stable marriage problem, S = 〈B,G, {<i}bi∈B , {<j}gj∈G〉. Let B = {b0 <
b1 < . . .} and G = {g0 < g1 < . . .}. We first show how to find stable matching
with domain B using Bounded Konig’s Lemma.

Fix bi ∈ B and let B(bi) and G(bi) be the finite sets associated with bi by
the B-boundedness condition. Let L(bi) = {gj : ∃g ∈ G(bi)(gj ≤i g)}. We
claim that in any stable matching M , pM (bi) ∈ L(bi). That is, suppose for
a contradiction that pM (bi) /∈ L(bi), then for each g ∈ G(bi), (bi, g) is not a
blocking pair for M and hence g must marry some boy b which she prefers
over bi. But by assumption, each the boys that g prefers over bi must be in
B(bi)− {bi}. But this is impossible since the number of boys in B(bi)− {bi} is
less than the number of girls in G(bi). Moreover since S is highly B-bounded
and effectively N-listed, we can effectively find L(bi) from bi. Similarly, if S is
highly G-bounded and effectively N-listed, then in any stable matching M of S,
it must be the case that each girl gj must marry some boy b in L(gj) = {bi ∈
B : ∃b ∈ B(gj)(bi ≤j b)} and we can effectively find L(gj) from gj .

Thus we can construct an effectively bounded tree T from S such that for
all η ∈ T , the set of immediate successors of η in T are precisely η_j such
that gj ∈ L(b|η|). We can then interpret a path π = (π0, π1, ...) through T as
specifying a mapping Mπ : B → G where M(bi) = gπi . Of course, it is not
necessarily the case that Mπ is even a 1:1 correspondence much less a stable
matching of S. However we can trim T to a tree TS such that the paths through
T correspond exactly to the stable matching of S. That is, we say that a node
η = (η0, . . . , ηn) in T is an element of TS if and only if only if

1. the map Mη = {(bi, gηi) : i ≤ n} is a 1:1 correspondence and

2. there is no k ≤ n such that there is a girl gj with gj <k gηk and either (a)
(bl, gj) ∈ Mη and bk <

j bl for some l ≤ n or (b) gj is not in the range of
Mη but t = max{i : bi <j bk} ≤ n.

It is easy to check that condition (1) ensures that any path π through TS ,
Mπ is a matching for S with domain B and that condition (2) ensures that any
path π through TS is a stable matching. Moreover it is easy to check that that
if M is a stable matching, then π = (pM (b0), pM (b1), . . .) is an infinite path
through TS . Finally for any n, we can let tn = max{j : ∃i ≤ n(gj ∈ L(bi))}
sn = max{i : ∃j ≤ tn∃k ≤ n(bi <j bk)}, and let un = tn + sn. Then we
can use the finite version of the Gale-Shapley algorithm restricted the boys bi
and girls gj with i, j ≤ un and their restricted preference orders. It is then
easy to see that if N is any stable matching for this restricted society, then
(pN (b0), . . . , pN (bn)) will be a node in TS . Thus TS will be an infinite bounded
tree so that by Bounded Konig’s Lemma, TS has an infinite path π and hence
S has a stable matching Mπ with domain B.

In the case that S = 〈B,G, {<i}bi∈B , {<j}gj∈G〉 is a highly bounded effective
N-listed instance of the stable marriage problem, we can modify the construction
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of T and TS as follows. First for each η ∈ T , the set of immediate successors
of η in T are precisely η_j such that gj ∈ L(b|η|/2) if length of η is even. If
|η| = 2n+ 1, then the immediate successors of η are all nodes of the form η_i
such that bi ∈ L(gn) We can then interpret a path π = (π0, π1, ...) through T as
specifying a mapping M ⊆ B ×G where (bi, gπ2i) ∈ Mπ and (bπ2i+1 , gi) ∈ Mπ.
Of course, again it is the case that Mπ may not even even a 1:1 correspondence
much less a stable matching of S. However we can trim T to a tree TS such
that the paths through T correspond exactly to the stable matching of S. That
is, we say that a node η = (η0, . . . , ηn) in T is an element of TS if and only if

1. the map Mη = {(bi, gη2i) : 2i ≤ n} ∪ {(bη2i+1 , gi) : 2i + 1 ≤ n} is a 1:1
correspondence and

2. there is no k such that 2k ≤ n such that there is girl gj such that gj <k gη2k

and either (a) (bl, gj) ∈ Mη and bk <
j bl or (b) gj is not in the range of

Mη but t = 2max{i : bi <j bk} ≤ n.

3. there is no k such that 2k + 1 ≤ n such that there is boy bi such that
bi <

k bη2k+1 and either (a) (bi, gl) ∈ Mη and gk <i gl or (b) bi is not in
the domain of Mη but t = 2max{s : gs <i gk}+ 1 ≤ n.

It is easy to check that condition (1) ensures that any path π through
TS , Mπ is a matching for S with domain B and range G and that condi-
tions (2) and (3) ensure that any path π through TS is a stable matching.
Moreover it is easy to check that that if M is a stable matching, then π =
(pM (b0), pM (g0), pM (b1), pM (g1), . . .) is an infinite path through TS . Finally for
any n, we can let tn = max{j : ∃i ≤ n(gj ∈ L(bi))} sn = max{i : ∃j ≤ tn∃k ≤
n(bi <j bk)}, pn = max{i : ∃j ≤ n(bi ∈ L(gj))} qn = max{j : ∃i ≤ pn∃k ≤
n(gj <i gk)} and let un = tn+sn+pn+qn. Then we can use the finite version of
the Gale-Shapley algorithm restricted to the boys bi and girls gj with i, j ≤ un
and their restricted preference orders. It is then easy to see that if N is any sta-
ble matching for this restrict society, then (pN (b0), pN (g0), . . . , pN (bn), pN (gn))
will be a node in TS . Thus TS will be infinite bounded tree so that by Bounded
Konig’s Lemma, TS has an infinite path π and hence S has a symmetric stable
matching Mπ.

For the reverse direction, we shall show how to use the existence of symmetric
stable matchings in highly bounded effectively N-listed instances of the stable
marriage problem can be used to prove Σ0

1 separation. That is, suppose that
we are given two Σ0

1 formulas φ0(x) = ∃y1 . . .∃ypψ0(y1, . . . , yp, x) and φ1(x) =
∃z1 . . .∃zq)ψ(z1, . . . , zq, x) such that X does not occur freely and ¬∃n(φ0(n) ∧
φ1(n)). We can then construct two increasing sequences of sets {As}s∈ω and
{Bs}s∈ω where

As = {x ≤ s : (∃y1 ≤ s) . . . (∃yp ≤ s)ψ0(y1, . . . , yp, x) holds}

and
Bs = {x ≤ s : (∃z1 ≤ s) . . . (∃zq ≤ s)ψ0(z1, . . . , zq, x) holds}.
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Conceptually, it will be useful in the following argument to consider the sets
A =

⋃
s∈ω As and B =

⋃
s∈ω Bs. Of course, we are working RCA0 so that A

and B are merely defined by Σ0
1 formulas and hence we can not necessarily prove

their existence in RCA0. The existence of the sets is not used in the following
argument. We only use the fact that we can effectively compute As and Bs
uniformly in s. Nevertheless, we shall refer to A and B to help motivate our
construction.

Next we construct a highly bounded effectively listed instance of the stable
marriage problem. First we let B = G = ω. To avoid confusion, we will let
bi stand for i if we are thinking of i as an element of B and let gi stand for i
if we are thinking of i as an element of G. Let Z denote the integers and let
〈, 〉 : Z × ω → ω be some fixed recursive pairing function. To determine the
preference orderings <i and <j , we shall specify finite sequences Si and Sj of
pairwise distinct elements. That is, given Si = (i0, . . . , in), we define <i by
declaring gs <i gt if and only if

(i) s = ip and t = iq where p < q ≤ n,

(ii) s = ip for some p ≤ n and t /∈ {i0, . . . , in}, or

(iii) s, t /∈ {i0, . . . , in} and s < t.

Similarly given Sj = (j0, . . . , jp), we define <j by declaring that bs <j bt if and
only if

(i) s = jp and t = jq where p < q ≤ n,

(ii) s = jp for some p ≤ n and t /∈ {j0, . . . , jn}, or

(iii) s, t /∈ {j0, . . . , jn} and s < t.

Now fix k. We shall define the orderings <〈n,k〉 and <〈n,k〉. Our idea is the
following. Suppose that k /∈ A ∪B. Then for each n, we will set

S〈n,k〉 = g〈n,k〉, g〈n−1,k〉 (1)

S〈n,k〉 = b〈n+1,k〉, b〈n,k〉. (2)

Note that for each n, b〈n,k〉 is the most preferred boy of some girl, namely
g〈n−1,k〉. Hence we can find the sets B(b〈n,k〉) and G(b〈n,k〉) required by the B
boundedness condition by setting B(b〈n,k〉) = {b〈n,k〉} and setting G(b〈n,k〉) =
{g〈n−1,k〉}. Then by our earlier remarks we know that b〈n,k〉 must marry some
girl in L(b〈n,k〉) = {g〈n−1,k〉, g〈n,k〉}. Similarly g〈n,k〉 is the most preferred girl
of some boy, namely b〈n,k〉. Hence we can find the sets B(g〈n,k〉) and G(g〈n,k〉)
required by the G-boundedness condition by setting B(g〈n,k〉) = {b〈n,k〉} and
setting G(g〈n,k〉) = {g〈n,k〉}. Then by our earlier remarks we know that g〈n,k〉
must marry some girl in L(g〈n,k〉) = {b〈n+1,k〉, b〈n,k〉}. These choices are pictured
as in Figure 1 which we call the basic two-way infinite chain.

It follows that all elements in this basic chain must map to the two elements
to which it is connected in the diagram and hence there are precisely two pos-
sibilities for any stable matching M on this chain, namely
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Figure 1: The basic two-way infinite chain

(A) (b〈n,k〉, g〈n,k〉) ∈M for all n ∈ Z or
(B) (b〈n,k〉, g〈n−1,k〉) ∈M for all n ∈ Z.
Our idea is to modify this basic chain so that only (A) is possible if k ∈ A and
only (B) is possible if k ∈ B.

Formally, for each k, we start by defining S〈n,k〉 = g〈n,k〉, g〈n−1,k〉 and
S〈n,k〉 = b〈n+1,k〉, b〈n,k〉 for all n < 0. Then for all n ≥ 0, we have three
cases. Let A−1 = B−1 = ∅.

Case 1. Define S〈n,k〉 = g〈n,k〉, g〈n−1,k〉 and S〈n,k〉 = b〈n+1,k〉, b〈n,k〉 if k /∈
An ∪Bn.

Case 2. If k ∈ An, then define S〈n,k〉 = g〈n,k〉, and S〈n,k〉 = b〈n,k〉. (Note
that in this case, pM (b〈n,k〉) = g〈n,k〉 for any stable matching M .)

Case 3. If k ∈ Bn, then define S〈n,k〉 = g〈n−1,k〉, and S〈n,k〉 = b〈n+1,k〉. (Note
that in this case, pM (b〈n,k〉) = g〈n−1,k〉 for any stable matching M .)

Thus we have to consider three cases. Namely if it is never the case that
k ∈ An ∪ Bn, then we will be in the situation of the basic two-way infinite
chain described above. That is, if either n < 0 or k /∈ An ∪ Bn, then the
sets B(b〈n,k〉) = {b〈n,k〉} and G(b〈n,k〉) = {g〈n−1,k〉} will witness that the B-
boundedness condition holds for b〈n,k〉. Similarly the sets B(g〈n,k〉) = {b〈n,k〉}
and G(g〈n,k〉) = {g〈n,k〉} will witness that the G-boundedness condition holds
for g〈n,k〉.

If k ∈ An−An−1, then g〈m,k〉 is the most preferred girl of b〈m,k〉 for all m ≥ n.
It follows that the sets G(g〈m,k〉) = {g〈m,k〉} and B(g〈m,k〉) = {b〈m,k〉} will
witness that G-boundedness condition for g〈n,k〉 holds for all m ≥ n. Similarly
for all i ≥ n, b〈i,k〉 is the most preferred boy of g〈i,k〉 so that B(b〈i,k〉) = {b〈i,k〉}
and G(b〈i,k〉) = {g〈i,k〉} and will witness that B-boundedness condition for b〈i,k〉
holds. Thus the conditions for being highly bounded holds for elements of the
basic chain determined by k. Moreover, b〈i,k〉 must marry g〈i,k〉 for i ≥ n since
they are the most preferred partner of each other. But this will force b〈i,k〉 to
marry g〈i,k〉 for all i ∈ Z.

Finally consider the case where k ∈ Bn−Bn−1. First note that b〈m,k〉 is the
most preferred boy of g〈m−1,k〉 for all m ≥ n. It follows that the sets B(b〈m,k〉) =
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{b〈m,k〉} and G(b〈m,k〉) = {g〈m−1,k〉} will witness that B-boundedness condition
for b〈m,k〉 holds for all m ≥ n. Similarly for i ≥ n, g〈i,k〉 is the most preferred girl
of b〈i+1,k〉 so that G(g〈i,k〉) = {g〈i,k〉} and B(g〈i,k〉) = {b〈i+1,k〉} will witness that
G-boundedness condition for g〈i,k〉 holds. Thus the conditions for being highly
bounded holds for elements of the basic chain determined by k. Moreover, b〈i,k〉
must marry g〈i−1,k〉 for i > n since they are the most preferred partner of each
other. But this will force b〈i,k〉 to marry g〈i−1,k〉 for all i ∈ Z.

It follows that any stable matching M has the property that M is symmetric
and that if k ∈ A, then b〈0,k〉 must marry g〈0,k〉 and if k ∈ B, then b〈0,k〉 must
marry g〈−1,k〉. Thus the set X consisting of all k ∈ ω such that (b〈0,k〉, g〈0,k〉) ∈
M is separating set for A and B. �

3 Combinatorial Problems equivalent to WKL0

In this section, we shall consider several combinatorial problems which are equiv-
alent to WKL0 over RCA0. We shall start by considering a simple version of
Cantor-Schröder-Bernstein Theorem. The Cantor-Schröder-Bernstein Theorem
states that if B and G are sets and f : B → G and g : G→ B are 1:1 functions,
then B and G have the same cardinality. Banach strengthened this result by
showing that B can be partitioned into two sets B1 and B2 such that the func-
tion h which is equal to f on B1 and g−1 on B2 is a bijection from B onto G.
Thus we will consider the the following restricted version of this problem.

Problem 1 Suppose that B,G ⊆ N and f : B → G and g : G → B are
1:1 functions such that the sets f(B) and g(G) exist. The problem is to parti-
tion B into two sets B1 and B2 such that the function h = f � B1 ∪ g−1 � B2 is
a bijection from A onto B where we write f � B1 for the function f restricted
to B1.

We note that problem 1 is a special case of the standard marriage problem
of Philip Hall. That is, suppose that we think of B as set of boys and G as a
set of girls. For each boy bi ∈ B, we say that bi knows f(bi) and knows g−1(bi)
if g−1(bi) is defined. Similarly, for each girl gj ∈ G, we say that gj knows g(gj)
and knows f−1(gj) if f−1(gj) is defined. Thus in problem 1, if B, f(B), G and
g(G) are recursive sets and f and g are partial recursive functions, then we will
get a highly recursive society S = 〈B,G,K〉 where K ⊆ B × G is the relation
of knowing. That is, S will have the property that

1. each boy bi ∈ B knows at most two girls and we can effectively find the
set of girls that bi knows from bi,

2. each girl gj ∈ G knows at most two boys and we can effectively find the
set of boys that gj knows from gj ,
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3. for each finite set of boys B′ ⊆ B, the cardinality of the sets of all girls G′

which are known by at least one boy in B′ is greater than or equal to the
cardinality of B′ and

4. for each finite set of girls G′ ⊆ G, the cardinality of the sets of all boys B′

which are known by at least one girl in G′ is greater than or equal to the
cardinality of G′.

A society S is a recursive society if B, G and K are recursive sets. We will call
a recursive society S which satisfies (1)-(4) a degree ≤ 2 highly recursive society.
This given, problem 2 is the following.

Problem 2 Given a degree ≤ 2 highly recursive society S = 〈B,G,K〉, find a
symmetric marriage M , i.e. find a bijection M : B → G so that for all b ∈ B,
(b,M(b)) ∈ K.

We then have the following result about the set of symmetric marriages of
a degree ≤ 2 highly recursive society.

Theorem 3.1 1. If S = 〈B,G,K〉 is a degree ≤ 2 highly recursive society,
then S has either finitely many symmetric marriages or has 2ℵ0 symmetric
marriages.

2. If A0 and A1 are any pair of disjoint r.e. sets, then there is a degree ≤ 2
highly recursive society S = 〈B,G,K〉 such that there is an effective 1:1
degree preserving correspondence between the set of all X ⊆ N such that
A0 ⊆ X and X ∩A1 = ∅ and the set of symmetric marriages of S.

Proof:
For the proof of (1), it is easy to see that the knowledge relation can be

decomposed into chains of four types as pictured in Figure 2. That is, we can
form a graph K from K whose vertex set is B∪G and whose edges are sets of the
form {b, g} where (b, g) ∈ K. Then the connected components of K will break
up into four types, namely, (i) a cycle, (ii) a one way infinite chain starting with
a boy b, (iii) a one-way infinite chain staring with a girl g or (iv) a two-way
infinite chain.

It is then easy to see that for the one-way infinite chains, there is only one
choice for the symmetric marriage M . That is, in Figure 3, M must map bi to gi
for all i. However for the cycles or two way infinite chains, there are two choices
for a symmetric matching M . Thus if K has only finitely many cycles and two-
way infinite chains, then S will have only finitely many symmetric marriages
while if there infinitely many chains which are cycles or two-way infinite chains
in K, then S has 2ℵ0 symmetric marriages.

For (2), fix a pair A and B of infinite disjoint r.e. sets and recursive enu-
merations {As}s∈ω and {Bs}s∈ω such that, for all s, As, Bs ⊆ {0, 1, . . . , s} and
there is at most one element of A ∪B which comes into A ∪B at stage s.
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Figure 2: Chains for K

We first partition ω into a recursive sequence (G0, B0, G1, B1, . . .) of infinite
recursive sets . For any fixed i, let g0

i < g1
i < . . . and b0i < b1i < . . . list the

elements of Gi and Bi in increasing order. Our symmetrically highly recursive
society S = (B,G,K) will be thought of as a bipartite graph with B = ∪iBi
and G = ∪iGi. The idea is to construct a connected component of S with vertex
set Gi ∪ Bi for each i. We construct the i-th component in stages, so that at
stage s, we determine the edges out of gki and bki for k ≤ 2s. We begin as if we
are going to construct the two-way infinite chain in which b0i is joined to g0

i and
g1
i and such that, for each n > 0, b2ni is joined to g2n−2

i and g2n
i and b2n−1

i is
joined to g2n−1

i and g2n+1
i . See Figure 3.

Observe that there are exactly two possible surjective marriages f for such
a component depending on whether f(b0i ) = g0

i or f(b0i ) = g1
i . A marriage

f : B → G for S will code a separating set Cf for A and B by letting i ∈ Cf if
and only if f(b0i ) = g1

i . Then it is easy to see that all we need to do to ensure
that each marriage f of S corresponds to a separating set Cf for A and B is
to construct the i-th component so that it is a one-way chain starting in Bi if
i ∈ A, a one-way chain starting in Gi if i ∈ B, and the full two-way infinite
chain if i /∈ As ∪ Bs. Thus we build the chain until we see that i ∈ A ∪ B at
some stage s. That is, at each stage t, we add bki and gki for k ∈ {2t, 2t + 1}
as pictured in Figure 3. Then if i ∈ Bs omit b2ni and g2n

i from the chain for
all n ≥ s so that the chain will be a one-way infinite starting a girl g2s−2

i . If
i ∈ As, then add b2si and we omit g2s

i plus all boys and girls of the form b2ni and
g2n
i for n > s from the chain so that the chain will be a one-way infinite chain

starting at b2si .
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Figure 3: Generic component of the symmetric society

We note that we can consider this example as a recursive version of problem
(1) by simply directing the edges of the graph down the left hand side of the
graph and up the right hand side of the graph. That is, we can define the
function f : B → G by saying that f(b∗) = g∗ is there is a directed edge from
b∗ to g∗ in some component and define the function g : G → B by saying that
g(g∗) = b∗ if there is a directed edge from g∗ to b∗ in some component. �

Next we consider versions of problems 1 and 2 that are equivalent to WKL0

over RCA0. We note that Hirst [8] considered versions of problems 1 and 2 that
are equivalent to ACA0 over RCA0.

Theorem 3.2 (RCA0) The following are equivalent.

1. WKL0

2. For any sets B,G ⊆ N such that there are 1:1 functions f : B → G and
g : G → B where f(B) and g(G) exists, there exists a partition B1 and
B2 of B such that h = f � B1 ∪ g−1 � B2 is bijection from B onto G.

3. For any degree ≤ 2 society S = (B,G,K) such that B,G ⊆ N and there
are functions KB and KG such that for all b ∈ B, KB(b) is the set of girls
that b knows and for all g ∈ G, KG(g) is the set of all boys that g knows,
there is a symmetric marriage.

Proof: Our proof of part (ii) of the Theorem 3.1 can easily be modified to
show that both (2) and (3) imply Σ0

1 separation which implies WKL0. Moreover
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our remarks at the start of this section show that (3) implies (2). Thus we
need only show that WKL0 implies (3) over RCA0. We know that WKL0 is
equivalent to the Bounded Konig’s Lemma over RCA0 so that we shall show
that Bounded Konig’s Lemma implies (3).

Thus suppose that S = (B,G,K) is a degree ≤ 2 society such that B,G ⊆ N
and there are functions KB and KG such that for all b ∈ B, KB(b) is the set
of girls that b knows and for all g ∈ G, KG(g) is the set of all boys that
g knows. Let B = {i0 < i1 < . . .} and G = {j0 < j1 < . . .}. To avoid
confusion, we shall let bk stand for ik and gk stand for jk for k = 0, 1, . . .. We
define a bounded tree T ⊆ ω<ω as follows. First we put ∅ in T . Then we let
η = (η1, . . . , ηk) in T if and only if for all i, gη2i ∈ KB(bi) and bη2i+1 ∈ K(gi).
We can then interpret an infinite path π = (π1, π2, . . .) through T as specifying
a relation Mπ = {(bi, gπ2i) : i ∈ ω} ∪ {(bπ2i+1 , gi) : i ∈ ω}. Of course, Mπ is
not necessarily a symmetric marriage but we do know that our definition of T
ensures that (bi, gπ2i) ∈ K and (bπ2i+1 , gi) ∈ K for all i. We can however trim
T to get a tree TS so that the infinite paths through TS correspond exactly to
the symmetric marriages of T by saying that a node (π1, . . . , πn) is in TS if and
only if {(bi, gπ2i) : 2i ≤ n} ∪ {(bπ2i+1 , gi) : 2i + 1 ≤ n} is a 1:1 correspondence.
Finally, we can use the functions KB and KG to start to construct 2n steps
of the chains in the graph K associated with the knowledge relation K which
start at bi and gi for all i ≤ n as we did in the proof of part (i) of Theorem
3.1. In the worst case, there will be one chain of length 2n, but in any case,
we will be able to use these chains to find finite sets B′ ⊆ B and G′ ⊆ G such
that {bi : i ≤ n} ⊆ B′, {gi : i ≤ n} ⊆ G′, and there is a 1:1 correspondence
M : B′ → G′ such that for all b ∈ B′, (b,M(b)) ∈ K. We can then use M to
construct a node (M(b0),M−1(g0), . . . ,M(bn),M−1(gn)) ∈ TS . Thus TS is an
infinite bounded tree and hence by Bounded Konig’s Lemma, TS has in infinite
path which corresponds to a symmetric marriage of S. �

We pause at this point to make an interesting contrast between problems 1
and 2 and other combinatorial problems such as the problem of showing that
any highly recursive graph G for which every finite subgraph of G is k-colorable
is k-colorable. Remmel [18] showed that up to a permutation of the colors, for
every highly recursive tree T ⊆ ω<ω, there is a highly recursive graph G such
that there is an effective 1:1 correspondence between the set of infinite paths
through T and the set of k-colorings of G. Thus the k-colorings of a highly
recursive graph G can represent any recursively bounded Π0

1-class P . Cenzer
and Remmel referred to the ability of specific recursively presented instances
of a combinatorial problem P to be able to represent an arbitrary recursively
bounded Π0

1 class in the sense above by saying that P strongly represents every
recursively bounded Π0

1 class. Note that the symmetric marriages of any degree
≤ 2 society as in (3) above clearly cannot strongly represent an arbitrary recur-
sively bounded Π0

1 class since there are recursively bounded Π0
1 classes which

have countably infinitely many elements.
Hirst [11] showed that the theorem
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(4) Any graph G such that there is a function N such that for any vertex v
of G, N(v) equals the set of neighbors of v in G and any finite subgraph of G is
k-colorable is itself k-colorable.

is equivalent to WKL0 over RCA0. Thus (3) is equivalent to (4) over RCA0

and yet there is a real mathematical contrast between theorems (3) and (4) in
the sense that any instance of (3) has either finitely many or 2ℵ0 solutions while
there are instances of (4) which have a countably infinite set of solutions. This
shows that in some sense, the system WKL0 is insensitive to the ability of a
problem to represent a recursively bounded Π0

1-class with a countably infinite
set of solutions as far as the logical strength of theorem is concerned. It would
be interesting to know if there is some weaker version of RCA0 over which this
natural mathematical distinction is reflected in differing logical strengths.

We end this section by considering the proof-theoretic strengths of several
results on infinite partially ordered sets (posets). That is, suppose that we start
with a poset A = (A,≤A), which consists of a subset A of N and an ordering
relation ≤A. The width of A is the maximum cardinality of an antichain in A
and the height of A is the maximum cardinality of a chain in A. The poset
A = (A,≤A) is said to be n-dimensional if there are n linear orderings of A,
(A,L1), . . . , (A,Ln), such that ≤A= L1 ∩ · · · ∩ Ln. The dimension of A is the
least n such A is n-dimensional.

The first theorem we consider is Dilworth’s theorem [3], which states that
any poset A of width n can be covered by n chains. The problem here is to find
such a covering of A by n chains and the set of solutions corresponds to the
various coverings of A by n chains. The effective version of Dilworth’s theorem
has been analyzed by Kierstead in [13], where he showed that every recursive
poset A of width n can be covered by (5n−1)/4 recursive chains, while for each
n ≥ 2, there are recursive posets of width n which cannot be covered by 4(n−1)
chains. See Kierstead’s article [15] for details.

There is a natural dual to Dilworth’s theorem which says that every poset
of height n can be covered by n antichains. The problem again is to find such a
covering. The effective version of the latter theorem was analyzed by Schmerl,
who showed that every recursive poset of height n can be covered by (n2 +n)/2
recursive antichains while for each n ≥ 2, there is a recursive poset of height n
which cannot be covered by (n2 + n)/2 − 1 recursive antichains. Furthermore,
Szeméredi and Trotter showed that there exist recursive partial orders of height
n and recursive dimension 2 which still cannot be covered by (n2 + n)/2 − 1
recursive antichains. These results are reported by Kierstead in [13].

The notion of the dimensionality of posets is due to Dushnik and Miller, who
showed in [4] that a countable poset (A,R) is n-dimensional if and only if it can
be embedded as a subordering in the product ordering Qn, where Q is the set
of rational numbers under the usual ordering. A (recursive) poset (A,R) has
( recursive) dimension equal to d, for d finite, if there are d (recursive) linear
orderings (A,L1), . . . , (A,Ld) such that R = L1∩· · ·∩Ld, but there are not d−1
(recursive) linear orderings (A,L′1), . . . , (A,L′d−1) such that R = L′1∩· · ·∩L′d−1.
In [14], Kierstead, McNulty and Trotter analyze the recursive dimension of
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recursive posets and show that in general, the recursive dimension of a poset is
not equal to its dimension.

Theorem 3.3 (RCA0) The following are equivalent:

1. WKL0

2. Dilworth’s Theorem: Any poset of width k can be covered by k chains.

Proof: First we show that the decomposition theorem follows from WKL0.
Let A = (A,≤A) be a poset of width n. Suppose that A = {a0 < a1 < . . .} ⊆ N.
Let T be the infinite n-ary branching tree. We can think of any infinite path
π = (π0, π1, . . .) as representing a partition (A1, . . . , An) of A where Ai = {an :
πn = i}. We can trim the tree T to construct a bounded tree TA by saying that
a node η = (η0, . . . , ηk) ∈ T is in TA if and only if (Aη1 , . . . , A

η
n) is a collection

of chains in A where Aηi = {j ≤ k : ηj = i}. It is then easy to see that any
infinite path through TA corresponds to a decomposition into n chains. Finally,
it follows from Dilworth’s theorem for finite posets that for all k, there is node
of length k in TA. We note that it is easy to check that that the proof of
the finite version of Dilworth’s theorem requires only Σ0

1 induction and hence
can be carried out in RCA0. Thus Bounded Konig’s Lemma suffices to prove
Dilworth’s theorem over RCA0.

For the reverse direction, we show that Dilworth’s theorem implies Σ0
1 Sep-

aration. That is, we need only show that the set of decompositions of a poset
of width n into n chains can represent the class of separating sets for any pair
of disjoint r.e. sets. Fix a pair A and B of infinite disjoint r.e. sets and 1:1
enumerations gA and gb of A and B respectively.

First consider the case k = 2. We begin with the poset D0 consisting of two
one-way chains {ai,j : i = 0, 1 ∧ j ∈ N} and {bi,j : i = 0, 1 ∧ j ∈ N}, where
we have as,j ≤D0 at,k and bs,j ≤D0 bt,k whenever j < k and s, t ∈ {0, 1} and
a0,j ≤D0 a1,j and b0,j ≤D0 b1,j . The two chains are linked by having a0,j ≤D0

b1,j and similarly b0,j ≤D0 a1,j . We call the elements {a0,i, a1,i, b0,i, b1,i}, the
i-th block of the poset D0. The i-th block of D0 is pictured in Figure 4(A).

Our final poset D = (D,≤D) will consist of the poset D0 together with an
infinite set E whose relations to the elements of D0 and among themselves is
to be specified in stages. Now it is clear that a decomposition of this poset, up
to renaming the chains, is completely determined by the choice, for each i, of
either

(a) putting a0,i and a1,i in one chain and b0,i and b1,i in the other, or

(b) putting a0,i and b1,i in one chain and a1,i and b0,i in the other.

Thus we can think of a chain decomposition h : D → {1, 2} as coding up a
set Ch where i ∈ Ch if and only if we use choice (b) for the i-th component,
that is, if and only if h(a0,i) = h(b1,i). Now the idea is to define the relations
between the elements D0 and remaining set E so that we introduce an element
f ∈ E, at stage s, in the i-th component between a0,i and a1,i if i comes into
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Figure 4: Blocks for width 2 poset

B at stage s, i.e., if gB(s) = i. See Figure 4(B). This will force f , a0,i and a1,i

to be in the same chain. We introduce an element e ∈ E in the i-th component
between b0,i and a1,i if i comes into A at stage s. See Figure 4(C). This will
force f , b0,i and a1,i to be in the same chain. Finally we have no new element
in the i-th component if i /∈ A∪B. Now suppose that h is a decomposition of D
into two chains. We define a separating set S for A and B by putting i into S if
and only if h(a0,i) = h(a1,i). Furthermore, there is a one-to-one correspondence
h → Ch between the decompositions of D into two chains and the separating
sets of A and B.

For the case where k > 2, one simply adds to the poset described a set of
k− 2 infinite one-way chains so that any two elements from different chains are
incomparable and any element in these k− 2 chains are incomparable with any
element in D. �

Theorem 3.4 (RCA0) The following are equivalent:

1. WKL0

2. Any poset of height k can be covered by k antichains.

Proof: First we show that the decomposition theorem follows from WKL0.
Let A = (A,≤A) be a poset of height n. Suppose that A = {a0 < a1 < . . .} ⊆ N.
Let T be the infinite n-ary branching tree. We can think of any infinite path
π = (π0, π1, . . .) as representing a partition (A1, . . . , An) of A where Ai = {an :
πn = i}. We can trim the tree T to construct a bounded tree TA by saying
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Figure 5: Height 2 poset

that a node η = (η0, . . . , ηk) ∈ T is in TA if and only if (Aη1 , . . . , A
η
n) is a

collection of antichains in A where Aηi = {j ≤ k : ηj = i}. It is then easy to
see that any infinite path through TA corresponds to a decomposition into n
antichains. Finally, it follows from the fact that any finite poset of height n can
be decomposed in the n antichains that for all k, there is node of length k in
TA. Again, one can easily check that the proof that every finite set of height
n can be covered by n antichains requires only Σ0

1 induction and hence can be
carried out in RCA0. Thus Bounded Konig’s Lemma suffices to prove that any
poset of height n can be decomposed into n antichains over RCA0.

For the reverse direction, we show that our dual to Dilworth’s theorem im-
plies Σ0

1 Separation. That is, we show that the set of decompositions of a poset
of height n into n antichains can represent an the class of separating sets for
any pair of disjoint r.e. sets. Fix a pair A and B of infinite disjoint r.e. sets
and 1:1 enumerations gA and gB of A and B.

Again we shall initially consider the case n = 2. The poset D = (D,≤D)
will consist of two parts. The first part of the poset will consist of an an-
tichain c0, c1, . . ., and the second part will consist of two antichains a0, a1, . . .
and b0, b1, . . . where a0 ≤D b0 and, for each i, ai ≤D bi and ai ≤D bi+1. See
Figure 5.

We will complete the partial ordering on D by specifying the relations be-
tween the two parts in stages. Clearly, up to renaming the antichains, there
is a unique decomposition of the second part of the poset into two antichains.
We can then think of a decomposition f : D → {0, 1} of D into two antichains
as coding up a set Cf by specifying i ∈ Cf if and only if f assigns ci to the
same antichain as the a’s. The construction is simple in this case. For each i, we
define ci to be greater than as if gA(s+1) = i and incomparable to as otherwise.
Similarly we define ci to be less than bs if gB(s+ 1) = i and incomparable to bs
otherwise. It is easy to check that the resulting poset is of height 2. Now sup-
pose that f is a decomposition of D into two antichains. We define a separating
set S for A and B by putting i into S if and only if f(ci) = f(a0). Furthermore,
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up to renaming the antichains, there is a one-to-one correspondence f → Cf
between decompositions of D into two antichains and separating sets of A and
B.

For the case where k > 2, one simply adds to the poset described a set of k−2
recursive infinite antichains, all of whose elements are comparable with every
element of D and so that elements from different antichains are also comparable
�

Finally we consider a results on dimension of posets that is equivalent to
WKL0 over RCA0. We say that a poset A = (N,≤A) has local dimension ≤ d
if for each n, the restriction A � n of A to {0, 1, . . . , n} has dimension ≤ d.

Theorem 3.5 (RCA0) The following are equivalent:

1. WKL0

2. Every poset A = (N,≤A) of local dimension ≤ d has dimension ≤ d.

Proof: First we show that (2) follows from WKL0. Let A = (N,≤A) be
a poset of local dimension ≤ d. We can code a set of d linear orderings of
A, (A,L1), . . . , (A,Ld) as a path through a bounded tree as follows. Given d
linear orderings of {0, 1, . . . , n − 1}, there clearly are (n + 1)d ways to extend
these d linear orderings to d linear orderings on {0, 1, . . . , n}. One can fix some
effective enumeration of these extensions for each n, so that it then becomes
possible to code each d-tuple of linear orderings by a function f : A→ N where
f(n) ≤ (n+ 1)d − 1 for all n. Thus the set of solutions for the d-dimensionality
problem of a poset A can be represented as the set of all f : A → N such that
f(n) ≤ (n + 1)d − 1 for all n and for all k, f(1), . . . , f(k) codes an n-tuple
of linear orderings , ({0, . . . , k}, L1), . . . , ({0, . . . , k}, Ln) whose intersection is
({0, . . . , k},≤A). This set can clearly be represented as the set of infinite paths
through a bounded tree TA. Moreover, since A has local dimension ≤ d, the
tree will be TA infinite. Thus Bounded Konig’s Lemma suffices to show that A
has dimension ≤ d.

For the reverse direction, we show that the dual theorem implies Σ0
1 Sepa-

ration. That is, we show that the set of d linear orderings whose intersection is
a poset of local dimension ≤ d can represent the class of separating sets for any
pair of r.e. sets A and B. So fix a pair A and B of disjoint r.e. sets and recursive
enumerations {As}s∈ω and {Bs}s∈ω such that, for all s, As, Bs ⊆ {0, 1, . . . , s}
and there is at most one element of A ∪B which comes into A ∪B at stage s.

We consider the case of two dimensional partial orderings. First we partition
N into two infinite recursive sets C = {c0 < c1 < · · · } and D = {d0 < d1 < · · · }.
For each i, we let Ci = {c5i, c5i+1, c5i+2, c5i+3, c5i+4}. We shall define a recursive
partial ordering <P on N in stages. Given any two sets E and F, E <P F will
denote that, for any e ∈ E and f ∈ F , e <P f . We start by defining <P so
that C0 <P C1 <P C2 <P · · · . This means that if <1 and <2 are two linear
orderings such that <1 ∩ <2=<P , then the only difference between <1 and <2

on C is how <1 and <2 order the elements within the blocks Ci. For each block
Ci, <P is defined so that we have the Hasse diagram in Figure 6(A).
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Figure 6: The i-th block of the dimension 2 poset

It is then easy to check that, up to a permutation of the indices of the linear
orderings <1 and <2, there are precisely two ways to define <1 and <2 on Ci
so that <1 ∩ <2 equals <P restricted to Ai, namely,

(I) c5i <1 c5i+1 <1 c5i+2 <1 c5i+3 <1 c5i+4 and
c5i+2 <2 c5i+4 <2 c5i+3 <2 c5i <2 c5i+1, or

(II) c5i <1 c5i+1 <1 c5i+2 <1 c5i+4 <1 c5i+3 and
c5i+2 <2 c5i+3 <2 c5i+4 <2 c5i <2 c5i+1.

Note that the difference between (I) and (II) is that in the ordering where
the elements c5i, c5i+1 precede the elements c5i+2, c5i+3, c5i+4, we have c5i+3

preceding c5i+4 in (I), while in (II) c5i+4 precedes c5i+3.
We can thus use a pair of linear orderings <1 and <2 such that <1 ∩ <2=<P

is defined within the blocks Ci to code a set S(<1, <2) ⊆ N by declaring i ∈ S
if and only if <1 and <2 are of type (I) on Ci.

The key to our ability to code up a tree of separating sets for a pair of disjoint
r.e. sets A and B is the following. If we add an element d to the Hasse diagram
as pictured in Figure 6(B), then only linear orderings <1 and <2 of type (I)
can be extended to Ci ∪ {d} so that <1 ∩ <2=<P and if we add an element d
to the Hasse diagram as pictured in Figure 6(C), then only linear orderings <1

and <2 of type (II) can be extended to Ci ∪ {d} so that <1 ∩ <2=<P .
That is, it is easy to check that, up to a permutation of indices there is only

one way to define linear orderings <1 and <2 on Ci ∪ {d} so that <1 ∩ <2=<P
if <P has the Hasse diagram as pictured in Figure 6(B), namely
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(I ′): c5i <1 d <1 c5i+1 <1 c5i+2 <1 c5i+3 <1 c5i+4 and
c5i+2 <2 c5i+4 <2 d <2 c5i+3 <2 c5i <2 c5i+1.

Similarly, up to a permutation of indices, there is only one way to define linear
orderings <1 and <2 on Ci ∪ {d} so that <1 ∩ <2=<P if <P has the Hasse
diagram as pictured in Figure 6(C), namely

(II ′): c5i <1 d <1 c5i+1 <1 c5i+2 <1 c5i+4 <1 c5i+3 and
c5i+2 <2 c5i+3 <2 d <2 c5i+4 <2 c5i <2 c5i+1.

Now to complete our definition of <P on N, we proceed in stages as follows.

Stage 0 If i ∈ A0, let Ci−1 <P {d0} <P Ci+1, and define <P on Ci∪{d0} so that
we have a Hasse diagram as in Figure 6(B). If i ∈ B0, let Ci−1 <P {d0} <P Ci+1

and define <P on Ci ∪{d0} so that we have a Hasse diagram as in Figure 6(C).
If A0 ∪ B0 = ∅, define {d0} <P C. Note this defines <P on all of C ∪ {d0} by
transitivity.

Stage s > 0. Assume we have defined <P on C ∪ {d0, . . . , ds−1} so that for
all j < s, Ci−1 <P {dj} <P Ci+1 if i ∈ (Aj ∪Bj) \ (Aj−1 ∪Bj−1) and {dj} <P
C ∪ {d0, . . . , dj−1} otherwise. Then if i ∈ As \As−1, let Ci−1 <P {ds} <P Ci+1

and define <P on Ci ∪ {ds} so that we have a Hasse diagram as pictured in
Figure 6(B). If i ∈ Bs \ Bs−1, let Ci−1 <P {ds} <P Ci+1 and define <P
on Ci ∪ {bs} so that we have a Hasse diagram as pictured in Figure 6(C). If
(As ∪ Bs) \ (As−1 ∪ Bs−1) = ∅, define {ds} <P C ∪ {d0, . . . , ds−1}. Again this
defines <P on all of C ∪ {d0, . . . , ds} by transitivity.

This completes our definition of <P on N. It is easy to see that the definition
of <P is completely effective. Given our remarks prior to our definition the
stages, it is routine to check that up to a permutation of indices, if <1 and <2

are two linear orderings of N, then <1 ∩ <2=<P if and only if A ⊆ S(<1, <2)
and B ∩ S(<1, <2) = ∅. �
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