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Abstract

We investigate notions of randomness in the space C[2N] of nonempty
closed subsets of {0, 1}N. A probability measure is given and a version
of the Martin-Löf test for randomness is defined. Π0

2 random closed sets
exist but there are no random Π0

1 closed sets. It is shown that any random
closed set is perfect, has measure 0, and has box dimension log2

4
3
. A

random closed set has no n-c.e. elements. A closed subset of 2N may be
defined as the set of infinite paths through a tree and so the problem of
compressibility of trees is explored. If Tn = T ∩ {0, 1}n, then for any
random closed set [T ] where T has no dead ends, K(Tn) ≥ n− O(1) but
for any k, K(Tn) ≤ 2n−k+O(1), where K(σ) is the prefix-free complexity
of σ ∈ {0, 1}∗.

.

1 Introduction

The study of algorithmic randomness has been of great interest in recent years.
The basic problem is to quantify the randomness of a single real number; here
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we will extend this problem to the randomness of the set of paths through a
finitely-branching tree. Early in the last century, von Mises [30] suggested that
a random real should obey reasonable statistical tests, such as having a roughly
equal number of zeroes and ones of the first n bits, in the limit. Thus a random
real would be stochastic in modern parlance. If one considers only computable
tests, then there are countably many and one can construct a real satisfying all
tests.

An early approach to randomness was through betting. Effective betting on
a random sequence should not allow one’s capital to grow unboundedly. The
betting strategies used are constructive martingales, introduced by Ville [29]
and implicit in the work of Levy [21], which represent fair double-or-nothing
gambling.

Martin-Löf [23] observed that stochastic properties could be viewed as special
kinds of measure zero sets and defined a random real as one which avoids certain
effectively presented measure 0 sets. That is, a real x ∈ 2N is Martin-Löf random
if for every effective sequence S1, S2, . . . of c.e. open sets with µ(Sn) ≤ 2−n,
x /∈

⋂
n Sn. It is easy to see that this is equivalent to the condition that we get

if we replace 2−n above with qn for a computable sequence (qi) of rationals such
that limi qi = 0.

At the same time Kolmogorov [17] defined a notion of randomness for fi-
nite strings based on the concept of incompressibility. The stronger notion of
prefix-free complexity was developed by Levin [20], Gács [16] and Chaitin [9]
and extended to infinite words. Schnorr later proved [26] that the notions of
constructive martingale randomness, Martin-Löf randomness, and prefix-free
randomness are equivalent.

In this paper we want to consider algorithmic randomness on the space C
of nonempty closed subsets P of 2N. Some definitions are needed. Fix a finite
alphabet A = {0, 1, . . . , k − 1} = k; we will make use of the alphabets {0, 1}
and {0, 1, 2}. For a finite string σ ∈ An, let |σ| = n. Let λ denote the empty
string, which has length 0. A word (a) of length 1 is may be identified with
the symbol a. For two strings σ, τ , say that τ extends σ and write σ v τ
if |σ| ≤ |τ | and σ(i) = τ(i) for i < |σ|. Similarly σ @ x for x ∈ 2N means
that σ(i) = x(i) for i < |σ|. Let σ_τ denote the concatenation of σ and τ . Let
Xdn = (x(0), . . . , x(n−1)). Now a nonempty closed set P may be identified with
a tree TP ⊆ A∗ as follows. For a finite string σ, let I(σ) denote {x ∈ 2N : σ ⊂ x}.
Then TP = {σ : P ∩I(σ) 6= ∅}. Note that TP has no dead ends, that is if σ ∈ TP
then either σ_0 ∈ TP or σ_1 ∈ TP .

For an arbitrary tree T ⊆ A∗, let [T ] denote the set of infinite paths through
T , that is,

x ∈ [T ] ⇐⇒ (∀n)xdn ∈ T.

It is well-known that P ⊆ 2N is a closed set if and only if P = [T ] for some
tree T . P is a Π0

1 class, or effectively closed set, if P = [T ] for some computable
tree T . Note that if P is a Π0

1 class, then TP is a Π0
1 set, but not in general

computable. P is said to be a decidable Π0
1 class if TP is computable. P is said to

be a strong Π0
2 class, if TP is a Π0

2 set, or equivalently if P = [T ] for some ∆0
2 tree;
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P is said to be a strong ∆0
2 class if TP is ∆0

2. Thus any Π0
1 class is also a strong

∆0
2 class. Any decidable Π0

1 class contains a computable element (in particular
the leftmost and rightmost paths) and similarly any strong ∆0

2 class contains
a ∆0

2 element. On the other hand, there exist Π0
1 classes with no computable

elements and strong Π0
2 classes with no ∆0

2 elements. The complement of a Π0
1

class is sometimes called a c.e. open set.
There is a natural effective enumeration P0, P1, . . . of the Π0

1 classes and
thus an enumeration of the c.e. open sets. Thus we can say that a sequence
S0, S1, . . . of c.e. open sets is effective if there is a computable function, f , such
that Sn = 2N −Pf(n) for all n. For a detailed development of Π0

1 classes, see [7]
or [8].

For background and terminology on computable functions and computably
enumerable sets, see [27].

The betting approach to randomness is formalized as follows:

Definition 1.1 (Ville [29]). (i) A martingale is a function m : k<ω →
[0,∞) such that for all σ ∈ k<ω,

m(σ) =
1
k

k−1∑
i=0

m(σ_i).

(ii) A martingale m succeeds on X ∈ kN if

lim sup
n→∞

d(Xdn) =∞.

That is, the betting strategy results in an unbounded amount of money
made on the k-ary infinite sequence X.

(iii) The success set of m is the set S∞[m] of all sequences on which m succeeds.

That is, a martingale on 2<ω is the capital function of a fair double-or-
nothing betting strategy. When working on 3<ω the strategy is triple-or-nothing.

Definition 1.2. A martingale m is constructive (effective, c.e.) if it is lower
semi-computable; that is, if there is a computable function m̂ : k<omega×N→ Q

such that

(i) for all σ and t, m̂(σ, t) ≤ m̂(σ, t+ 1) < m(σ), and

(ii) for all σ, limt→∞ m̂(σ, t) = m(σ).

In other words, m(w) is approximated from below by rationals uniformly
in w. A sequence in kN is constructive martingale random if no constructive
martingale succeeds on it.

Some flexibility may be gained by also considering nonmonotonic martin-
gales; i.e., martingales which bet on the bits of a sequence out of order. While
for a monotonic martingale only the amount of the next bet is determined from
the bits seen previously, for a nonmonotonic martingale both the amount and
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the location of the next bet are determined from the bits seen previously (the
next bit may precede them, follow them, or lie in the middle). These martingales
must obey two rules: the standard fair-betting rule that monotonic martingales
obey, and the rule that they never bet on the same bit twice. We refer the
reader to Downey and Hirschfeldt [11] for the formal definition.

Although a priori allowing nonmonotonic martingales strengthens the no-
tion of randomness, since more strategies must be defeated, in fact in the c.e.
case they are equivalent. Muchnik, Semenov, and Uspensky [24] (Theorem 8.9)
show that ML-random sequences defeat all computable nonmonotonic martin-
gales (in fact they show this with respect to general measures, not just the
coin-toss measure). The proof does not depend on the computability of the
martingale, however; the martingale is used to define a Martin-Löf test which
may be enumerated equally well alongside the enumeration of the martingale.
Therefore, as defeating all c.e. nonmonotonic martingales is clearly sufficient to
be ML-random, the two are equivalent.

Prefix-free randomness for reals is defined as follows. A Turing machine M
which takes inputs from A∗, where A is a finite alphabet, is called prefix-free
if it has prefix-free domain dom(M); that is, if σ v τ are strings in dom(M),
then σ must equal τ . For any finite string τ , the prefix-free complexity of τ with
respect to M is

KM (τ) = min{|σ|,∞ : M(σ) = τ}.
There is a universal prefix-free function U such that, for any prefix-free M ,
there is a constant c such that for all τ

KU (τ) ≤ KM (τ) + c.

We let K(τ) = KU (τ) and call it the prefix-free complexity of τ . Then x is
called prefix-free random if there is a constant c such that K(xdn) ≥ n − c for
all n. This means that the initial segments of x are not compressible.

The equivalence of these three notions of randomness (via tests, betting
or incompressibility) is a result of Schnorr [26] and is a fundamental result in
the theory of algorithmic randomness. While these definitions and results are
usually given for binary strings and sequences, they carry over to k-ary strings
and sequences as well. See for example Calude [5, 6]. The following lemma will
be needed.

Lemma 1.3. If P is a Π0
1 class of measure 0, then P has no random elements.

Proof. Let T be a computable tree such that P = [T ], and for each n, let
Pn =

⋃
{I(σ) : σ ∈ T ∩ {0, 1}n}. Then {Pn}n∈N is an effective sequence of

clopen sets with P =
⋂
n Pn and limn µ(Pn) = µ(P ) = 0. Furthermore,

µ(Pn) = 2−n|T ∩ {0, 1}n|

and is therefore a computable sequence. Thus {Pn}n∈N is a Martin-Löf test,
showing that P has no random elements.

We will want to use the following result from the literature [30].
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Theorem 1.4 (Von-Mises–Church–Wald Computable Selection The-
orem). For any random sequence x and any computable 1-1 function g, the
sequence z(n) = x(g(n)) is random.

2 Martin-Löf Randomness of Closed Sets

In this section, we define a measure on the space C of nonempty closed subsets
of 2N and use this to define the notion of randomness for closed sets. We then
obtain several properties of random closed sets.

An effective one-to-one correspondence between the space C and the space
3N is defined as follows. Let a closed set Q be given and let T = TQ be the tree
without dead ends such that Q = [T ].

Define the code x = xQ ∈ {0, 1, 2}N for Q as follows. Let λ = σ0, σ1, σ2, . . .
enumerate the elements of T in order, first by length and then lexicographically.
We now define x = xQ = xT by recursion as follows. For each n, x(n) = 2 if
σ_n 0 and σ_n 1 are both in T , x(n) = 1 if σ_n 0 /∈ T and σ_n 1 ∈ T and x(n) = 0
if σ_n 0 ∈ T and σ_n 1 /∈ T . For example, if Q = {0, 1}N, then xQ = (2, 2, . . . )
and if Q = {y}, then xQ = y. Let Qx denote the unique closed set Q such that
xQ = x.

Now define the measure µ∗ on C by

µ∗(X ) = µ({xQ : Q ∈ X}).

Informally this means that given σ ∈ TQ, there is probability 1
3 that both

σ_0 ∈ TQ and σ_1 ∈ TQ and, for i = 0, 1, there is probability 1
3 that only

σ_i ∈ TQ. In particular, this means that Q∩ I(σ) 6= ∅ implies that for i = 0, 1,
Q ∩ I(σ_i) 6= ∅ with probability 2

3 .
Let us comment briefly on why some other natural representations were re-

jected. Suppose first that we simply enumerate all strings in {0, 1}∗ as σ0, σ1, . . .
and then represent T by its characteristic function so that xT (n) = 1 ⇐⇒ σn ∈
T . Then in general a code x might not represent a tree. That is, once we have
(01) /∈ T we cannot later decide that (011) ∈ T . Suppose then that we allow
the empty closed set by using codes x ∈ {0, 1, 2, 3}∗ and modify our original
definition as follows. Let x(n) = i have the same definition as above for i ≤ 2
but let x(n) = 3 mean that neither σ_n 0 nor σ_1 is in T . Informally, this
would mean that for i = 0, 1, σ ∈ T implies that σ_i ∈ T with probability 1

2 .
The advantage here is that we can now represent all trees. But this is also a
disadvantage, since for a given closed set P , there are many different trees T
with P = [T ]. The second problem with this approach is that we would have
[T ] = ∅ with positive probability. We briefly return to this subject in Section 6.

Now we will say that a closed set Q is (Martin-Löf) random if the code
xQ is Martin-Löf random. This definition clearly relativizes to any oracle in
accordance with the definitions of relative randomness in the Cantor space.
Since random reals exist, it follows that random closed sets exists. Furthermore,
there are ∆0

2 random reals, so we have the following.
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Theorem 2.1. There exists a random closed set Q such that TQ is ∆0
2.

Note that if TQ is ∆0
2, then Q must contain ∆0

2 elements (in particular the
leftmost path). Since there exist strong Π0

2 classes with no ∆0
2 elements, there

are strong Π0
2 classes Q such that TQ is not ∆0

2.
The following lemma will be needed throughout.

Lemma 2.2. For any Q ⊆ 2N which is either closed or open,

µ∗({P : P ⊆ Q}) ≤ µ(Q).

Proof. Let PC(Q) denote {P : P ⊆ Q}. We first prove the result for nonempty
clopen sets U in place of Q by the following induction. Suppose U =

⋃
σ∈S I(σ),

where S ⊆ {0, 1}n. For n = 1, either µ(U) = 1 = µ∗(PC(U)) or µ(U) = 1
2

and µ∗(PC(Q)) = 1
3 . For the induction step, let Si = {σ : i_σ ∈ S}, let

Ui =
⋃
σ∈Si I(σ), let ui = µ(Ui) and let vi = µ∗(PC(Ui)), for i = 0, 1. Then

considering the three cases in which S includes both initial branches or just one,
we calculate that

µ∗(PC(U)) =
1
3

(v0 + v1 + v0v1).

Thus by induction we have

µ∗(PC(U)) ≤ 1
3

(u0 + u1 + u0u1).

Now
2u0u1 ≤ u2

0 + u2
1 ≤ u0 + u1,

and therefore

µ∗(PC(U)) ≤ 1
3

(u0 + u1 + u0u1) ≤ 1
2

(u0 + u1) = µ(U).

For a closed set Q, let Q =
⋂
n Un, where Un is clopen and Un+1 ⊆ Un for all

n. Then P ⊂ Q if and only if P ⊆ Un for all n. Thus

PC(Q) =
⋂
n

PC(Un),

so that
µ∗(PC(Q)) = lim

n→∞
µ∗(PC(Un)) ≤ lim

n→∞
µ(Un) = µ(Q).

Finally, for an open set Q, let Q =
⋃
n Un be the union of an increasing sequence

of clopen sets Un. Then, by compactness,

PC(Q) =
⋃
n

PC(Un),

so that
µ∗(PC(Q)) = lim

n→∞
µ∗(PC(Un)) ≤ lim

n→∞
µ(Un) = µ(Q).

This completes the proof of the lemma.
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Next we will consider the intersection of a random closed set with an interval
I(σ) and the disjoint union of random closed sets.

First recall van Lambalgen’s theorem.

Theorem 2.3 (van Lambalgen [28]). The following are equivalent.

1. A⊕B is n-random.

2. A is n-random and B is n-A-random.

3. B is n-random and A is n-B-random.

4. A is n-B-random and B is n-A-random.

Let us call the coding of a closed set Q by the nodes of its representative
tree with no dead ends the canonical code of Q. We wish now to introduce a
second method of coding, the ghost code. A ghost code of Q is an infinite ternary
string whose terms correspond to all nodes of 2<ω in lexicographical order. The
terms corresponding to the nodes of Q’s tree (the “canonical nodes”) agree with
the corresponding terms in the canonical code; the remaining “ghost nodes”
may hold any values. Ghost codes are non-unique, and every closed set has a
non-random ghost code (if the closed set itself is random take the code with
ghost nodes all equal to zero, say). This method of coding is more convenient
for some purposes; for example, we will use it to show that if Q0, Q1 are closed
sets and Q = {0_x : x ∈ Q0} ∪ {1_x : x ∈ Q1}, Q is random if and only if the
Qi are random relative to each other. The utility of the ghost codes rests on
the following correspondence.

Theorem 2.4. The canonical code of a closed set Q ⊆ 2N is random if and
only if Q has some random ghost code. Furthermore, for any y, the canonical
code r is y-random if and only if Q has a ghost code which is y-random.

Proof. (⇐) Suppose the canonical code of Q is nonrandom. Then there is a c.e.
martingale m that succeeds on it. From any initial segment σ of a ghost code
g for Q, the subsequence σ̂ of exactly the canonical nodes of σ is computable.
Therefore it is computable whether the bit of g after σ is canonical or ghost.
From m, define the martingale m′ which bets as follows:

m′(σ_i) =
{
m(σ̂_i) next bit is a canonical node
m′(σ) next bit is a ghost node.

That is, m′ holds its money on ghost nodes and bets identically to m on canon-
ical nodes. It is clear that m′ succeeds on the ghost code g and thus g is
nonrandom.
(⇒) Now suppose the canonical code r for Q is random, and let q be an infinite
ternary string that is random relative to r (and so by Theorem 2.3 r ⊕ q is
random). We claim the ghost code g obtained by using the bits of r as the
canonical nodes and the bits of q in their original order as the ghost nodes is
random. It is clear that g is a ghost code for Q.
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Suppose m is a c.e. martingale that bets on g. From m it is straightforward
to define a nonmonotonic martingale m′ which mimics m’s bets exactly but
performs them on r ⊕ q, succeeding whenever m succeeds. As r and q were
chosen to be relatively random, this will show g is random.

As discussed previously, from gdn it is computable whether g(n) will be a
ghost node or a canonical node, and which position in g or r it occupies in
either case. Therefore, assuming the bits seen so far may be assembled into
an initial segment σ of g, m′ takes the values m(σ_i), i < 3, as its bets on
the corresponding bit of r or g, whichever is appropriate. Having seen that
bit, then, it can assemble a (|σ|+ 1)-length initial segment of g and repeat the
process. As m′ makes identical bets to m and has identical outcomes, since it
cannot succeed on r ⊕ g, m cannot succeed on g and g is random.

To relativize (⇒), suppose that r is y-random, so that r ⊕ y is random by
Van Lambalgen’s Theorem 2.3. Then in the proof simply choose q to be random
relative to r ⊕ y, and then g will be random relative to y. The other direction
relativizes in a straightforward way.

The primary purpose of the ghost codes is to remove the dependence on
the particular closed set under discussion when interpreting bits of the code as
nodes of the tree. This is especially useful when subdividing the tree, as in the
following definition.

Definition 2.5. The tree join of closed sets P0 and P1 is the closed set

Q = {0_x : x ∈ P0} ∪ {1_x : x ∈ P1}.

Given ghost codes r0, r1 for the Pi, their tree join r0 � r1 is the code for Q with
the corresponding ghost node values.

The standard recursion-theoretic join is defined by

r0 ⊕ r1 = (r0(0), r1(0), r0(1), r1(1), . . . ).

We wish to relate the recursion-theoretic join and the tree join.

Lemma 2.6. Given two ghost codes r0, r1, the tree join r0 � r1 is random if
and only if the recursion theoretic join r0 ⊕ r1 is random.

Proof. It is clear that there is a computable permutation π which uniformly
maps any tree join r0 � r1 to the recursion-theoretic join r0 ⊕ r1. That is, in
r0⊕r1, the entries of r0 and r1 alternate, whereas r0�r1 starts with a 2, followed
by blocks from r0 and r1, as follows. First r0(0), r1(0), then r0(1), r0(2), r1(1),
r1(2), and continuing with pairs of blocks of size 4, 8 and so on. The result
now follows from the Von-Mises–Church–Wald Computable Selection Theorem
1.4.

We now obtain the following corollary of Theorems 2.3 and 2.4 and Lemma
2.6.
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Corollary 2.7. Suppose Pi, i = 0, 1, are closed sets with canonical codes ri
and let P be the tree join of P0, P1. Then P is random if and only if r0 ⊕ r1 is
random.

Proof. (⇐) Suppose that r0 ⊕ r1 is random. Then by Theorem 2.3, r0 and r1

are mutually relatively random. By Theorem 2.4, P0 has a ghost code g0 which
is random relative to r1, and so also vice-versa, and then P1 has a ghost code
g1 which is random relative to g0. Again by 2.3, the recursion-theoretic join
g0 ⊕ g1 is random, so by Theorem 2.6 the tree join g0 � g1 is also random, and
hence P possesses a random ghost code and is random.
(⇒) Suppose now that P is random, and therefore possesses a random ghost code
g. The code g may be thought of as a tree join g0�g1, which is therefore random,
and so by Theorem 2.6, g0⊕g1 is random. By Theorem 2.3, the individual codes
g0, g1 are therefore mutually relatively random. Now by the relatived version
of Theorem 2.4, r0 is random relative to g1. But r1 is computable from g1 and
hence r0 is random relative to r1 as well. Similarly, r1 is r0-random and thus,
again by 2.3, r0 ⊕ r1 is random.

3 Members of Random Closed Sets

For any finite string σ of length n, the probability that a closed set Q meets
I(σ) is ( 2

3 )n. For a computable real y, the sqeuence {Q : Q ∩ I(ydn) 6= ∅}
thus forms a Martin-Löf test in the space C of closed sets, which shows that
y does not belong to any Martin-Löf random closed set. That is, for each n,
{x : Qx ∩ I(ydn) 6= ∅} is a c.e. open set and has measure (2

3 )n in {0, 1, 2}N,
where Qx is the closed set with code x. We omit the details, since we will now
prove a stronger result.

For any computable, non-decreasing function f , we say that a real β ∈
{0, 1}N is f-c.e. if there exists a computable approximating function φ such
that, for all i ∈ N,

(i) φ(i, 0) = 0;

(ii) lims φ(i, s) = β(i);

(iii) {s : φ(i, s+ 1) 6= φ(i, s)} has cardinality ≤ f(i).

The reals which are f -c.e. for some computable function f are part of the well-
known Ershov hierarchy [14, 27].

Theorem 3.1. Suppose that f is computable and bounded by a polynomial.
Then no random closed set has any f-c.e. paths.

Proof. Let f be as above, β an f -c.e. real and P a closed set containing β. Let
φ be the f -approximating function for β. Also let Mn ⊆ {0, 1}n be the set of
different φ-approximations to βdn during the stages.
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A priori, |Mn| is exponential. However, for a fixed n, βdn can change at
most

∑
i<n f(i) times, so |Mn| is also bounded by a polynomial, i.e. there is

k ∈ N such that for almost all n, |Mn| < nk. Now let

Sn =
⋃

σ∈Mn

{P | P ∈ C & P ∩ I(σ) 6= ∅}. (1)

Then (Sn) is a uniformly c.e. sequence of open sets in the space C of closed sets
of 2N and for all n, P ∈ Sn. Also for almost all n,

µ∗(Sn) ≤
∑
σ∈Mn

µ∗({P | P ∈ C & P ∩ I(σ) 6= ∅}) = |Mn| ·
(

2
3

)n
≤ nk ·

(
2
3

)n
.

Since limn[nk · ( 2
3 )n] = 0 there is a computable subsequence of (Sn) which is a

Martin-Löf test and so P is not random.

For any K-trivial real A and any unbounded nondecreasing computable function
h, A is h-c.e. (Nies [25]). Thus it follows from Theorem 3.1 that a random
closed set can have no K-trivial paths. We observe that Theorem 3.1 cannot
be extended to ω-c.e. in general, because there are left-c.e. (and hence ω-c.e.)
random reals, and by Theorem 3.9 each of these belongs to a random closed set.

Theorem 3.2. If Q is a random closed set, then Q has no isolated elements.

Proof. Let Q = [T ] and suppose by way of contradiction that Q contains an
isolated path x. Then there is some node σ ∈ T such that Q ∩ I(σ) = {x}. For
each n, let

Sn = {P ∈ C : |{τ ∈ {0, 1}n : P ∩ I(σ_τ) 6= ∅}| = 1}.

That is, P ∈ Sn if and only if the tree TP has exactly one extension of σ of
length n+ |σ|. It follows that

|P ∩ I(σ)| = 1 ⇐⇒ (∀n)P ∈ Sn
Now for each n, Sn is a clopen set in C and again by induction, Sn has measure
( 2

3 )n. Thus the sequence S0, S1, . . . is a Martin-Löf test. It follows that for some
n, Q /∈ Sn. Thus there are at least two extensions in TQ of σ of length n+ |σ|,
contradicting the assumption that x was the unique element of Q ∩ I(σ).

Corollary 3.3. If Q is a random closed set, then Q is perfect and hence has
continuum many elements.

Theorem 3.4. Every random closed set contains a random element.

Proof. Suppose that a closed set Q has no random element and consider the
following Martin-Löf test on the space C:

Ui = {P | P ∈ C and P ⊆ Vi}

where (Vi) is a universal Martin-Löf test on the Cantor space. By Lemma 2.2,
µ∗(Ui) ≤ µ(Vi) ≤ 2−i so that (Ui) is a Martin-Löf test on C. But Q ∈ ∩iUi, so
Q is not random.
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The previous results might suggest that every element of a random closed set
is a random real. However, it turns out that every random closed set contains
a non-random real.

We need the following classic result of Chernoff [10] (a version of Bernoulli’s
Weak Law of Large Numbers) here and also for another theorem to follow. See
[22] for an exposition.

Lemma 3.5 (Chernoff). Let E be an event which we will refer to as ‘success’.
If E occurs with probability p, then for any natural numbers n and any ε with
0 ≤ ε ≤ 1, the probability that out of n mutually independent trials, the number
of successes differs from pn by > εpn is ≤ 2−ε

2pn/3.

Theorem 3.6. Not every element of a random closed set is random; in partic-
ular, the leftmost and rightmost paths in a random closed set are not random
reals.

Proof. We will show that, for a random closed set Q, the leftmost path is not
stochastically random, that is, the asymptotic frequency of 0’s is 2

3 . Since an
effectively random real in 2N must have asymptotic frequence of 1

2 for 0’s and
1’s, this will suffice to prove that the leftmost path is not random. We define a
Martin-Löf test as follows. Fix a rational ε such that 0 < ε < 1. For each n, let
Sn be the family of closed sets (that is, codes for closed sets) such that the first
n bits of the leftmost path have either < 2

3 (1− ε)n, or > 2
3 (1 + ε)n occurrences

of 0. By the definition of our probability measure, we have

µ∗(Sn) =
∑

|m− 2
3n|>

2
3 εn

(
n
m

)(
2
3

)m(1
3

)n−m
.

It now follows from Chernoff’s Lemma 3.5 that

µ∗(Sn) ≤ 2e−ε
22n/9.

Thus the measures of the test sets Sn have effective limit zero. It is easy to see
that the sequence {Sn} is computably enumerable. For each n, Sn is a clopen
set and in fact the union of the finite family of intervals I(σ) in C such that σ
codes a tree up to level n in which the leftmost path has either < 2

3 (1− ε)n, or
> 2

3 (1 + ε)n occurrences of 0.
Furthermore, S′n =

⋃
p≥n Sp is also a Martin-Löf test. It follows that for any

random closed set Q, and any ε > 0, there is an n such that for all m ≥ n, the
frequency of 0’s in the first m bits of the leftmost path is always within ε of 2

3 .
Thus the leftmost path is not effectively random.

Recall that the leftmost and rightmost elements of any strong ∆0
2 closed set

are ∆0
2. Given Theorems 3.4 and 3.6, we ask: Does a ∆0

2 random closed set
contain a ∆0

2 random path?

Theorem 3.7. Every random strong ∆0
2 closed set contains a random ∆0

2 real.

11



Proof. Let Q be a random strong ∆0
2 class. By Theorem 3.4, Q contains a

random real x. Let P be a Π0
1 class in the Cantor space which contains only

randoms and contains x (this exists since the class of random reals is an effective
union of Π0

1 classes). Note that P ∩ Q is a non-empty strong ∆0
2 class and it

follows that the leftmost path of P ∩Q is a ∆0
2 real which must be random since

it belongs to P .

Note that the above theorem does not combine with the low basis theorem to
establish the existence of a low random real in any random strong ∆0

2 class.
Thus we pose the question of whether for any random closed set Q, if TQ is low,
then Q has a low random element.

Next we want to find a random closed set which does not contain a ∆0
2 path.

Now it is easy [7, 8] to construct a strong Π0
2 class P of positive measure which

contains no ∆0
2 elements; of course P must contain a random real since it has

measure 1. The difficult problem is to construct a random strong Π0
2 class with

no ∆0
2 elements. We have the following result in this direction, which yields a

random strong ∆0
3 closed set with no ∆0

2 elements.

Theorem 3.8. For any set A there is an A-random closed set Q such that
TQ ≤T A′′ but Q has no elements ≤T A′.

Proof. It is enough if we prove the claim for A = ∅ because the argument
relativises to any oracle A in a straightforward way. For A = ∅ we use a finite
injury construction over ∅′ to construct Q with the above properties. In the
construction we will ∅′-approximate the canonical code of a tree T which has
no ∆0

2 paths. To make sure that the tree T is random we fix a Π0
1 class P of

positive measure in the space 3N (where the code for T lies) which contains only
randoms, and we make sure that at every stage our approximation (as a finite
ternary string) to T ’s canonical code can be extended to a path in P . Then by
compactness the canonical code of our tree will be in P and so the tree will be
random. The changes in the approximations are motivated by the requirements:

Re : if Φ∅
′

e is total then the real it defines is not in [T ].

Let αs be a finite string approximation of the canonical code α we are building.
We will have |αs| = s. Strategy Re will come into power after stage e and will
restrain α up to some re ≥ e (the default value is re[0] = e). Also it might
request some changes in α after the e-th bit. We start with α0 = ∅ and at stage
s+ 1, assuming inductively that αs ↓ and [αs]∩P 6= ∅ we ask for the least i < s
such that Ri requires attention. This happens if

(i) The longest defined initial segment τ of Φ∅
′

i,s+1 is larger than ever before;

(ii) there exists σ ∈ {0, 1, 2}∗ such that αsd(maxj<i rj [s]) v σ, I(σ) ∩ P 6= ∅,
|σ| = s+ 1, and τ is not consistent with the finite tree with code σ.

If there is no such i then we extend αs by one bit such that [αs+1] ∩ P 6= ∅.
Otherwise we let αs+1 = σ and ri[s+1] = s+1. The construction proceeds in a

12



straightforward way and we can prove inductively that for every e, Re is satisfied,
stops requiring attention and re reaches a limit. Then the limit α = lims αs
exists and we also have that α is random by compactness. The satisfaction
of the requirements comes from a measure-theoretic fact. Consider Re and
inductively assume that after stage se no Ri with i < e requires attention.
Then r = maxi<e ri will remain constant. Since P contains only randoms and
[αdmaxi<e ri] ∩ P 6= ∅,

µ([αdr] ∩ P ) > 0

and on the other hand, if β = Φ∅
′

e we have seen that

µ{γ | γ ∈ 3N and γ is the canonical code of a tree which has β as a path} = 0.

This means that if at stage se the requirement Re is not yet satisfied, it will
receive attention at a later stage and get satisfied permanently.

As a converse to Theorem 3.4 we have the following.

Theorem 3.9. For any random r ∈ 2N, there exists a random closed set con-
taining r as a path.

The proof of this theorem was originally given by Joe Miller and Antonio
Montalbán and has been subsequently improved thanks to the anonymous ref-
eree.

Proof. Let r be a random real and let x be the canonical code of an r-random
closed set. We alter x to the code x′ of a closed set guaranteed to contain r but
changed as little as possible to achieve that.

To determine x′(n), assume x′dn has been defined. If x(n) = 2 or x(n)
corresponds to a node not along r, set x′(n) = x(n). If x(n) ∈ {0, 1} corresponds
to r(k), set x′(n) = r(k).

The closed set defined by x′ will clearly contain r. For a contradiction,
assume x′ is nonrandom and let m′ be a c.e. martingale that succeeds on it. We
build a nonmonotonic martingale m to bet on x⊕ r. On bits of x, m will be a
triple-or-nothing martingale; on r, it will be double-or-nothing.

First note that from initial segments of x and r we may reconstruct an initial
segment of x′ computably, and we always know from an initial segment of x′

whether the next bit is along r or not, and which bit of r it is. We will construct
m so that after every stage of betting (which will be one bet by m′ and one or
two bets by m), the value of m is equal to the value of m′. At every stage it
will be clear we have revealed enough bits of x and r to reconstruct x′ to the
needed length.

Suppose inductively m and m′ hold equal capital after the stage of betting on
the last node of σ @ x′. If the bit x′(n) following σ is not on r, m bets identically
to m′; i.e., m(x(n) = i) = m′(σ_i) for i < 3. In that case x(n) = x′(n) so our
inductive hypothesis holds. If x′(n) is on r, set m(x(n) = 2) = m′(σ_2) and
for i = 0, 1, set m(x(n) = i) = 1

2 [m′(σ_0) + m′(σ_1)]. If x′(n) = 2, then the
capital for both m and m′ is m′(σ_2), so the inductive hypothesis holds and

13



we proceed to the next stage. Otherwise m bets on r(k) for the appropriate
k, setting m(r(k) = i) = m′(σ_i) for i = 0, 1. On r(k), the sum of m’s
capital on each of the two outcomes must average to the previous capital; as the
previous capital was 1

2 [m′(σ_0) +m′(σ_1)] this clearly holds. By construction
r(k) = x′(n) = i, so both m and m′ now have capital m′(σ_i) and the inductive
hypothesis holds. As m′ is c.e., m will also be.

As the values of m′ along x′ are a subsequence of the values of m along x⊕r,
if m′ succeeds so does m, contradicting our assumption on x⊕ r. Therefore x′

is the code of a random closed set containing the given random path r.

4 Measure and Dimension

Theorem 4.1. If Q is a random closed set, then µ(Q) = 0.

Proof. We will show that in the space C of closed sets, the µ∗-probability that
a closed set P has Lebesgue measure 0, is 1. This is proved by showing that for
each m, µ(P ) ≥ 2−m with µ∗-probability 0. For each m, let

Sm = {P : µ(P ) ≥ 2−m}.

We claim that for each m, µ∗(Sm) = 0. The proof is by induction on m.
For m = 0, we have µ(P ) ≥ 1 if and only if P = 2N, which is if and only if

xP = (2, 2, . . . ), so that S0 is a singleton and thus has measure 0.
Now assume by induction that Sm has measure 0. Then the probability that

a closed set P = [T ] has measure ≥ 2−m−1 can be calculated in two parts.
(i) If T does not branch at the first level, say T0 = {(0)} without loss of

generality. Now consider the closed set P0 = {y : 0_y ∈ P}. Then µ(P ) ≥
2−m−1 if and only if µ(P0) ≥ 2−m, which has probability 0 by induction, so we
can discount this case.

(ii) If T does branch at the first level, let Pi = {y : i_y ∈ P} for i = 0, 1.
Then µ(P ) = 1

2 (µ(P0)+µ(P1)), so that µ(P ) ≥ 2−m−1 implies that at least one
of µ(Pi) ≥ 2−m−1. (Note that the reverse implication is not always true.) Let
p = µ∗(Sm+1). The observations above imply that

p ≤ 1
3

(1− (1− p)2) =
2
3
p− 1

3
p2,

and therefore p = 0.
To see that a random closed set Q must have measure 0, fix m and let

S = Sm. Then S is the intersection of an effective sequence of clopen sets V`,
where for P = [T ],

P ∈ V` ⇐⇒ µ([T`]) ≥ 2−m.

Since these sets are uniformly clopen, the sequence m` = µ∗(V`) is computable.
Since lim` m` = 0, it follows that this is a Martin-Löf test and therefore no
random set Q belongs to

⋂
` V`. Then in general, no random set can have

measure ≥ 2−m for any m.

14



Recall that a Π0
1 class P is decidable if TP is decidable. It follows that a

nonempty decidable Π0
1 class must contain a computable element (for example,

the leftmost path). No computable real can be random and it follows that no
decidable Π0

1 class can be random. We will extend this to arbitrary Π0
1 classes

in Corollary 4.3 below.

Theorem 4.2. Let Q be a Π0
1 class with measure 0. Then no subset of Q is

random.

Proof. Let T be a computable tree (possibly with dead ends) and let Q = [T ].
Then Q =

⋂
n Un, where Un = [Tn]. Since µ(Q) = 0, it follows from Lemma 2.2

that limn µ∗(PC(Un)) = 0. But PC(Un) is a computable sequence of clopen sets
in C and µ∗(PC(Un)) is a computable sequence of rationals with limit 0. Thus
PC(Un) is a Martin-Löf test, so that for any random closed set, there exists n
such that P /∈ PC(Un) and hence P is not a subset of Un.

Since any random class has measure 0, we have the following immediate
corollary.

Corollary 4.3. No Π0
1 class can be random.

Surprisingly, we can compute the (Kolmogorov) box dimension of a random
closed set, and in fact it turns out that all random closed sets have the same
dimension. The intuition for this comes from the following lemma. For any
function F mapping the space C of closed sets into <, the expected value of F
on C is the integral

∫
F (P ) with respect to the probability measure µ∗.

Lemma 4.4. In the space C of closed sets, the expected cardinality of {σ ∈
{0, 1}n : Q∩ I(σ) 6= ∅} is exactly ( 4

3 )n for every n, where Q is chosen uniformly
at random according to µ∗.

Proof. Let Sn = {σ ∈ {0, 1}n : Q∩ I(σ) 6= ∅}, for a randomly chosen Q from C.
The proof is by induction on n. For n = 1, we have two cases. With proba-

bility 2
3 , card(S1) = 1 and with probability 1

3 , card(S1) = 2. Thus the expected
value is exactly 4

3 . For n + 1, there are again two cases. With probability 2
3 ,

card(S1) = 1, so that the expected card(Sn+1) equals the expected card(Sn),
which is ( 4

3 )n by induction. With probability 1
3 , card(S1) = 2, in which case

the expected card(Sn+1) is twice the expected card(Sn), that is, 2(4
3 )n. Thus

we have the expected value

card(Sn+1) =
2
3

(
4
3

)n
+

1
3
· 2
(

4
3

)n
=
(

4
3

)n+1

.

The box dimension of a closed set in the Cantor space, if it exists, is given by
the following limit:

dimB F (Q) = lim
n→∞

log2(card(TQ ∩ {0, 1}n))
n

.
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(See [1] for this formulation of the box dimension in {0, 1}N.) Now by Lemma
4.4, the expected value of card(TQ ∩ {0, 1}n) for a random closed set Q is ( 4

3 )n,
which suggests that the box dimension of Q should be log2

4
3 .

Lemma 4.5. Let Q be a random closed set. Then for any ε > 0, there exists a
m ∈ N such that, for all n > m, ( 4

3 )n(1−ε)n < card(TQ∩{0, 1}n) < ( 4
3 )n(1+ε)n.

Proof. For each n, let cn(Q), or just cn, denote card(TQ ∩ {0, 1}n). We will use
three applications of Chernoff’s Lemma 3.5. First we show that there exists m
such that for all n > m, c6n ≥ n. Since the tree TQ∩{0, 1}≤6n−1 has at least 6n
nodes, it follows from Chernoff’s Lemma that the number of branching nodes is
less than n with probability ≤ 2−n/6. Thus c6n < n with probability < 2−n/6.
Then the probability that c6n < n for any n ≥ m is less than

∞∑
n=m

2−n/6 =
2−m/6

1− 2−1/6
.

This provides a computable sequence of clopen sets with measures bounded by a
computable sequence with limit zero and hence a Martin-Löf test. It follows that
for any random closed set Q, there exists m0 such that c6n ≥ n for all n ≥ m0.
Now for n > m0, there are at least 6n2 nodes in TQ∩{0, 1}≤12n−1−{0, 1}≤6n−1,
so that again by Chernoff’s Lemma, the probability that < n2 of these are
branching nodes is ≤ 2−n

2/6. It follows as above that there exists m1 > 3
such that c12n ≥ n2 for all n ≥ m1. Now suppose that m ≥ 12m1 and that
12n ≤ m < 12(n+ 1) < 16n. Then n ≥ m1, so that

cm ≥ c12n ≥ n2 > (m/16)2.

Again by Chernoff’s Lemma, the probability that the number of branching
nodes from TQ ∩ {0, 1}n differs from 1

3cn by > 1
3c
− 1

4
n cn is < 2−

√
cn/9. But

this is exactly the probability that cn+1 differs from 4
3cn by > 1

3c
− 1

4
n cn. For

n > m1, we know that cn ≥
(
n
16

)2, so that
√
cn ≥ n

16 and c
− 1

4
n ≤ 4√

n
and hence

2−
√
cn/9 ≤ 2−n/144. Thus the probability pn that cn+1 differs from 4

3cn by more
than cn

9
√
n

is < 2−n/144. Then the probability that for any n ≥ m1, cn+1 differs
from 4

3cn by more than 4
3
√
n
cn is bounded by

∞∑
n=m

pn =
∞∑
n=m

2−n/144 =
2−m/144

1− 2−144
.

This again provides a Martin-Löf test which shows that for any random closed
set Q, there exists m2 so that for n > m2,

(∗) 4
3

(
1− 1√

n

)
cn ≤ cn+1 ≤

4
3

(
1 +

1√
n

)
cn.

Now given ε, choose m ≥ m2 so that (1 + 1√
m

)2 < 1 + ε and 1− ε < (1− 1√
m

)2.
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Then for any k,

cm(
4
3

)2k(1− ε)k < cm(
4
3

)2k(1− 1√
m

)2k < cm+2k

< cm(
4
3

)2k(1 +
1√
m

)2k < cm(
4
3

)2k(1 + ε)k.

Now let k be large enough so that

(1− ε)m+k ≤ cm ≤ (
4
3

)m(1 + ε)m+k.

Then the desired inequality

(
4
3

)n(1− ε)n < cn < (
4
3

)n(1 + ε)n.

will hold for even n ≥ m + 2k. For odd n, this inequality will hold by the
inequality (∗) above.

Theorem 4.6. For any random closed set Q, the box dimension of Q is log2
4
3 .

Proof. Given ε > 0, let m be given by Lemma 4.5. Then for n > m, we have

n log2

4
3

+ n log2(1− ε) ≤ log2(card(TQ ∩ {0, 1}n) ≤ n log2

4
3

+ n log2(1 + ε),

so that

log2

4
3

+ log(1− ε) ≤ log2(card(TQ ∩ {0, 1}n)
n

≤ log2

4
3

+ log2(1 + ε),

and therefore dimB(Q) = limn
log2(card(TQ∩{0,1}n))

n = log2
4
3 .

5 Prefix-Free Complexity of Closed Sets

In this section, we consider randomness for closed sets in terms of incom-
pressibility of trees. Of course, Schnorr’s theorem tells us that P is random
if and only if the code xP ∈ {0, 1, 2}N for P is prefix-free random, that is,
K3(xP dn) ≥ n−O(1). (Schnorr’s theorem for arbitrary finite alphabets is shown
in [6].) Here we write K3 to indicate that we would be using a universal prefix-
free function U : {0, 1, 2}∗ → {0, 1, 2}∗. However, many properties of trees and
closed sets depend on the levels Tn = T ∩ {0, 1}n of the tree. For example, if
[Tn] = ∪{I(σ) : σ ∈ Tn}, then [T ] =

⋂
n [Tn] and µ([T ]) = limn→∞ µ([Tn]).

So we want to consider the compressibility of a tree in terms of K(Tn).
Now there is a natural representation of Tn as a string of length 2n. That is,
list {0, 1}n in lexicographic order as σ1, . . . , σ2n and represent Tn by the string
e1, . . . , e2n where ei = 1 if σi ∈ T and ei = 0 otherwise. Henceforth we identify
Tn with this natural representation.
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It is interesting to note that the code for Tn will have a shorter length than
the natural representation. For example, if [T ] = {y} is a singleton, then x = y
and for each n, the code for Tn is xdn. If x is the code for the full tree {0, 1}∗,
then x = (2, 2, . . . ) and the code for Tn is a string of (2n − 1) 2’s, those labels
attached to nodes of length < n. For the remainder of this section, we will use
Tn to mean the natural representation and xn to mean the code.

One question here is whether there is a formulation of randomness in terms
of the incompressibility of Tn. We will give some partial answers. It seems
plausible that P = [T ] is random if and only if there is a constant c such that
K(Tn) ≥ 2n− c for all n. We will see that this is not possible for any tree. First
we give a lower bound for the prefix-free complexity of a random tree.

Theorem 5.1. If P is a random closed set and T = TP , then there is a constant
c such that K(Tn) ≥

(
7
6

)n − c for all n.

Proof. Let P = [T ] be a random closed set. Let m be given by Lemma 4.5, for
ε = 7

6 , so that for n > m,

card(Tn) ≥
(

7
6

)n
.

It follows that the code xn for Tn has length ≥
(

7
6

)n. Since x is random, we
know that, for n ≥ m,

K3(xn) ≥
(

7
6

)n
− a,

for some constant a. Now we can compute xn from Tn, so that

K(Tn) ≥ K3(xn)− b,

for some constant b. The result now follows.
That is, let U (mapping {0, 1}∗ to {0, 1}∗) be a universal prefix-free Turing

machine and let K(Tn) = min{|σ| : U(σ) = Tn}. Let M be a prefix-free machine
M (mapping {0, 1}∗ to {0, 1, 2}∗) such that M(Tn) = xn. Then define V by

V (σ) = M(U(σ)).

Then KV (xdn) ≤ K(Tn), so that for some constant e, K3(xn) ≤ K(Tn) + e and
hence

K(Tn) ≥ K3(xn)− e ≥
(

7
6

)n
− b− e.

Going in the other direction, we can compute Tn uniformly from xd2n, so
that as above, K3(xd2n) ≥ K(Tn)−b for some b. Thus in order to conclude that
P is random, we would need to know that K(Tn) ≥ 2n− c for some c. The next
result shows that this is not possible, since trees are naturally compressible.

Theorem 5.2. For any tree T ⊆ {0, 1}∗, there are constants k > 0 and c such
that K(T`) ≤ 2` − 2`−k + c for all `.
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Proof. For the full tree {0, 1}∗, this is clear so suppose that σ /∈ T for some
σ ∈ {0, 1}m. Then for any level ` > m, there are 2`−m possible nodes for
T which extend σ and T` may be uniformly computed from σ and from the
characteristic function of T` restricted to the remaining set of nodes. That is,
fix σ of length m and define a prefix-free computer M as follows. The domain
of M is strings of the form 0`1τ where |τ | = 2`−2`−m. M outputs the standard
representation of a tree T` such that no extension of σ is in T` and such that τ
tells us whether strings not extending σ are in T`. It is clear that M is prefix-free
and we have KM (T`) = `+ 1 + 2` − 2`−m. Thus K(T`) ≤ `+ 1 + 2` − 2`−m + c
for some constant c. Now ` + 1 < 2`−m−1 for sufficiently large ` and thus by
adjusting the constant c, we can obtain c′ so that

K(T`) ≤ 2` − 2`−m−1 + c′.

We might next conjecture that K(T`) > 2`−c is the right notion of prefix-free
randomness. However, classes with small measure are more compressible.

Theorem 5.3. If µ([T ]) < 2−k, then there exists c such that, for all `,

K(T`) ≤ 2`−k+1 + c.

Proof. Suppose that µ([T ]) < 2−k. Then for some level n, Tn has < 2n−k nodes
σ1, . . . , σt. Now for any ` > n, T` can be computed from the fixed list σ1, . . . , σt
and the list of nodes of T` taken from the at most 2`−k extensions of σ1, . . . , σt.
It follows as in the proof of Theorem 5.2 above that for some constant c and all
`,

K(T`) ≤ 2`−k + `+ 1 + c.

Thus for large enough so that `+ 1 ≤ 2`−k, we have

K(T`) ≤ 2`−k+1 + c,

as desired.

Note that if µ([T ]) = 0, then for any k, there is a constant c such that
K(T`) ≤ 2`−k + c. But by Theorem 4, random closed sets have measure zero.
Thus if P is random, then it is not the case that K(Tn) ≥ 2n−k.

Finally, we will construct an effectively closed set with not too much com-
pressibility. The standard example of a random real, Chaitin’s Ω [9], is a c.e.
real and therefore ∆0

2. Thus there exists a ∆0
2 random tree T and by Theorem

5.1, K(T`) ≥
(

7
6

)n− c for some c. We have a more modest result for Π0
1 classes.

Theorem 5.4. There is a Π0
1 class P = [T ] such that K(Tn) ≥ n for all n.

Proof. Recall the universal prefix-free machine U and let S = {σ ∈ Dom(U) :
|U(σ)| ≥ 2|σ|}. Then S is a c.e. set and can be enumerated as σ1, σ2, . . .. The
tree T =

⋂
s T

s where T s is defined at stage s. Initially we have T 0 = {0, 1}∗.
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We say that σt requires attention at stage s ≥ t when τ = U(σt) = T sn for some
n (so that |τ | = 2n) and n ≥ |σt|. Action is taken by selecting some path ρt ∈ Ts
of length n and defining T s+1 to contain all nodes of T s which do not extend ρt.
Then τ 6= T s+1

n and furthermore τ 6= T rn for any r ≥ s + 1 since future action
will only remove more nodes from Tn.

At stage s+ 1, look for the least t ≤ s+ 1 such that σt requires action and
take the action described if there is such a t. Otherwise, let T s+1 = T s.

Let A be the set of t such that action is ever taken on σt. Recall from
the Kraft Inequality that

∑
t 2−|σt| < 1. Since |ρt| ≥ |σt|, it follows that∑

t∈A 2−|ρt| < 1 as well. Now µ([T ]) = 1 −
∑
t 2−|ρt| > 0 and therefore [T ]

is nonempty.
It follows from the construction that for each t, action is taken for σt at most

once.
Now suppose by way of contradiction that U(σ) = Tn for some σt with

|σ| ≤ n. There must be some stage r ≥ t such that for all s ≥ r, T sn = Tn and
such that action is never taken on any t′ < t after stage r. Then σt will require
action at stage r + 1 which makes T r+1

n 6= T rn , a contradiction.

6 Conclusions and Future Research

In this paper we have proposed a notion of randomness for closed sets and
derived several interesting properties of random closed sets. Random strong
Π0

2 classes exist but no Π0
1 class is random. A random closed set has measure

zero and box dimension log2
4
3 ; it is perfect and hence uncountable. Results

on members of random closed sets include the following. A random closed set
contains no f -c.e. elements, if f is polynomially bounded. Every random closed
set Q contains a random real, not every element of a random closed set is random
and every random real belongs to some random closed set. Furthermore, if Q is
strong ∆0

2, then it contains a random ∆0
2 real and if TQ is low, then Q contains

a low random element. On the other hand we do not know the answer to the
following.

Problem 6.1. Does every random closed set with ∆0
2 canonical code contain a

low random element?

We conjecture a negative answer. It is a well known fact that every real is
computed by a random real. The corresponding question for trees is as follows.

Problem 6.2. Let A by an incomputable set. Is there a random closed set such
that all of its elements compute A?

We have examined the notion of compressibility for trees based on the prefix-
free complexity of the nth level Tn of a tree. We showed that for any random
closed set (and hence for some strong Π0

2 class), there exists c such that K(Tn) ≥(
7
6

)n − c for all n. We constructed a Π0
1 class P = [T ] such that K(Tn) ≥ n

for all n. It seems a reasonable conjecture that if K(Tn) ≥
(

4
3

)n − c for all n,
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then the closed set [T ] is random. We would like to explore the notion that Π0
1

classes are more compressible than arbitrary closed sets.
Other notions of randomness might also be considered. A general proba-

bility measure νf may be defined on 3N from a function f : {0, 1, 2}∗ → [0, 1]
such that

∑
i=0,1,2 f(σ_i) = 1 for all σ. The interval I(σ) then has νf -measure∏

n<|σ| f(σd(n + 1)). We will say that νf is a computable measure if f is com-
putable. The probability measure ν is nonatomic if for any x ∈ 3N, ν({x}) = 0.
The function f (and the corresponding measure νf ) is bounded if there is an
upper bound b < 1 such that f(σ) < b for all σ ∈ {0, 1, 2}∗. It is easy to
see that any bounded measure is nonatomic. If there exist constants b0, b1, b2
strictly between 0 and 1, such that for all σ, f(σ_i) = bi, then we will say that
νf is regular. For any regular measure, we can define the notion of a ν-Martin-
Löf test and the resulting notion of a ν-Martin-Löf -random (or just ν-random)
real. It is easy to see that ν-random reals exist for any ν and hence ν-random
closed sets exist. The results on ghost codes and joins will hold for any regular
measure. The corresponding version of Lemma 2.2 will hold if ν is regular with
b0 and b1 ≤ 1

2 . The proofs of Theorem 4.2 and Corollary 4.3, that no subset of
a measure-zero Π0

1 class is random, also go through under this assumption.
Some of the results in this paper may also be obtained for νf where f(σ_i) ≤

1
2 for i = 0, 1. For example with respect to νf a random closed set will have no
isolated elements and it will always contain a random element. For any regular
measure, either the leftmost or the rightmost path will be nonrandom, since
either b0 + b2 >

1
2 or b1 + b2 >

1
2 . The proof of Theorem 3.2 that every random

closed set has measure 0 seems to require, for νf -randomness, that f(σ_2) ≤ 1
2

for all σ.
Returning to the notion of randomness which allows trees with dead ends,

let b3 now be the probability that a given node has no extensions and let the
probability be regular as above. Then a simple recursion shows the probability
p of a given closed set being empty satisfies the equation

p = b3 + (b0 + b1)p+ b2p
2.

Solving for p, we obtain
(p− 1)(b2p− b3) = 0.

Thus either p = 1 or p = b3
b2

. It follows that if b2 ≤ b3, then p = 1, that is,
almost every closed set is empty. Suppose now that b3 < b2 and let pn be the
probability that a given tree T has no paths of length n. Then it can be seen
by induction that pn ≤ b3

b2
for all n. That is, p1 = b3 ≤ b3

b2
and then

pn+1 = b3 + (1− b2 − b3)pn + b2p
2
n ≤

b3
b2
.

Hence in this case, the probability that a given closed set is empty is b3
b2
< 1.

In this case, one could presumably develop a notion of a random tree and a
random closed set and explore the properties of random closed sets.

A real x is said to be K-trivial if K(xdn) ≤ K(n) + c for some c. Much
interesting work has been done on the K-trivial reals. Chaitin showed that if
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A is K-trivial, then A ≤T 0′. Solovay constructed a noncomputable K-trivial
real. Downey, Hirschfeldt, Nies and Stephan [12] showed that no K-trivial real
is c.e. complete. The notion of a K-trivial closed set was introduced in [4]. It
was shown in particular that every K-trivial class contains a K-trivial member,
but there exist K-trivial Π0

1 classes with no computable members.
The related notion of a random continuous function was introduced in [3]. It

was shown that a random continuous function F on 2N cannot be computable,
so that the graph of F cannot be Π0

1 class. For any random F and computable
x, F (x) is a random real, however the image of F need not be a random closed
set. The authors can now show that the set of zeroes of a random continuous
function is a random closed set. Random Brownian motions have been studied
by Fouche [15] and are a special case of random continuous functions on the real
line, which is another area of interest for further research.
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