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Abstract

We give resource bounded versions of the Completeness Theorem for
propositional and predicate logic. For example, it is well known that
every computable consistent propositional theory has a computable com-
plete consistent extension. We show that, when length is measured rela-
tive to the binary representation of natural numbers and formulas, every
polynomial time decidable propositional theory has an exponential time
(EXPTIME) complete consistent extension whereas there is a nondeter-
ministic polynomial time (NP ) decidable theory which has no polynomial
time complete consistent extension when length is measured relative to the
binary representation of natural numbers and formulas. It is well known
that a propositional theory is axiomatizable (respectively decidable) if and
only if it may be represented as the set of infinite paths through a com-
putable tree (respectively a computable tree with no dead ends). We show
that any polynomial time decidable theory may be represented as the set
of paths through a polynomial time decidable tree. On the other hand,
the statement that every polynomial time decidable tree represents the
set of complete consistent extensions of some theory which is polynomial
time decidable, relative to the tally representation of natural numbers
and formulas, is equivalent to P = NP . For predicate logic, we develop a
complexity theoretic version of the Henkin construction to prove a com-
plexity theoretic version of the Completeness Theorem. Our results imply
that that any polynomial space decidable theory ∆ possesses a polynomial
space computable model which is exponential space decidable and thus ∆
has an exponential space complete consistent extension. Similar results
are obtained for other notions of complexity.

∗Dept. of Commerce Agreement 70-NANB5H1164 and NSF grant DMS-9306427.
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1 Introduction

Complexity theoretic or feasible model theory is the study of resource-bounded
structures and isomorphisms and their relation to computable structures and
computable isomorphisms. This subject has been developed during the 1990’s
by Cenzer, Nerode, Remmel and others. See the survey article [11] for an intro-
duction. Complexity theoretic model theory is concerned with infinite models
whose universe, functions, and relations are in some well known complexity
class such as polynomial time, exponential time, polynomial space, etc. By
far, the complexity class that has received the most attention is polynomial
time. One immediate difference between computable model theory and com-
plexity theoretic model theory is that it is not the case that all polynomial time
structures are polynomial time equivalent. For example, there is no polynomial
isomorphism f with a polynomial time inverse f−1 which maps the binary rep-
resentation of the natural numbers Bin(ω) = {0} ∪ {1}{0, 1}∗ onto the tally
representation of the natural numbers Tal(ω) = {1}∗. This is in contrast with
computable model theory where all infinite computable sets are computably
isomorphic so that one usually only considers computable structures whose uni-
verse is the set of natural numbers ω.

There are two basic types of questions which have been studied in polynomial
time model theory. First, there is the basic existence problem, i.e. whether a
given infinite computable structure A is isomorphic or computably isomorphic
to a polynomial time model. That is, when we are given a class of structures C
such as a linear orderings, Abelian groups, etc., the following natural questions
arise.

(1) Is every computable structure in C isomorphic to a polynomial time struc-
ture?

(2) Is every computable structure in C computably isomorphic to a polynomial
time structure?

For example, the authors showed in [3] that every computable relational struc-
ture is computably isomorphic to a polynomial time model and that the standard
model of arithmetic (ω,+,−, ·, <, 2x) with addition, subtraction, multiplication,
order and the 1-place exponential function is isomorphic to a polynomial time
model. The fundamental effective completeness theorem says that any decidable
theory has a decidable model. It follows that any decidable relational theory has
a polynomial time model. These results are examples of answers to questions
(1) and (2) above. However, one can consider more refined existence questions.
For example, we can ask whether a given computable structure A is isomorphic
or computably isomorphic to a polynomial time model with a standard universe
such as the binary representation of the natural numbers, Bin(ω), or the tally
representation of the natural numbers, Tal(ω). That is, when we are given a
class of structures C, we can ask the following questions.

(3) Is every computable structure in C isomorphic to a polynomial time struc-
ture with universe Bin(ω) or Tal(ω)?
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(4) Is every computable structure in C computably isomorphic to a polynomial
time structure with universe Bin(ω) or Tal(ω)?

It is often the case that when one attempts to answer questions of type (3) and
(4) that the contrasts between computable model theory and complexity theo-
retic model theory become more apparent. For example, Grigorieff [15] proved
that every computable linear order is isomorphic to a linear time linear order
which has universe Bin(ω). However Grigorieff’s result can not be improved
to the result that every computable linear order is computably isomorphic to
a linear time linear order over Bin(ω). For example, Cenzer and Remmel [3]
proved that for any infinite polynomial time set A ⊆ {0, 1}∗, there exists a
computable copy of the linear order ω+ω∗ which is not computably isomorphic
to any polynomial time linear order which has universe A. Here ω + ω∗ is the
order obtained by taking a copy of ω = {0, 1, 2, . . .} under the usual ordering
followed by a copy of the negative integers under the usual ordering.

The general problem of determining which computable models are isomor-
phic or computably isomorphic to feasible models has been studied by the au-
thors in [3], [4], and [7]. For example, it was shown in [4] that any computable
torsion Abelian group G is isomorphic to a polynomial time group A and that
if the orders of the elements of G are bounded, then A may be taken to have a
standard universe, i.e. either Bin(ω) or Tal(ω). It was also shown in [4] that
there exists a computable torsion Abelian group which is not isomorphic, much
less computably isomorphic, to any polynomial time (or even any primitive re-
cursive) group with a standard universe. Feasible linear orderings were studied
by Grigorieff [15], by Cenzer and Remmel [3], and by Remmel [25, 26]. Feasible
vector spaces were studied by Nerode and Remmel in [20] and [22]. Feasible
Boolean algebras were studied by Cenzer and Remmel in [3] and by Nerode and
Remmel in [21]. Feasible permutation structures and feasible Abelian groups
were studied by Cenzer and Remmel in [4] and [7]. By a permutation structure
A = (A, f), we mean a set A together with a unary function f which maps A
one-to-one and onto A.

General conditions were given in [10] which allow the construction of models
with a standard universe such as Tal(ω) or Bin(ω) and these conditions were
applied to graphs and to equivalence structures. An equivalence structure A =
(A,RA) consists of a set A together with an equivalence relation. For example,
it was shown that any computable graph with all but finitely many vertices of
finite degree is computably isomorphic to a polynomial time graph with standard
universe. On the other hand, a computable graph was constructed with every
vertex having either finite degree or finite co-degree (i.e. joined to all but finitely
many vertices) which is not computably isomorphic to any polynomial time
graph with a standard universe. An equivalence structure A = (A,RA) consists
of a set A together with an equivalence relation. It was also shown that any
computable equivalence structure is computably isomorphic to a polynomial
time structure with a standard universe.

The main goal of this paper is to study the relationship between theories
whose decision problem lies in some standard complexity class between poly-
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First order theory of Upper Bound Lower Bound
1-1 Unary Function DSPACE(2cn), NTIME(2cn

2
) /∈ NTIME(2c

′n)
(for some c′)

One Successor DSPACE(n2) /∈ NSPACE(c′n)
(N, <) DSPACE(n2) /∈ NSPACE(c′n)

(Z,+,≤) DSPACE(22cn) /∈ NTIME(22c
′n

)
(for some c′)

Table 1: Complexity of Certain Theories

nomial time and exponential space and the complexity of the models of that
theory. For example, an obvious first question is to study the complexity of
the basic Henkin construction for proving Gödel’s Completeness Theorem. It
is well known that the Henkin construction is effective in that it can be used
to prove that any complete decidable theory Γ has decidable model. See the
survey paper by Harizanov [16] for details. Here we say that a set Γ of for-
mulas in some first order language is decidable if the set of consequences of
Γ, Cn(Γ) = {φ : Γ ` φ}, is computable. Note that if Γ itself is computable,
then the set of consequences of Γ is, in general, only computably enumerable
(c.e.) and not necessarily computable. Similarly we say a model or structure
M whose universe is a computable set M ⊂ {0, 1}∗ is decidable if the complete
theory of M is computable, i.e. the set of all formulas φ[a1, . . . , ak] such that
a1, . . . , an ∈ M and M |= φ[a1, . . . , ak] is a computable set. We say that M is
computable if the atomic diagram ofM is computable, i.e. the set of all atomic
formulas φ[a1, . . . , ak] such that a1, . . . , an ∈ M and M |= φ[a1, . . . , ak] is a
computable set.

For predicate logic, we develop a complexity theoretic version of the Henkin
construction. Our basic result on the complexity of the Henkin construction
will imply that a polynomial space decidable theory will have an exponential
space decidable model M. Hence a polynomial space decidable theory always
has an exponential space complete consistent extension. In addition, we show
that M may be constructed to have a standard universe, Bin(ω) or Tal(ω),
where the atomic diagram of M is polynomial space computable. In general,
the complexity of the complete theory will be exponential over the complexity
of the given theory. We shall also study the complexity of the omitting types
theorem and the complexity of the completeness theorem for propositional logic.

The complexity of logical theories was studied from a different point of view
in Ferrante’s and Rackoff’s book [14]. In [14], the goal was to study the com-
plexity of well known theories such as the theory of the natural numbers N
under the usual ordering <, Th(N,<), or the theory of the natural numbers
with successor, Th(N,S). In particular, one wants to give upper and lower
bounds on the complexity of these theories. Table 1 provides some of the basic
results in the subject. A longer table is given in [14].

To understand this table, row two says that the theory of one successor is de-
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cidable in deterministic space n2 but is not decidable in non-deterministic space
s(n) for some s(n) such that s(n) is O(n) while row four says that the theory
of the integers with addition and order (Z,+,≤) is decidable in deterministic
space 22cn for some c, but there is a c′ such that (Z,+,≤) is not decidable in
non-deterministic time 22c

′n
.

We note that there is often a lower limit on the complexity of non-trival
propositional or predicate logic theories. To be more precise, in propositional
logic, the set of consistent, or satisfiable, sentences is the classic NP complete
set. Now a sentence φ is valid if and only if ¬φ is not satisfiable. Thus the
smallest theory, the set of valid sentences is Co-NP complete. On the other
hand, any complete propositional theory is determined by its underlying set of
propositional variables. That is, let V = {A0, A1, . . . } be a set of propositional
variables, S be any subset of V and Γ(S) be the consequences of {Ai : i ∈
S} ∪ {¬Ai : i /∈ S}. Then S is computable from Γ(S) in constant time. On
the other hand, given any sentence φ containing variables Ai1 , . . . , Aik , we can
decide whether φ ∈ Γ(S) by first making each At true if it is in S and false if not,
and then evaluating φ. That is, φ ∈ Γ(S) if and only if the value of φ is true.
Thus Γ(S) is computable from S in linear time and linear space. Thus there are
complete propositional theories in any of the standard complexity classes such
as linear time, linear space, polynomial time, polynomial space, etc.

For predicate logic, the set of valid sentences is Σ0
1-complete so that the set

of satisfiable sentences is Π0
1-complete. For most computable structuresM, the

theory of M is PSPACE hard by the following observation. Suppose that M
is a computable model and that there is a formula φ(x1, . . . , xk) such that both
φ and ¬φ are satisfiable in M. Then the theory of M is PSPACE hard. This
follows from the fact that the decision problem, QBF , of the satisfiability of
quantified Boolean formulas is PSPACE hard. (See Papadimitriou [24].) QFB
is the decision problem for the set of satisfiable quantified Boolean formulas of
the form

β = (Q1p1)(Q2p2) . . . (Qnpn)α

where α is a Boolean expression in x1, . . . , xn, each quantifier Qi is either ∃ or
∀, and the sequence of quantifiers Q1, . . . Qn alternates between ∃ and ∀. Now
let φ(x1, . . . , xk) be given so that both φ and ¬φ are satisfiable in M. Then β
may be simulated in M by

Q1x1,1 . . . Q1x1,k . . . Qnxn,1 . . . Qnxn,kα(φ(x1,1, . . . , x1,k), . . . , φ(xn,1, . . . , xn,k))

Thus unless P = PSPACE, no non-trivial polynomial time decidable theory
can be complete.

There are nice examples of computable models M whose theories are in
PSPACE. That is, consider structures A = (A, f) where f : A → A is unary
function. Note that our structures will always include the equality relation.
We say that A is an injection structure if f is one-to-one and we say that A
is a permutation structure if f is a bijection from A onto A. As seen in the
table above, the complexity of the general theory of injection structures is in
nondeterministic exponential space and is not NP . Cenzer and Remmel also
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studied injection structures in [4, 7]. Before we can give some examples of
computable injections and/or permutation structures whose theories have low
complexity, we need to establish some notation. The orbit O(a) of an element
a of (A, f) is defined to be

O(a) = {b ∈ A : (∃n ∈ ω)(fn(a) = b ∨ fn(b) = a)}.

There are two types of infinite orbits, one of type ω which is isomorphic to
(ω, S) and the other of type Z which is isomorphic to (Z, S). The order |a| of
an element a ∈ A is card(O(a)) if O(a) is finite, is ω if O under f is isomorphic
to (ω, S), and is Z if O under f is isomorphic to (Z, S). The full spectrum of
(A, f) consists of all pairs (0, n) such that there are at least n+ 1 orbits of type
ω, (1, n) such that there are at least n+ 1 orbits of type Z, and (q, n) such that
q > 1 and there are at least n+ 1 orbits of size q − 1 in (A, fA).

We can use Ehrenfeucht-Fraisse games to show that for certain permutation
structures A = (A, f), Th(A) is in PSPACE. Recall that two structures are
n-equivalent if they satisfy the same sentences of quantifier rank ≤ n. Given
two structures A and B, the Ehrenfeucht-Fraisse game Gn(A,B) of length n
has two players, the “duplicator” and the “spoiler”. At turn i of the game,
the spoiler selects an element ai ∈ A or bi ∈ B from one of the two structures
and the duplicator then selects an element from the other structure. The du-
plicator wins a play of this game if for the chosen elements, the substructure
{a1, . . . , an} of A is isomorphic to the substructure {b1, . . . , bn}. The classic
theorem of Ehrenfeucht shows that two structures are n-equivalent if and only
if the duplicator has a winning strategy for the Ehrenfeucht game Gn(A,B).
See [12] for a detailed exposition on Ehrenfeucht-Fraisse games.

Now letM = (M,f) be the permutation structure which consists of infinitely
many orbits, each of finite size k. It is not hard to see that, for each n, the
structure (M,f) is n-equivalent to the finite structure (Mn, g), consisting of n
orbits of size k. That is, given that {a1, . . . , ai−1} is isomorphic to {b1, . . . , bi−1},
we note that at most i − 1 orbits of Mn have elements among {b1, . . . , bi−1}.
Now given a new element ai ∈ M , there are two cases. First, we might have
ai = gt(aj) for some t < k and some j < i. Then the duplicator just selects
bi = gt(bj) to extend the isomorphism. Second, we might have ai in a different
orbit from each of a1, . . . , ai−1. Then the duplicator simply selects bi from an
orbit which does not include any of b1, . . . , bi−1. Now suppose we are given a
sentence φ of length n and hence of quantifier depth ≤ n. To check whether
M |= φ, it suffices to check whether (Mn, g) |= φ. SinceMn has only nk elements
and φ has length n, this can easily be done in polynomial space (nk)r for some
r. This shows that Th(M) is in PSPACE. It is not hard to generalize this
argument to permutation structures which consists of all finite orbits of finitely
many different sizes.

It was shown in [7] that any computable model of a 1-1 unary function is
isomorphic to a polynomial time model but not necessarily to a polynomial
time model with standard universe. Various conditions under which a standard
universe may be obtained were given, including when the tally representation of
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the spectrum is in P. Now the spectrum of (A, f) is computable in polynomial
time from the theory, since for example, (4, 0) is in the spectrum if and only if

(∃x)[fff(x) = x & ff(x) 6= x].

It follows first that any complete, decidable theory of a 1:1 unary function
has a polynomial time model and second that any complete polynomial time
decidable theory has a polynomial time model with standard universe. The main
theorem of this paper concerning the complexity of the Henkin construction
will give a more general result in the special case of polynomial time decidable
theories. That is, we shall show that every polynomial time decidable theory
has a polynomial time model with standard universe which is also exponential
time decidable.

The outline of this paper is as follows. In section two, we shall first establish
our basic notation for complexity classes. Then we shall study the complexity
of theories and models for propositional logic. In particular, we will show that
any theory which is polynomial time decidable in tally has a polynomial time
complete consistent extension while there exists a theory which is NP decidable
in binary but has no polynomial time decidable complete consistent extension.
We also consider the representation of the set of complete consistent extensions
of a theory by the Π0

1 class of infinite paths through a tree. Here we show that
the following is equivalent to P = NP : Every polynomial time decidable tree
represents the set of complete consistent extensions of some theory which is
polynomial time decidable in tally. In section three, we shall prove our main
theorem that any polynomial space decidable theory has an exponential space
decidable model with standard universe which is also polynomial space com-
putable. Similar results are given for other notions of complexity. Our notation
will follow that of [10]. For more on the theory of computability, see Odifreddi
[23], Soare [27], for more on complexity theory, see Hopcroft and Ullman [17].
For more on computable model theory, see Harizanov [16].

2 Propositional Theories

2.1 Basic complexity definitions

We start this section by giving the basic definitions from complexity theory
which will be needed for the rest of the paper.

Let Σ be a finite alphabet. Then Σ∗ denotes the set of finite strings of
letters from Σ and Σω denotes the set of infinite strings of letters from Σ where
ω = {0, 1, 2, . . .} is the set of natural numbers. For any natural number n 6= 0,
tal(n) = 1n is the tally representation of n and bin(n) = ie . . . i1i0 ∈ {0, 1}∗ is
the binary representation of n if n = i0 +2·i1 +· · ·+2e ·ie and ie 6= 0. In general,
the k-ary representation bk(n) = ie . . . i1i0 if n = i0 + i1 ·k+ · · · ie ·ke and ie 6= 0.
We let tal(0) = bin(0) = bk(0) = 0. Then we let Tal(ω) = {tal(n) : n ∈ ω},
Bin(ω) = {bin(n) : n ∈ ω} and, for each k ≥ 2, Bk(ω) = {bk(n) : n ∈ ω}.
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For a string σ = (σ(0), σ(1), . . . , σ(n−1)), |σ| denotes the length n of σ. The
empty string has length 0 and will be denoted by ∅. A constant string σ of length
n will be denoted by kn. For m < |σ|, σdm is the string (σ(0), . . . , σ(m − 1));
σ is an initial segment of τ (written σ ≺ τ) if σ = τdm for some m. The
concatenation σ_τ (or sometimes just στ) is defined by

σ_τ = (σ(0), σ(1), . . . , σ(m− 1), τ(0), τ(1), . . . , τ(n− 1)),

where |σ| = m and |τ | = n; in particular we write σ_a for σ_(a) and a_σ for
(a)_σ.

Our basic computation model is the standard non-deterministic multitape
Turing machine of Hopcroft and Ullman [15]. Note that there are different heads
on each tape and that the heads are allowed to move independently. This implies
that a string σ can be copied in linear time. An oracle machine is a multitape
Turing machine M with a distinguished work tape, a query tape, and three
distinguished states QUERY, YES, and NO. At some step of a computation on
an input string σ, M may transfer into the state QUERY. In state QUERY, M
transfers into the state YES if the string currently appearing on the query tape
is in an oracle set A. Otherwise, M transfers into the state NO. In either case,
the query tape is instantly erased. The set of strings accepted by M relative to
the oracle set A is L(M,A) = {σ| there is an accepting computation of M on
input σ when the oracle set is A}. If A = ∅, we write L(M) instead of L(M, ∅).

Let t(n) be a function on natural numbers. A Turing machine M is said
to be t(n) time bounded if each computation of M on inputs of length n where
n ≥ 2 requires at most t(n) steps. A function f(x) on strings is said to be in
DTIME(t) (respectively, NTIME(t)) if there is a t(n)-time bounded determin-
istic (resp. non-deterministic) Turing machine M which computes f(x). For a
function f of several variables, we let the length of (x1, . . . , xn) be |x1|+· · ·+|xn|.
A set of strings or a relation on strings is in DTIME(t) if its characteristic func-
tion is in DTIME(t). A Turing machine M is said to be t(n) space bounded
if each computation of M on inputs of length n where n ≥ 2 the work space
required to carry out the computation is bounded by t(n). A function f(x) on
strings is said to be in DSPACE(t) (respectively, NSPACE(t)) if there is a
t(n)-space bounded deterministic Turing machine M which computes f(x). A
set of strings or a relation on strings is in DSPACE(t) (resp. NSPACE(t)
if its characteristic function is in DSPACE(t). For a family T of functions,
DTIME(T ) =

⋃
f∈T DTIME(f) and similarly for NTIME, DSPACE and

NSPACE. The family f(O(n)) denotes {f(cn) : c ∈ ω}. In particular,
LIN = DTIME(O(log(n))), DEXT = DTIME(2O(n)) (exponential time),
and EXPSPACE = DSPACE(2O(n)). In addition to the standard complex-
ity classes P , NP and PSPACE, we will also consider double exponential time
and space as well as the interesting class DTIME(n(log n)O(1)), which was
studied by R. Brent in [1], plus the following:.

LOG =
⋃
c≥1DSPACE(c · log2(n)),
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EXPTIME =
⋃
c≥0DTIME(2n

c

), and

NEXPTIME =
⋃
c≥0NTIME(2n

c

). DOUBEXT =
⋃
c≥0DTIME(22c·n),

DOUBEXPSPACE =
⋃
c≥0DSPACE(22c·n),

We fix enumerations {Pi}i∈N and {Ni}i∈N of the polynomial time bounded
deterministic oracle Turing machines and the polynomial time bounded non-
deterministic oracle Turing machines respectively. We may assume that pi(n) =
max(2, n)i is a strict upper bound on the length of any computation by Pi or
Ni with any oracle X on inputs of length n. PXi and NX

i denote the oracle
Turing machine using oracle X.

For A, B ⊂ Σ∗, we shall write A ≤Pm B if there is a polynomial-time function
f such that for all x ∈ Σ∗, x ∈ A iff f(x) ∈ B. We shall write A ≤PT B if A
is polynomial time Turing reducible to B. For r equal to m or T , we write
A ≡Pr B if A ≤Pr B and B ≤Pr A and we write A |Pr B if not A ≤Pr B and not
B ≤Pr A.

2.2 Complexity of propositional theories

We start this subsection with some definitions and background. Let the propo-
sitional language L have propositional letters A0, A1, . . . and connectives ¬, ∨
and ∧ and let Sent(L) be the set of sentences in this language. For any subset
∆ of Sent(L), let Cn(∆) be the set of consequences of ∆, that is, Cn(∆) = {φ :
∆ ` φ}. Let SAT (∆) = {φ : ∆ ∪ {φ} is consistent (or satisfiable)}. A subset
Γ of Sent(L) is said to be a theory if it is closed under consequences, that is,
if Cn(Γ) = Γ. A theory Γ is said to be axiomatizable if there is a computably
enumerable set ∆ such that Γ = Cn(∆). A theory Γ is said to be decidable if
there is a computable algorithm for deciding whether a given sentence φ is in Γ.

Shoenfield observed in [28] that for any axiomatizable predicate logic or
propositional logic theory Γ, the set E(Γ) of complete consistent extensions of
Γ may be represented as a Π0

1 class, that is, as the set of infinite paths through
a computable tree. For a decidable theory, this tree may be taken to have no
dead ends. In fact, Ehrenfeucht [13] proved that any Π0

1 class represents an
axiomatizable theory. For a tree without dead ends, the theory may be taken to
be decidable. This representation is central to the discussion of the complexity
of theories. See [11] for a more complete discussion of the relationship between
axiomatizable (decidable) theories and Π0

1 classes. Next we shall consider com-
plexity theoretic versions of these results.

It is first necessary to define the length |φ| of a formula φ. Suppose that the
underlying set of propositional letters in our propositional language is {A0, A1, . . .}.
In the standard or binary representation of a sentence φ, the numeral i in
a propositional letter Ai is written in binary representation bin(i) so that
the length |Ai| in binary is 1 + |bin(i)|. That is, |bin(Ai)| = r + 2 when
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2r ≤ i < 2r+1. In the tally representation, the numeral i is written as 1i

so that |tal(Ai)| = i + 1. A complete consistent theory Γ is represented by a
subset of ω, S(Γ) = {i : Ai ∈ ∆}, or, equivalently, by the characteristic function
in {0, 1}ω of S(Γ). The set of all complete consistent extensions of a consis-
tent set ∆ of sentences is denoted as CC(∆). We shall let a finite sequence
σ ∈ {0, 1}n represent the sentence B(σ) = B0 ∧ B1 ∧ . . . Bn, where Bi = Ai if
σ(i) = 1 and Bi = ¬Ai if σ(i) = 0.

Lemma 2.1 tal(B(σ)) has length O(n2) and may be computed in time O(n2)
and Bin(B(σ)) has length O(n ·log n) and may be computed in time O(n log n).

A set ∆ of sentences is said to be P -decidable in binary (in tally) if there
is a polynomial time Turing machine which given as input the binary (tally)
representation of a formula φ, computes 1 if ∆ ` φ and computes 0 otherwise.
We say that ∆ is weakly P -decidable in binary (in tally) if there is a polynomial
time Turing machine which given as input the binary (tally) representation
of a conjunction φ of literals, computes 1 if φ ∈ SAT (∆) and computes 0
otherwise. One can define the notion of ∆ being (weakly) C-decidable in binary
or tally for any complexity class C in a similar manner. A theory Γ is said to
be P -axiomatizable if it possesses a polynomial time set ∆ of axioms such that
Γ = Cn(∆). Again similar definitions apply to other notions of complexity.

For a tree T ⊂ {0, 1}<ω, we say that T is a P -tree if the set {σ ∈ {0, 1}n :
σ ∈ T} is a polynomial time set. We will say that T is P -decidable if T is a
P -tree and the set of dead ends of T is also in P (so that there is a P -tree
S with no dead ends such that [S] = [T ]). Similar definitions apply to other
notions of complexity. The complexity of various aspects of trees was studied
by the authors in [6].

We say that the tree T represents CC(∆), the set of complete consistent
extensions of ∆, if the set [T ] of infinite paths through T equals the family
of sets S ⊆ {A0, A1, . . .} such that Γ(S) is a complete consistent extension of
∆. We observe that there is a canonical tree T which represents CC(∆) where
σ ∈ T ⇐⇒ B(σ) ∈ SAT (∆).

Theorem 2.2 Let ∆ be a propositional theory.

(i) If ∆ is weakly DTIME(n log(n)O(1)) decidable in binary, then CC(∆)
may be represented as the set of paths through a tree in DTIME(n log(n)O(1)).

(ii) If ∆ is weakly P -decidable (respectively PSPACE) in either binary or
tally, then CC(∆) may be represented as the set of paths through a P -tree
(resp. PSPACE-tree).

(iii) If ∆ is weakly DEXT -decidable (respectively, EXPSPACE-decidable) in
tally or binary, then CC(∆) may be represented as the set of paths through
an EXPTIME-tree (resp.

⋃
k∈ωDSPACE(2n

k

)-tree).
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Proof: In each case, we shall let T be the canonical tree which represents
CC(∆). That is, σ ∈ T ⇐⇒ B(σ) ∈ SAT (∆).

(i) Suppose that ∆ is weakly DTIME(n log(n)O(1)) decidable in binary. By
Lemma 2.1, we can compute bin(B(σ)) from σ in time O(n log n), so that T is
in DTIME(n log(n)O(1)).

(ii) It easily follows from Lemma 2.1 that we can compute bin(B(σ)) and
tal(B(σ)) in polynomial time and space from σ. Thus if ∆ is weakly P -decidable
(weakly PSPACE-decidable), then T is a P -tree (PSPACE-tree).

(iii)If ∆ is weakly DEXT -decidable in tally (EXPSACE-decidable), it will
require on the order of 2|σ|

2
time (space) to determine if B(σ) ∈ SAT (∆) so

that T is an EXPTIME-tree (
⋃
k∈ωDSPACE(2n

k

)-tree). Similarly if ∆ is
weakly DEXT -decidable in binary (EXPSACE-decidable), it will require on
the order of 2|σ|log(|σ|) time (space) to determine if B(σ) ∈ SAT (∆) so that
again T is an EXPTIME-tree (

⋃
k∈ωDSPACE(2n

k

)-tree). �
The corresponding result for axiomatizable theories does not require any

restriction on the complexity of the set of axioms. In fact, our next result
strengthens Theorem 4.1 of [5] which showed that any Π0

1 class may be repre-
sented as the set of paths through a polynomial time tree.

A computable function f is said to be time constructible if and only if there
is a Turing machine which on every input of size n halts in exactly f(n) steps.
In particular, the functions logk2 (n) are time constructible for k ≥ 1 where
we define logk2 (n) by induction as log1(n) = log(n) and for k > 1, logk2 (n) =
log2(logk−1

2 (n)).

Theorem 2.3 Let f be any time constructible function which is nondecreasing
and unbounded. If a propositional theory Γ has a computably enumerable set of
axioms, then it has a DTIME(O(f)) set of axioms and may be represented as
the set of paths through a DTIME(O(f))-tree.

Proof: First we need to construct a computable nondecreasing unbounded
function g such that

1. g(n) ≤ f(n)1/4 for all n and

2. g ∈ DTIME(O(f)) relative to the tally representation.

It is easy to compute such a g. That is, suppose that m ≤ f(n)
1
10 , then we

can compute the tally representation of m4 in time cm4 for some constant c. It
follows that we can compute m4 for j = 0, 1, . . . ,m, in time

m∑
j=0

cj4 ≤ cm5 ≤ cf(n)1/2.

Now for sufficiently large n, cf(n)1/2 ≤ f(n). Thus to compute g(n), we start
computing the values of j4 for j = 0, 1, . . . until we have used f(n) steps.
g(n) is the largest m such that we have finished the computation of j4 for
j = 0, 1, . . . ,m. Note that g is clearly nondecreasing and is unbounded since f
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is unbounded. Since g(n) is computed in time f(n), we must have g(n)4 ≤ f(n)
so that (1) and (2) hold.

Since Γ has a c.e. set of axioms, it follows that Γ itself is computably
enumerable. For each t, let Γt be the set of sentences enumerated into Γ by
stage t. Now given a finite path σ ∈ {0, 1}n, put σ ∈ T if and only if, for
all m < g(n), ¬B(σdm) /∈ Γg(n). Then for each m < g(n), B(σdm) may
be computed in time O(m2) and has length O(m2). Since Γg(n) has at most
g(n) strings, we need only make g(n) comparisons to see if ¬B(σdm) /∈ Γg(n).
Since each comparison takes O(n2) time, it take O(m2)g(n)) time to decide if
¬B(σdm) /∈ Γg(n). Thus the total time needed to test σ ∈ T is less than or
equal to

∑g(n)−1
m=0 cm2g(n) ≤ cg(n)4 ≤ cf(n) for some constant c.

We claim that x ∈ [T ] if and only if x represents a complete consistent
extension of Γ. Suppose first that x /∈ T and recall that x represents the
theory Γ(x) which contains An whenever x(n) = 1 and contains ¬An whenever
x(n) = 0. That is, Γ(x) contains B(xdn) for all n. Since x /∈ T , there exists m
such that σ = xdm /∈ T . Then by the definition of T , ¬B(σdn) ∈ Γ for some
n < m which shows that Γ(x) is not consistent with Γ. Next suppose that Γ(x)
is not consistent with Γ. Then for some n, ¬B(xdn) ∈ Γ. Thus there is an s
such that ¬B(xdn) ∈ Γs. Now let r = max{n, s} and choose m large enough so
that g(m) ≥ r. It follows from our definitions that xdm /∈ T .

Finally, we note that Γ has a DTIME(O(f(n))) set of axioms ∆ where ∆
is simply the set of ¬B(σ) such that σ /∈ T . �

Thus for any k and any axiomatizable theory Γ, Γ has aDTIME(O(logk(n)))
set of axioms and may be represented as the set of paths through a tree which
lies in DTIME(O(logk(n))).

The reverse question of representing a Π0
1 class of prescribed complexity by

a decidable or axiomatizable theory is more interesting. We shall modify the
classic proof of Ehrenfeucht [13] to give a converse of Theorem 2.3. As in the
Theorem 2.3, there is no solid connection in the axiomatizable case between the
complexity of the class and the complexity of the corresponding theory.

Theorem 2.4 For any Π0
1 class Q and for any time constructible function f

which is nondecreasing and unbounded, there is a propositional theory Γ with a
DTIME(O(f)) set of axioms such that Q represents the set of complete con-
sistent extensions of Γ.

Proof: We can establish the desired result by modifying the proof of the
previous theorem. Given a computable tree S such that Q = [S], first define
a DTIME(O(f)) time tree T with Q = [T ] as follows. First put the empty
sequence in T . Next, for any given σ = (σ1, . . . , σn) ∈ {0, 1}n, run the com-
putations to test whether (σ1, . . . , σi) ∈ S for i = 1, 2, . . . , n in order for f(n)
steps. If there is some i such that we have completed the computation to test
whether (σ1, . . . , σi) ∈ S and (σ1, . . . , σi) /∈ S, then we declare that σ /∈ T .
Otherwise, we put σ ∈ T . Now it is easy to see that if x = (x1, x2, . . .) is an
infinite path in [S], then (x1, . . . , xn) ∈ T for all n so that x ∈ [T ]. However,
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if x /∈ [S], then there is some m such that (x1, . . . , xm) /∈ S. Since f is un-
bounded, there is an n large enough so that we can compute the computations
to test whether (x1, . . . , xi) ∈ S for i = 1, . . . ,m with in f(n) steps. It follows
that if σ = (σ1, . . . , σn) is a string which extends (x1, . . . , xm), then σ /∈ T
so that x /∈ [T ]. Thus T is a DTIME(O(f)) tree such that [T ] = [S] so that
Q = [T ]. Then Q represents the set of complete consistent extensions of the the-
ory with a DTIME(O(f)) set ∆ of axioms defined as in the proof of Theorem
2.3. �

The results for decidable trees are somewhat surprising. Let us first give a
few definitions. Recall that SAT is the set of satisfiable, or consistent, proposi-
tional sentences and is the standard NP -complete set.

Theorem 2.5 The following are equivalent:

(i) P = NP ;

(ii) Every P -decidable tree represents the set of complete consistent extensions
of some theory which is P -decidable in tally.

Proof: [(ii) → (i)] Let T = {0, 1}∗ and suppose that ∆ is a theory which
is P -decidable in tally such that {0, 1}ω = [T ] represents the set of complete
consistent extensions of ∆. Then it is easy to see that SAT (∆) = SAT . But
this means that

φ ∈ SAT ⇐⇒ ¬[∆ ` ¬φ]. (1)

Since ∆ is P -decidable in tally, (1) would imply that SAT is polynomial time
and hence P = NP .

[(i) → (ii)] Next suppose that P = NP and let T be a P -decidable tree.
Let φ(A0, . . . , An) be a propositional formula whose propositional letters are a
a subset of {A0, . . . , An} and which contains An. The canonical theory ∆ such
that [T ] represents the set of complete consistent extensions of ∆ is defined by

∆ ` φ(A0, . . . , An) ⇐⇒ (∀σ ∈ T ∩ {0, 1}n)(B(σ) ` φ(A0, . . . , An)).

We will show that SAT (∆) is NP and hence in P by our assumption. In
tally, n ≤ |B(σ)| ≤ 2n2, so that for each σ ∈ {0, 1}n, we can test whether
B(σ) ` ¬φ(A0, . . . , An) in polynomial time in the length of φ(A0, . . . , An). Thus
we can test φ(A0, . . . , An) ∈ SAT (∆) in the usual NP fashion, by guessing a
string σ of length n and checking that σ ∈ T and B(σ) implies φ(A0, . . . , An).
Thus SAT (∆) is in P . �

The corresponding result does not follow relative to the binary representation
of theories. That is, the direction [(ii)→ (i)] still holds, since the SAT problem
is NP -complete in either tally or binary. However, the argument given for
the reverse direction only shows that SAT (∆) is DTIME(2O(1))-decidable in
binary. This is due to the fact that a short formula φ with a high numbered
variable, such as a propositional variable A2n−1 requires us to check whether
B(σ) ` φ(A0, . . . , An) for |σ| = 2n − 1 which would require time of order 2n
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since |B(σ)| ≥ 2n. Thus since |A2n−1| = n + 1, such a check would require
exponential time in |φ|.

Next we consider the problem of relating the complexity of a propositional
theory to the complexity of particular complete consistent extensions.

Theorem 2.6 Relative to the tally representation, the following hold.

(i) Any P -decidable theory has a P -decidable complete consistent extension.

(ii) Any PSPACE-decidable theory has a PSPACE-complete consistent ex-
tension.

(iii) Any DEXT -decidable theory has an EXPTIME-decidable complete con-
sistent extension.

(iv) Any EXPTIME-decidable theory has an EXPTIME-decidable complete
consistent extension.

(v) Any EXPSPACE-decidable theory has an
⋃
k∈ωDSPACE(2n

k

)-decidable
complete consistent extension.

Proof: Let ∆ be the given theory. A complete consistent extension Γ can
be defined as follows.

Stage 0. Put A0 ∈ Θ and let B0 = A0 if ∆ ` A0 and otherwise put by ¬A0 ∈ Θ
and let B0 = ¬A0.

Stage n+ 1 Put An+1 ∈ Θ if ∆ ` Bn → An+1 and let Bn+1 = Bn ∧An+1 and
otherwise put ¬An+1 ∈ Θ and let Bn+1 = Bn ∧ ¬An+1.

It is clear that the resulting set Γ = Cn(Θ) is a complete consistent extension
of ∆. It remains to estimate the complexity of Γ. At stage n+ 1, we apply the
algorithm for the decidability of ∆ to the sentence Bn → An+1, which has length
of order n2. We then have the following. (i) Suppose ∆ is P -decidable, say it
take time c|φ|k, for some c and k, to determine whether ∆ ` φ. Then it takes
time on the order of an2k, for some constant a, to decide if ∆ ` Bn → An+1

so that stage n + 1 requires time on the order of bn2k, for some constant b,
to compute stage n. It thus takes time on the order of

∑n+1
i=1 bi

2k ≤ (bn2k)2

to compute stages 1, . . . , n + 1. Hence, for any n ≥ 0, it requires time on the
order of b2n4k to determine which of An+1 or ¬An+1 is in Θ. Finally given
any sentence φ, we can decide whether φ ∈ Γ within the required complexity
because once we know for each Ai which occurs in φ which of Ai or ¬Ai is in
Γ, it only takes polynomial many steps to check if Γ ` φ.

Items (ii) to (v) are straightforward modifications of (i). �
We note that if ∆ is LIN -decidable, our argument would only show that ∆

had a DTIME(cn2)-decidable complete consistent extension for some c.

Theorem 2.7 Relative to the binary representation, the following hold.
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(i) Any P -decidable theory has an DEXT -decidable complete consistent exten-
sion.

(ii) Any PSPACE-decidable theory has an EXPSPACE-decidable complete
consistent extension.

(iii) Any EXPTIME-decidable theory has an DOUBEXT -decidable complete
consistent extension.

(iv) Any EXPSPACE-decidable theory has an DOUBEXPSPACE-decidable
complete consistent extension.

Proof: Define the complete consistent extension Γ of the given consistent
theory ∆ as in the proof of Theorem 2.6. The difference relative to the binary
representation the length of Bn is of order n · log n and also the number of steps
n is exponential in the length 1 + bin(n) of An.

Thus, for example, if ∆ is P -decidable, then stage n + 1 still requires p(n)
steps for some polynomial p and there is a polynomial q such that we can decide
if An is in Θ in q(n). Thus if q(n) is of the form cnk for some constant c and
integer k, then it requires c(2log2(n))k ≤ 2K|An| steps to decide if An is Γ for
some constant K. It easily follows that Γ is DEXT -decidable. The arguments
for parts (ii) to (iv) are straightforward modifications. �

Next we show next that this difference in the complexity of the complete
consistent extension between the tally and binary representations is necessary.

We need to consider an effective enumeration of the polynomial time func-
tions on L. Let φe be the e-th computable function and let φe,s(x) be the result,
if any, of running the e-th Turing machine on input x for s-steps. Then we let
πe(x) = φe,(1+|x|)e(x) if defined, and 0 if not. Clearly each function πe is poly-
nomial time. On the other hand, given e and r such that φe is a total function
such that the e-th Turing machine always computes φe(x) in time ≤ (1 + |x|)r,
we can always choose d > r such that for all x, φd(x) = φe(x) and the two
computations take exactly the same number of steps, so that φd(x) is computed
in time ≤ (1 + |x|)r < (1 + |x|)d. Thus φe = πd and hence π0, π1, . . . is an
effective list of all polynomial time functions.

Theorem 2.8 (i) There is a propositional theory which is NP -decidable in
binary but has no P -decidable complete consistent extension in binary.

(ii) There is a propositional theory which is DEXT -decidable in binary but has
no EXPTIME-decidable complete consistent extension in binary.

Proof: (i) We first define a P -decidable tree T such that [T ] 6= ∅ but there
is no path δ ∈ [T ] which is computable in polynomial time. Given a string
σ ∈ {0, 1}k, we describe the algorithm for testing whether σ ∈ T . For all e such
that 22e ≤ k, compute the string δe = (πe(0), . . . , πe(22e − 1)). If there is an e
with 22e ≤ k and δe v σ, then σ is not in T and if there is no such e, then σ
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is in T . Let us compute the time required for this procedure. For each e, the
computation of πe(0), . . . , πe(22e − 1) requires time

|bin(0)|e + |bin(1)|e + · · ·+ |bin(22e − 1)|e ≤ 22e · (2e)e = 22e+e2 ≤ 22·2e .

If we let e be the largest such that 22e ≤ k, then there are e+1 such computations
to be done with a total computation time ≤ (e + 1)22·2e ≤ 23·2e ≤ k3. The
required comparisons with σ do not significantly increase the time so that it
easily follows that T is a polynomial time tree. Observe that T has no dead
ends by the following. Suppose σ ∈ {0, 1}k ∩ T so that 22e ≤ k → ¬δe v σ.
Then σ_i ∈ T unless k + 1 = 22e+1

and σ_i = δe+1, which can happen for at
most one value of i.

Let ∆ be the theory such that [T ] represents the set of complete consistent
extensions of ∆. That is, as described above, φ(A0, . . . , An−1) ∈ SAT (∆) if
and only if there is a path σ ∈ T ∩ {0, 1}n such that B(σ) ` φ. We claim that
SAT (∆) is NP .

First we show that if φ is a conjunction of literals, then we can decide in
polynomial time whether φ ∈ SAT (∆). That is, suppose that

C = B1 ∧ B2 ∧ · · · ∧Bk

is a conjunction of literals where each Bi is either Ani or ¬Ani for some
n1, . . . , nk. Let BC = {B1, . . . , Bk} and n = max({n1, . . . , nk}) + 1. Suppose
that 22f ≤ n < 22f+1

. For any string γ, we will say that γ is consistent with
C if and only if for all ni < |γ|, Ani ∈ BC implies γ(ni) = 1 and ¬Ani ∈ BC
implies γ(ni) = 0. Then it is clear that C ∈ SAT (∆) if there is a node γ ∈ T
with length at least 22f+1 − 1 such that γ is consistent with BC . Note that
f ≤ log2(log2(n)) and log2(n) ≤ |C| since either An−1 or ¬An−1 occurs in C
and hence

f ≤ log2(|C|). (2)

Next let m be the least r such there exists exactly f+1 elements s < r such that
neither As nor ¬As are elements of BC . Note C has at least m− f − 1 literals
so that |C| > 2(m− f − 1)− 1 = 2m− 2f − 3. Hence m ≤ (|C|+ 2f + 3)/2 ≤
(|C|+ log2|C|+ 3)/2 ≤ 2|C|. It requires m scans of C to find the f + 1 elements
s1 < . . . sf+1 < m such that neither Asj nor ¬Asj occur in BC . Since m ≤ 2|C|,
we can find m and s1, . . . , sf+1 in polynomial time in |C|.

Let [m] = {0, . . . ,m − 1} and consider the 2f+1 strings γ of length m such
that γ is consistent with C. We can easily compute all such γ in polynomial time
in |C| because γ(i) = 1 ⇐⇒ Ai ∈ BC if i ∈ [m]−{s1, . . . , sf+1} and the values
of γ(sj) ∈ {0, 1} for j = 1, . . . , f+1. There are 2f+1 = 2·2f ≤ 2·2log2(|C|) ≤ 2|C|
such strings and hence we can test all such strings for membership in T in
polynomial time in |C| since T is a polynomial time tree.

We claim that C ∈ SAT (∆) if and only if there is a γ of length m which
is consistent with C which is in T so that we can non-deterministically test
whether C ∈ SAT (∆) in polynomial time in |C|. Our claim follows from the
following lemma. Let {0, 1}≤n = {σ ∈ {0, 1}∗ : |σ| ≤ n}. For any string
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σ ∈ {0, 1}≤n, let Extn(σ) = {γ ∈ {0, 1}<n : σ v γ}. Note that for our tree
T , Tn = T ∩ {0, 1}≤n = {0, 1}≤n −

⋃f
e=0Ext(δe). Suppose that E and F are

disjoint subsets of [n]. Then we say that γ ∈ {0, 1}n separates the pair E,F if
γ(i) = 1 if i ∈ E and γ(i) = 0 if i ∈ F . Note that if E = {ni : Ani ∈ BC} and
F = {ni : ¬Ani ∈ BC}, then γ ∈ {0, 1}n separates the pair E,F if and only if
γ is consistent with C. For each j < n, we let Ej = E ∩ [j] and Fj = F ∩ [j].
Observe that if γ separates (E,F ), then, for all j ≤ |γ|, γdj separates (Ej , Fj).
With this notation, it is clear that our next lemma will show that C ∈ SAT (∆)
if and only if there is a γ ∈ T of length m which is consistent with C, and hence
that we can decide if C ∈ SAT (∆) in polynomial time in |C|.

Lemma 2.9 Suppose that T = {0, 1}≤n −
⋃f
i=0Extn(βi) where β0, . . . , βf are

elements of {0, 1}≤n and E and F are disjoints subsets of [n] such that |E| +
|F | ≤ n − f − 1. Let j ≤ n be such that |[j] − (Ej ∪ Fj)| ≥ f + 1 and suppose
that there is δ ∈ {0, 1}j ∩ T such that δ separates the pair (Ej , Fj), then there
is a γ ∈ T such that γ separates the pair (E,F )

Proof: For any set D ⊆ [n], we let γD,n ∈ {0, 1}n be the string of length n
such that γd(i) = 1 ⇐⇒ i ∈ D. Suppose f = 0 and let a be the least element
of [j]− (Ej ∪ Fj). There are two cases.
Case 1.a |β0| ≤ a.
In this case, it cannot be the case that β0 separates the pair (E|β0|, F|β0|) since
otherwise by our choice of a, E|β0| ∪ F|β0| = [|β0|] and hence every sequence of
length j separating (Ej , Fj) would extend β0 and therefore could not be in T .
Thus the string γE,n is in T and separates the pair (E,F ).

Case 1.b |β0| > a.
In this case, if β0(a) = 1, then the string γE,n is in T since γE,n(a) = 0 and
γE,n separates the pair (E,F ). Otherwise, β0(a) = 0 and the string γE∪{a},n is
in T and separates the pair (E,F ).

Now assume by induction that the lemma is true for f ≤ e and consider the
case where f = e+1. Assume that we have numbered the strings β0, . . . , βe+1 so
that |β0| ≤ |β1| ≤ · · · ≤ |βe+1|. Again let a be the least element of [j]−(Ej∪Fj).
There are three cases.

Case 2.a |β0| ≤ a.
Again it cannot be the case that β0 separates the pair (E|β0|, F|β0 |). Thus any
string γ which separates the pair (E,F ) is automatically in {0, 1}<n−Extn(β0).
Thus we can apply the induction hypothesis to the tree T ′ = {0, 1}≤n −⋃e+1
i=1 Extn(βi) to conclude that there is a γ ∈ T ′ such that γ separates the

pair (E,F ). But then we know that γ /∈ Extn(β0) so that in fact γ is in T .

Case 2.b |β0| > a and there is a j ∈ {0, 1} such that βi(a) = j for i = 0, . . . , f .
In this case, if j = 1, then the string γE,n is in T since γE(a) = 0 and γE,n
separates the pair (E,F ). Otherwise, j = 0 and the string γE∪{a},n is in T and
separates the pair (E,F ).
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Case 2.c Not case 2.a or case 2.b.
Thus |β0| > a and there exist strings βu and βv with u, v ≤ e + 1 such
that βu(a) = 1 and βv(a) = 0. Now consider the string δ of the length j
in T such that δ separates the pair (Ej , Fj). If δ(j) = 1, then, by induc-
tion, the lemma holds for the pair (E ∪ {a}, F ) relative to the tree T ′′ =
{0, 1}≤n −

⋃
i∈[e+1]−{r:βr(a)=0}Extn(βi). That is, [e + 1] − {r : βr(a) = 0}

is a set of size at most e and [j] − (E ∪ {a} ∪ F ) is of size at least e+1 and
hence we can apply the lemma by induction. Hence there is a string γ of
length n in T ′ which separates the pair (E,F ) such that γ(a) = 1. But then
γ /∈

⋃
i∈{r:βr(a)=0}Extn(βi) and hence γ must be in T . The case when δ(j) = 0

is similar. This completes the proof of the lemma. �
The non-deterministic polynomial time procedure for checking whether an

arbitrary sentence φ(An1 , . . . , Ank) is in SAT (∆) is the following. Guess a
conjunction C = B1 ∧ B2 ∧ · · · ∧Bk of literals where Bi is either Ani or ¬Ani
for i = 1, 2, . . . , k. (This is equivalent to guessing a sequence in {0, 1}k where
k < |φ|.) The verification procedure has two parts. First, verify that C ` φ,
which is accomplished simply by substituting the values for Aj indicated by C.
Second, verify that C ∈ SAT (∆) as indicated above. Thus SAT (∆) is in NP
and hence ∆ is NP -decidable.

However, the only complete consistent extensions of ∆ are of the form
Cn({Ai : π(i) = 1} ∪ {¬Ai : π(i) = 0}) where π = (π(0), π(1), . . .) is an in-
finite path. But it is easy to see that T has no infinite path which is in P since
we ensured that for every e, there is no path extending πe(0), . . . , πe(22e − 1)).
Now T has infinite paths since one can construct a path π = (π(0), π(1), . . .)
by a simple diagonalization argument such that πe 6v π for any e. Thus ∆ has
complete consistent extensions but it does not have any complete consistent
extensions which are in P .

(ii) The proof follows the outline of part (i), so we just sketch the differences.
First we have to define the e-th EXPTIME function, π′e, as follows. Let

f(e, t) = 2(1+t)e and let π′e(x) = φe,f(e,|x|)(x) if defined, and 0 if not.
The tree T is defined so that for σ ∈ {0, 1}k, we compute πe(i) for all e with

2e
2
< k and all i with i < 2e

2
and check whether πe(i) = σ(i) for all i < 2e

2
.

Then we put σ ∈ T if and only if there is no e such that σ and πe agree up to
2e

2
.
Next we compute the maximum time required to check σ ∈ T . For the

computation of π′e(i), we have |bin(i)| ≤ e2 ≤ 2e − 1, so that the time required

is ≤ 2(2e)e = 22e
2

≤ 2k. Since we have i < 2e
2
< k and e < k, there are fewer

than k2 such computations. This gives a total time on the order of 22k, so that
T is exponential time, as desired.

The exponential time theory ∆ is again chosen so that [T ] represents the
set of complete consistent extensions of ∆. To test whether a conjunction C =
B1 ∧B2 ∧ · · · ∧Bk is in SAT (∆), we check for all e such that 2e

2 ≤ k, whether
Ai occurs in C for every i < 22e and whether the corresponding string τe is in
T , as described in part (i).
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The exponential time procedure for checking whether φ(An1 , . . . , Ank) ∈
SAT (∆) again consists of guessing truth values for each Ani and then verifying
that the corresponding conjunction C is in SAT (∆) and implies φ. Now there
are only 2k different choices for the conjunction C and each verification can be
done in exponential time of order 22k. �

3 Complexity Theoretic Completeness Theorem
for Predicate Logic

The Completeness Theorem of Gödel showed that every consistent first order
theory has a complete consistent extension and has a model. Henkin’s construc-
tion is effective and hence the Computable Completeness Theorem holds, that
is, every decidable consistent first order theory has a complete consistent decid-
able extension and has a computable model. A theory which is just computably
axiomatizable does not necessarily have a computable complete consistent ex-
tension. For example, Peano Arithmetic is computably axiomatizable but does
not have a computable complete consistent extension. In the last section, we
saw that for propositional theories, a polynomial time decidable theory in tally
always has a polynomial time complete consistent extension and that an NP
time theory in binary does not always have a polynomial time complete consis-
tent extension. In this section, we consider the same questions for first order
logical theories.

We now give the main theorem of the present paper which is concerned with
the problem of starting with a decidable first order theory T whose decision
problem lies in some well known complexity class such as P , PSPACE, etc. and
constructing a decidable complete consistent extension A of T whose decision
problem lies in a slightly higher complexity class along with a decidable model
M of A. Since any consistent, computable relational theory has a computable
model and therefore has a linear time computable model by [3], one expects to
obtain a model M which lies in a lower complexity class than the complexity
class of A.

There are three components to our complexity theoretic version of the Henkin
construction. The central construction will show how a decidable first-order
theory T in a given complexity class may be extended to a complete consistent
theory A of slightly higher complexity class. For example, a PSPACE decid-
able theory can be expanded to an EXPSPACE-decidable complete theory.
An infinite set of new constants c0, c1, . . . are introduced and we will use these
constants to help construct the EXPSPACE model M of our complete theory
A.

Next we study the question of whether the EXPSPACE-decidable modelM
is isomorphic to a model which is in a lower complexity class such as PSPACE.
This seems reasonable given the result described above that every decidable
relational theory has a polynomial time model. In our case, the standard Henkin
construction of our EXPSPACE-decidable complete consistent theory A is
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modified by reordering the sentences so that for any fixed relation, say R(x),
the sentences of the form R(cn) occur in a polynomial sequence, say as the kn2-
th sentence in our modified list. This fact will allow us to show that complexity
of the model M is in PSPACE.

The final part of our construction deals with the problem of ensuring that M
has a standard universe. We know that there are computable relational models
which have no primitive recursive computable models with a standard universe
so it is somewhat surprising that here we can obtain a model M of A with a
standard universe. Here the key idea is to assume that our theory has an infinite
model. Thus the sentences of the form ci 6= cj , which make all of the constants
distinct, are consistent with the given theory and we can simply add all such
sentences to the theory in the beginning of the construction. Note that if the
theory has a finite model, then of course there is a model in P .

Theorem 3.1 (i) Suppose ∆ is a PSPACE-decidable theory in binary (tally).
Then ∆ has a PSPACE computable model with universe Bin(ω) (Tal(ω))
which is EXPSPACE-decidable in binary (tally).

(ii) Suppose ∆ is a P -decidable theory in binary (tally). Then ∆ has an
P -computable model with universe Bin(ω) (Tal(ω)) which is a DEXT -
decidable in binary (tally).

(iii) Suppose ∆ is an EXPSPACE-decidable theory in binary (tally). Then
∆ has an

⋃
k>0DSPACE(2n

k

)-computable model with universe Bin(ω)
(Tal(ω)) which is DOUBEXPSPACE-decidable in binary (tally).

(iv) Suppose ∆ is an DEXT -decidable theory in binary (tally). Then ∆ has
an EXPTIME-computable model with universe Bin(ω) (Tal(ω)) which
is DOUBEXT -decidable in binary (tally).

Proof: The proof uses a Henkin-style construction of the model. We will
give the proof of part (i) and then indicate the necessary changes for the other
parts.

Suppose that we are given a PSPACE-decidable first order theory ∆. As-
sume that the underlying language L is finite or countably infinite. We assume
the variables of the underlying language are x0, x1, . . .. We let L∗ consist of L
plus countable infinitely many new constant symbols c0, c1, . . .. In the binary
(tally) representation of L or L∗, the n-th variable xn is written as x_bin(n)
(x_tal(n)), the n-th constant symbol an is written as a_bin(n) (a_tal(n)),
the n-th relation symbol Rn is written as R_bin(n) (R_tal(n)), and the n-th
function symbol fn is written as f_bin(n) (x_tal(n)). In either the binary
or tally representation of L∗, the standard algorithm will determine whether a
sequence of symbols φ in our language is a well-formed formula or is a sentence
in time on the order of O(|φ| · log(|φ|). We order the underlying symbols of L∗
in increasing order as (, ),¬,∨,∧,→,↔,∀,∃,=, R, f, a, c, 0, 1.

We will construct a complete consistent extension of ∆ in the expanded
language and then define the EXPSPACE-model using the set of constants as
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the domain. The proof will be established in a series of claims. The first task
is to enumerate the formulas of the expanded language.

Let φ0, φ1, . . . enumerate the sentences of L∗ first by length and then lexi-
cographically within sentences of the same length. We first establish that there
are on the order of 2cn sentences of each length n.

Claim 3.2 For some constant a and integer N , there are ≥ 2a(n+1) sentences
of length n for all n ≥ N .

Proof: Suppose that there is a sentence φ of length k. Then the sentences
(∀xi)(φ) and (∃xi)(φ), for i ∈ ω, will show that there are at least 2 sentences
of length n for all n ≥ l = k + 7. Now for any m ≥ l, the sentences (∃x0)(φ)
and (∀x0)(φ) will show that if there are p sentences of length m, there are at
least 2p sentences of length m + 7. Hence for every k ≥ l, there are at least
2kp sentences of length l + 7k. Thus for any n ≥ l, there are at least 2

n−l
8 +1

sentences of length n. �
We can deduce from Claim 3.2 an upper bound on the length of the i-th

sentence φi. For any i, let log(i) be the least k such that 2k ≥ i, so that
i ≤ 2log i < 2i.

Claim 3.3 There is a constant b such that for all i, |φi| ≤ b · log(i).

Proof: Choose a and N by Claim 3.2 so that for n > N , there are ≥ 2an

sentences of length n − 1. Let |φi| = n where n > N . Then i > 2an, so that
log(i) > an and n < 1

a log(i). Now let b be the maximum of 1
a and the number

of sentences of length ≤ N . �

Claim 3.4 For some constant c, there are ≤ 2cn formulas of length ≤ n, for
sufficiently large n.

Proof: This follows from having a finite alphabet. Thus if there are k
symbols in the alphabet, then clearly there are kn strings of length n and thus
≤ kn+1 strings of length ≤ n. Taking c so that 2c ≥ k, we have the claim. �

Claim 3.5 For some constant d, there is a procedure which computes the list
of sentences φ0, . . . , φn in time ≤ (2n)d.

Proof: By Claim 3.3, we know that |φn| ≤ b · log n. Now the number of
strings of length b · log n is ≤ 2b·log n < (2n)b so that the total number of strings
of length ≤ b · log n is < (2n)b+1. Thus to find φn, we enumerate all strings
of length ≤ b · log n, test whether each one is a sentence and keep a list of the
sentences until we reach the n-th one. Since each string being tested has length
≤ b · log n, each test can be done in time of order ≤ log n · log log n, so that
the total time required is of order ≤ (2n)b+1 · log n · log log n ≤ (2n)b+3. �

Observe that none of the claims 3.3-3.6 depends on whether we write our
formulas in tally or in binary notation.

We now sketch the Henkin-style construction needed to obtain the complete
consistent extension and model of ∆. The construction will proceed in stages s ≥
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0. The standard Henkin construction is modified so that all of the new constants
are kept distinct. That is, we can assume that our theory has only infinite models
since otherwise ∆ has a model in P whose theory is NSPACE(O(n))-decidable
so that ∆ would have a DEXT -decidable complete consistent extension. So
assume that ∆ has only infinite models. Thus ∆+ = ∆ ∪ {ci 6= cj : i < j}
is consistent. We will ensure that ∆+ is included in our complete consistent
extension.

Claim 3.6 1. If ∆ is PSPACE-decidable, then ∆+ is PSPACE-decidable.

2. If ∆ is P -decidable, then ∆+ is P -decidable.

3. If ∆ is EXPSPACE-decidable, then ∆+ is EXPSPACE-decidable.

4. If ∆ is DEXT -decidable, then ∆+ is DEXT -decidable.

Proof: Let |φe| = n and suppose that ci1 , . . . , cik is a list of the new constants
occurring in φe. Then k < n and, for all s < t < k, |cis 6= cit | ≤ n+3. It follows
that the conjunction ψe of all such inequalities has length < (n+ 3)3 and that
we can construct ψe from φe in polynomial time. Parts (1)-(4) now easily follow
from the fact that

∆+ ` φe ⇐⇒ ∆ ` (ψe → φe).

�
The complete theory Γ = {δe : e = 0, 1, . . . } is defined in stages as follows.

Stage s = 2e: See whether ∆+ ` (δ0 ∧ · · · ∧ δ2e−1) → φe. If so, then δs = φe.
If not, then δs = ¬φe. (For e = 0, just check ∆+ ` φ0.)

Stage s = 2e + 1 > 1: See whether δe has the form (∃xn)θ(xn). If not, then
just let δs = δs−1. If so, then we will select one of the new constants ci and
let δs = θ(ci). We cannot simply choose the first constant which has not been
used in any of δ0, . . . , δs−1, because it may be that we have already declared
that θ(c0) ∈ Γ and ∆ ensures that a unique element satisfies θ(x). Thus we first
check whether θ(cj) for any of the constants cj occurring in δ0, . . . , δs−1 and
let ci = cj for the least such j if there is one. Otherwise, we let ci be the first
constant which has not been used in any of δ0, . . . , δs−1.

It follows as usual that Γ is a complete consistent extension of ∆+. Our
next goal is to show that since ∆ is PSPACE-decidable, Γ is EXPSPACE-
decidable. We give a series of calculations.

Claim 3.7 There is a constant r such that, for each s and for each ct occurring
in φs or in δs, |ct| ≤ r · log s in the binary case and |ct| ≤ sr in the tally case.

Proof: Let b be given by Claim 3.3 so that |φs| ≤ b · log s. Then for ct
in φs, we also have |ct| ≤ b · log s hence log t ≤ b · log s and t ≤ sb. Now
the total number of new constants added by stage s is fewer than s by the
construction. Hence if ct ∈ δs, then t < sb + s < sb+1. Thus |ct| ≤ sb+1 in tally
and |ct| ≤ (b+ 1) · log(s) in binary. �
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Claim 3.8 There is a constant q such that for each s, |δs| ≤ q · log2(s) in the
binary case and |δs| ≤ sq in the tally case.

Proof: Let q = (b+ 1)(r+ 1) ≥ b+ r, where b and r are the constants given
by Claims 3.3 and 3.7.

We may omit the case where δs = δs−1, which leaves three cases:

Case 1: s = 2e and δs = φe. Then |δs| = |φe| ≤ b · log(e) ≤ q · log s by Claim
3.3.

Case 2: s = 2e and δs = (¬φe). Then |δs| = |φe|+ 3 ≤ 4b · log(e) ≤ 4q · log(s)
by Claim 3.3.

Case 3: s = 2e+ 1 and δs = θ(ct) where δe = (∃xi)(θ).

In Case 3, consider the sentence δe. It is not a negation, so either e =
2d and δe = φd or e = 2d + 1 and either δe = δe−1 or δe = θ′(cp), where
e = 2f + 1 and δf = (∃xh)θ′. It follows by induction that for some d ≤ e,
some k ≥ 1 and some variables xi1 , . . . , xik and constants cj1 , . . . , cjk , φd =
(∃xi1)(∃xi2) . . . (∃xik)θ(xi1 , . . . , xik) and δs = θ(cj1 , . . . , cjk).

By Claim 3.3, |φd| ≤ b · log(s).
First consider the tally case.
For each t, |cjt | ≤ sr by Claim 3.7; let cj have maximal length. Now there

can be no more than |φd| occurrences of the constants cjt in δs, so that in the
tally case,

|δs| ≤ |φd||cj | ≤ b · log(s)sr ≤ sbsr ≤ sq.

In the binary case, we can conclude that |cj | ≤ r · log(s), so that

|δs| ≤ |φd||cj | ≤ b · log(s) · r · log(s) ≤ q · log2(s).

�
The key to the argument lies in the following bound on the complexity of

the construction.

Claim 3.9 Stage s of the construction takes space O(sk) for some fixed k.

Proof: By Claim 3.5, we may assume that we have a list of the first s sen-
tences φ0, . . . , φs−1. Then we first see which of the two cases s falls into, that
is, we test whether s is even or not. This takes time O(s). The construction of
φs now falls into the two cases.

Case 1: s = 2e, where we use our PSPACE decidability algorithm to test
∆+ ` (δ0 ∧ · · · ∧ δs−1)→ φe. By Claims 3.3 and 3.8,

|(δ0 ∧ · · · ∧ δs−1)→ φe| ≤ s · sq + b · log(e) ≤ sb+q+2

in either binary or tally. If our algorithm runs in space |φ|w, then we need space
at most sw(b+q+2) to decide whether to put φe or ¬φe into Γ at this stage in
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either the binary or the tally representation.

Case 2: For s = 2e + 1, e > 1: We read δe and determine whether it has
the form (∃xi)θ(xi). This again takes time at most O(sq). Next we test

∆+ ` ((δ0 ∧ · · · ∧ δs−1)→ θ(ci))

for all ci occurring in δ0, . . . , δs−1.
Then |θ(ci)| ≤ srsq by Claims 3.7 and 3.8 and it follows as in Case 2 that

each such test can be done in space ≤ (s · sq + sr+q)w ≤ s2w(r+q+2). Finally, if
necessary, we take the next ct from our list and write δs = θ(ct), which takes
additional time at most ≤ sq(sq + 1). �

It follows that the total space required to complete the computations for
stages 1 through s is of order sk for some k.

Claim 3.10 We can decide whether φe ∈ Γ using at most 2c|φe| space for some
fixed c.

Proof: Let n = |φe|. By the construction, φe is decided by stage s = 2e. By
Claim 3.4, we have e ≤ 2cn, Thus by Claim 3.9, the space required to decide φe
is

≤ (2cn+1)k = 2k(cn+1).

�
By the usual Henkin argument, Γ is an EXPSPACE-decidable complete

consistent extension of ∆+ so that we can obtain a EXPSPACE-decidable
complete consistent extension of ∆ by restricting Γ to the language L. Now we
will describe the EXPSPACE model. The universe of the tally model A is
Tal(ω) and the universe of the binary model B is Bin(ω). The relations and
functions of the structures A and B are defined using the theory Γ. That is, for
any relation symbol Rm and any tal(n1), . . . , tal(nk) ∈ A, we have

RAm(tal(n1), . . . , tal(nk)) ⇐⇒ Γ ` Rm(cn1 , . . . , cnk).

Then

|Rm(cn1 , . . . , cnk)| = |tal(n1)|+ · · ·+ |tal(nk)|+ 2k + 2 +m+ 1
≤ 5(|tal(n1)|+ · · ·+ |tal(nk)|) +m+ 1.

Since Γ is EXPSPACE-decidable and |cn| = n + 1 = |tal(n)| + 1, it follows
that RAm is EXPSPACE computable.

For any function symbol Fp and any tal(n1), . . . , tal(nk), tal(n), we have

FAp (tal(n1), . . . , tal(nk)) = tal(n) ⇐⇒ Γ ` Fp(cn1 , . . . , cnk) = cn.

Now let m = |n1 + · · ·+ nk| and consider the formula

φe(n1,...,nk) : (∃x1)(x1 = Fp(cn1 , . . . , cnk)).
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If e = e(n1, . . . , nk), then |φe| < m+d for a fixed constant d so that by Claim 3.4,
e ≤ 2c(m+d). It follows from the construction that by stage s = 2e ≤ 2c(m+d)+1

we have δs = φe and that by stage 2s+1 ≤ 2c(m+d)+3, we have chosen a constant
ct and put ct = Fr(cn1 , . . . , cnk) in Γ. It follows from Claim 3.9 that we can
compute ct = F (cn1 , . . . , cnk) in space ≤ (2s + 1)k ≤ 2kc(m+d+4) which makes
Fp an EXPSPACE computable function.

It then easily follows that the atomic diagram of A is in EXPSPACE.
For the binary structure B, the relations RBm and functions FBp are similarly

defined. The difference is that now |cn| = |bin(n)| + 1 = log(n) + 1. The
argument for the complexity of the relation RBm goes through as above. For
the computation of the function FBp (bin(n1), . . . , bin(nk)), let m = |bin(n1)| +
· · ·+ |bin(nk)|. If e = e(n1, . . . , nk), then |φe| < m+ d for a fixed constant d so
that by Claim 3.4, e ≤ 2c(m+d). It follows from the construction that by stage
s = 2e ≤ 2c(m+d)+1 we have δs = φe and that by stage 2s+ 1 ≤ 2c(m+d)+3, we
have chosen a constant ct and put ct = F (cn1 , . . . , cnk) in Γ. It follows from
Claim 3.9 that we can compute ct in space at most (2s+2)k ≤ 2kc(m+d+4) which
makes Fp an EXPSPACE computable function.

Furthermore, it follows from Claim 3.7 that

|ct| ≤ 1 + r · log(2s+ 1) ≤ 2r · log(2c(m+d)+3) = 2rc(m+ d) + 6r.

It then easily follows that atomic diagram of B is in EXPSPACE.
Next we deal with the problem of reducing the complexity of the model

constructed above. We will describe the necessary modification to the proof
of the main theorem given above to produce a polynomial space structure in
case (i). First suppose that ∆ is PSPACE-decidable in tally. The idea is to
simply define a new enumeration of the formulas φe as follows. Let Ri be an
enumeration of the relation symbols and let Fi be an enumeration of the function
symbols. Fix some polynomial time pairing function [, ]t : Tal(ω) × Tal(ω) →
Tal(ω) and extend [, ]t to a n-tuples for n ≥ 3 by the usual inductive definition
[tal(a1), tal(a2), . . . , tal(an)]t = [tal(a)1, [tal(a2), . . . tal(an)]t]t. Then, we let
φ∗2e+1 = φe and we let φ∗2[tal(0),tal(e),tal(k),tal(n1),...,tal(nk)]t

be Re(cn1 , . . . , cnk)
and we let φ∗2[tal(1),tal(e),tal(k),tal(n1),...,tal(nk)]t

be (∃x0)(x0 = Fe(cn1 , . . . , cnk). If
2k is not of the form [tal(0), tal(x)]t or [tal(1), tal(x)]t, then we let φ∗2k = φ0.
If 2k is of the form [tal(0), tal(e), tal(k), tal(x)]t where Re is either not in the
language L or is Re in L but is not a k-ary relation, then we let φ∗2k = φ0.
Similarly, if 2k is of the form [tal(1), tal(e), tal(k), tal(x)]t where Fe is either
not in the language L or is Fe in L but is not a k-ary function symbol, then we
let φ∗2k = φ0.

Now relative to the tally representation, it is the case that for any fixed e,
Re(cn1 , . . . , cnk) is decided by stage 2[tal(0), tal(e), tal(k), tal(n1), . . . , tal(nk)]t
and Fe(cn1 , . . . , cnk) is computed by stage

2(2[tal(0), tal(e), tal(k), tal(n1), . . . , tal(nk)]t) + 1

so that, by Claim 3.10, both the relations and the functions of A are polynomial
space computable.
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If ∆ is PSPACE decidable in binary, then we can use the same idea except
that we use polynomial time pairing function [, ]b : Bin(ω)×Bin(ω)→ Bin(ω).
Then relative to the binary representation, it is the case that for any fixed e,
Re(cn1 , . . . , cnk) is decided by stage 2[bin(0), bin(e), bin(k), bin(n1), . . . , bin(nk)]b
and Fe(cn1 , . . . , cnk) is computed by stage

4(2[bin(0), bin(e), bin(k), bin(n1), . . . , bin(nk)]b)2 + 1,

so that, by Claim 3.10, both the relations and the functions of B are polynomial
space computable.

This completes the proof of part (i).
For the other parts of the theorem, we need only re-examine the proof in

Claim 3.9 and Claim 3.10. That is, we have the following.

Claim 3.11 1. If ∆+ is P -decidable, then stage s of the construction takes
time O(sk) for some fixed k.

2. If ∆+ is EXPSPACE-decidable, then stage s of the construction takes
time O(2s

k

) for some fixed k.

3. If ∆+ is DEXT -decidable, then stage s of the construction takes time
O(2s

k

) for some fixed k.

Proof: By Claim 3.5, we may assume that we have a list of the first s sen-
tences φ0, . . . , φs−1. Then we first see which of the two cases s falls into, that
is, we test whether s is even or whether s = 2e + 1 for some e > 1. This takes
time O(s). The construction of φs now falls into the two cases.

Case 1: s = 2e, where we use our decidability algorithm to test ∆+ ` (δ0 ∧
· · · ∧ δs−1)→ φe. By Claims 3.3 and 3.8,

|(δ0 ∧ · · · ∧ δs−1)→ φe| ≤ s · sq + b · log(e) ≤ sb+q+2.

If our algorithm runs in time |φ|w, then we need time at most sw(b+q+2) to
decide whether to put φe or ¬φe into Γ at this stage in either the binary or the
tally representation.

If our algorithm runs in space 2w|φ|, then we need space at most 2ws
(b+q+2)

to decide whether to put φe or ¬φe into Γ at this stage in either the binary or
the tally representation.

If our algorithm runs in time 2w|φ|, then we need time at most 2ws
(b+q+2)

to
decide whether to put φe or ¬φe into Γ at this stage in either the binary or the
tally representation.

Case 2: For s = 2e + 1, e > 1: We read δe and determine whether it has
the form (∃xi)θ(xi). This again takes time at most O(sq). Next we test

∆+ ` ((δ0 ∧ · · · ∧ δs−1)→ θ(ci))
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for all ci occurring in δ0, . . . , δs−1. In the tally representation, each |ci| ≤ sr by
Claim 3.7. and thus there are at most sr such tests for the tally representation.
It follows that in either the tally or binary representation, |θ(ci)| ≤ srsq

If our algorithm runs in time |φ|w, then we need time at most sr(ssq +
srsq)w ≤ s2w(r+q+2) to decide whether to put φe or ¬φe into Γ at this stage in
either the binary or the tally representation.

If our algorithm runs in space 2w|φ|, then we need space at most s2r2w(ssq+srsq)

to decide whether to put φe or ¬φe into Γ at this stage in either the binary or
the tally representation.

If our algorithm runs in time 2w|φ|, then we need time at most s2r2w(ssq+srsq)

to decide whether to put φe or ¬φe into Γ at this stage in either the binary or
the tally representation.

Finally, if necessary, we take the next ct from our list and write δs = θ(ct),
which takes additional time ≤ sq(sq + 1). �

Thus we have the following.

1. If ∆ is P -decidable, then the total time required to complete stages 1
through s is of order

∑s
i=1 i

k ≤ (sk)2 = s2k for some k.

2. If ∆ is EXPSPACE-decidable, then the total space required to complete
stages 1 through s is of order s2s

k ≤ 2s
2k

for some k.

3. If ∆ is DEXT -decidable, then the total time required to complete stages
1 through s is of order s2s

k ≤ 2s
2k

for some k.

Claim 3.12 1. If ∆ is P -decidable, then the time required to decide whether
φe ∈ Γ is at most 2h|φe| for some fixed h.

2. If ∆ is EXPSPACE-decidable, then the space required to decide whether
φe ∈ Γ is at most 2|φe|

h

for some fixed h.

3. If ∆ is DEXT -decidable, then the time required to decide whether φe ∈ Γ
is at most 2|φe|

h

for some fixed h.

Proof: Let n = |φe|. By the construction, φe is decided by stage s = 2e. By
Claim 3.4, we have e ≤ 2cn, Thus by Claim 3.11,

1. if ∆ is P -decidable, the time required to decide whether φe is in Γ is at
most ≤ (2cn)2k ≤ 22kcn,

2. if ∆ is EXPSPACE-decidable, the space required to decide whether φe
is in Γ is at most ≤ 2(2cn)2k ≤ 222kcn

, and

3. if ∆ is DEXT -decidable, the time required to decide whether φe is in Γ
is at most ≤ 2(2cn)2k ≤ 222kcn

.

�
By using a similar analysis as was used in the proof of case (i), we can

establish the following.
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1. If ∆ is P -decidable, then Γ is DEXT -decidable and the atomic diagrams
of the models A and B are in P .

2. If ∆ is EXPSPACE-decidable, then Γ is DOUBEXPSPACE-decidable
and the atomic diagrams of the modelsA and B are in

⋃
k>0DSPACE(2n

k

).

3. If ∆ is DEXT -decidable, then Γ is DOUBEXT -decidable and the atomic
diagrams of the models A and B are in EXPTIME.

This completes the proof of the Main Theorem. �

Corollary 3.13 (i) Any first order theory which is PSPACE-decidable in bi-
nary (tally) has a complete consistent extension which is EXPSPACE-
decidable in binary (tally).

(ii) Any first order theory which is P -decidable in binary (tally) has a complete
consistent extension which is DEXT -decidable in binary (tally).

(iii) Any first order theory which is EXPSPACE-decidable in binary (tally)
has a complete consistent extension which is DOUBEXPSPACE-decidable
in binary (tally).

(iv) Any first order theory which is DEXT -decidable in binary (tally) has a
complete consistent extension which is DOUBEXT -decidable in binary
(tally).

Finally, we can modify the proof of the main theorem to include an omitting
types argument. Let us say that a non-principal type γ0(x), γ1(x), . . . in a
theory ∆ is PSPACE-computable in binary (tally) if the following are all true.

(i) For each n, ∆ ` γn+1 → γn

(ii) For each n, ∆ 0 γn → γn+1;

(iii) There is a PSPACE algorithm which computes γn from bin(n) (resp.
tal(n)) and furthermore |γn| is bounded by a polynomial in |bin(n)| (|tal(n)|).

Similar definitions can be given for other complexity classes and for types
over more than one variable. We just give one result here.

Theorem 3.14 Let ∆ be a first order theory which is PSPACE-decidable in bi-
nary (tally) and let {γn(x)}m∈ω be a PSPACE-computable nonprincipal 1-type.
Then ∆ has a PSPACE-computable model which is EXPSPACE-decidable in
binary (tally) and which omits the type.

Proof: We modify the proof of the main theorem as follows. Before starting
the construction, we expand ∆+ to ∆∗ by adding {¬γn+1(cn) : n < ω}. The
conditions (i) and (ii) above for a non-principal type imply that ∆∗ is still
consistent. To see that ∆∗ is still PSPACE-decidable, observe that for any
formula φ which contains only constants from {c0, . . . , cn−1}, we have
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∆∗ ` φ←→ ∆+ ` (¬γ1(c0) ∧ · · · ∧ ¬γn(cn−1))→ φ.

In fact, the conjunction can be restricted only to those ¬γi(ci−1) for which
ci−1 occurs in φ. Thus we can compute each necessary γi from φ and the length
of the conjunction will be bounded by a polynomial in the length of φ, so that
we can use the PSPACE procedure for ∆+ again to decide whether ∆∗ ` φ in
space polynomial in |φ|.

�
Similar results of course hold for other complexity classes and for tally as

well as binary.
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