On the Complexity of Inductive Definitions

DOUGLAS CENZER ${ }^{1}$ and JEFFREY B. REMMEL ${ }^{2 \dagger}$
${ }^{1}$ Department of Mathematics, University of Florida,
P.O. Box 118105, Gainesville, Florida 32611, USA.
${ }^{2}$ Department of Mathematics, University of California at San Diego,
La Jolla, CA 92093, USA.
Received September 2005

Abstract

We study the complexity of computable and Σ_{1}^{0} inductive definitions of sets of natural numbers. For we example, we show how to assign natural indices to monotone Σ_{1}^{0}-definitions and we use these to calculate the complexity of the set of all indices of monotone Σ_{1}^{0}-definitions which are computable. We also examine the complexity of a new type of inductive definition which we call weakly finitary monotone inductive definitions. Applications are given in proof theory and in logic programming.

1. Introduction

Inductive definitions play a central role in mathematical logic and computer science. For example, the set of formulas in a first order language is given by an inductive definition. Given a set A of axioms for a mathematical theory T and a set of logical axioms and rules, the theory T is obtained by an inductive definition. The set of computable functions can be realized by an inductive definition. Similarly, for any Horn logic program P, the unique stable model of P is obtained by an inductive definition.

It is well-known that for any computable or Σ_{1}^{0} monotone inductive definition Γ, one can construct the closure of $\Gamma, C l(\Gamma)$, in at most ω steps and $C l(\Gamma)$ is always a Σ_{1}^{0} set. In some situations, it is important that $C l(\Gamma)$ is computable. For example, it is important that the set of formulas in a typical first order theory is computable. In other situations, we know that $C l(\Gamma)$ is Σ_{1}^{0} but not computable. For example, even a finitely axiomatizable theory T may be Σ_{1}^{0} but not decidable (computable). In this paper, we shall explore the complexity of various properties of the closure of a Σ_{1}^{0} monotone inductive definition Γ. For examples, we shall consider properties like when the closure of Γ is finite, cofinite, or computable or when the closure ordinal of Γ is finite or equal to ω. We shall do this by assigning indices to Σ_{1}^{0} monotone inductive operators. In particular, this means that we can effectively enumerate the family of all Σ_{1}^{0} monotone inductive operators as $\Gamma_{0}, \Gamma_{1}, \ldots$.

[^0]Then, for example, we shall show that the set C of indices e such that the closure or least fixed point lfp $\left(\Gamma_{e}\right)$ is computable is Σ_{3}^{0} complete.

We will also define a new class of inductive operators called weakly finitary monotone inductive operators. The basic idea is that for a weakly finitary operator there may exists a finite set of elements x such that x is forced into $\Gamma(A)$ only if A contains one of a collection of possibly infinite sets. We will show that if Γ is a weakly finitary monotone inductive operator, then it will still be the case that $l f p(\Gamma)$ will be Σ_{1}^{0} but that it can take more than ω steps to construct $l f p(\Gamma)$. An example of such an operator is when we allow finitely many instances of the ω-rule to generate a partial theory of arithmetic. We also assign indices to the family of weakly finite Σ_{1}^{0} monotone inductive operators. We shall show that the set of indices of weakly finitary Σ_{1}^{0} monotone inductive operators Γ such that $\operatorname{lfp}(\Gamma)$ is computable is also Σ_{3}^{0} complete. However, for certain computable sets R, the set of indices of weakly finitary Σ_{1}^{0} monotone inductive operators Γ such that $l f p(\Gamma) \cap R$ is computable lies in the difference hierarchy over the Σ_{3}^{0} sets.

We will use standard notation from computability theory (Soare 1987). Let \mathbb{N} denote the set of natural numbers and $\mathcal{P}(\mathbb{N})$ denote the set of all subsets of \mathbb{N}. In particular, we let $\phi_{e}\left(\phi_{e}^{A}\right)$ denote the e-th partial computable function (e-th A-partial computable function) from \mathbb{N} to \mathbb{N} and let $W_{e}=\operatorname{Dom}\left(\phi_{e}\right)\left(W_{e}^{A}=\operatorname{Dom}\left(\phi_{e}^{A}\right)\right)$ be the e-th computably enumerable (c. e.) (e-th A-computably enumerable) subset of \mathbb{N}. Note that computably enumerable and recursively enumerable (r.e.) have the same meaning and likewise computable functions are also known as recursive functions. We let $W_{e, s}\left(W_{e, s}^{A}\right)$ denote the set of numbers $m \leq s$ such that $\phi_{e}(m)\left(\phi_{e}^{A}(m)\right)$ converges in s or fewer steps. Given a finite set $S=\left\{a_{1}<\ldots a_{n}\right\}$, the canonical index of S is $\sum_{i=1}^{n} 2^{a_{i}}$. The canonical index of the empty set is 0 . We let D_{n} denote the finite set whose canonical index is n.

We fix a primitive recursive pairing function, $[x, y]=\frac{1}{2}\left((x+y)^{2}+3 x+y\right)$ from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}. For any sequence a_{1}, \ldots, a_{n} with $n \geq 3$, we define $\left[a_{1}, \ldots, a_{n}\right]$ by the usual inductive procedure of defining $\left[a_{1}, \ldots, a_{n}\right]=\left[a_{1},\left[a_{2}, \ldots, a_{n}\right]\right.$. The explicit index of the sequence $\left(a_{1}, \ldots, a_{n}\right)$ is defined by $\left\langle a_{1}\right\rangle=\left[1, a_{1}\right]$ if $n=1$ and $\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left[n,\left[a_{1}, \ldots, a_{n}\right]\right]$ if $n \geq 2$.

2. Inductive Definitions

In this paper, we are going to consider inductive operators $\Gamma: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ which inductively define subsets of \mathbb{N}. We begin with a review of basic definitions and results which can be found, for example, in Hinman (Hinman 1978).

Definition 2.1. Let $\Gamma: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$.
$1 \quad \Gamma$ is said to be monotone if $A \subset B$ implies $\Gamma(A) \subseteq \Gamma(B)$ for all A, B.
2Γ is said to be inclusive if $A \subseteq \Gamma(A)$ for all A.
3Γ is said to be inductive if it is either monotone or inclusive.
An inductive operator Γ recursively defines a sequence $\left\{\Gamma^{\alpha}: \alpha\right.$ an ordinal $\}$ by setting $\Gamma^{0}=\emptyset, \Gamma^{\alpha+1}=\Gamma\left(\Gamma^{\alpha}\right)$ for all α and $\Gamma^{\lambda}=\bigcup_{\alpha<\lambda} \Gamma^{\alpha}$. It is easy to see that $\Gamma^{\alpha} \subseteq \Gamma^{\beta}$ whenever $\alpha<\beta$. By cardinality considerations, there exists a countable ordinal α such that $\Gamma^{\alpha}=\Gamma^{\beta}$ for all $\beta>\alpha$. The least such α is called the closure ordinal of Γ and will
be denoted by $|\Gamma|$. The set $\Gamma^{|\Gamma|}$ is called the closure of Γ or the set inductively defined by Γ and will be denoted by $C l(\Gamma)$.

For a monotone operator, the closure is also the least fixed point $l f p(\Gamma)$ as indicated by the following lemma, see Hinman (Hinman 1978).

Lemma 2.1. If Γ is a monotone operator, then $C l(\Gamma)$ is the unique least set C such that $\Gamma(C)=C$. In fact, for any set $A, \Gamma(A) \subseteq A$ if and only if $c l(C) \subseteq A$.

For any operator $\Gamma: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$, let $R_{\Gamma} \subseteq \mathbb{N} \times \mathcal{P}(\mathbb{N})$ be given by $R_{\Gamma}(m, A) \Longleftrightarrow$ $m \in \Gamma(A)$. In general, we say that a predicate $R\left(x_{1}, \ldots, x_{k}, A\right) \subseteq \mathbb{N}^{k} \times \mathcal{P}(\mathbb{N})$ is computable if there is an oracle Turing machine M_{e} such that for any $A \in \mathcal{P}(\mathbb{N}), M_{e}$ with oracle A and input $\left(x_{1}, \ldots, x_{n}\right)$ outputs 1 if $R\left(x_{1}, \ldots, x_{n}, A\right)$ holds and outputs 0 , otherwise. The notation of a predicate being $\Sigma_{n}^{0}, \Pi_{n}^{0}, \Sigma_{1}^{1}, \Pi_{1}^{1}$, etc. can then be defined as usual over the class of computable predicates. We then say that an operator Γ is computable (respectively Σ_{1}^{0}, arithmetical, etc.) if the relation R_{Γ} is computable (respectively Σ_{1}^{0}, arithmetical, etc.). The following results are well-known.

Theorem 2.1. Let Γ be an inductive operator.
(a) If Γ is computable, then the sequence $\left\{\Gamma^{n}: n \in \omega\right\}$ is uniformly computable, $|\Gamma| \leq \omega$, and $C l(\Gamma)$ is Σ_{1}^{0}.
(b) If Γ is Σ_{1}^{0}, then $|\Gamma| \leq \omega$ and if Γ is monotone Σ_{1}^{0}, then $C l(\Gamma)$ is Σ_{1}^{0}.
(c) Any Σ_{1}^{0} set is 1-1 reducible to the closure of some computable monotone operator.
(d) If Γ is monotone arithmetical, then $|\Gamma| \leq \omega_{1}^{C K}$ (the least non-computable ordinal) and $C l(\Gamma)$ is Π_{1}^{1}.
(e) Any Π_{1}^{1} set is 1-1 reducible to the closure of a monotone Π_{1}^{0} operator.

Example 2.1. The classic example of a computable monotone operator is given by the definition of the set of sentences of a propositional logic over an infinite set a_{0}, a_{1}, \ldots of propositional variables. Identifying sentences p, q with their Gödel number $g n(p), g n(q)$, we have for any i, p, q, and A :
(0) $a_{i} \in \Gamma(A)$,
(1) $\neg p \in \Gamma(A)$ if $p \in A$, and
(2) $p \wedge q \in \Gamma(A)$ if $p \in A$ and $q \in A$, and
(3) $p \in \Gamma(A)$ if $p \in A$.

Other clauses could be added to include disjunction, implication or other binary connectives. This operator is computable because for any sentence p, we can compute the (at most two) other sentences which need to be in A for p to get into $\Gamma(A)$. Similar computable inductive definitions can be given for the set of terms in a first order language and the set of formulas in predicate logic. In each case, the closure ordinal of such a Γ is ω and the set of sentences (respectively, terms, formulas) is computable since for any sentence (term, formula) p of length $n, p \in l f p(\Gamma) \Longleftrightarrow p \in \Gamma^{n}$.

Example 2.2. Suppose we are given a computable or Σ_{1}^{0} set A_{0} of axioms for propositional logic together with the logical axioms $\neg p \vee p$ for each p and a finite set of rules
as indicated below. Then the set of consequences of A_{0} is generated by the operator Γ where, for all sentences p, q, r and all A :
(0) $p \in \Gamma(A)$ if p is an axiom,
(1) $p \vee q \in \Gamma(A)$ if $p \in A$ or $q \in A$,
(2) $p \in \Gamma(A)$ if $p \vee p \in A$,
(3) $(p \vee q) \vee r \in \Gamma(A)$ if $p \vee(q \vee r) \in A$, and
(4) $q \vee r \in \Gamma(A)$ if $p \vee q \in A$ and $\neg p \vee r \in A$.

In this case, Γ is a Σ_{1}^{0} operator but is not computable since, for example, the Cut Rule (4) asks for the existence of a p such that $p \vee q$ and $\neg p \vee r$ are in A.

Now in this particular case, the consequences of a computable set A_{0} will be a computable set but a similar example can be given for first order logic where the consequences of a finite set of axioms for arithmetic is Σ_{1}^{0} but not computable.

Example 2.3. The one-step provability operator for a computable Horn logic program is a Σ_{1}^{0} monotone operator. That is, suppose A is a computable set of propositional letters or atoms. We assume that $A=\mathbb{N}$. A logic programming clause is a construct of the form

$$
\begin{equation*}
C=p \leftarrow q_{1}, \ldots, q_{m}, \neg r_{1}, \ldots, \neg r_{n} \tag{1}
\end{equation*}
$$

where $p, q_{1}, \ldots, q_{m}, r_{1}, \ldots, r_{n}$ are atoms. Given a clause C, we let

$$
[C]=\left[p,\left\langle q_{1}, \ldots, q_{m}\right\rangle,\left\langle r_{1}, \ldots, r_{n}\right\rangle\right]
$$

where by convention, we let $\left\langle q_{1}, \ldots, q_{m}\right\rangle=0$ if $m=0$ and $\left\langle r_{1}, \ldots, r_{n}\right\rangle=0$ if $n=0$. The atoms $q_{1}, \ldots, q_{m}, \neg r_{1}, \ldots, \neg r_{n}$ form the body of C and the atom p is its head. Given a set of atoms $M \subseteq A$, we say M is a model of C if either (i) there is an q_{i} such that $q_{i} \notin M$ or there is an r_{j} such that $r_{j} \in M(M$ does not satisfy the body of $C)$ or (ii) $p \in M(M$ satisfies the head of C). The clauses C where $n=0$ are called Horn clauses.

A program P is a set of clauses. We say that P is computable (Σ_{1}^{0}, arithmetical, etc.) if $\{[C]: C \in P\}$ is computable (Σ_{1}^{0}, arithmetical, etc.). A program entirely composed of Horn clauses is called a Horn program. If P is a Horn program, then there is a one step provability operator associated with $P, T_{P}: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$, which is defined by
$T_{P}(A)$ equals the set of all p such that there exists a clause $C=p \leftarrow q_{1}, \ldots, q_{n}$ in P such that $q_{1}, \ldots, q_{n} \in A$.

A Horn program always has a least model which is the closure of T_{p}. It is the intended semantics of such a program.

For programs with bodies containing the negation operator not, we will use the stable model semantics. Following (Gelfond and Lifschitz 1988), we define a stable model of the program as follows. Assume M is a collection of atoms. The Gelfond-Lifschitz reduct of P by M is a Horn program arising from P by first eliminating those clauses in P which contain $\neg r$ with $r \in M$. In the remaining clauses, we drop all negative literals from the body. The resulting program $G L_{M}(P)$ is a Horn program. We call M a stable
model of P if M is the least model of $G L_{M}(P)$. In the case of a Horn program, there is a unique stable model, namely, the least model of P. Alternatively, one can define a one step provabibility operator $T_{P, M}$ relative to a logic program P consisting of clauses of the form of (1) and a collection of atoms M by defining $T_{P, M}(A)$ to be the set all p such that there exists a clause $C=p \leftarrow q_{1}, \ldots, q_{n}, \neg r_{1}, \ldots, \neg r_{m}$ in P such that (i) $\left\{q_{1}, \ldots, q_{m}\right\} \subseteq A$ and (ii) $\left\{r_{1}, \ldots, r_{m}\right\} \cap M=\emptyset$. Then M is a stable model if and only the closure of $T_{P, M}$ equals M. In general, if M is a computable set, then $T_{P, M}$ is a monotone Σ_{1}^{0} operator.

It should be pointed out that both Example 1 and Example 2 can reformulated in the framework of logic programming as computable Horn programs. That is, the set of rules is a computable set, even though the corresponding inductive operator need not be computable.

Example 2.4. Another setting where computable inductive operators arise is in computable algebra and computable model theory. Surveys on various topics in computable algebra and model theory can be found in (Ershov et. al 1998a; Ershov et. al 1998b).

A generic example of computable inductive operators that arise in computable algebra are effective closure systems which were introduced by Remmel (Remmel 1980). An effective closure system $\mathcal{M}=(M, c l)$ consists of a computable set M of the natural numbers \mathbb{N} together with an operation $c l: \mathcal{P}(M) \rightarrow \mathcal{P}(M)$, where $\mathcal{P}(M)$ denotes the power set of M, which satisfies the following:
(i) $A \subseteq c l(A)$,
(ii) $A \subseteq B$ implies $\operatorname{cl}(A) \subseteq \operatorname{cl}(B)$,
(iii) $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$, and
(iv) $x \in \operatorname{cl}(A)$ implies that for some finite $A^{\prime} \subseteq A, x \in \operatorname{cl}\left(A^{\prime}\right)$.

Furthermore we require that $c l$ is effective on (indices of) finite sets. That is, we assume that there is an effective algorithm which, given $x, y_{1}, \ldots, y_{n} \in M$, will decide whether or not $x \in \operatorname{cl}\left(y_{1}, \ldots, y_{n}\right)$, where $\operatorname{cl}\left(y_{1}, \ldots, y_{n}\right)$ denotes $\operatorname{cl}\left(\left\{y, \ldots, y_{n}\right\}\right)$. Note that this condition plus conditions (i)-(iv) ensure that such closure operators are at least Σ_{1}^{0} monotone operators.

We also assume that $(\mathcal{M}, c l)$ always satisfy the nontriviality axiom (v) below.
(v) $\operatorname{cl}(\emptyset) \not \neq^{*} M$.

Here we write $A={ }^{*} B$ if there exists a finite sets, E and F, such that $\operatorname{cl}(A \cup E)=\operatorname{cl}(B \cup F)$. Similarly we write that $A \subseteq^{*} B$ if there is a finite set F such that $A \subseteq \operatorname{cl}(B \cup F)$.

We say V is a substructure of \mathcal{M} or V is closed if $V \subseteq M$ and $\operatorname{cl}(V)=V$. It is easy to see that both the set of c. e. substructures and the set of all substructures of \mathcal{M} form a lattice, where the meet operation is just the set theoretic intersection and the join of two substructures V and W, denoted $V+W$, is given by $V+W=c l(V \cup W)$. We let $L(\mathcal{M})$ denote the lattice of c. e. substructures of $\mathcal{M}=(M, c l)$ and $S(\mathcal{M})$ the lattice of all substructures of \mathcal{M}.

If \mathcal{M} also satisfies
(vi) (exchange) $x \in \operatorname{cl}(A \cup\{y\})-\operatorname{cl}(A)$ implies $y \in \operatorname{cl}(A \cup\{x\})$,
we say \mathcal{M} is an effective Steinitz system. Effective Steinitz systems have been extensively studied, see (Nerode-Remmel 1982; Nerode-Remmel 1983), (Downey 1983a; Downey 1983b), and (Baldwin 1982; Baldwin 1984)).

Another natural class of examples are effective algebras. These are obtained as follows. Let (M, R) be an effective universal algebra in the sense that M is a computable set and R a computable set of uniformly computable operations on M. Then we naturally associate an effective closure system $\left(M, c l_{R}\right)$ with (M, R) by setting $c l_{R}(A)$ to be the closure of A under the operations of R and their projections. We call an effective closure systems \mathcal{M} formed in this way an effective algebra. As we shall see most natural examples such as groups, rings, fields, vector spaces, etc. are effective algebras.

We remark that not all effective closure systems are effective algebras. For example, for any effective closure system $\mathcal{M}=(M, c l)$, we can define an intersection subsystem $\left(A, c l_{A}^{*}\right)$ for $A \subseteq M$ where for any $B \subseteq A$,

$$
c l_{A}^{*}(B)=c l(B) \cap A .
$$

It is easy to check that $\left(A, c l_{A}^{*}\right)$ is an effective closure system, but not necessarily an effective algebra.

We end this example with a partial list of some specific examples of effective closure systems that have been studied extensively in the literature. In particular, there has been considerable work on the lattice of c. e. substructures of various structures. Details can be found in the survey article by Nerode and Remmel(Nerode-Remmel 1985). Some general results on the lattice of substructures of effective closure systems can be found in the work of Downey and Remmel (Downey-Remmel 1998). Here we shall only give a brief description of the closure systems and we refer the reader to (Nerode-Remmel 1985) or (Downey-Remmel 1998) for more details.

Sets. Let $\mathcal{M}=(\omega, c l)$ where $c l(A)=A$. In this case, $L(\mathcal{M})$ is the lattice of c. e. sets. Clearly, $c l$ is computable monotone operator in this case.
Vector Spaces. Let V_{∞} denote a fully effective infinite dimensional vector space over a computable field. That is, V_{∞} consists of a computable subset U of ω and computable operations for addition and scalar multiplication on V_{∞}. Moreover we assume that V_{∞} has an effective dependence algorithm, that is, there is a uniform algorithm which given any x, y_{1}, \ldots, y_{n} in U, decides whether or not $x \in\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)^{*}$ where $(A)^{*}$ denotes the subspace generated by A. In this case, $\operatorname{cl}(A)=(A)^{*}$ and $L\left(V_{\infty}\right)$ is the lattice of c. e. subspaces.
In this case, $c l$ is a Σ_{1}^{0} monotone operator but it is not computable. That is, it is a result of Dekker (Dekker 1971) that every c. e. subspace V of V_{∞} has a computable basis B. Thus since there are c. e. subspace which are not computable, it follows that the relation $R_{c l}$ is only Σ_{1}^{0}. Similar results hold for the remaining examples of closure operators given below.
Fields. Here F_{∞} denotes a fully effective algebraically closed field with infinite computable transcendence base. Here $\operatorname{cl}(A)$ denote the algebraic closure of A.
Affine Spaces. In this case $\mathcal{M}=\left(V_{\infty}, K \ell\right)$ where V_{∞} a computable vector space over a computable ordered field. Define $y \in K \ell\left(y_{1}, \ldots, y_{n}\right)$ if and only if $y=\Sigma \lambda_{i} y_{i}$ with
$\Sigma \lambda_{i}=1$. Again this is a Steinitz algebra. We denote its lattice of c. e. affine subspaces by $L\left(V_{\infty}, K \ell\right)$ to distinguish it from $L\left(V_{\infty}\right)$ (cf. (Downey 1983b)).
Locally Computable Rings and Modules. There are many other computable rings and modules which are effective closure systems. For example, consider $G=\underset{i \in \omega}{\oplus} \mathbb{Z}$, the free Abelian group on ω generators.
Subalgebras of Boolean Algebras. ((Remmel 1978; Remmel 1980)) A computable Boolean algebra $\mathcal{B}=\left(B, \vee_{\mathcal{B}}, \wedge_{\mathcal{B}}, \neg \mathcal{B}^{)}\right.$consists of a computable subset B of ω and computable operations for the meet, $\wedge_{\mathcal{B}}$, join, $\vee_{\mathcal{B}}$, and complement, $\neg \mathcal{B}$ operations which turn B into a Boolean algebra. In this case, $\operatorname{cl}(A)$ is the subalgebra generated by A.

Convex sets, $K\left(V_{\infty}\right)$. Finally, consider the structure $K\left(V_{\infty}\right)=\left(V_{\infty},\langle \rangle\right)$ from Kalantari (Kalantari 1981) and Downey (Downey 1984). Here we consider V_{∞} where the underlying field is the rationals, Q, and \rangle is the operation of taking the convex hull, viz,

$$
\left\langle\left\{x_{1}, \ldots, x_{n}\right\}\right\rangle=\left\{y \mid y=\Sigma \lambda_{i} x_{i} \text { with } \Sigma \lambda_{i}=1 \text { and } 0 \leq \lambda_{i} \leq 1\right\}
$$

Then $\left(V_{\infty},\langle\rangle,\right)$ is obviously an effective closure system.
We note that in all the structures above, we can generate many classes of Σ_{1}^{0} inductive operators by simply letting A be any computable or c. e. subset of the structure and defining a new closure operator Γ_{A} by defining $\Gamma_{A}(S)=\operatorname{cl}(A \cup S)$.

3. Index sets for Σ_{1}^{0} and computable monotone operators

An important property of Σ_{1}^{0} monotone operators Γ is that the relation $m \in \Gamma(A)$ depends only on positive information about A. That is, we have the following lemma, see (Hinman 1978), pg. 92.

Lemma 3.1. For any Σ_{1}^{0} monotone operator Γ, there is a computable relation R such that for all $m \in \mathbb{N}$ and $A \in \mathcal{P}(\mathbb{N})$,

$$
\begin{equation*}
m \in \Gamma(A) \Longleftrightarrow(\exists n)\left(D_{n} \subseteq A \& R(m, n)\right) \tag{2}
\end{equation*}
$$

It follows from Lemma 3.1 that the Σ_{1}^{0} monotone inductive operators may be effectively enumerated as $\Gamma_{0}, \Gamma_{1}, \ldots$ in the following manner. For all $e, m \in \mathbb{N}$ and all $A \in \mathcal{P}(\mathbb{N})$, let

$$
m \in \Gamma_{e}(A) \Longleftrightarrow(\exists n)\left[D_{n} \subseteq A \text { and }\langle m, n\rangle \in W_{e}\right] .
$$

Lemma 3.2.

(a) There is a primitive recursive function f such that for all m, e, a :

$$
\Gamma_{e}\left(W_{a}\right)=W_{f(e, a)} .
$$

(b) The relation $m \in \Gamma_{e}^{t}$ is Σ_{1}^{0} in m, e, t.
(c) The relation $m \in l f p\left(\Gamma_{e}\right)$ is Σ_{1}^{0} in m, e.
(d) There is a computable function h such that $\operatorname{lfp}\left(\Gamma_{e}\right)=W_{h(e)}$.

Proof. (a) We have

$$
m \in \Gamma_{e}\left(W_{a}\right) \Longleftrightarrow(\exists n)\left[D_{n} \subseteq W_{a} \text { and }\langle m, n\rangle \in W_{e}\right]
$$

Thus we may define a partial computable function ϕ_{c} such that to compute $\phi_{c}(e, a, m)$, we search for the least pair $\langle n, s\rangle$ such that $D_{n} \subseteq W_{a, s}$ and $[m, n] \in W_{e, s}$. If we find such a pair, then we set $\phi_{c}(e, a, m)=1$ and otherwise, $\phi_{c}(e, a, m)$ is undefined. Then

$$
m \in \Gamma_{e}\left(W_{a}\right) \Longleftrightarrow[e, a, m] \in \operatorname{Dom}\left(\phi_{c}\right) .
$$

Now the $s-m-n$ theorem will provide a primitive recursive f such $\phi_{f(e, a)}(m)=\phi_{c}(e, a, m)$.
(b) Let $W_{0}=\emptyset$ and let f be given by (a). For any fixed e, let g_{e} be the partial computable function defined by $g_{e}(a)=f(e, a)$. Then clearly, $\Gamma_{e}^{t}=W_{g_{e}^{t}(0)}$.
(c) This follows from the fact that $m \in \operatorname{lfp}\left(\Gamma_{e}\right) \Longleftrightarrow(\exists t)\left(m \in \Gamma_{e}^{t}\right)$.
(d) This follows from part (c) by the $s-m-n$ theorem.

Theorem 3.1. Fix an infinite c. e. set W. Then $\left\{e: W \cap l f p\left(\Gamma_{e}\right)\right.$ is computable $\}$ is Σ_{3}^{0} complete.

Proof. We make use of the well-known fact (Soare 1987) that $\operatorname{Rec}=\left\{e: W_{e}\right.$ is computable $\}$ is Σ_{3}^{0} complete. Let ψ be a computable function such that $W \cap W_{e}=W_{\psi(e)}$ for all e. Now let $C=\left\{e: W \cap \operatorname{lfp}\left(\Gamma_{e}\right)\right.$ is computable $\}$ and let h be the computable function defined in the proof of part (d) of Lemma 3.2. Then $e \in C \Longleftrightarrow \psi(h(e)) \in \operatorname{Rec}$, so that C is a Σ_{3}^{0} set.

For completeness, first consider the case where $W=\mathbb{N}$. We can use the $s-m-n$ theorem to obtain a 1:1 computable function g that

$$
\langle m, s\rangle \in \Gamma_{g(e)}(A) \Longleftrightarrow m \in W_{e, s} \text { or }\langle m, s+1\rangle \in A .
$$

It is easy to see that $l f p\left(\Gamma_{g(e)}\right)=W_{e} \times \mathbb{N}$ so that W_{e} is computable if and only if $l f p\left(\Gamma_{g(e)}\right)$ is computable. Hence g witnesses that Rec is $1: 1$ reducible to C since $e \in$ $R e c \Longleftrightarrow g(e) \in C$. Thus C is Σ_{3}^{0} complete.

For an arbitrary infinite c. e. set W, let R be an infinite computable subset of W and let f be an increasing, computable function such that $R=\{f(0), f(1), \ldots\}$. Then for any e, let $W_{p(e)}=\left\{f(i): i \in W_{e}\right\}$ and observe that $W_{p(e)} \subset W$ for all e and that $W_{p(e)}$ is computable if and only if W_{e} is computable. It follows that W_{e} is computable if and only if $W \cap l f p\left(\Gamma_{g(p(e))}\right)$ is computable. Thus $g \circ p$ shows that, in general, Rec is 1:1 reducible to C so that C is Σ_{3}^{0}-complete for all W.

Computable operators are continuous and we can use the indexing of (Cenzer and Remmel 1999), pg. 135, to define the e-th computable monotone operator Δ_{e} for e in the Π_{2}^{0} set of indices such that ϕ_{e} is a total function. That is, let $\sigma_{0}, \sigma_{1}, \ldots$ enumerate the set $\{0,1\}^{*}$ of finite strings of 0 's and 1's. For $\sigma, \tau \in\{0,1\}^{*}$, we write $\sigma \sqsubseteq \tau$ if σ is an initial segment of τ and we write $\sigma \subseteq \tau$ if $\{i: \sigma(i)=1\} \subseteq\{i: \tau(i)=1\}$. Then the partial computable function $\phi_{e}: \mathbb{N} \rightarrow \mathbb{N}$ defines a computable monotone operator $\Delta_{e}: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ if it satisfies the following four conditions.
(1) $(\forall m)(\exists n)\left[\phi_{e}(m)=n\right]$, that is, ϕ_{e} is total.
(2) $(\forall m)(\forall n)\left[\sigma_{m} \sqsubseteq \sigma_{n} \longrightarrow \sigma_{\phi_{e}(m)} \sqsubseteq \sigma_{\phi_{e}(n)}\right]$.
(3) $(\forall m)(\exists n)\left(\forall \sigma_{i} \in\{0,1\}^{n}\right)\left[\left|\sigma_{\phi_{e}(i)}\right| \geq m\right]$.
(4) $(\forall m)(\forall n)\left[\sigma_{m} \subseteq \sigma_{n} \longrightarrow \sigma_{\phi_{e}(m)} \subseteq \sigma_{\phi_{e}(n)}\right]$.

The first three clauses above simply define the set of indices of computably continous functions from $\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$. Then clause (4) ensures that the resulting operator is monotone. Let $I C M$ denote the set of indices e which satisfy (1)-(4). For $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, identify A with its characteristic function and let $A_{n}=i$ where $\sigma_{i}=A\lceil n=$ $(A(0), A(1), \ldots, A(n-1))$. Then we may define the e-th computable monotone operator by declaring that

$$
\begin{equation*}
m \in \Delta_{e}(A) \Longleftrightarrow(\exists n)\left(\forall \sigma_{i} \in\{0,1\}^{n}\right)\left[\left|\sigma_{\phi_{e}(i)}\right| \geq m \& \sigma_{\phi_{e}\left(A_{n}\right)}(m)=1\right] \tag{3}
\end{equation*}
$$

Note that if ϕ_{e} satisfies conditions (1)-(4), then $\Delta_{e}(A)$ also has a Π_{1}^{0} definition, namely,

$$
\begin{equation*}
m \in \Delta_{e}(A) \Longleftrightarrow(\forall n)\left[\left(\forall \sigma_{i} \in\{0,1\}^{n}\right)\left[\left|\sigma_{\phi_{e}(i)}\right| \geq m\right] \longrightarrow \sigma_{\phi_{e}\left(A_{n}\right)}(m)=1\right] . \tag{4}
\end{equation*}
$$

Theorem 3.2. The set $I C M$ of indices of computable monotone operators is Π_{2}^{0} complete.

Proof. It is clear that $I C M$ is a Π_{2}^{0} set. For the completeness, we define a reduction of the Π_{2}^{0} complete set $T o t=\left\{e: \phi_{e}\right.$ is total $\}$ to ICM as follows. Let f be the computable function such that for any $i, \phi_{f(e)}(i)=j$ where $\sigma_{j}=\left(\phi_{e}(0), \phi_{e}(1), \ldots, \phi_{e}\left(\left|\sigma_{i}\right|-1\right)\right)$. Now if $e \notin T o t$, then clearly $\phi_{f(e)}$ is not total and, hence, $f(e) \notin I C M$. However, if $e \in T o t$, then it is easy to see that for all $A, \Delta_{f(e)}(A)=\left\{m: \phi_{e}(m)=1\right\}$ and, hence, $\Delta_{f(e)}$ is a computable monotone operator. Thus $e \in T o t \Longleftrightarrow f(e) \in I C M$.

Lemma 3.3. There is a primitive computable function g such that for all $e \in I C M$, $\Delta_{e}=\Gamma_{g(e)}$.

Proof. Define $\langle m, n\rangle \in W_{g(e)}$ if and only $(\exists k)\left(\forall \sigma_{i} \in\{0,1\}^{k}\right)\left[\left|\sigma_{\phi_{e}(i)}\right|>m\right]$ and there exists $\sigma_{i} \in\{0,1\}^{k}$ such that $\sigma_{\phi_{e}(i)}(m)=1$ and $\left\{j: \sigma_{i}(j)=1\right\} \subseteq D_{n}$. We now verify that $\Delta_{e}=\Gamma_{g(e)}$ if $e \in I C M$.

Suppose first that $m \in \Delta_{e}(A)$. Then find the least k such that $\left(\forall \sigma_{i} \in\{0,1\}^{k}\right)\left[\left|\sigma_{\phi_{e}(i)}\right|>\right.$ $m]$. Thus for $\sigma_{i}=A\left\lceil k\right.$, we have $\sigma_{\phi_{e}(i)}(m)=1$. Now let

$$
D_{n}=A \cap\{0,1 \ldots, k-1\}=\left\{j<k: \sigma_{i}(j)=1\right\}
$$

It follows that $\langle m, n\rangle \in W_{g(e)}$ so that $m \in \Gamma_{g(e)}(A)$.
Next suppose that $m \in \Gamma_{g(e)}(A)$ and let n, k and $\sigma_{i} \in\{0,1\}^{k}$ be given as above so that $\sigma_{\phi_{e}(i)}(m)=1$ and $\{j: \sigma(j)=1\} \subseteq D_{n} \subseteq A$. It follows from clause (4) above that $\sigma_{\phi(e)\left(A_{k}\right)}(m)=1$ and therefore $m \in \Delta_{e}(A)$.

Thus we have shown that, for all $A, \Delta_{e}(A)=\Gamma_{g(e)}(A)$ and hence $\Delta_{e}=\Gamma_{g(e)}$.

Lemma 3.4.

(a) There is a partial computable function δ such that for all m, e, a with $a \in T o t$ and $e \in I C M, \delta(e, a) \in$ Tot and $\Delta_{e}\left(\left\{m: \phi_{a}(m)=1\right\}\right)=\left\{m: \phi_{\delta(e, a)}(m)=1\right\}$.
(b) There is a partial computable function ψ such that for all e, t with $e \in I C M, \phi_{\psi(e, t)}$ is the characteristic function of Δ_{e}^{t}.
(c) There is a Σ_{1}^{0} relation S such that

$$
m \in l f p\left(\Delta_{e}\right) \Longleftrightarrow\langle m, e\rangle \in S
$$

Proof. (a) To compute $\phi_{\delta(e, a)}(m)$, first find k so that $\left|\sigma_{\phi_{e}(i)}\right|>m$ for all $\sigma_{i} \in\{0,1\}^{k}$. Then let $\sigma_{i}=\left(\phi_{a}(0), \phi_{a}(1), \ldots, \phi_{a}(k-1)\right)$ and set $\phi_{\delta(e, a)}(m)=\sigma_{\phi_{e}(i)}(m)$.

Parts (b) and (c) follow easily.
This shows that the closure of any computable monotone inductive operator is a c. e. set. In (Cenzer 1978), the first author considered the converse problem of whether any c. e. set is the closure of some computable monotone inductive operator. It is shown there that not every c. e. set is the closure of such an operator, but the every c. e. set is one-one reducible to such a closure. Here is an index set version of that result.

Theorem 3.3. There are primitive recursive functions f and g such that for all e and $m, f(e) \in I C M$ and $m \in W_{e} \Longleftrightarrow g(m) \in l f p\left(\Delta_{f(e)}\right)$.

Proof. Define the computable monotone inductive operator $\Delta_{f(e)}$ by

$$
\langle m, s\rangle \in \Delta_{f(e)}(A) \Longleftrightarrow\left[m \in W_{e, s} \vee\langle m, s+1\rangle \in A\right] .
$$

It is easy to see that $l f p\left(\Delta_{f(e)}\right)=\left\{\langle m, s\rangle: m \in W_{e}\right\}$, so that for any m and e,

$$
m \in W_{e} \Longleftrightarrow\langle m, 0\rangle \in l f p\left(\Delta_{f(e)}\right) .
$$

Thus we can take $g(m)=\langle m, 0\rangle$.
The index set complexity for Σ_{1}^{0} operators given in Theorem 3.1 easily carries over for computable monotone operators since the operator $\Gamma_{g(e)}$ defined in the proof is uniformly computable. Thus we have the following.

Theorem 3.4. $\left\{e: \operatorname{lfp}\left(\Delta_{e}\right)\right.$ is computable $\}$ is Σ_{3}^{0} complete.
For the remainder of this section, we consider the complexity of two types of index sets associated with monotone operators. The first type comes from the cardinality of the least fixed point. For example, we will determine the complexity of the problem of whether $l f p\left(\Gamma_{e}\right)$ is a finite or an infinite set. The second type comes from the closure ordinal of the operator. For example, we will determine the complexity of the problem of whether the closure ordinal of Δ_{e} is finite or equals ω. For the remaining results in this section, we will omit the routine verifications of the complexity upper bounds.

Theorem 3.5. $\left\{e:\left|\Gamma_{e}\right|>0\right\}=\left\{e: \operatorname{lfp}\left(\Gamma_{e}\right) \neq \emptyset\right\}$ is Σ_{1}^{0} complete and $\left\{e:\left|\Gamma_{e}\right|=0\right\}=$ $\left\{e: \operatorname{lfp}\left(\Gamma_{e}\right)=\emptyset\right\}$ is Π_{1}^{0} complete.

Proof. For the completeness, let E be an arbitrary c. e. set and define a computable function f_{E} so that

$$
m \in \Gamma_{f_{E}(e)}(A) \Longleftrightarrow(m=0 \& e \in E)
$$

Clearly if $e \notin E$, then $\left|\Gamma_{f_{E}(e)}\right|=0$ and $l f p\left(\Gamma_{f_{E}(e)}\right)=\emptyset$ and if $e \in E$, then $\left|\Gamma_{f_{E}(e)}\right|=1$ and $\operatorname{lfp}\left(\Gamma_{f_{E}(e)}\right)=\{0\}$. Thus f_{E} shows that the arbitrary Σ_{1}^{0} set E is $1: 1$ reducible to $\left\{e:\left|\Gamma_{e}\right|>0\right\}$ and at the same time $\mathbb{N}-E$ is $1: 1$ reducible to $\left\{e:\left|\Gamma_{e}\right|=0\right\}$.

A set is said to be $d . c . e$. if it is a difference of two c. e. sets.
Theorem 3.6. For any natural number $k>0$,
(a) $\left\{e: \operatorname{card}\left(l f p\left(\Gamma_{e}\right)\right)>k\right\}$ is Σ_{1}^{0} complete and
$\left\{e: \operatorname{card}\left(l f p\left(\Gamma_{e}\right)\right) \leq k\right\}$ is Π_{1}^{0} complete.
(b) $\left\{e: \operatorname{card}\left(\operatorname{lfp}\left(\Gamma_{e}\right)=k\right\}\right.$ is d. c. e. complete.

Proof. (a) For the completeness, modify the definition of f_{E} in the proof of Theorem 3.5 so that

$$
m \in \Gamma_{f_{E}(e)}(A) \Longleftrightarrow[m \leq k \& e \in E] .
$$

Then $l f p\left(\Gamma_{f_{E}(e)}\right)=\emptyset$ if $e \notin E$ and $l f p\left(\Gamma_{f_{E}(e)}\right)=\{0,1, \ldots, k\}$ if $e \in E$. Again f_{e} shows that E is $1: 1$ reducible to $\left\{e: \operatorname{card}\left(l f p\left(\Gamma_{e}\right)\right)>k\right\}$ and, hence, $\left\{e: \operatorname{card}\left(l f p\left(\Gamma_{e}\right)\right)>k\right\}$ is Σ_{1}^{0} complete.
(b) Clearly, $\left\{e: \operatorname{card}\left(\operatorname{lfp}\left(\Gamma_{e}\right)\right)=k\right\}=\left\{e: \operatorname{card}\left(\operatorname{lfp}\left(\Gamma_{e}\right)\right) \leq k\right\}-\left\{e: \operatorname{card}\left(\operatorname{lfp}\left(\Gamma_{e}\right)\right) \leq\right.$ $k-1\}$.

For completeness, we need only show that for any c. e. sets C and D with $D \subseteq C$, there is $1: 1$ computable function g such that $e \in C-D \Longleftrightarrow g(e) \in\left\{e: \operatorname{card}\left(l f p\left(\Gamma_{e}\right)=k\right\}\right.$. So let C and D be c. e. sets where $D \subseteq C$ and define g so that

$$
m \in \Gamma_{g(e)}(A) \Longleftrightarrow[(m<k \& e \in C) \vee(m=k \& k-1 \in A \& e \in D)]
$$

If $e \notin C$, then $l f p\left(\Gamma_{g(e)}\right)=\emptyset$. If $e \in C-D$, then $\left|\Gamma_{g(e)}\right|=k$ and $l f p\left(\Gamma_{g(e)}\right)=\{0,1, \ldots, k-$ $1\}$. If $e \in C \cap D$, then $\left|\Gamma_{g(e)}\right|=2$ and $l f p\left(\Gamma_{g(e)}\right)=\{0,1, \ldots, k\}$.

Theorem 3.7.

(a) $\left\{e: l f p\left(\Gamma_{e}\right)\right.$ is finite $\}$ is Σ_{2}^{0} complete and $\left\{e: \operatorname{lfp}\left(\Gamma_{e}\right)\right.$ is infinite $\}$ is Π_{2}^{0} complete.
(b) $\left\{e: \operatorname{lfp}\left(\Gamma_{e}\right)\right.$ is cofinite $\}$ is Σ_{3}^{0} complete and $\left\{e: \operatorname{lfp}\left(\Gamma_{e}\right)\right.$ is coinfinite $\}$ is Π_{3}^{0} complete.

Proof. This follows easily from the facts that $\left\{e: W_{e}\right.$ is finite $\}$ is Σ_{2}^{0} complete and $\left\{e: W_{e}\right.$ is cofinite $\}$ is Σ_{3}^{0} complete by letting $\Gamma_{f(e)}(A)=W_{e}$ for all A.

The corresponding result for computable monotone operators is a corollary.

Theorem 3.8.

(a) $\left\{e: \operatorname{lfp}\left(\Delta_{e}\right)\right.$ is infinite $\}$ is Π_{2}^{0} complete.
(b) $\left\{e: \operatorname{lfp}\left(\Delta_{e}\right)\right.$ is cofinite $\}$ is Σ_{3}^{0} complete and $\left\{e: \operatorname{lfp}\left(\Delta_{e}\right)\right.$ is coinfinite $\}$ is Π_{3}^{0} complete.

Next we consider the closure ordinal of a monotone inductive operator.
Theorem 3.9. For any natural number $t \geq 1$:
(a) $\left\{e:\left|\Gamma_{e}\right|>t\right\}$ is Σ_{2}^{0} complete and $\left\{e:\left|\Gamma_{e}\right| \leq t\right\}$ is Π_{2}^{0} complete.
(b) $\left\{e:\left|\Gamma_{e}\right|=1\right\}$ is Π_{2}^{0} complete.
(c) $\left\{e:\left|\Gamma_{e}\right|=t+1\right\}$ is D_{2}^{0} complete.

Proof. We will use the fact that $\operatorname{Fin}=\left\{e: W_{e}\right.$ is finite $\}$ is a Σ_{2}^{0} complete set. We can define a 1:1 computable function f so that

$$
m \in \Gamma_{f(e)}(A) \Longleftrightarrow m=0 \vee(\exists n \leq m)(n \in A) \vee(\exists n \geq m)\left(n \in W_{e}\right)
$$

If W_{e} is infinite, then $\Gamma_{f(e)}^{1}=\mathbb{N}$ and $\left|\Gamma_{e}\right|=1$. If W_{e} is finite, let M be the largest element of $W_{e} \cup\{0\}$. Then $\Gamma_{f(e)}^{1}=\{0,1, \ldots, M\}, \Gamma_{f(e)}^{2}=\mathbb{N}$ and therefore $\left|\Gamma_{f(e)}\right|=2$. Thus $e \in$ Fin $\Longleftrightarrow f(e) \in\left\{e:\left|\Gamma_{e}\right|>1\right\}$ which establishes completeness for part (a) when $t=1$ and the completeness of part (b).

For the completeness in part (a), fix $t \geq 1$ and define a $1: 1$ computable function g such that $m \in \Gamma_{g(e)}(A)$ if and only if

$$
m=0 \vee(m<t \& m-1 \in A) \vee\left(m \geq t \&\left[(\exists n \geq m)\left(n \in W_{e}\right) \vee(t-1 \in A)\right]\right)
$$

Then it is easy to see that if W_{e} is infinite, then for all i,

$$
\Gamma_{g(e)}^{i}=\{x: x<i \vee x \geq t\}
$$

so that $\left|\Gamma_{g(e)}\right|=t$ and $\operatorname{lfp}\left(\Gamma_{g(e)}\right)=\mathbb{N}$. However if W_{e} is finite and M is the largest element of W_{e}, then for $i \leq t$,

$$
\Gamma_{g(e)}^{i}=\{x: x<i \vee t \leq x \leq M\}
$$

and

$$
\Gamma_{g(e)}^{t+1}=\mathbb{N}
$$

so that $\left|\Gamma_{g(e)}\right|=t+1$. Thus $e \in$ Fin $\Longleftrightarrow g(e) \in\left\{e:\left|\Gamma_{e}\right|>t\right\}$.
For the completeness in part (c) in the case where $t=1$, it suffices to define a computable function h such that $\left|\Gamma_{h(a, b)}\right|=2$ if and only if W_{a} is finite and W_{b} is infinite. Let $E v$ denote the set of even numbers and $O d$ denote the set of odd numbers. First define $h(a, b)$ so that

$$
2 m \in \Gamma_{h(a, b)}(A) \Longleftrightarrow m=0 \vee(\exists n \leq m)\left(n \in A \vee(\exists n \geq m)\left(n \in W_{a}\right)\right)
$$

Then by our argument in case (a), $E v \subseteq \Gamma_{h(a, b)}^{1}$ if W_{a} is infinite. If W_{a} is finite and M is the greatest element of $W_{a} \cup\{0\}$, then $\Gamma_{h(a, b)}^{1} \cap E v=\{2 x: x \leq M\}$ and $E v \subseteq \Gamma_{h(a, b)}^{2}$. We then complete the definition of h so that

$$
\begin{aligned}
2 m+1 \in \Gamma_{h(a, b)}(A) \Longleftrightarrow & {[}
\end{aligned} \begin{aligned}
& \left.=0 \vee(\exists n \geq m)\left(n \in W_{a}\right)\right] \\
& \vee\left[0 \in A \&(\exists n \geq m)\left(n \in W_{b}\right)\right] \\
& \vee[0 \in A \& m>0 \&(2 m-1 \in A)]
\end{aligned}
$$

Now if W_{a} is infinite, then $0 d \subseteq \Gamma_{h(a, b)}^{1}$ and, hence, $\Gamma_{h(a, b)}^{1}=\mathbb{N}$ and $\left|\Gamma_{h(a, b)}\right|=1$. Next suppose that W_{a} is finite and M is the greatest element of $W_{a} \cup\{0\}$. Then our definition of h ensures that $\Gamma_{h(a, b)}^{1} \cap 0 d=\{2 x+1: x \leq M\}$ since $0 \notin \Gamma_{h(a, b)}^{0}$. Now if W_{b} is infinite, then $O d \subseteq \Gamma_{h(a, b)}^{2}$ so that $\Gamma_{h(a, b)}^{2}=\mathbb{N}$ and $\left|\Gamma_{h(a, b)}\right|=2$. Finally, if W_{b} is finite and B is the largest element of $W_{a} \cup W_{b} \cup\{0\}$, then $\Gamma_{h(a, b)}^{2} \cap 0 d=\{2 x+1: x \leq B\}$ and $2 B+3 \in \Gamma_{h(a, b)}^{3}$ so that $\left|\Gamma_{h(a, b)}\right| \geq 3$. This shows that $\left\{e:\left|\Gamma_{e}\right|=2\right\}$ is D_{2}^{0} complete.

For the general case of part (c), fix $t>1$ and define h so that

$$
\begin{aligned}
2 m \in \Gamma_{h(a, b)}(A) \Longleftrightarrow m=0 & \vee(m<t \& m-1 \in A) \\
& \vee\left(m \geq t \&\left[(\exists n \geq m)\left(n \in W_{e} \vee 2(t-1) \in A\right)\right]\right)
\end{aligned}
$$

Then we can argue as in case (a) that $E v \subseteq \Gamma_{h(a, b)}^{t}$ if W_{a} if infinite. On the other hand,
if W_{a} is finite and M is the largest element of $W_{a} \cup\{0\}$, then

$$
\begin{aligned}
& \Gamma_{h(a, b)}^{t} \cap E v=\{0, \ldots, 2(t-1)\} \cup\{2 x: M \geq x \geq t\} \text { and } \\
& \Gamma_{h(a, b)}^{t+1} \cap E v=E v .
\end{aligned}
$$

We then complete the definition of h so that

$$
\left.\begin{array}{rl}
2 m+1 \in \Gamma_{h(a, b)}(A) \Longleftrightarrow & {[}
\end{array} m=0 \vee(\exists n \geq m)\left(n \in W_{a}\right)\right] .
$$

It can be verified that W_{a} is finite and W_{b} is infinite if and only if $\Gamma_{h(a, b)} \mid=t+1$.
Theorem 3.10. $\left\{e:\left|\Gamma_{e}\right|=\omega\right\}$ is Π_{3}^{0} complete and $\left\{e:\left|\Gamma_{e}\right|<\omega\right\}$ is Σ_{3}^{0} complete.
Proof. We use the Σ_{3}^{0} completeness of $C o f=\left\{e: W_{e}\right.$ is cofinite $\}$. We define a $1: 1$ computable function f so that W_{e} is cofinite if and only if $\left|\Gamma_{f(e)}\right|<\omega$. Define f so that

$$
\begin{aligned}
2 n \in \Gamma_{f(e)}(A) & \Longleftrightarrow n=0 \vee 2 n-2 \in A \vee 2 n+1 \in A ; \\
2 n+1 \in \Gamma_{f(e)}(A) & \Longleftrightarrow(\exists m>n)(2 m+1 \in A) \\
& \vee(\exists m<n)\left[2 m \in A \&(\forall i \leq n)\left(m \leq i \longrightarrow i \in W_{e}\right)\right] .
\end{aligned}
$$

We make the following observations. First, $\Gamma_{f(e)}^{1}=\{0\}$ for all e. Next it is easy to see by the first of our two conditions defining f that we certainly have $2 n \in \Gamma_{f(e)}^{n+1}$ for all n and e and, moreover, $2 n \in \Gamma_{f(e)}^{t}$ for $n \geq t$ if and only if $2 n+1 \in \Gamma_{f(e)}^{t-1}$. Thus if $E v$ is the set of even numbers, then $E v \subseteq l f p\left(\Gamma_{f(e)}\right)$ for all e.

Now fix e and let $\Gamma=\Gamma_{f(e)}$. First suppose that W_{e} is cofinite and M is the least natural number such that $i \in W_{e}$ for all $i \geq M$. It follows from our second condition defining f that, since $2 M \in \Gamma^{M+1}, 2 n+1 \in \Gamma^{M+2}$ for all $n \geq M$. But then it is easy to see that $2 n+1 \in \Gamma^{M+3}$ for all n and $2 n \in \Gamma^{M+4}$ for all n. Thus $l f p(\Gamma)=\mathbb{N}$ and $|\Gamma| \leq M+4$. On the other hand, suppose that $|\Gamma|=k$ is finite. It follows that $2 n \in \Gamma^{k}$ for all n. Let $t \leq k$ be the least such that $\left\{n: 2 n \in \Gamma^{t}\right\}$ is infinite. By our observations above $t>1$ so let M be the maximum of $\left\{m: 2 m \in \Gamma^{t-1}\right\}$. Thus for infinitely many $n \geq t, 2 n \in \Gamma^{t}$ and, hence, $2 n+1 \in \Gamma^{t-1}$. Now let s be the least $k \leq t-1$ such that $\left\{n: 2 n+1 \in \Gamma^{k}\right\}$ is infinite. Again it must be the case that $s>1$ so that Γ^{s-1} must be finite. Now let p be the largest element such that $2 p \in \Gamma^{s-1}$. Because $\left\{n: 2 n+1 \in \Gamma^{s}\right\}$ is infinite, it must be that case that for arbitrarily large n, there is an $m \leq p$ such that $2 m \in \Gamma^{s-1}$ and $i \in W_{e}$ for $m \leq i \leq n$. But this implies that W_{e} is coinfinite.

The operator $\Gamma_{f(e)}$ defined in the proof Theorem 3.10 does not define a computable monotone operator so that we cannot conclude that $\left\{e:\left|\Delta_{e}\right|=\omega\right\}$ is Π_{3}^{0} complete. In fact, $\left\{e:\left|\Delta_{e}\right|=\omega\right\}$ is Π_{2}^{0} complete as our next result will show.

Theorem 3.11. $\left\{e: e \in I C M \&\left|\Delta_{e}\right|=\omega\right\}$ is Π_{2}^{0} complete.
Proof. We will define a $1: 1$ computable function f such that for all $e, f(e) \in I C M$ and W_{e} is finite if and only if $\left|\Delta_{f(e)}\right|<\omega$. The desired f is the function defined in the
proof of Theorem 3.3 where

$$
\langle m, s\rangle \in \Delta_{f(e)}(A) \Longleftrightarrow\left[m \in W_{a, s} \vee\langle m, s+1\rangle \in A\right] .
$$

Suppose first that W_{e} is infinite. Then there are arbitrarily large m and s such that $m \in W_{e, s+1}-W_{e, s}$ and therefore $\langle m, 0\rangle \in \Delta_{f(e)}^{s+2}-\Delta_{f(e)}^{s+1}$. Thus $\left|\Delta_{f(e)}\right|=\omega$. On the other hand, if W_{e} is finite, then there is a finite s such that $m \in W_{e}$ implies $m \in W_{e, s}$ for all m. It follows that $\left|\Delta_{f(e)}\right| \leq s+1$ and is finite.

4. Weakly finitary monotone operators

It follows from Lemma 2.1 that any Σ_{1}^{0} monotone inductive operator Γ is finitary, that is, for any x and any set A, we have $x \in \Gamma(A)$ if and only if there is a finite subset D of A such that $x \in \Gamma(D)$. The idea of a weakly finitary operator is to have a finite set m_{1}, \ldots, m_{k} of exceptional numbers which may be put into $\Gamma(A)$ when an infinite set is included in A. If there are exactly k exceptional numbers, then the operator Γ will be called k-weakly finitary. For example, we might allow some finite number of consequences of the ω-rule in a subsystem of Peano arithmetic and still obtain a c. e. theory.

Definition 4.1.

(1) We say that a monotone inductive operator $\Gamma: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is weakly finitary if there is a finite set S_{Γ} such that for all A,
(a) $x \notin S_{\Gamma}$ and $x \in \Gamma(A)$ implies there exists a finite set $F \subseteq A$ such that $x \in \Gamma(F)$ and
(b) $x \in S_{\Gamma}$ and there is a family $\mathcal{F}_{\Gamma, x}$ of subsets of \mathbb{N} which includes at least one infinite subset of \mathbb{N} such that $x \in \Gamma(A)$ implies there exists an $F \subseteq A$ such that $x \in \Gamma(F)$ for some $F \in \mathcal{F}_{\Gamma, x}$.
If $\left|S_{\Gamma}\right|=k$, then we say that Γ is k-weakly finitary.
(2) We say $\Gamma=\Lambda_{k, e}$ is a k-weakly finitary Σ_{1}^{0} monotone inductive operator with index $\langle k, e\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right.$ if
(i) Γ is a weakly finitary monotone operator with $S_{\Gamma}=\left\{m_{1}<\cdots<m_{k}\right\}$,
(ii) for all $m_{i} \in S_{\Gamma}, \mathcal{F}_{\Gamma, m_{i}}=\left\{W_{a}: a \in W_{e_{i}}\right\}$,
(iii) for all $A \in \mathcal{P}(\mathbb{N})$ and $m \in \mathbb{N}, m \in \Lambda_{k, e}(A)$ if and only if either
(a) $m \in \Gamma_{d}(A)$ or
(b) for some $i, m=m_{i}$ and $\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq A\right)$.

Example 4.1.

One example of this type of operator comes from attempts to extend logic programming to be able to reason about infinite sets described in (Cenzer, Marek and Remmel 2005). They defined an extension of logic programming which they call extended set-based programming (ESB). In this example, we shall give the formal definitions of ESB constraints, clauses, programs and define the analogue of Horn programs and stable models for ESB programs. The basic idea is to incorporate constraints involving infinite sets into logic programming clauses by using various types of indexing schemes.

To describe the constraints used by Cenzer, Marek and Remmel, we first need to describe three types of indices for subsets of the natural numbers.
(1) Explicit indices of finite sets. Recall that $D_{n}=\left\{x_{1}<\cdots<x_{k}\right\}$ where $n=$ $\sum_{i=1^{k}} 2^{x_{i}}$.
(2) Computable indices of computable sets. Let $\phi_{0}, \phi_{1}, \ldots$ be an effective list of all partial computable functions. By a computable index of a computable set R, we mean an e such that ϕ_{e} is the characteristic function of R. If ϕ_{e} is a total $\{0,1\}$-valued function, then R_{e} will denote the set $\left\{x \in \mathbb{N}: \phi_{e}(x)=1\right\}$.
(3) C. e. indices of c. e. sets. By a c. e. index of a c. e. set W, we mean an e such that W equals the domain of ϕ_{e}, that is, $W_{e}=\left\{x \in \mathbb{N}: \phi_{e}(x)\right.$ converges $\}$.

No matter what type of indices we use, we shall always consider two types of constraints based on X and a finite set of indices \mathcal{F}, namely, $\langle X, \mathcal{F}\rangle=$ and $\langle X, \mathcal{F}\rangle \subseteq$. For any subset $M \subseteq \omega$, we shall say that M is a model of $\langle X, \mathcal{F}\rangle=$, written $M \models\langle X, \mathcal{F}\rangle=$, if there exists an $e \in \mathcal{F}$ such that $M \cap X$ equals the set with index e. Similarly, we shall say that M is a model of $\langle X, \mathcal{F}\rangle \subseteq$, written $M \models\langle X, \mathcal{F}\rangle \subseteq$, if there exists an $e \in \mathcal{F}$ such that $M \cap X$ contains the set with index e.

Then Cenzer, Marek and Remmel consider three different types of constraints.
(A) Finite constraints. Here we assume that we are given an explicit index x of a finite set X and a finite family \mathcal{F} of explicit indices of finite subsets of X. We shall identify the finite constraints $\langle X, \mathcal{F}\rangle=$ and $\langle X, \mathcal{F}\rangle \subseteq$ with their codes, $\langle 0,0, x, n\rangle$ and $\langle 0,1, x, n\rangle$ respectively where $\mathcal{F}=D_{n}$. Here the first coordinate 0 tells that the constraint is finite, the second coordinate is 0 or 1 depending on whether the constraint is $\langle X, \mathcal{F}\rangle=$ or $\langle X, \mathcal{F}\rangle \subseteq$, and the third and fourth coordinates are the codes of X and \mathcal{F} respectively.
(B) Computable constraints. Here we assume that we are given a computable index x of a computable set X and a finite family \mathcal{R} of computable indices of computable subsets of X. Again we shall identify the computable constraints $\langle X, \mathcal{R}\rangle=$ and $\langle X, \mathcal{R}\rangle \subseteq$ with their codes, $\langle 1,0, x, n\rangle$ and $\langle 1,1, x, n\rangle$ respectively, where $\mathcal{R}=D_{n}$. Here the first coordinate 1 tells that the constraint is computable, the second coordinate is 0 or 1 depending on whether the constraint is $\langle X, \mathcal{R}\rangle=$ or $\langle X, \mathcal{R}\rangle \subseteq$, and the third and fourth coordinates are the codes of X and \mathcal{R} respectively.
(C) C. e. constraints. Here we are given a c. e. index x of a c. e. set X and a finite family \mathcal{W} of c. e. indices of c. e. subsets of X. Again we identify the finite constraints $\langle X, \mathcal{W}\rangle=$ and $\langle X, \mathcal{W}\rangle \subseteq$ with their codes, $\langle 2,0, x, n\rangle$ and $\langle 2,1, x, n\rangle$ respectively, where $\mathcal{W}=D_{n}$. The first coordinate 2 tells that the constraint is c. e., the second coordinate is 0 or 1 depending on whether the constraint is $\langle X, \mathcal{W}\rangle=$ or $\langle X, \mathcal{W}\rangle \subseteq$, and the third and fourth coordinates are the codes of X and \mathcal{W}.

An extended set-based clause is defined to be a clause of the form

$$
\begin{equation*}
\langle X, \mathcal{A}\rangle^{*} \leftarrow\left\langle Y_{1}, \mathcal{B}_{1}\right\rangle \subseteq, \ldots,\left\langle Y_{k}, \mathcal{B}_{k}\right\rangle \subseteq,\left\langle Z_{1}, \mathcal{C}_{1}\right\rangle=, \ldots,\left\langle Z_{l}, \mathcal{C}_{l}\right\rangle^{=} \tag{5}
\end{equation*}
$$

where $*$ is either $=$ or \subseteq. We shall refer to $\langle X, \mathcal{A}\rangle^{*}$ as the head of C, written head (C), and $\left\langle Y_{1}, \mathcal{B}_{1}\right\rangle \subseteq, \ldots,\left\langle Y_{k}, \mathcal{B}_{k}\right\rangle \subseteq\left\langle Z_{1}, \mathcal{C}_{1}\right\rangle=, \ldots,\left\langle Z_{l}, \mathcal{C}_{l}\right\rangle=$ as the body of C, written body (C).

Here either k or l may be $0 . M$ is said to be a model of C if either M does not model every constraint in $\operatorname{body}(C)$ or $M \models$ head (C).

Again we shall talk about three different types of clauses.
(a) Finite clauses. These are clauses in which all of the constraints are finite constraints.
(b) Computable clauses. These are clauses where all the constraints appearing in the clause are finite or computable constraints and at least one constraint is a computable constraint.
(c) C. e. clauses: These are clauses where all the constraints appearing in the clause are finite, computable or c. e. constraints and there is at least one c. e. constraint.

An extended set-based (ESB) program P is a set of clauses of the form of (1). We say that an ESB program P is computable, if the set of codes of the clauses of P is a computable set. Here the code of a clause C of the form of (1) is $\left\langle c, e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l}\right\rangle$ where c is the code of $\langle X, \mathcal{A}\rangle^{*}, e_{i}$ is the code of $\left\langle Y_{i}, \mathcal{B}_{i}\right\rangle \subseteq$ for $i=1, \ldots, k$ and f_{j} is the code of $\left\langle Z_{j}, \mathcal{C}_{j}\right\rangle=$ for $j=1, \ldots, l$.

Given a program P, we let $\operatorname{Fin}(P)(\operatorname{Comp}(P), C E(P))$ denote the set of all finite (computable, c. e.) clauses in P. It is easy to see from our coding of clauses that if P is a computable ESB program, then $\operatorname{Fin}(P), \operatorname{Comp}(P)$ and $C E(P)$ are also computable ESB programs.

Let P be a computable $E S B$ program. We will say that P is computable with finite constraints if $P=\operatorname{Fin}(P)$. Similarly we say that P is computable with computable constraints if $P=\operatorname{Fin}(P) \cup \operatorname{Comp}(P)$ and $\operatorname{Comp}(P) \neq \emptyset$, and P is computable with c. e. constraints if $C E(P) \neq \emptyset$. Finally we say that P is weakly finite with computable constraints if P is computable with computable constraints and the set of heads of clauses in $\operatorname{Comp}(P)$ is finite, and P is weakly finite with c. e. constraints if P is computable with c. e. constraints and the set of heads of clauses in $\operatorname{Comp}(P) \cup C E(P)$ is finite.

Next we define the analogue of Horn programs for ESB programs. A Horn program P is a set of clauses of the form

$$
\begin{equation*}
\langle X, \mathcal{A}\rangle \subseteq \leftarrow\left\langle Y_{1}, \mathcal{B}_{1}\right\rangle \subseteq, \ldots,\left\langle Y_{k}, \mathcal{B}_{k}\right\rangle \subseteq \tag{6}
\end{equation*}
$$

where \mathcal{A} is a singleton. We define the one-step provability operator, $T_{P}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ so that for any $S \subseteq \mathbb{N}, T_{P}(S)$ is the union of the set of all F_{e} such that there exists a clause $C \in P$ such $S \models \operatorname{body}(C)$, head $(C)=\langle X, \mathcal{A}\rangle \subseteq$ and $A=\{e\}$ where $F_{e}=D_{e}$ if head (C) is a finite constraint, $F_{e}=R_{e}$ if head (C) is a computable constraint, and F_{e} is W_{e} if $h e a d(C)$ is an c. e. constraint. It is easy to see that T_{P} is a monotone operator and hence there is a least fixed point which we denote by M^{P}. Moreover it is easy to check that M^{P} is a model of P.

If P is an ESB Horn program in which the body of every clause consists of finite constraints, then one can easily that the least fixed point of T_{P} is reached in ω-steps, that is, $M^{P}=T_{P} \uparrow^{\omega}(\emptyset)$. However, if we allow clauses whose bodies contain either computable or c. e. constraints, then we can no longer guarantee that we reach the least fixed point of T_{P} in ω steps. Here is an example.

Example 4.2. Let e_{n} be the explicit index of the set $\{n\}$ for all $n \geq 0$, let w be a computable index of \mathbb{N} and f be a computable index of the set of even numbers E. Consider the following program.

$$
\begin{aligned}
\left\langle\{0\},\left\{e_{0}\right\}\right\rangle & \leftarrow \\
\left\langle\{2 x+2\},\left\{e_{2 x+2}\right\}\right\rangle & \leftarrow\left\langle\{2 x\},\left\{e_{2 x}\right\}\right\rangle \subseteq \text { (for every number } x \text {) } \\
\langle\omega,\{w\}\rangle & \leftarrow\langle E,\{f\}\rangle \subseteq
\end{aligned}
$$

Clearly \mathbb{N} is the least model of P but it takes $\omega+1$ steps to reach the fixed point. That is, it is easy to check that $T_{P} \uparrow^{\omega}=E$ and that $T_{P} \uparrow^{\omega+1}=\mathbb{N}$

Several results about ESB and weakly ESB programs were proved in (Cenzer, Marek and Remmel 2005). Their basic result about ESB Horn programs is the following.

Theorem 4.1.

(a) If P is a computable ESB Horn Program with finite constraints, then the least fixed point of the one step provability operator T_{P} is c. e..
(b) If P is a weakly finite ESB Horn program with computable constraints such that $\operatorname{Fin}(P)$ is computable, then the least fixed point of the one step provability operator T_{P} is c. e..
(c) If P is a weakly finite ESB Horn program with c. e. constraints such that $\operatorname{Fin}(P)$ is computable, then the least fixed point of the one step provability operator T_{P} is c. e..

In fact, a similar result to Theorem 4.1 holds for k-weakly Σ_{1}^{0} monotone operators.
Theorem 4.2. Let Λ be a k-weakly Σ_{1}^{0} monotone operator with index
$\langle k, e\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right.$. Then
(a) $|\Lambda| \leq \omega \cdot(k+1)$.
(b) $l f p(\Lambda)$ is Σ_{1}^{0}.

Proof. We will present an informal procedure which constructs the closure in $\leq k+1$ rounds where each round may consist of as many ω steps.
Round (1). First let $U_{0}=l f p\left(\Gamma_{d}\right)$. Since Γ_{d} is a Σ_{1}^{0} monotone inductive operator, U_{0} is c. e. by Theorem 2.1. Next consider the finite set

$$
F_{0}=\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq U_{0}\right)\right\} .
$$

We can not necessarily find F_{0} effectively, but, nevertheless, F_{0} is a finite set so that $A_{1}=U_{0} \cup F_{0}$ will be a c. e. set. If $F_{0}=\emptyset$, then $l f p(\Lambda)=U_{0}$ and $|\Lambda| \leq \omega$. Otherwise go on to Round 2.

We now present the description of Round $n+1$, for $n \geq 1$. Assume that A_{n} is the result of step n.
Round $(n+1)$. Consider the set $U_{n}=\Gamma_{d}^{\omega}\left(A_{n}\right)$. It is easy to see that that since A_{n} is c. e., U_{n} is also c. e.. Next consider the finite set

$$
F_{n}=\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq U_{n}\right)\right\} .
$$

Again we can not necessarily find F_{n} effectively, but, nevertheless, $A_{n+1}=U_{n} \cup F_{n}$ is a
c. e. set. Now if $F_{n} \subseteq U_{n}$, then $l f p(\Lambda)=U_{n}$ and $|\Lambda| \leq \omega \cdot(n+1)$. Otherwise go on to Round ($n+2$).

It is clear that this process must be completed after at most $k+1$ rounds, so that $|\Lambda| \leq \omega \cdot(k+1)$ and $l f p(\Lambda)$ is always a c. e. set.

Example 4.3. It is easy to construct an example Λ of a k-weakly finitary Σ_{1}^{0} monotone operator with $|\Lambda|=\omega \cdot(k+1)$. That is, let A_{0}, \ldots, A_{k} be a set of infinite computable sets that partition \mathbb{N}. Let $A_{i}=\left\{a_{0, i}<a_{1, i}<\ldots\right\}$ for $i=0, \ldots, k$. First define a Σ_{1}^{0} monotone operator Γ such that for all $A \subseteq \mathbb{N}$,
(i) $a_{0,0} \in \Gamma(A)$,
(ii) for all $j \geq 0, a_{j+1,0} \in \Gamma(A)$ if and only if $a_{j, 0} \in A$,
(iii) for all $i \geq 1, a_{1, i} \in \Gamma(A)$ if and only if $a_{0, i} \in A$, and
(iv) for all $i \geq 1$ and $j \geq 1, a_{j+1, i} \in \Gamma(A)$ if and only if $a_{j, i} \in A$.

Finally, we complete the definition of Λ by adding the following rules which govern when the elements $a_{0,1}, \ldots, a_{0, k}$ can be in $\Lambda(A)$.
For all $i>0, a_{0, i} \in \Lambda(A)$ if and only if $A_{i-1} \subseteq A$.
It is easy to see that Λ is a k-weakly finitary Σ_{1}^{0} monotone operator and that

$$
\begin{aligned}
\Lambda^{\omega} & =A_{0} \\
\Lambda^{\omega+1} & =A_{0} \cup\left\{a_{0,1}\right\} \\
\Lambda^{2 \omega} & =A_{0} \cup A_{1}, \\
\Lambda^{2 \omega+1} & =A_{0} \cup A_{1} \cup\left\{a_{0,2}\right\}, \\
& \vdots \\
\Lambda^{k \omega} & =A_{0} \cup A_{1} \cup \cdots \cup A_{k-1}, \\
\Lambda^{k \omega+1} & =A_{0} \cup A_{1} \cup \cdots \cup A_{k-1} \cup\left\{a_{0, k}\right\}, \text { and } \\
\Lambda^{(k+1) \omega} & =A_{0} \cup A_{1} \cup \cdots \cup A_{k}=\mathbb{N} .
\end{aligned}
$$

Thus $|\Lambda|=\omega(k+1)$.
The following lemma gives an alternate approach to proving part (b) of Theorem 4.2 and will be needed below.

Lemma 4.1. Let Λ be a k-weakly finitary Σ_{1}^{0} monotone operator with index

$$
\langle k, e\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle .\right.
$$

Then
(a) for some finite subset F of $\left\{m_{1}, \ldots, m_{k}\right\}, \operatorname{lfp}(\Lambda)=\Gamma_{d}^{\omega}(F)$ and
(b) for some finite subset G of $\left\{m_{1}, \ldots, m_{k}\right\}, \Lambda^{\omega}=\Gamma_{d}^{\omega}(G)$.

Proof. For part (a), let $F=\left\{m_{i}: m_{i} \in l f p(\Lambda)\right\}$. Then certainly $\Gamma_{d}^{\omega}(F) \subseteq \Lambda^{\omega}(F) \subseteq$ $l f p(\Lambda)$. For the reverse inclusion, it suffices to show that $C=\Gamma_{d}^{\omega}(F)$ is closed under Λ. If $\Lambda(C)-C \neq \emptyset$, then either (i) there is some $y \notin S_{\Gamma}=\left\{m_{1}, \ldots, m_{k}\right\}$ such that $y \in \Gamma_{d}(C)-C$ or (ii) there is some $m_{i} \notin C$ such $W_{a} \subseteq C$ for some $a \in W_{e_{i}}$. Note that (i) is not possible. That is, $\Gamma_{d}(C) \subseteq C$ because Γ_{d} is a Σ_{1}^{0} monotone operator and, hence,
$\Gamma_{d}\left(\Gamma^{\omega}(F)\right)=\Gamma^{\omega}(F)$. But (ii) is not possible since otherwise $m_{i} \in F$ and $F \subseteq C$. Thus it must be the case that $\Lambda(C)=\Gamma_{d}(C)$.

For part (b), let $G=\left\{m_{i}: m_{i} \in \Lambda^{\omega}\right\}$. Since G is a finite set, there is some finite t such that $G \subseteq \Lambda^{t}$. Then certainly $\Gamma_{d}^{\omega}(G) \subseteq \Lambda^{\omega}(G) \subseteq \Lambda^{\omega}\left(\Lambda^{t}\right)=\Lambda^{\omega}$. For the reverse inclusion, suppose $D=\Gamma_{d}^{\omega}(G)$ and $\Lambda^{\omega}-D \neq \emptyset$. Then let s be the least stage such that there is an $x \in \Lambda^{s}-D$. Then either (I) $x \notin S_{\Gamma}=\left\{m_{1}, \ldots, m_{k}\right\}$ and hence, there is some finite set $F \subseteq \Lambda^{t-1}$ such that $x \in \Gamma(F)$ or (II) $x=m_{i} \notin G$ and $W_{a} \subseteq \Lambda^{t-1}$ for some $a \in W_{e_{i}}$. Note that in case (I), $F \subseteq D$ by our choice of s. But since F is finite, there must be some finite t such $F \subseteq \Gamma^{t}(G)$ so that $x \in \Gamma(F) \subseteq \Gamma\left(\Gamma^{t}(G)\right) \subseteq \Gamma^{\omega}(G)=D$. Thus case (I) cannot hold. But Case (II) is not possible since otherwise $m_{i} \in G$ and $G \subseteq D$. Thus it must be the case that $\Lambda^{\omega}=\Gamma_{d}^{\omega}(G)$.

It is possible to develop a theory of index sets for weakly finitary Σ_{1}^{0} inductive operators. In general, this theory is more subtle than the corresponding theory of Σ_{1}^{0} inductive operators. We will not attempt in this paper to prove analogues of all the index set results in Section 3. Instead, we will give a couple of examples of index set results for weakly finitary Σ_{1}^{0} inductive operators where there is a contrast between the index set result for weakly finitary Σ_{1}^{0} inductive operators and the corresponding index set result for Σ_{1}^{0} inductive operators.

Clearly, $\left\{e:\left|\Gamma_{e}\right| \leq \omega\right\}=\mathbb{N}$ and is hence computable since for any Σ_{1}^{0} inductive operator $\Gamma, \Gamma^{\omega}=l f p(\Gamma)$. In contrast, for weakly finitary Σ_{1}^{0} inductive operators we have the following.

Theorem 4.3.

(a) For all $k \geq 1$, the set of e such that $\langle k, e\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right\rangle$ and $\left\{m_{1}, \ldots, m_{k}\right\} \cap \operatorname{cl}\left(\Lambda_{k, e}\right)=\emptyset$ (in which case $\left.\operatorname{cl}\left(\Lambda_{k, e}\right)=\Gamma_{d}^{\omega}\right)$ is a complete Π_{3}^{0} set.
(b) For all $k \geq 1$, $\left\{e:\left|\Lambda_{k, e}\right| \leq \omega \&\left\{m_{1}, \ldots, m_{k}\right\} \subseteq \Lambda_{k, e}^{\omega}\right\}$ is Σ_{3}^{0} complete.
(c) For all $k \geq 2,\left\{e:\left|\Lambda_{k, e}\right| \leq \omega\right\}$ is D_{3}^{0} complete.

Proof. For the upper bound for part (a), suppose $\langle k, e\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right\rangle$. Then it is easy to see from our construction in Theorem 4.2, that $\left\{m_{1}, \ldots, m_{k}\right\} \cap$ $c l\left(\Lambda_{k, e}\right)=\emptyset$ only if there is no i and $a \in W_{e_{i}}$ such that $W_{a} \subseteq \Gamma_{d}^{\omega}$. Since Γ_{d} is a Σ_{1}^{0} inductive operator, Γ_{d}^{ω} is a c.e. set. Thus $\left\{m_{1}, \ldots, m_{k}\right\} \cap c l\left(\Lambda_{k, e}\right)=\emptyset$ if and only

$$
(\forall i \in\{1, \ldots, k\})\left(\forall a \in W_{e_{i}}\right)(\exists c)\left(c \in W_{a} \& c \notin \Gamma_{d}^{\omega}\right)
$$

which is a Π_{3}^{0} predicate.
Next we consider the upper bounds for parts (b) and (c). Fix a set $F \subseteq\{1, \ldots, k\}$. For each index $\langle k, e\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right.$, let $M_{F, k, e}=\Gamma_{d}^{\omega}\left(\left\{m_{i}: i \in F\right\}\right)$.

Now fix $\langle k, e\rangle$. By Lemma 4.1, we know there there is some F such that $M_{F, k, e}=\Lambda_{k, e}^{\omega}$ We are interested in analyzing the predicate that

$$
\begin{equation*}
Q(F, k, e): M_{F, k, e}=\Lambda_{k, e}^{\omega} \tag{7}
\end{equation*}
$$

First suppose that $F, G \subseteq\{1, \ldots, k\}$ and $M_{F, k, e}, M_{G, k, e} \subseteq \Lambda_{k, e}^{\omega}$. Then it is easy to see
that there must be some finite stage t such that $G \cup F \subseteq \Lambda_{k, e}^{t}$. But then

$$
\begin{aligned}
M_{F \cup G, k, e} & =\Gamma_{d}^{\omega}(G \cup F) \\
& \subseteq \Gamma_{d}^{\omega}\left(\Lambda_{k, e}^{t}\right) \\
& \subseteq \Lambda_{k, e}^{\omega}\left(\Lambda_{k, e}^{t}\right) \\
& =\Lambda_{k, e}^{\omega}
\end{aligned}
$$

It thus follows that a particular F such that $M_{F, k, e}=\Lambda_{k, e}^{\omega}$ is the maximal G such that $M_{G, k, e} \subseteq \Lambda_{k, e}^{\omega}$.

Now if $M_{F, k, e}=\Lambda_{k, e}^{\omega}$, then we can list the elements of F in the order in which they appear in the sequence $\left\{\Lambda_{k, e}^{t}\right\}_{t \geq 0}$. That is, there is listing of $F=\left\{f_{1}, \ldots, f_{s}\right\}, 1 \leq i_{1}<$ $\ldots i_{p}<s$ and $t_{1}<t_{2}<\cdots<t_{p+1}$ such that

$$
\begin{aligned}
f_{1}, \ldots, f_{i_{1}} & \in \Lambda_{k, e}^{t_{1}}-\Lambda_{k, e}^{t_{1}-1} \\
f_{i_{1}+1}, \ldots, f_{i_{2}} & \in \Lambda_{k, e}^{t_{2}}-\Lambda_{k, e}^{t_{2}-1}, \\
& \vdots \\
f_{i_{p-1}+1}, \ldots, f_{i_{p}} & \in \Lambda_{k, e}^{t_{p}}-\Lambda_{k, e}^{t_{p}-1}, \text { and } \\
f_{i_{p}+1}, \ldots, f_{s} & \in \Lambda_{k, e}^{t_{p+1}}-\Lambda_{k, e}^{t_{p+1}-1} .
\end{aligned}
$$

But in such circumstances it is easy to see that

$$
\begin{aligned}
\Lambda_{k, e}^{t_{1}-1} & =\Gamma_{d}^{t_{1}-1} \text { and } \\
\Lambda_{k, e}^{t_{1}} & =\Gamma_{d}\left(\Gamma_{d}^{t_{1}-1}\right) \cup\left\{f_{1}, \ldots, f_{i_{1}}\right\}=\Gamma_{d}^{t_{1}} \cup\left\{f_{1}, \ldots, f_{i_{1}}\right\} .
\end{aligned}
$$

Now we can effectively find an index q_{1} such that $W_{q_{1}}=\Gamma_{d}^{t_{1}} \cup\left\{f_{1}, \ldots, f_{i_{1}}\right\}=\Lambda_{k, e}^{t_{1}}$ from t_{1} and $f_{1}, \ldots, f_{i_{1}}$. Next

$$
\begin{aligned}
\Lambda_{k, e}^{t_{2}-1} & =\Gamma_{d}^{t_{2}-1-t_{1}}\left(W_{q_{1}}\right) \text { and } \\
\Lambda_{k, e}^{t_{2}} & =\Gamma_{d}\left(\Gamma_{d}^{t_{2}-1-t_{1}}\left(W_{q_{1}}\right)\right) \cup\left\{f_{i_{1}+1}, \ldots, f_{i_{2}}\right\} \\
& =\Gamma_{d}^{t_{2}-t_{1}}\left(W_{q_{1}}\right) \cup\left\{f_{i_{1}+1}, \ldots, f_{i_{2}}\right\} .
\end{aligned}
$$

Now we can effectively find an index q_{2} such that $W_{q_{2}}=\Gamma_{d}^{t_{2}-t_{1}}\left(W_{q_{1}}\right) \cup\left\{f_{i_{1}+1}, \ldots, f_{i_{2}}\right\}=$ $\Lambda_{k, e}^{t_{2}}$ from q_{1}, t_{2}, and $f_{i_{1}+1}, \ldots, f_{i_{2}}$. Continuing on this way if we have found an index q_{r} such that $W_{q_{r-1}}=\Lambda_{k, e}^{t_{r-1}}$, then

$$
\begin{aligned}
\Lambda_{k, e}^{t_{r}-1} & =\Gamma_{d}^{t_{r}-1-t_{r-1}}\left(W_{q_{r-1}}\right) \text { and } \\
\Lambda_{k, e}^{t_{r}} & =\Gamma_{d}\left(\Gamma_{d}^{t_{r}-1-t_{r-1}}\left(W_{q_{r-1}}\right)\right) \cup\left\{f_{i_{r-1}+1}, \ldots, f_{i_{r}}\right\} \\
& =\Gamma_{d}^{t_{r}-t_{r-1}}\left(W_{q_{r-1}}\right) \cup\left\{f_{i_{r-1}+1}, \ldots, f_{i_{r}}\right\} .
\end{aligned}
$$

Again, we can effectively find an index q_{r} such that

$$
W_{q_{r}}=\Gamma_{d}^{t_{r}-t_{r-1}}\left(W_{q_{r-1}}\right) \cup\left\{f_{i_{r-1}+1}, \ldots, f_{i_{r}}\right\}=\Lambda_{k, e}^{t_{r}}
$$

from q_{r-1}, t_{r}, and $f_{i_{r-1}+1}, \ldots, f_{i_{r}}$. Finally, to verify that each stage works properly, we must check that for each r that $\left\{f_{i_{r-1}+1}, \ldots, f_{i_{r}}\right\} \subseteq \Lambda_{k, e}\left(\Gamma_{d}^{t_{r}-1-t_{r-1}}\left(W_{q_{r-1}}\right)\right)$ or that for
each $m_{j} \in\left\{i_{r-1}+1, \ldots, i_{r}\right\},(\exists a)\left(a \in W_{e_{i}} \& W_{a} \subseteq \Gamma_{d}^{t_{r}-1-t_{r-1}}\left(W_{q_{r-1}}\right)\right.$. Again, we can effectively find an index v_{r} for $\Gamma_{d}^{t_{r}-1-t_{r-1}}\left(W_{q_{r-1}}\right)$ so that the predicate that $W_{a} \subseteq W_{v_{r}}=$ $\Gamma_{d}^{t_{r}-1-t_{r-1}}\left(W_{q_{r-1}}\right)$ is a Π_{2}^{0} predicate. It follows that for each $m_{j} \in\left\{i_{r-1}+1, \ldots, i_{r}\right\}$, $(\exists a)\left(a \in W_{e_{i}} \& W_{a} \subseteq \Gamma_{d}^{t_{r}-1-t_{r-1}}\left(W_{q_{r-1}}\right)\right)$ is a Σ_{3}^{0} predicate. Thus the existence of a sequences $F=\left\{f_{1}, \ldots, f_{s}\right\}, 1 \leq i_{1}<\ldots i_{p}<s, t_{1}<t_{2} \leq t_{p+1}, q_{1}, \ldots, q_{p+1}$ satisfying all the properties above is a Σ_{3}^{0} predicate. It then follows $M_{G, k, e} \subseteq \Lambda_{k, e}^{\omega}$ is Σ_{3}^{0} predicate since it is equivalent to saying that there exists an $F \subseteq\{1, \ldots, k\}$ such that $G \subseteq F$ and there exist sequences $F=\left\{f_{1}, \ldots, f_{s}\right\}, 1 \leq i_{1}<\ldots i_{p}<s, t_{1}<t_{2} \leq t_{p+1}$, q_{1}, \ldots, q_{p+1} satisfying all the properties above. Thus the predicate that $M_{G, k, e} \nsubseteq \Lambda_{k, e}^{\omega}$ is Π_{3}^{0}. Now, for any $F \neq\{1, \ldots, k\}$, the predicate that F is the maximal G such that $M_{G, k, e} \subseteq \Lambda_{k, e}^{\omega}$ is the conjunction of Σ_{3}^{0} and Π_{3}^{0} predicates. If $F=\{1, \ldots, k\}$, then the predicate that F is the maximal G such that $M_{G, k, e} \subseteq \Lambda_{k, e}^{\omega}$ is just a Σ_{3}^{0} predicate. Note that if $\left\{m_{1}, \ldots, m_{k}\right\} \subseteq \Lambda^{\omega}$, then it must be the case that $\Lambda_{k, e}^{\omega}=M_{\{1, \ldots, k\}, k, e}$ Finally, to say that $\left|\Lambda_{k, e}\right|>\omega$, we need only say that there exists an $F \neq\{1, \ldots, k\}$ such that F is the maximal G such that $M_{G, k, e} \subseteq \Lambda_{k, e}^{\omega}$ and $M_{F, k, e}$ is not closed under $\Lambda_{k, e}$. Now if $M_{F, k, e}=\Lambda_{k, e}^{\omega}$, then clearly $M_{F, k, e}$ is closed under Γ_{d} so that $M_{F, k, e}$ is not closed under $\Lambda_{k, e}$ if and only if

$$
\left(\exists m_{i} \notin F\right)\left(\exists a \in W_{e_{i}}\right)\left[W_{a} \subseteq M_{F, k, e}\right]
$$

which is a Σ_{3}^{0} predicate. Thus the predicate $\left|\Lambda_{k, e}\right|>\omega$ is a conjunction of Σ_{3}^{0} and Π_{3}^{0} predicates. Thus we have established the upper bounds for parts (b) and (c).

For the completeness of parts (a),(b), and (c), we will use the Σ_{3}^{0} complete set $C o f=$ $\left\{e: W_{e}\right.$ is cofinite $\}$. Let $P=\left\{p_{0}<p_{1}<\cdots\right\}$ denote the set of primes.

For completeness for part (a), fix k and let $W_{f_{i}}=\left\{2^{n} p_{m}: n \geq 0 \& m \geq i\right\}$ for $i \geq 0$. Then define a 1-1 computable function g so that $\langle k, g(e)\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right\rangle$ where $m_{i}=i-1$ and $W_{e_{i}}=\left\{f_{0}, f_{1}, \ldots\right\}$, for $i=1, \ldots, k$, and Γ_{d} is defined so that for all $A \subseteq N$,
(1) for all $m \geq k, p_{m} \in \Gamma_{d}(A) \Longleftrightarrow m \in W_{e}$ and
(2) for all $n \geq 1$ and $m \geq k, 2^{n} p_{m} \in \Gamma_{d}(A) \Longleftrightarrow 2^{n-1} p_{m} \in A$.

It is then easy to see that $\Gamma_{d}^{1}=\left\{p_{m}: m \in W_{e} \& m \geq k\right\}, \Gamma_{d}^{\omega}=\left\{2^{n} p_{m}: m \in W_{e} \& m \geq\right.$ $k \& n \geq 0\}$, and there is no finite t such that $W_{f_{i}} \subseteq \Gamma_{d}^{t}$ for some i. Thus if W_{e} is cofinite, then there will be an i such $W_{f_{i}} \subseteq \Gamma_{d}^{\omega}$ and, hence, $\{0, \ldots, k-1\} \subseteq \Gamma_{d}^{\omega+1}-\Gamma_{d}^{\omega}$. However, if W_{e} is not cofinite, then there will be no i such that $W_{f_{i}} \subseteq \Gamma_{d}^{\omega}$. Hence $\Gamma_{d}^{\omega}=\operatorname{cl}\left(\Lambda_{k, g(e)}\right)$ and $\{0, \ldots, k-1\} \cap c l\left(\Lambda_{k, g(e)}\right)=\emptyset$. Thus

$$
g(e) \in\left\{e:\langle k, e\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right\rangle \&\left\{m_{1}, \ldots, m_{k}\right\} \cap c l\left(\Lambda_{k, e}=\emptyset\right\}\right.
$$

if and only if W_{e} is not cofinite. It follows that $\left\{e:\langle k, e\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right\rangle \&\left\{m_{1}, \ldots, m_{k}\right\} \cap\right.$ $c l\left(\Lambda_{k, e}=\emptyset\right\}$ is Π_{3}^{0} complete.

For the completness for part (b), fix k and for $i=1, \ldots, k$ let $m_{i}=i-1$ and let $W_{e_{i}}=\left\{b_{0}, b_{1}, b_{2}, \ldots\right\}$ where for each $n, W_{b_{n}}=\mathbb{N}-\{0, \ldots, n\}$. Then define the 1:1 computable function f by

$$
f(a)=\langle k, e\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right.
$$

where Γ_{d} is defined as follows:
For all $A \subseteq \mathbb{N}$,
(1) $k \in \Gamma_{d}(A)$,

1 for all $x \geq 1, x+k \in \Gamma_{d}(A) \Longleftrightarrow x \in W_{a} \vee(\forall y<x) y+k \in A$.
Now if W_{a} is cofinite, then it is easy to see that $\Lambda_{k, e}^{1}$ is cofinite and hence $\{0, \ldots, k-1\} \subseteq$ $\Lambda_{k, e}^{2}$. It then easily follows that $\Lambda_{k, e}^{\omega}=\mathbb{N}$ and hence $\left|\Lambda_{k, e}\right| \leq \omega$. However if W_{e} is not cofinite, then it is easy to see that there is no $t \geq 0$ such that $\Lambda_{k, e}^{t}$ is cofinite. However it will be the case that $\Lambda_{k, e}^{\omega} \supseteq\{x: k \leq x\}$ and, hence, $\Lambda_{k, e}^{\omega+1}=\mathbb{N}$. Thus $a \in C o f \Longleftrightarrow f(a) \in\left\{e:\left|\left|\Lambda_{k, e}\right| \leq \omega \&\left\{m_{1}, \ldots, m_{k}\right\} \subseteq \Lambda_{k, e}^{\omega}\right\}\right.$ so that $\left\{e:\left|\Lambda_{k, e}\right| \leq\right.$ $\left.\omega \&\left\{m_{1}, \ldots, m_{k}\right\} \subseteq \Lambda_{k, e}^{\omega}\right\}$ is Σ_{3}^{0} complete.

For the completeness of part (c), fix $k \geq 2$. Then we need only show that there is 1:1 computable function h such that $h(a, b) \in\left\{e:\left|\Lambda_{k, e}\right| \leq \omega\right\}$ if and only if W_{a} is cofinite and W_{b} is not cofinite. Let $P=\left\{p_{0}<p_{1}<\ldots\right\}$ be the set of prime numbers. For each i, let $W_{c_{i}}=\left\{2^{n} p_{i}: n \geq 1\right\}$. Then let h be the computable function such that $\langle k, h(a, b)\rangle=$ $\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right.$ where $m_{i}=2(i-1)+1$ for $i=1, \ldots k, W_{e_{1}}=\left\{b_{0}, b_{1}, b_{2}, \ldots\right\}$ where $W_{b_{i}}=\{2 x+1: x \in \mathbb{N}\}-\{1,3, \ldots, 2 i+1\}$, $W_{e_{j}}=\left\{c_{0}, c_{1}, c_{2}, \ldots\right\}$ for $j=2, \ldots, k$, where $W_{c_{i}}=\left\{2^{n} p_{m}: n \geq 0 \& m \geq i\right\}$, and Γ_{d} is defined so that for all $A \subseteq \mathbb{N}$,
(1) $2 k+1 \in \Gamma_{d}(A)$,
(2) for all $x \geq 1,2(x+k)+1 \in \Gamma_{d}(A) \Longleftrightarrow x \in W_{a} \vee(\forall y<x)(2(y+k)+1 \in A$,
(3) for all $m \geq 0,2 p_{m} \in \Gamma_{d}(A) \Longleftrightarrow m \in W_{b}$, and
(4) for all $m \geq 0$ and $n \geq 2,2^{n} p_{m} \in \Gamma_{d}(A) \Longleftrightarrow 2^{n-1} p_{m} \in A$.

We can use the same analysis that we used in part (a) to conclude $\left\{2 p_{m}: m \in W_{b}\right\} \subseteq \Gamma_{d}^{1}$, $\left\{2^{n} p_{m}: m \in W_{b} \& n \geq 1\right\} \subseteq \Gamma_{d}^{\omega}$, and there is no finite t such that $W_{c_{i}} \subseteq \Gamma_{d}^{t}$ for some i. Moreover, it is the case that $\{3, \ldots, 2 k-1\} \subseteq \Gamma_{d}^{\omega+1}-\Gamma_{d}^{\omega}$ if W_{b} is cofinite and otherwise $\{3, \ldots, 2 k-1\} \cap \Gamma_{d}^{\omega}=\emptyset$. Next we can use our analysis in part (b) to conclude that if W_{a} is cofinite, then $1 \in \Lambda_{k, e}^{1}$ and hence $\{1\} \cup\{2 s+1: s \geq k\} \subseteq \Lambda_{k, e}^{\omega}$. However if W_{a} is not cofinite, then there is no stage t such that $1 \in \Lambda_{k, e}^{t}$ and, hence, $\{2 s+1: s \geq k\} \subseteq \Lambda_{k, e}^{\omega}$ and $1 \in \Lambda_{k, e}^{\omega+1}$. It follows that $\left|\Lambda_{k, h(a, b)}\right| \leq \omega$ if and only if W_{a} is cofinite and W_{b} is not cofinite. Hence for $k \geq 2$, $\left\{e:\left|\Lambda_{k, e}\right| \leq \omega\right\}$ is D_{3}^{0} complete.

Next we need to define the family of difference sets of Σ_{3}^{0} sets. For two Σ_{3}^{0} sets A and B, the difference $A-B$ is the intersection of Σ_{3}^{0} set and a Π_{3}^{0} set and is said to be a $2-\Sigma_{3}^{0}$ set. For $n>0$, we say that a set C is $2 n$ - Σ_{3}^{0} if and only if A is the union of $n 2-\Sigma_{3}^{0}$ sets and is $2 n+1-\Sigma_{3}^{0}$ if and only if A is the union of a Σ_{3}^{0} set with a $2 n-\Sigma_{3}^{0}$ set. We say that A is $n-\Pi_{3}^{0}$ set if the complement of A is $n-\Sigma_{3}^{0}$ set.

We can then prove the following.
Theorem 4.4. Fix any computable set R_{t}. Then for each k, $\left\{e: \operatorname{lfp}\left(\Lambda_{k, e}\right) \cap R_{t}\right.$ is computable $\}$ is a $\left(2^{k+1}-1\right)-\Sigma_{3}^{0}$ set.

Proof. Fix a set $F \subseteq\{1, \ldots, k\}$. Let $M_{F, k, e}=\Gamma_{d}^{\omega}\left(\left\{m_{i}: i \in F\right\}\right)$ for each index $\langle k, e\rangle=\left\langle k,\left\langle d,\left\langle m_{1}, e_{1}, \ldots, m_{k}, e_{k}\right\rangle\right\rangle\right.$. We are interested in analyzing the predicate that

$$
\begin{equation*}
P(F, k, e): M_{F, k, e}=l f p\left(\Lambda_{k, e}\right) \& R_{t} \cap M_{F, k, e} \text { is computable. } \tag{8}
\end{equation*}
$$

It follows from Lemma 4.1 that $l f p\left(\Lambda_{k, e}\right)=M_{F, k, e}$ if and only if
$1 \quad\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq M_{F, k, e}\right)\right\} \subseteq\left\{m_{i}: i \in F\right\}$ and
2 for all $G \subsetneq F,\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq M_{G, k, e}\right)\right\} \nsubseteq\left\{m_{i}: i \in G\right\}$.
The predicate that $\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq M_{G, k, e}\right)\right\} \nsubseteq\left\{m_{i}: i \in G\right\}$ is Σ_{3}^{0} since it holds if and only if there is an $i \in\{1, \ldots, k\}-G$ such that $(\exists a)\left(a \in W_{e_{i}} \& W_{a} \subseteq M_{G, k, e}\right)$. Since $M_{G, k, e}$ is uniformly c. e., the predicate $W_{a} \subseteq M_{G, k, e}$ is Π_{2}^{0} and hence the predicate $(\exists a)\left(a \in W_{e_{i}} \& W_{a} \subseteq M_{G, k, e}\right)$ is Σ_{3}^{0}. It follows that the predicate $\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq\right.\right.$ $\left.\left.M_{F, k, e}\right)\right\} \subseteq\left\{m_{i}: i \in F\right\}$ is Π_{3}^{0} if $F \neq\{1, \ldots, k\}$. Finally, the predicate " $M_{F, k, e} \cap R_{t}$ is computable" is Σ_{3}^{0}. Thus if $F \neq\{1, \ldots, k\}$, the predicate $P(F, k, e)$ is the conjunction of a Σ_{3}^{0} and Π_{3}^{0} predicate and hence is $2-\Sigma_{3}^{0}$ predicate. If $F=\{1, \ldots, k\}$, then, we may omit the Π_{3}^{0} predicate so that $P(F, k, e)$ is a Σ_{3}^{0} predicate.

It follows that the predicate that $\left\{e: \operatorname{lfp}\left(\Gamma_{k, e}\right) \cap R_{t}\right.$ is computable $\}$ is a disjunction of $2^{k}-12-\Sigma_{3}^{0}$ sets and one Σ_{3}^{0} set and hence a $2^{k+1}-1$ set.

It is important to note that the set of all $\langle k, e\rangle$ such that $\operatorname{lfp}\left(\Lambda_{k, e}\right)$ itself is computable is just Σ_{3}^{0}. (In fact, if the set R_{t} in Theorem 4.4 is finite or cofinite, then $\left\{e: \operatorname{lfp}\left(\Lambda_{k, e}\right) \cap\right.$ R_{t} is computable $\}$ is Σ_{3}^{0}.) That is, for each finite $F \subseteq\{1, \ldots, k\}$ and each computable set R, the question of whether $R=M_{F, k, e}$ is a Π_{2}^{0} question since $M_{F, k, e}$ is uniformly c. e.. If there is an F such that $R=M_{F, k, e}$, then the question of whether $\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq\right.\right.$ $R)\} \subseteq\left\{m_{i}: i \in F\right\}$ is a Π_{2}^{0} question. That is, the question whether $W_{a} \subseteq R$ is a Π_{1}^{0} question so that the question of whether $(\exists i \in\{1, \ldots, k\}-F)(\exists a)\left(a \in W_{e_{i}} \& W_{a} \subseteq R\right)$ is a Σ_{2}^{0} question. Thus $l f p\left(\Lambda_{k, e}\right)$ is computable if and only if there is an s and there exists an $F \subseteq\{1, \ldots, k\}$ such that W_{s} is computable, $M_{F, k, e}=W_{s},\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq\right.\right.$ $\left.\left.W_{s}\right)\right\} \subseteq\left\{m_{i}: i \in F\right\}$, and for all $G \subsetneq F,\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq M_{G, k, e}\right)\right\} \nsubseteq\left\{m_{i}: i \in\right.$ $G\}$. Since the predicates W_{s} is computable, $M_{F, k, e}=W_{s}$, and $\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq\right.\right.$ $\left.\left.W_{s}\right)\right\} \subseteq\left\{m_{i}: i \in F\right\}$ are all Π_{2}^{0} and the predicates $\left\{m_{i}:\left(\exists a \in W_{e_{i}}\right)\left(W_{a} \subseteq M_{G, k, e}\right)\right\} \nsubseteq$ $\left\{m_{i}: i \in G\right\}$ are Σ_{3}^{0}, the predicate $l f p\left(\Lambda_{k, e}\right)$ is computable is Σ_{3}^{0}. We can then proceed as in the proof of Theorem 4.2 to prove $\left\{\langle k, e\rangle: \operatorname{lfp}\left(\Lambda_{k, e}\right)\right.$ is computable $\}$ is Σ_{3}^{0}-complete. Thus we have the following.

Theorem 4.5. $\left\{\langle k, e\rangle: \operatorname{lfp}\left(\Lambda_{k, e}\right)\right.$ is computable $\}$ is Σ_{3}^{0}-complete.
Finally, we give a completeness result for Theorem 4.4 in the case where $k=1$.
Theorem 4.6. Let R_{t} be a fixed infinite coinfinite computable set. Then $\left\{e: \operatorname{lfp}\left(\Lambda_{1, e}\right) \cap R_{t}\right.$ is computable $\}$ is $3-\Sigma_{3}^{0}$-complete.

Proof. The upper bound on the complexity is given by the proof of Theorem 4.4. For the other direction, fix $R_{t}=\{2 n: n \in \mathbb{N}\}$ without loss of generality. Let $C=\{e$: $l f p\left(\Lambda_{1, e}\right) \cap R_{t}$ is computable $\}$. Note that it is proved in (Soare 1987) that Rec $=\{e$: W_{e} is computable $\}$ and $C o f=\left\{e: W_{e}\right.$ is cofinite $\}$ are Σ_{3}^{0} complete.

For the completeness, first we claim that

$$
D=\left\{\langle a, b, c\rangle:\left(W_{a} \text { is not cofinite } \& W_{b} \text { is computable }\right) \vee W_{c} \text { is computable }\right\}
$$

is 3 - Σ_{3}^{0} complete. That is, let $S=(B-A) \cup C$, where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are Σ_{3}^{0}. Then there are functions f, g, h such that $a \in A \Longleftrightarrow f(a) \in C o f, b \in B \Longleftrightarrow g(b) \in \operatorname{Rec}$,
and $c \in C \Longleftrightarrow h(c) \in$ Rec. Thus $s=\langle a, b, c\rangle \in S$ iff $[(f(a) \notin C o f)$ and $g(b) \in$ $R e c)$ or $h(c) \in R e c]$ iff $\phi(s)=\langle f(a), g(b), h(c)\rangle \in D$. Thus it suffices to reduce D to C. That is, we will define a 1-weakly finitary Σ_{1}^{0} monotone operator $\Lambda_{f(a, b, c)}$ such that $l f p\left(\Lambda_{f(a, b, c)}\right) \cap R_{t}$ is computable\} if and only if $\langle a, b, c\rangle \in D$. Since Rec and Cof are Σ_{3}^{0} complete, it follows that there exists a computable function g such that W_{c} is computable or W_{a} is cofinite if and only if $W_{g(a, c)}$ is cofinite. Let h be a computable function such that for each $n, W_{h(n)}=\{8 i+3: i>n\}$. The 1-weakly finitary inductive operator $\Lambda=\Lambda_{f(a, b, c)}$ is defined by the following clauses.
(1) $0 \in \Lambda(A)$ if $W_{h(n)} \subseteq A$ for some n.
(2) $8\langle i, s\rangle+1 \in \Lambda(A)$ if $i \in W_{g(a, c), s}$ or $8\langle i, s+1\rangle+1 \in A$.
(3) $8 i+3 \in \Lambda(A)$ if $8\langle i, 0\rangle+1 \in A$.
(4) $8\langle i, s\rangle+5 \in \Lambda(A)$ if $i \in W_{b, s}$ or $8\langle i, s+1\rangle+5 \in A$.
(5) $8 i+2 \in \Lambda(A)$ if $8\langle i, 0\rangle+5 \in A$.
(6) $8\langle i, s\rangle+7 \in \Lambda(A)$ if $0 \in A$ and either $i \in W_{c, s}$ or $8\langle i, s+1\rangle+7 \in A$.
(7) $8 i+4 \in \Lambda(A)$ if $8\langle i, 0\rangle+7 \in A$.
(8) $8 i+2 \in \Lambda(A)$ if $0 \in A$.

It is easy to see that clauses (2)-(8) define a computable monotone inductive operator so that Λ is a 1-weakly finitary Σ_{1}^{0} operator where $S_{\Lambda}=\{0\}$.

Clauses of type (2) and (3) ensure that $l f p(\Lambda)$ must include $\left\{8 i+3: i \in W_{g(a, c)}\right\}$ and clauses of type (4) and (5) ensure that $l f p(\Lambda)$ must include $\left\{8 i+2: i \in W_{b}\right\}$.

Let $M=l f p(\Lambda)$. If $W_{g(a, c)}$ is cofinite, then one of the clauses of type (1) will apply and then the clauses of type (6), (7), and (8) will ensure that $M \cap R_{t}$ equals $\{0\} \cup\{8 i+2$: $i<\omega\} \cup\left\{8 i+4: i \in W_{c}\right\}$ and, hence, $M \cap R_{t}$ will be computable if and only if W_{c} is computable. If $W_{g(a, c)}$ is not cofinite, then $M \cap R_{t}$ will consist of $\left\{8 i+2: i \in W_{b}\right\}$ and, hence, $M \cap R_{t}$ will be computable if and only if W_{b} is computable.

If $\langle a, b, c\rangle \in D$, then there are two cases. First suppose that W_{c} is computable. Then $W_{g(a, c)}$ is cofinite so that $M \cap R_{t}$ is computable as desired. Next suppose that W_{c} is not computable. Then we must have W_{a} not cofinite and W_{b} computable. In this case, $W_{g(a, c)}$ is not cofinite and $M \cap R_{t}$ is again computable.

If $\langle a, b, c\rangle \notin D$, then W_{c} is not computable and either W_{a} is cofinite or W_{b} is not computable. Again there are two cases. First suppose that W_{a} is cofinite. Then $W_{g(a, c)}$ is cofinite, so that $M \cap R_{t}$ is not computable, as desired. If W_{a} is not cofinite, then $W_{g(a, c)}$ is not cofinite and W_{b} is not computable. Thus again $M \cap R_{t}$ is not computable.

We conjecture that a similar completeness result will hold for k-weakly Σ_{1}^{0} operators. Finally, we remark that k-weakly computable monotone operators may be defined and corresponding versions of Theorems 4.4, 4.5 and 4.6 can be shown.

References

Baldwin, J., Recursion theory and abstract dependence, in Patras Logic Symposion (Metakides, G., ed.), North Holland, Amsterdam (1982), 67-76.

Baldwin, J., First order theories of abstract dependence relations, Ann. Pure and Applied Logic 26 (1984) 215-243.
Cenzer, D. (1978) Non-generable formal languages. Fundamenta Informaticae 3 (1978) 95-104.
Cenzer, D., Marek,W. and Remmel, J. B. Logic programming with infinite sets. Annals of Mathematics and Artificial Intelligence 44 (2005), 309-339.
Cenzer, D. and Remmel, J. B. Index sets in computable analysis. Theoretical Computer Science 219 (1999) 111-150.
Dekker, J. C. E., Two notes on vector spaces with recursive operations. Notre Dame Journal of Formal Logic 12 (1971) 329-334.
Downey, R. G., Nowhere simplicity in matroids, J. Austral. Math. Soc. (Series A) 35 (1983) 28-45.
Downey, R. G., On a question of A. Retzlaff, Z. Math. Logik Grund. Math. 29 (1983), 379-384.
Downey, R. G., Some remarks on a theorem of Iraj Kalantari concerning convexity and recursion theory, Z. Math. Logik Grund. Math. 30 (1984), 295-302.
Downey, R. G. and Remmel, J. B., "Effective Algebras and Closure Systems: Coding Properties," Handbook of Recursive Mathematics, Vol. 2, Studies in Logic and the Foundations of Mathematics, Vol. 139, (eds. Y. Ershov, S. Goncharov, A. Nerode, and J.B. Remmel), Elsevier (1998) 997-1040.

Gelfond, M. and Lifschitz, V., The stable semantics for logic programs. ICLP88 (Eds. Kowalski, R., Bowen) (1988) 1070-1080.

Handbook of Recursive Mathematics, Volume 1, Recursive Model Theory, edited by Ershov, Y., Goncharov, S., Nerode, A. and Remmel, J. B., Studies in Logic and the Foundations of Mathematics, Vol. 138, Elsevier, Amsterdam, New York (1998)
Handbook of Recursive Mathematics, Volume 2, Recursive Algebra, Analysis and Combinatorics, edited by Ershov, Y, Goncharov, S., Nerode, A. and Remmel, J. B., Studies in Logic and the Foundations of Mathematics, Vol. 139, Elsevier, Amsterdam, New York (1998).

Hinman, P. G. Recursion-Theoretic Hierarchies. Springer-Verlag (1978).
Kalantari, I., Effective content of a theorem of M. H. Stone, Aspects of effective algebra (Crossley, J. N. ed.) U. D. A. Book Company, Steels Greek, (1981), 128-146.

Nerode, A. and Remmel, J. B., Recursion theory on matroids, Patras Logic Symposion (Metakides, G., ed.), North Holland, Amsterdam (1982), 67-76.
Nerode, A. and Remmel, J. B., Recursion theory on matroids, II, in Southeast Asian Conference on Logic (ed. C. T. Chong and M. J. Wicks), North Holland, Amsterdam (1983), 133-184.
Nerode, A. and J. B. Remmel, J. B., A survey of the lattices of r.e. substructures, in Recursion Theory (ed. A. Nerode and R. A. Shore) Proceedings of the Symp. in Pure Mathematics 42, Amer. Math. Soc., (1985), 323-375.
Remmel, J. B., Recursively enumerable Boolean algebras, Ann. Math. Logic 14 (1978), 75-107.
Remmel, J. B., Recursion theory on algebraic structures with an independent set, Ann. Math. Logic 18 (1980), 153-191.
Soare, R. E. Recursively Enumerable Sets and Degrees. Springer-Verlag (1987)

[^0]: † This work partially supported by NSF under grant DMS 0400507.

