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1 Introduction

Computable model theory deals with the study of the effective properties of
mathematical structures and the relationships between them. Perhaps the most
basic kind of relationship between different structures is that of isomorphism. It
is natural to study the isomorphism relations between structures in an effective
context by investigating the following question: given that two structures are
isomorphic, how complex must an isomorphism between them be?

In what follows, we restrict our attention to countable structures for com-
putable languages. Hence, if our structure is infinite, we can assume its uni-
verse is the set of natural numbers ω. We recall some basic definitions. If A
is a structure with universe A for a language L, then LA is the result of ex-
panding L by constants for every element of A. The atomic diagram of the
structure A is the set of all quantifier-free sentences of LA true in the structure.
The elementary diagram of A is the set of all sentences of LA true on A. A
structure is computable if its atomic diagram is computable; it is decidable if its
elementary diagram is computable. We call two structures computably isomor-
phic if there is a computable function that gives an isomorphism between them.
A computable structure A is relatively computably isomorphic to a (possibly
noncomputable) structure B if there is an isomorphism between them that is
relatively computable in the atomic diagram of B. A computable structure A is
computably categorical if every other computable structure that is isomorphic to
A is computably isomorphic to A. A is relatively computably categorical if every
other structure that is isomorphic to A is relatively computably isomorphic to
A. Similar definitions arise for other natural definability classes of functions.
For example, for any n ∈ ω, a structure is ∆0

n if its atomic diagram is; two
structures are ∆0

n-isomorphic if there is a ∆0
n isomorphism between them; and

a computable structure is ∆0
n-categorical if every computable structure that is

isomorphic to it is ∆0
n-isomorphic to it.
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Among the simplest nontrivial structures to investigate is one consisting of
nothing besides one equivalence relation. It is useful in the context of com-
putability theory to split such an equivalence structure A into two pieces InfA

and FinA, where InfA consists of those elements with infinite equivalence
classes and FinA consists of those elements with finite equivalence classes. This
is simply because it is natural to consider the different sizes of the equivalence
classes of the elements in FinA as coding information into the equivalence rela-
tion. The character of an equivalence structure A is the set

χ(A) =
{
〈k, n〉 : n, k > 0 and A has at least n equivalence classes of size k

}
.

This set provides a kind of skeleton for FinA. Any set of pairs K such that
〈k, n+1〉 ∈ K implies 〈k, n〉 ∈ K is called a character. A character K is bounded
if there is some finite k0 such that for all 〈k, n〉 ∈ K, k < k0. The concepts
of s-functions and s1-functions introduced by Khisamiev [2] provide a means of
computably approximating the characters of equivalence relations.

Definition 1. A function f : ω2 → ω is an s-function if and only if

(a) for every i, s ∈ ω, f(i, s) ≤ f(i, s+1) and

(b) for every i ∈ ω, lim
s→∞

f(i, s) exists.

An s-function f is an s1-function if for every i ∈ ω, lim
s→∞

f(i, s) < lim
s→∞

f(i+1, s).

The properties of computable equivalence relations have recently been stud-
ied by Calvert, Cenzer, Harizanov, and Morozov in [1]. There they give certain
conditions under which a given character K can be the character of a com-
putable equivalence structure. In particular, they show that if K is a bounded
character and α ≤ ω, then there is a computable equivalence structure with
character K and exactly α infinite equivalence classes. To prove the existence
of computable equivalence structures for unbounded characters K, additional
information in the form of s- and s1-functions is needed. They show that if K
is a Σ0

2 character, r < ω, and either

(a) there is an s-function such that

〈k, n〉 ∈ K ⇔ |
{
i : k = lim

s→∞
f(i, s)

}
| ≥ n

or

(b) there is an s1-function such that for every i ∈ ω, 〈 lim
s→∞

f(i, s), 1〉 ∈ K,

then there is a computable equivalence structure with character K and exactly r
infinite equivalence classes. Together with these positive results, they also con-
struct an infinite ∆0

2 set D such that for any computable equivalence structure A
with unbounded character and no infinite equivalence classes,

{
k : 〈k, 1〉 ∈ K

}
is not a subset of D.
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The classification of objects by means of the arithmetic hierarchy has some-
times been felt to be a little crude. Because of this, other hierarchies have been
introduced as a finer means of classification. One of the most common means of
studying the fine structure of the class of ∆0

2 objects is the difference hierarchy
of Ershov. A set A is n-c.e. if there is a computable approximation As such
that for all x ∈ ω,

(i) x 6∈ A0,

(ii) x ∈ A if and only if ∃∞s(x ∈ As), and

(iii) |
{
s : As+1(x) 6= As(x)

}
| ≤ n.

A is ω-c.e. if instead of property (iii) above, there is a computable function
g such that for all x |

{
s : As+1(x) 6= As(x)

}
| ≤ g(x).

We explore some results inspired by [1] in the context of the difference hi-
erarchy by first showing that if K is any ∆0

2 character, then there is a d.c.e
equivalence relation with character K and no infinite equivalence classes in
Theorem 4 below. It follows as a corollary that the construction of the set D in
[1] fails for d.c.e. equivalence relations

Calvert, Cenzer, Harizanov, and Morozov also prove several results on the
categoricity of computable equivalence relations. They show that if A is a
computable equivalence structure with only finitely many infinite equivalence
classes, then it is relatively ∆0

2 categorical. They also show that a computable
equivalence structure is computably categorical if and only if either

(i) it has only finitely many finite equivalence classes or

(ii) it has only finitely many infinite equivalence classes, there is an upper
bound on the size of all finite equivalence classes, and there is at most one
k ∈ ω with infinitely many equivalence classes of size k.

The simplest computable structure that is ∆0
2-categorical but not computably

categorical is one consisting of infinitely many equivalence classes of sizes 1 and
2 and no other equivalence classes.

In order to examine such questions in the context of the difference hierarchy,
one must choose an appropriate notion of an α-c.e. function. Since this has a
certain amount of interest in its own right, we spend some time examining some
different possibilities for this concept and show that they really are different.
After distinguishing three different possibilities for α-c.e. categoricity, we show
in Theorem 13 below that each of them leads to a nondegenerate hierarchy of
computable equivalence relations. That is, for each notion n-c.e. categoricity,
there are (n+1)-c.e. isomorphic computable equivalence relations that fail to be
n-c.e. isomorphic for each n. Closely related results have recently been obtained
independently by Khoussainov, Stephan, and Yang [3] for structures consisting
of finite graphs, which we discuss below. In what follows, we generally use the
notation of the standard reference Soare, [4], in particular we adopt his conven-
tion of writing [s] after any formula or term to indicate that all the functionals
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involved therein are taken with their values at stage s. If z is an element of a
computable equivalence structure X, we write [z]X for the equivalence class of z
using EX.

2 D.c.e. equivalence structures

We start with a useful technical fact.

Lemma 1. Every n-c.e. set is the union of a finite number of d.c.e. sets

Proof. Let A be an n-c.e. set and let As be a computable approximation which
witnesses that A is n-c.e.. For each k ≥, let Bi = {x : ∃0 ≤ i1 < i2 <
· · · ik(Aij (x) 6= (Aij+1(x)}. Clearly Bi is c.e. for all i. Then it is easy to see
that if n = 2m for some m, then

A = (B1 −B2) ∪ · · · ∪ (B2m−1 −B2m),

and if n = 2m+ 1 for some m, then

A = (B1 −B2) ∪ · · · ∪ (B2m−1 −B2m) ∪B2m+1.

Proposition 2. If n ≥ 1, then for any unbounded n-c.e. character K there exists
a computable s1-function f such that for every i ∈ ω, 〈 lim

s→∞
f(i, s), 1〉 ∈ K.

Proof. If n = 1, then K = {n : 〈n, 1〉 : n ∈ K} is an infinite c.e. set. Hence K
has a computable infinite subset so that it clearly has the required s1-function.
If n = 2, then K = V−W for some c.e. sets V and W . Since K is infinite, we
can clearly enumerate V and W in such a way that

1. for every s, |(V−W )[s]| ≥ s and

2. If |(V−W )[s]−(V−W )[s+1]| = k, then there exist at least k (new) el-
ements in (V−W )[s+1] all of which are greater than any element in
(V−W )[s].

This given, we can construct our desired computable s1-function as follows.
Let f(x, 0) = x for every x ∈ ω. At stage s+1, if for every x ≤ s, f(x, s) ∈
(V−W )[s+1], then define , f(x, s+1) = f(x, s) for every x. Else let y ≤ s
be least such that f(y, s) 6∈ (V−W )[s+1]. For every x < y, let f(x, s+1) =
f(x, s) ∈ (V−W )[s+1]. If y ≤ x ≤ s, let f(x, s+1) be the least element in
(V−W )[s+1] that is greater than or equal to f(x, s) and greater than f(x′, s+1)
for every x′ < x. For the remaining x > s, let f(x, s+1) = f(x, s) + x− s.

We can show f is our desired s1-function as follows. Evidently, f satisfies
the criteria for being nondecreasing in the stage and increasing in the argument.
So we need only show that all the limits converge to values in V −W . Suppose
that for every x < y, f(x, s) eventually comes to a limit f(x) ∈ V−W . After all
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of these have reached their limits at some stage s, then f(y) is only ever moved
to the least available number in V−W when its previous value is removed from
V−W . Since there are infinitely many elements that enter V−W and never
leave, eventually f(y, s) comes to a limit f(y) ∈ V−W .

Since, by the lemma above, no matter what n is, K is an n-c.e. set which
is the union of finitely many d.c.e. sets. Since at least one of these d.c.e. sets
must be infinite, if K is unbounded, the full result now follows.

Theorem 3. There exists an unbounded ω-c.e. character K such that there is
no computable s1-function f such that for every i ∈ ω, 〈 lim

s→∞
f(i, s), 1〉 ∈ K.

Proof. We construct an infinite ω-c.e. set K that satisfies the following require-
ments:

Re φe is an s1-function =⇒ ∃x lim
s→∞

φe(x, s) 6∈ K,

where φe is the e-th partial computable function. Then K = K × {1} is our
desired unbounded character.

The basic strategy for satisfying requirement Re is simple. We start out
at stage 0 with K[0] = ω and wait for a stage s such that φe(0, t)

y[s] = m
for some greatest number t. We then remove m from K[s+1] and wait for a
stage s′ > s such that φe(0, t′)

y[s′] = m′ for some least t′ > t. Notice that
since an s1-function must be nondecreasing in the second argument, it must be
the case that m′ > m or else, requirement Re is automatically satisfied. We
then enumerate m back into K[s′+1] and remove m′ from K[s′+1]. If φe is
actually an s1-function, then eventually φe(0, t) reaches some limit m0 which
we remove from K and never re-enumerate, so that φe cannot be an s1-function
for K such that for every i ∈ ω, 〈 lim

s→∞
f(i, s), 1〉 ∈ K. Of course, φe could just

fail to converge to a limit on 0, either because some value never gets defined, or
because the limit tends to ∞.

Notice that the strategy for one requirement produces a 3-c.e set, so that it
may seem puzzling at first why we should need an ω-c.e. set to defeat all s1-
functions. The reason is that for any odd number n, if we use an n-c.e. character
K to defeat φe, then some other function φa could just converge more slowly
than φe and converge to values on which we have already made n changes. So
we cannot uniformly bound n. This problem is naturally avoided with an ω-c.e.
set. We can choose a distinct witness x for each p.c. function φe and ensure
that lim

s→∞
φe(x, s) 6∈ K by using at most e+2 changes on values of φe(x, s). If

φe is actually an s1-function such that for every i ∈ ω, 〈 lim
s→∞

f(i, s), 1〉 ∈ K,

then for any x and s, φe(x, s) ≥ x, so that if we use some x ≥ 2e+1 as our
witness to defeat φe, we will ensure that K is still infinite when all requirements
are satisfied. With this in mind, let K[s] = ω−

{
φe(2e+1, s) : e < s

}
. Since

φe(2e+1, s) ≥ 2e+1 for every e, if 2e − 1 ≤ n < 2e+1, then n can only be the
value of some φa(2a+1) for a < e. For each such a, the number of stages s at
which K[s] changes on n because of φa is at most 2. Hence the number of times
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K changes on n is at most 2(e− 1)+1 = 2e− 1 ≤ n. This means K is ω-c.e. If
φe is actually an s1-function, then φe(2e+1, s) must come to a limit, and, once
this happens, this number can never again be in K[s]. This means φe cannot
be an s1-function for K such that for every i ∈ ω, 〈 lim

s→∞
f(i, s), 1〉 ∈ K. Finally,

note that at most e− 1 numbers less than or equal to 2e can be removed from
K permanently, since φe(2a+1, s) > 2e for any a ≥ e. Therefore, K must be
infinite.

Theorem 4. If K is a ∆0
2 character, then there exists a d.c.e. equivalence

structure with no infinite equivalence classes and character K.

Proof. Let K be a ∆0
2 character. Without loss of generality, we can assume

that the set K1 =
{
x : 〈x, 1〉 ∈ K

}
is infinite, since otherwise we can clearly

construct a computable equivalence structure with character K.
In order to make our construction easier, we can slow down our approxima-

tion to K so that the symmetric difference of K[s] and K[s+1] consists of exactly
one element.

We can also assume without loss of generality that 〈1, n〉 6∈ K for any n.
That is, the number of equivalence classes of size 1 is just one piece of infor-
mation and if we know that number, then we can always add an appropriate
number of equivalences classes at the end. Recall that the ordered pairs of nat-
ural numbers have a standard ordering, namely, 〈x1, y1〉 < 〈x1, y1〉 if and only
if either x1 + y + 1 < x2 + y2 or x1 + y + 1 = x2 + y2 and x1 < y1.

Stage 0: We start with every element of ω associated only to itself. (That
is, E[0] =

{
〈y, y〉 : y ∈ ω

}
.)

Stage s+1: Suppose 〈x, n〉 ∈ K[s+1] − K[s]. For all 〈y,m〉 > 〈x, n〉, if there
exist m equivalence classes of size y, we reduce the number of equivalence classes
of size y by removing the most recent equivalence classes added of size y. Next,
we add one equivalence class of size x by choosing the least number not cur-
rently associated with any other number and choosing the least x−1 numbers
that have never been associated with any other number and associating all of
these together to form a new equivalence class.

If, on the other hand, 〈x, n〉 ∈ K[s]−K[s+1], then we select the most recent
equivalence class added of size x and remove it.

Because we only ever associate previously used numbers with completely
new ones when forming a new equivalence class, the structure created by this
procedure is d.c.e. Let ks be the unique element on which K changes its value
at stage s. A stage s is a true stage if for all t ≥ s, K � ks = K[t] � ks.
Because K is ∆0

2, there exist infinitely many true stages. At any true stage s,
a new equivalence class is formed that is never removed and, furthermore, if
〈y,m〉 ∈ K and 〈y,m〉 < 〈x, n〉, then there are m equivalence classes of size y in
K[s], none of which are ever removed. The theorem now follows.

6



From Theorems 3 and 4 we immediately have the following:

Corollary 5. There is a d.c.e. equivalence structure A with no infinite equiva-
lence classes, an ω-c.e. character, and no s1-function such that for every i ∈ ω,
〈 lim
s→∞

f(i, s), 1〉 ∈ K(A).

3 Functions in the difference hierarchy

Ershov’s difference hierarchy provides a finer means of classifying the isomor-
phisms between ∆0

2-categorical structures. Before turning to the categoricity of
equivalence structures in the difference hierarchy, we investigate the properties
of two different ways in which the difference hierarchy can be used to classify
the complexity of ∆0

2 functions.

Definition 2. Suppose f is the limit as s→∞ of a computable function f(x, s).
If n > 0, f is an n-c.e. function if for all x ∈ ω,

|
{
s : f(x, s) 6= f(x, s+ 1)

}
| < n.

f is an ω-c.e. function if there is a computable function g such that for all x ∈ ω,

|
{
s : f(x, s) 6= f(x, s+ 1)

}
| ≤ g(x).

Notice that a 1-c.e. function is just a computable function. It is not true
that for n > 0, if f is n-c.e., its range must be an n-c.e. set. In fact, it is not
hard to see that the following must be true:

Proposition 6. For any nonempty Σ0
2 set A, there is a 2-c.e. function whose

range is A.

Proof. Let x ∈ A ↔ ∃y ∀z R(x, y, z), where R is a computable relation. Since
A 6= ∅, there is some a ∈ A. Let f(〈x, y〉, s) = x if ∀z ≤ sR(x, y, z); and
let f(〈x, y〉, s) = a otherwise. If ∀z R(x, y, z), then for all s, f(〈x, y〉, s) = x.
If ∃z ¬R(x, y, z), then with z0 the least such, we have f(〈x, y〉, s) = x for all
s < z0, and f(〈x, y〉, s) = a for all s ≥ z0. Hence f is 2-c.e. Clearly the range of
lim
s→∞

f(x, s) is A.

Choosing A = ∅′′ in the proposition, we have the following:

Corollary 7. There is a 2-c.e. function whose range is not ∆0
2.

On the other hand, it is also easy to see that there are ∆0
2 functions with

computable ranges that fail to be ω-c.e. functions. Let A be a ∆0
2 set that is

not in any ω-c.e degree. List A as {a0 < a1 < ...}, ω − A as = {b0 < b1 < ...},
and define f(an) = 2n for members of A and f(bn) = 2n+1 for members of
A’s complement. The function f is ∆0

2, and the range of f is ω. Suppose f
were ω-c.e. with approximation f(x, s) and bounding function g. Let As ={
x : f(x, s) is an even number

}
. Since f(x, s) can only take on at most g(x)
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different values, it can only be counted as even at most g(x) different times.
Hence |

{
s : x ∈ As+1−As

}
| ≤ g(x). But then A = lim

s→∞
As would be an ω-c.e.

set: a contradiction.
We are also interested in the following notion:

Definition 3. A function f is graph-α-c.e. if the graph of f is an α-c.e. set.

Any α-c.e. function is graph-α-c.e. since if we let A0 = ∅ and As+1 =
{
〈x, y〉 :

f(x, s) = y
}

, then lim
s→∞

As = the graph of f . This is about the most that can
be said about the relationship between these two notions, as the following result
shows.

Proposition 8. (i) For every n ∈ ω, there exists an (n+1)-c.e. function that
is not graph-n-c.e.

(ii) There is a graph-2-c.e. function that is not an ω-c.e. function.

Proof. Fix n and let
{
Ak : k ∈ ω

}
be a computable enumeration of the graphs

of all partial graph-n-c.e. functions. Write φk for the partial function with
graph Ak. To construct an (n + 1)-c.e. function f that is not graph-n-c.e.,
we start by letting f(k, 0) = 2k for every k ∈ ω. Suppose we have reached
a stage s such that φk(k, s) = 2k and φk(j, t) is defined for all j ≤ k and all
t ≤ s. Then let f(k, s+1) = 2k+1. If at any later stage s′, φk(k, s′) = 2k+1,
then let f(k, s′+1) = 2k. Continue switching between these values of f(k, t)
to make f(k, t) 6= φk(k, t) as long as Ak has changed on 〈k, 2k〉 at most n
times. Note that f(k, t) will only change value at most n+1 times. Furthermore,
f(k, t+1) 6= φk(k, t) at any stage at which Ak has changed on 〈k, 2k〉 at most n
times. Hence if lim

s→∞
φk(k, s) = lim

s→∞
f(k, s), φk must have changed more than n

times on 〈k, 2k〉. This establishes (i).
For (ii), a similar procedure works. Let φe be an enumeration of ω-c.e.

functions with ψe(x) the corresponding bounding function for the number of
times φe(x, s) can change value. For every e ∈ ω, let 〈e, 1〉 ∈ A0. Suppose
we have reached a stage s, such that 〈e, φe(e, j)〉 ∈ A and φe(j, t) is defined
for all j ≤ e and all t ≤ s; ψe(e)

y. If φe(e, t) has changed value at most
ψe(e) times, then remove 〈e, φe(e, j)〉 from A and let 〈e, φe(e, j) · e〉 ∈ As+1.
For each e ∈ ω, the graph-2-c.e. function defined by As takes on the values
1, e2, e3, ... and at any stage at which φe(e, t) has changed value at most ψe(e)
times, 〈e, φ(e, t) · e〉 ∈ At+1. Hence, as above, if φe is ω-c.e. with bounding
function ψe, then 〈e, lim

s→∞
φe(e, s)〉 6∈ lim

s→∞
As, which establishes (ii).

Of course, the distinction between the complexity of a function and the
complexity of its graph collapses when we only classify the function by its place
in the arithmetical hierarchy since any function with a Σ0

n graph is Σ0
n and any

function with a Π0
n graph is Π0

n.
If R is an α-c.e. relation, then the converse of R, R−1 =

{
〈y, x〉 : 〈x, y〉 ∈ R

}
is also α-c.e. Hence, if f is a one-to-one graph-α-c.e. function, then so is f−1.
This makes this notion somewhat more suitable for studying isomorphisms than
that of n-c.e. functions, as the following proposition indicates.
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Proposition 9. There exists a 2-c.e. bijection f : ω → ω such that f−1 is not
ω-c.e.

Proof. Let
{
〈φn, ψn〉 : n ∈ ω

}
be a computable enumeration of all pairs of

partial computable functions φn : ω × ω → ω and ψn : ω → ω. We intend to
use each column ω[n] to ensure that if ψn is a function bounding the changes
for lim

s→∞
φn(x, s), then lim

s→∞
φn(x, s) 6= f−1. The construction proceeds in stages,

using a parameter wn for each n to keep track of whether or not it appears
possible that lim

s→∞
φn(x, s) = f−1. For convenience sake, we assume the enumer-

ation of p.c. functions to be slowed down so that at most one new function gets
a new value at each stage.

Construction:
Stage 0: For all n, let wn[0] = 〈n, 1〉 and let f(〈n, 1〉)[0] = 〈n, 1〉.
Stage s+1: First, we diagonalize against any φn which is threatening to be
f−1. We say n needs attention at stage s+1 if there exists some greatest y ≤ s
such that for every z ≤ y, φn(〈n, 1〉, z) converges at s, and

1. ψn(〈n, 1〉) converges at s,

2. x is in the range of f [s],

3. φn(〈n, 1〉, y) = f−1(〈n, 1〉), and

4. |
{
z < y : φn(〈n, 1〉, z+1) 6= φn(〈n, 1〉, z)

}
| < ψn(〈n, 1〉).

If any number needs attention at stage s+1, let n be the least such.
Second, we continue to extend f so that it is a bijection on ω. Let k be the

least number in ω[n] not yet in the domain of f and let l be the least number
not yet in the range of f . Let f(wn[s])[s+1] = l, let f(k) = 〈n, 1〉, and let
wn[s+1] = k. For each y < s such that f(y) is not yet defined at s, choose the
least number z not yet in the range of f and let f(y) = z.

This ends the construction.

A straightforward inductive argument shows that f only changes value on
numbers that are chosen as wn[s] for some n, s ∈ ω and that, in each such case,
f(wn[s])[s] = 〈n, 1〉 and previously unused numbers are chosen for wn[s+1]
and f(wn[s])[s+1)]. From this it follows that f is 2-c.e. and one-to-one. f is
evidently onto since we continually choose the least unused number to add to
f ’s range.

It also follows by induction on s that at each stage s+1, if y is the great-
est number such that for every z ≤ y, φn(〈n, 1〉, z) converges at s, then either
|
{
z < y : φn(〈n, 1〉, z+1) 6= φn(〈n, 1〉, z)

}
| 6< ψn(〈n, 1〉) or φn(〈n, 1〉, y) 6=

f−1(〈n, 1〉)[s+1]. This shows that if lim
s→∞

φn(x, s) is ω-c.e. with bounding func-

tion ψn, then lim
s→∞

φn(x, s) 6= f−1.
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4 Categoricity in the difference hierarchy

The considerations in the previous section yield some different possibilities for
extending categoricity notions for computable structures to the difference hier-
archy.

Definition 4. Let α ≤ ω.

1. We say the structure A is weakly α-c.e. isomorphic to the structure B if
there are α-c.e. functions f and g such that f is an isomorphism from A
to B and g is an isomorphism from B to A.

2. We say the structure A is α-c.e. isomorphic to the structure B if there is
an α-c.e. function f such that f−1 is α-c.e. and f is an isomorphism from
A to B.

3. We say the structure A is graph-α-c.e. isomorphic to the structure B if
there is a graph-α-c.e. function f such that f is an isomorphism from A
to B.

If A is a computable structure and for any computable B isomorphic to A,
B is [weakly] α-c.e isomorphic to A, then we say A is [weakly] α-c.e. categorical.
If A is a computable structure and for any computable B isomorphic to A, B
is graph-α-c.e. isomorphic to A, then we say A is graph-α-c.e. categorical. If A
is a computable structure and for any structure B isomorphic to A, there is an
isomorphism from A to B that is graph-α-c.e. relative to the atomic diagram of
B, then we say A is relatively graph-α-c.e. categorical.

By Proposition 9, there are weakly 2-c.e. isomorphic structures that are not
ω-c.e. isomorphic.

We examine now exactly which computable equivalence structures are cat-
egorical in these senses. The trivial case consisting of exactly one infinite
equivalence class is evidently categorical in all the above senses. In fact, by
Calvert-Cenzer-Harizanov-Morozov [1], Corollary 3.3, any equivalence relation
consisting of only finitely many sizes of finite equivalence classes, at most one
of which has an infinite number of equivalence classes, and only finitely many
infinite equivalence classes is computably categorical. By Theorem 3.14 in [1],
any structure with finitely many infinite equivalence classes and infinitely many
finite sizes of equivalence classes cannot even be ∆0

2 categorical. We examine
the other possibilities in what follows by introducing some canonical equivalence
structures.

Definition 5. The basic 1/2 equivalence structure is the structure S = 〈ω,E〉
where for all n and m, nEm if and only if there exists k ∈ ω

(a) n = m = 3k or

(b) n,m ∈ {3k+1, 3k+2}.
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Proposition 10. Let S be the basic 1/2 equivalence structure. There exists a
computable equivalence structure D such that D ∼= S via some 2-c.e. isomor-
phism, but D 6∼= S via any 1-c.e. isomorphism.

Proof. The idea of the proof is to construct D in such a way that any isomor-
phism from S to D projects a computable subset of the set of numbers divisible
by 3 onto the set

{
2x : x 6∈ K

}
, where K is the halting problem. Since this

latter set is not c.e., no such isomorphism can be a computable function.
The construction proceeds in stages over which we gradually enumerate an

approximation ED[s] so that ED is a computable set and an approximation to
a 2-c.e. function f that will be an isomorphism between S and D. To achieve
this, we keep track of the two least numbers not in the domain of f [s] that are
congruent to each of 0 and 1 modulo 3, using parameters ys and zs respectively.
For convenience sake, we assume that exactly one new number ks enters K at
each stage s.
Stage 0: Let ED[0] = the identity relation.
Stage s+1: Let d1

s be the least odd number not in the range of f and let ys
and zs be the two least numbers not in the domain of f [s] that are congruent
to each of 0 and 1 modulo 3 respectively.

(a) If 2ks is not in the range of f [s], then let f(zs, t) = 2ks and f(zs+1, t) = d1
s

for all t ≤ s+1, and associate 2ks with d1
s in ED[s+1]. For all t ≤ s+1, let

f(ys, t) = d1
s+2.

(b) If 2ks is already in the range of f , then let x be the (unique) element such
that f(x, s) = 2ks. First, correct f by setting f(x, s+1) = d1

s. Then for
all t ≤ s+1, let f(zs, t) = 2ks and f(zs+1, t) = d1

s+2 and put 2ks and
d1
s+2 into the same equivalence class in ED[s+1]. For all t ≤ s+1, let
f(ys, t) = d1

s+4.

Let f = lim
s→∞

f [s]. Because f only changes value on a previously assigned
number from an even number to an odd number, f is 2-c.e., so it is certainly
well defined. Odd numbers are used as values only once, either in contiguous
blocks of 2 in case (a) or blocks of 3 in case (b). Even numbers are either only
used as values once, or, in case (b), they are used as values a second time after
being given up as the value of the argument they were originally assigned to.
Hence, f is one-to-one. Also, f is total, since zs and ys both tend to infinity.

ED =
⋃{

ED[s] : s ∈ ω
}

is c.e., and its field is ω. Furthermore, d1
s is

increasing in s, and any new pair 〈x, y〉 enumerated into ED[s] must have at
least one of x and y greater than or equal to d1

s. Hence ED is computable.
Hence D is a computable equivalence structure isomorphic to S via f , which

is a 2-c.e. function. Suppose that g is a computable isomorphism from S to D.
But then K =

{
x : ∃y (y is divisible by 3 and g(y) = 2x

}
would be a c.e. set.

This is a contradiction, which establishes the result.

There are a couple of ways to extend Proposition 10.
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Definition 6. The basic 1/2/ · · · /n equivalence structure is the structure S =
〈ω,E〉 where for all s and t, sEt if and only if there exists k ∈ ω

(a) s = t = k
(
n+1

2

)
or

(b) there is an r with 2 ≤ r ≤ n and k
(
n+1

2

)
+
(
r
2

)
≤ s, t < k

(
n+1

2

)
+
(
r+1

2

)
.

The basic 1/2/ · · · /n equivalence structure has infinitely many equivalence
classes of size i for i = 1, . . . n.

Theorem 11. Let S be the basic 1/2/ · · · /n equivalence structure where n ≥ 2.
Then there exists a computable equivalence structure D such that D ∼= S via
some n-c.e. isomorphism, but D 6∼= S via any (n− 1)-c.e. isomorphism.

Proof. To make our proof somewhat easier, we first prove the following lemma
which is of interest in its own right.

Lemma 12. Let n ≥ 2, let S be the basic 1/2/ · · · /n equivalence structure,
and let D be a computable equivalence structure such that D ∼= S and for each
i = 1, . . . , n, there is an infinite computable set Ri ⊆ {x : |[x]D| = i}. Then
there is an n-c.e. isomorphism f : S→ D.

Proof. We construct the desired isomorphism f via a standard back and forth
argument which will use a certain parameter ts ≥ s.

Stage 0: Let t0 be the least t such so that for i = 1, . . . , n, there exist el-
ements of w1, . . . wn such that |[wi]D[t]| = i. Then let f(0, 0) = w0 and for
i = 2, . . . , n, define f [0] so that it maps the set of n such that

(
r
2

)
≤ n <

(
r+1

2

)
onto the set of elements in [wi]D[ts+1] in order of magnitude. Finally if 0 is not
in the range of f [0] up to this point, let x ≥

(
n+1

2

)
such that |[x]S| = |[0]D[t0]|

and define f [0] on [x]S so that it maps onto the elements of [0]D[t0] in order of
magnitude.

Stage s+1: Suppose that at stage s+1, we have defined f [s] and ts so that

(a) {0, . . . , s
(
n+1

2

)
} is contained in the domain of f [s] and {0, . . . , s} is contained

in the range of f [s],

(b) for all x in the domain of f [s], all the elements of [x]S are contained in the
domain of f [s] and |[x]S| = |f(x)[s]D[ts]|.

Then we exend f [s] to f [s+1] in two steps, first a corrrection step followed
by an extension step.

Substage I. (Correction Step) First, we process the elements in the domain
of f [s] in order of magnitude. For each such x such that |[x]S| = i but
|[f(x)[s]]D[s+1]| > i, we find the least element of y ∈ Ri such that no
element of [y]D has been used in the construction up to this point and
define f [s+1] so that it maps the elements in [x]S onto the elements of
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[y]D in increasing order of magnitude. Note that since Ri is infinite, we
can find such a y. Since y ∈ Ri, we know that |[y]D| = i so that we can
enumerate ED until we find a ux such that |[y]D[ux]| = i.

Substage II. (Extension Step) Let ts+1 be the least stage which is greater than
or equal to 1 plus the maximum of ts and all the ux’s that were needed
in substage I such that, for i = 1, . . . , n, there are elements of w1, . . . wn
where |[wi]D[ts+1]| = i and none of the elements of [wi]D[ts+1] have been
used in the construction up to this point. Then if (s+1)

(
n+1

2

)
is not in

the domain of f [s+1] up to this point, we set f((s+1)
(
n+1

2

)
), s+1) = w1.

Similarly, for all i = 2, . . . , n such that the set of m such that

(s+1)
(
n+1

2

)
+
(
r

2

)
≤ m < (s+1)

(
n+1

2

)
+
(
r+1

2

)
are not in the domain of f [s+1] up to this point, we define f [s+1] so that
it maps the set of m such that (s+1)

(
n+1

2

)
+
(
r
2

)
≤ m < (s+1)

(
n+1

2

)
+
(
r+1

2

)
onto the set of elements in [wi]D[ts+1] in order of magnitude. Finally, we
process the elements y ≤ s+1 which are not in the range of f [s+1] up to
this point, if any, in order. For each such y, we find the least element x
such that |[x]S| = |[y]D[ts+1]| and x has not be used in the construction
up to this point and define f [s+1] so that it maps the elements of [x]S

onto the elements of [y]D[ts+1] in order of magnitude.

This completes the construction of f .

Note that f(x, s) 6= f(x, s+1) only because of actions taken at correction
substages. Moreover, we will never have to change the value of f(x) after stage
s+1, since we have guaranteed that f(x, s+1) has an equivalence class of size i
in D. It follows that f is 2-c.e.. Our actions at the correction stages ensure that
for all x, |[x]S| = |f(x)]D|. For each y, it is easy to see that we change the value
of f−1(y, s) only if |[y]D[s]| < |[y]D[s+1]|. Since the size on any equivalence class
in D is at most n, this means that there can be at most n− 1 stages such that
f−1(y, s) 6= f−1(y, s+1) and hence f−1 is n-r.e. Our actions at the extension
stages ensure that f maps S onto D. Since f [s] is one-to-one at each stage, it
follows that f is an n-c.e. isomorphism from S onto D.

We now construct our desired computable equivalence structure D which is
n-c.e. isomorphic to S but not (n−1)-c.e. isomorphic to S. Let φe(x, s) denote
e-th p.c. function. Then we must meet the following set of requirements for all
e ≥ 0 and i = 1, . . . , n:

Re: if fe equals the lims→∞φe(x, s), then fe is not a (n − 1)-c.e. isomorphism
from S onto D and

Si: there exists an infinite c.e. set contained in the set of elements x of D
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whose equivalence class is of size i for i = 1, . . . , n.

To meet the requirements S1, . . . , Sn is easy. That is, we consider the set

A = {x : (∃k)(2k)
(
n+1

2

)
≤ x < (2k+1)

(
n+1

2

)
}.

Then we define ED so that it is identical with ES on A. Let ω−A = {b0 < b1 <
. . .}. We shall use the element b2e to meet requirement Re. Again, the idea is
simple, namely, everytime that φe(x, s) converges and |[b2e]D[s]| = |[φe(x, s)]S|,
we add a new element to [b2e]D[s+1] which will force either φe(x, t) to change after
stage s or force fe to not be an isomorphism. Since we can force n− 1 changes
via this strategy, it will follow that there can be no (n − 1)-c.e. isomorphsim
mapping D onto S.

Our construction will proceed in stages.

Stage 0: Define ED[0] so that it is identical with ES on A. We will not change
ED on A, so that the requirements S1, . . . , Sn will automatically be satisfied.
Define ED[0] to be the identity outside of A.

Stage s+1: Let ω − A = {b0 < b1 < . . .}. Assume that we have defined
ED[s] so that

(a) [b2e]D[s] ∩ [b2f ]D[s] = ∅ if e 6= f ,

(b) for all x, |[x]D[s]| ≤ n,

(c) |[b2e]D[s]| = 1 for e > s, and

(d) for e ≤ s, |[b2e]D[s]| = k ≥ 2 if and only if there are at least k−1 stages 0 ≤
te,1 < · · · < te,k−1 < s such that φe(x, te,i)[s] is defined for i = 1, . . . , k − 1
and φe(b2e, te,i)[s] 6= φe(b2e, te,i+1)[s] for i = 1, . . . , k − 2.

Then, for each e ≤ s+1, we see whether there is a t ≤ s such that

(i) φe(b2e, r)[s] is defined for all r < t,

(ii) φe((b2e, t)[s] ↑ but φe((b2e, t)[s+1] ↓, and

(iii) |[φe((b2e, t)[s+1]]S| = |[b2e]D[s]| = i < n.

If so, then take the least j > s such that b2j+1 has not been used in the construc-
tion up to this point and add b2j+1 to the equivalence class of b2e in ED[s=1].

This ends the construction.
It is easy to see that D is a computable equivalence relation, since the only

time that additional pairs get added to ED[s+1] is if one of the two elements
is greater than or equal to s+1. Also, it is easy to see that all equivalence
classes have size less than or equal to n. Our action at stage 0 ensures all the
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requirements of S1, . . . , Sn are met, so that D is isomorphic to S and, hence, by
Lemma 12, D is n-c.e. isomorphic to S. Finally, it is to see, from our actions to
meet the requirement Re, that if fe is an isomorphism from D to S, then there
have to be n values s1 < · · · < sn and corresponding stages t1 < · · · < tn such
that φe(b2e, si)[ti] ↓ and [φe(b2e, si)[ti]D[ti]| = i] and, hence, fe is not (n−1)-c.e..
Thus there is no (n− 1)-c.e. isomorphism from D onto S.

A second way to extend Proposition 10 is to consider graph-n-c.e. isomor-
phisms. Graph-1-c.e. and 1-c.e. isomorphisms are the same since both are just
computable isomorphisms. We can adapt the idea of the proof of part (i) of
Proposition 8 to establish a similar result for numbers bigger than 2. However,
in contrast to the situation in Proposition 8, we cannot use the method to di-
agonalize against graph-n-c.e. isomorphisms, since the number of times even
a graph-2-c.e. function can change its value on a given argument cannot, in
general, be computably bounded as long as previous values are never repeated.

Theorem 13. Let S be the basic 1/2 equivalence structure. For every n > 0
there exists a computable equivalence structure Dn such that Dn

∼= S via some
(n+1)-c.e. isomorphism, but D 6∼= S via any weakly-n-c.e. isomorphism.

Proof. Fix n and let
{
φk : k ∈ ω

}
be a computable enumeration of of all

partial n-c.e. functions. We use the number 3k as a witness to ensure that
φk cannot be an isomorphism from S to Dn by ensuring that if φk(3k)

y, then
it belongs to an equivalence class consisting of two elements in De. Since 3k
belongs in a single-element equivalence class in S, this ensures that φk is not an
isomorphism. While we do this, we continually build and correct an (n+1)-c.e.
isomorphism f from S to Dn.

Stage 0: Let EDn [0] = the identity relation.

Stage s+1: We proceed in substages for each k ≤ s. First, suppose
that φk(3k)[s] = z and that z belongs to a single-element equivalence
class in Dn. Let zks be the least element not yet in the range of f and
put zks into the equivalence class of z at stage s+1. If f(3k, s) = z, then
let f(3k, s+1) = zks+1. Choose yks to be the least element congruent to
1 modulo 3 that is not yet in the domain of f , let f(yks , s+1) = z and
f(yks+1, s+1) = zks .

After all these substages are complete, let xs be the least multiple
of 3 not yet in the domain of f , let ys be the least number congruent
to 1 modulo 3 not yet in the domain of f , and let zs be the least
number not yet in the range of f . Let f(xs, s+1) = zs, f(ys, s+1) = zs+1,
f(ys+1, s+1) = zs+2, and put zs+1 and zs+2 into the same equivalence
class in Dn.

It follows immediately from the construction that no n-c.e. func-
tion φk can be an isomorphism from S to Dn since at any sufficiently
large stage s we ensure that φk(3k) belongs to a two-element equiva-
lence class in Dn at stage s+1.
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Let f = lim
s→∞

f [s]. Notice f never changes values on any number that
is not a multiple of 3. f can only change values on a number 3k at a
stage s+1 if φk(3k)[s] = z and z belongs to a single-element equivalence
class at stage s. Since φ is n-c.e., and we always enlarge z’s equivalence
class at the next stage, this can only happen at most n times. Hence
f changes from its original value at most n times and so is (n+1)-c.e.
The parameters xs, ys, zs, yks , and zks are all strictly increasing in s.
From this it follows straightforwardly from the construction that f is
one-to-one. Since xs and ys are always chosen least, f is total. Since
zs is always chosen least and always remains in f ’s range thereafter, f
is onto. It should be clear from the construction that we continually
update the sizes of the equivalence classes of the elements in the
range of f to ensure that f is a homomorphism. The only changes of
previously defined values of f−1 occur when for numbers z, k, and l
f−1(z, s) = 3k, but f−1(z, s+1) = 3l+1. Hence f−1 is 2-c.e. so that f is an
n+1-c.e. isomorphism, not merely a weakly (n+1)-c.e. isomorphism.

Finally, as in Proposition 10, Dn is computable, since numbers x
and y are only newly associated with each other in Dn[s+1] if at least
one of x and y is greater than zs+1. This establishes the result.

It is also not hard to adapt the proof of part (ii) of Proposition 8 to the
context of computable equivalence relations.

Theorem 14. Let S be the basic 1/2-equivalence structure. There exists a
computable equivalence structure D such that D ∼= S via some graph-2-c.e.
isomorphism, but D 6∼= S via any weakly ω-c.e. isomorphism.

Proof. Let
{
〈φe, ψe〉 : e ∈ ω

}
be a computable enumeration of all partial ω-c.e.

functions with the number of changes on each value of φe bounded by ψe.

Stage 0: Let f [0] = ∅, and ED[0] = the identity relation.

Stage s+1: We proceed in substages for each e ≤ s. Requirement Re

needs attention if ψe(3e)
y, φe(3e, s)

y, |
{
t < s : φe(3e, t) 6= φe(3e, t+1)

}
| <

ψe(3e), and there does not exist any z 6= φe(3e, s) such that zEDφe(3e)[s].
Choose zes to be the least number not yet in the range of f and put zes
into the equivalence class of φe(3e) at stage s+1. If 〈3e, φe(3e, s)〉 ∈ f [s],
then remove it and enumerate 〈3e, zes+1〉 ∈ f [s]. Choose yes to be the
least element congruent to 1 modulo 3 that is not yet in the domain
of f and enumerate 〈yes , φe(3e, s)〉 and 〈yes+1, zes〉 into f [s+1]. After all
these substages are complete, let xs be the least multiple of 3 not yet
in the domain of f , let ys be the least number congruent to 1 modulo
3 not yet in the domain of f , and let zs be the least number not yet in
the range of f . Enumerate the pairs 〈xs, zs〉, 〈ys, zs+1〉, and 〈ys+1, zs+2〉
into f [s+1], and put zs+1 and zs+2 into the same equivalence class in
ED[s+1].

Let f = lim
s→∞

f [s].
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f can only change values on a number 3e if ψe(3e)
y, and it only

changes values on 3e at most ψe(3e) times. The parameters xs, ys,
zs, yes, and zes are all strictly increasing in s. From this it follows
straightforwardly that f is well-defined and one-to-one. Once a pair
〈x, z〉 is removed from f , it is never enumerated again, since any new
〈x, z′〉 that enters f at a later stage has z′ > z. Hence f is graph-2-
c.e. Sinced zs is always chosen least, and always remains in f ’s range
thereafter, f is onto. Clearly f is a homomorphism. D is computable,
since new pairs 〈x, y〉 are only enumerated into ED[s+1] if at least
one of x and y is greater than zs−1. No ω-c.e. function can be an
isomorphism from D to S, since such a function would have to be
one of the φe in our enumeration. But at any stage where φe(3e, s)
and ψe(3e)

y, we ensure that φe(3e) is mapped to a number whose
equivalence class is not a singleton in D. Since 3e’s equivalence class
is a singleton in S, φe cannot be an isomorphism. This establishes
the result.

Corollary 15. The basic 1/2 equivalence structure S is not weakly ω-c.e. cat-
egorical.

There is nothing particularly special about the numbers 1 and 2 here.

Definition 7. Suppose a and b are distinct positive integers. The basic a/b-
equivalence structure is the structure Sa/b = 〈ω,E〉 where for all n and m, nEm
if and only if there exists k ∈ ω

(a) (a+b)k ≤ m,n < (a+b)k+a or

(b) (a+b)k+a ≤ m,n < (a+b)(k+1).

Sa/b consists of infinitely many equivalence classes of sizes a and b and no
other equivalence classe.

It is easy to see that the previous two results can be extended to the case of
Sa/b by simply using the strategies in the proofs above on a and b rather than
1 and 2. By considering direct sums, we can extend these results to many other
computable equivalence structures.

Definition 8. If A and B are two equivalence structures with domain ω, then
the direct sum of A with B is the equivalence structure A ⊕B with domain ω
such that mEA⊕Bn if and only if there exist k, l ∈ ω such that either

(a) m = 2k, n = 2l and kEAl or

(b) m = 2k+1, n = 2l+1 and kEBl.

The essential feature of a direct sum is of course that any homomorphism
with the direct sum as the domain is the disjoint union of two homomorphisms
with the summands as their respective domains. This makes it easy to see that
the following is true:
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Theorem 16. Let A be any equivalence structure for which there exist at least
two distinct integers m and n such that in A there are infinitely many equivalence
classes of sizes m and n. Then there exists a computable equivalence structure
S that is ∆0

2-isomorphic to A such that

(a) for every n > 0, there exists a computable equivalence structure Cn such
that Cn ∼= S via some (n+1)-c.e. isomorphism, but Cn 6∼= S via any weakly
n-c.e. isomorphism and

(b) there exists a computable equivalence structure C such that C ∼= S via some
graph-2-c.e. isomorphism, but C 6∼= S via any ω-c.e. isomorphism.

Proof. Let A be as stated. Then A is ∆0
2-isomorphic to A ⊕ Sm/n since it

is possible to check for each element of A whether or not it belongs to an
equivalence class of sizem or n by using either a Σ0

2 or a Π0
2 relation. Hence, since

there are infinitely many such elements in each case, we can simply alternate
the side of the direct sum to which we send each of the equivalence classes of
these two sizes and send all other elements x to 2x.

Since the results in Theorems 13 and 14 hold with Sm/n in place of S1/2,
we can just use the identity on A to get appropriate isomorphisms between
A⊕Sm/n and each of the A⊕Dn, as well as A⊕D where Dn and D are as in
the results for Sm/n.

Corollary 17. If A is any equivalence structure for which there exist at least two
distinct integers m and n such that in A there are infinitely many equivalence
classes of sizes m and n, then A is not weakly ω-c.e. categorical.

Khoussainov, Stephan, and Yang [3] show that for each n > 0, there exists
a computable structure consisting of finite graphs that is weakly n+1-c.e. cat-
egorical but fails to be graph-n-c.e. categorical. We will show that any such
result must fail for computable equivalence relations by showing that any com-
putable equivalence structures that fails to be computably categorical also fails
to be weakly ω-c.e. categorical. By the results of [1], the only case remaining
to consider here are equivalence structures A such that A has finite equivalence
classes of infinitely many different sizes, not more than one size of which has
infinitely many equivalence classses of that size.

Theorem 18. If A is any equivalence structure for which there exist infinitely
many integers n such that there exists an equivalence class of size n, then there
exists a computable equivalence structure C such that C ∼= A via some graph-2-
c.e. isomorphism, but C 6∼= A via any weakly ω-c.e. isomorphism.

Proof. For clarity’s sake, we first describe the basic strategy of the result assum-
ing that A has no infinite equivalence classes. We must construct a computable
equivalence structure C1 that it is graph-2-c.e. isomorphic to A and, whenever φ
and ψ are a pair of computable functions such that ψ witnesses that lim

s→∞
φ(n, s)

is ω-c.e., it is the case that lim
s→∞

φ(n, s) is not an isomorphism from A to C1. The
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basic strategy is that of the previous theorems: we pick a witness x and wait
for φ(x) to converge. We then add elements to φ(x)’s equivalence class in C1 to
ensure that its size is greater than that of x in A. The significant difference here
from the situation in the previous result is that there is no way to know what dif-
ferent sizes of equivalence classes A might have. Since A has no infinite classes,
this is always ∆0

2 information, but it is in general not computable. Hence, not
only do we fail to have any idea in advance how big the equivalence class of x is,
but we cannot choose in advance the size of the equivalence class of φ(x). We
solve this problem in the following way. Since A is computable, if we believe at
some stage s that the size of x’s equivalence class is k, then we can search for a y
such that there exist at least k+1 distinct z with yEAz. There is guaranteed to
be such a y since there are infinitely many different sizes of equivalence classes.
Then we just add enough elements to [φ(x)]C1 to make it the same size as [y]A.
Of course, we must assign f(y) = φ(x) and assign a new large number to be
f(x) when we do this. Later, as [x]A and [y]A grow, we must add new elements
to [f(x)]C1 and [f(y)]C1 , respectively. The only problem arises if [x]A grows to
a size k1 that equals that of [y]A. If this happens, then |[y]A| can no longer serve
as the size to witness |[φ(x)C1 ]| 6= |[x]A|. In this case, we must search for a y1

such that there exist at least k1+1 distinct z with y1E
Az. Once we find such a

number, we choose enough extra new elements to make |[φ(x)C1 | = |[y1]A|, let
f(y1) = φ(x), and assign the other elements of [y1]A to the other elements of
[φ(x)C1 ]. Of course, now f is no longer one-to-one, since f(y) = f(y1) = φ(x)
so we must redefine all f(z) for zEAy to new, large numbers and relate them to
each other in C1. Notice that f is still graph-2-c.e., since we only assign a new
value under f for an element z of [y]A, and we always choose new numbers for
f(z). We continue this process, performing such a reassignment at any stage at
which |[f(x)]C1 | = |[φ(x)]C1 |.

Since, by our simplifying assumption, [x]A is finite, we must eventually hit
on a larger size for [φ(x)]C1 , which prevents φ from being an isomorphism. It is
easy to see that by intializing all lower priority requirements each time we act,
this strategy can succeed. In fact, as long as there are only a finite number of
infinite equivalence classes, no problems arise, since we can pick representatives
for these classes in advance and thereby avoid ever picking an element with
an infinite equivalence class as a witness. This strategy runs into a significant
problem if there are infinitely many infinite equivalence classes, since it then
relies on finding a given element with a finite equivalence class to use as a
suitable witness. To solve this problem, we must attack with a whole sequence
of contiguous witnesses x, x + 1, x + 2, and so on until we encounter one with
a finite equivalence class. In order to avoid infinite injury to the strategies
for weaker requirements, we only select a new witness at a stage at which all
previous witnesses have appeared to fail. Eventually, we will hit upon a witness
with a finite equivalence class, and, at some point thereafter, we will succeed
permanently on this witness.

To perform the construction, we proceed in stages s, each of which has a
substage for each n < s. At Stage 0, we do nothing.
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Stage s+1 : We act in substages, in increasing order for each n < s.
Requirement n needs to be initialized if its first witness xn(0) is

undefined. In this case we pick xn(0)[s] to be the least number such
that no y previously mentioned in the construction is associated with
xn(0)[s] by EA. We let f(xn(0))[s] be the least number greater than
any mentioned before in the construction and go immediately to the
next substage (n+1).

If requirement n does not need to be initialized, then we first
update all the equivalence classes and function values associated with
it. For each i such that x(i)

y[s], we ensure that
(∣∣[xn(i)]

∣∣ =
∣∣[f(xn(i)]

∣∣)[s].
For each y such that yEAxn(i) and f(y)

x, we choose a new number z
greater than any yet mentioned in the construction, set f(y) = z and
associate z with f(xn(i))[s] in EC.

Requirement n needs attention if for every i such that x(i)
y[s],

either

1.
(∣∣[xn(i)]

∣∣ =
∣∣[φn(xn(i)]

∣∣)[s], and the number of times which φn(xn(i))
has changed value is less than or equal to ψn(xn(i)) for all such
i; or

2.
∣∣[xn(i)]

∣∣[s] > ∣∣[xn(i)]
∣∣[s−], where s− is the last previous stage at

which requirement n needed attention.

Suppose requirement n needs attention. Let k be the greatest
number such that xn(k)

y[s] and choose xn(k+1) to be the least number
that is not in the equvalence class of any xj(i)[s+1] for j ≤ n. Let
f(xn(k+1))[s+1] be some number greater than any yet mentioned in
the construction. For every y with yEAxn(k+1), we set f(y) equal to a
new number greater than any yet mentioned in the construction. If
f was already mapping xn(k+1) to some other number at stage s, say
f(xn(k+1))[s] = z, we search for some y such that f(y)

x[s] and
(∣∣[y]A

∣∣ ≥∣∣[z]C∣∣)[s+1]. We set f(y) and all the members of its equivalence class
equal to the members of z’s equivalence class, picking new number
greater than any yet mentioned to make up the difference if

∣∣[y]A
∣∣ is

actually greater than
∣∣[z]C∣∣.

Next for any i such that
(∣∣[xn(i)]

∣∣ =
∣∣[φn(xn(i)]

∣∣)[s], and the num-
ber of times which φn(xn(i)) has changed value is less than or equal to
ψn(xn(i)), we search for a number y greater than any yet mentioned in
the construction such that

∣∣[y]A
∣∣ > ∣∣[xn(i)]A

∣∣. We set f(y) = φn(xn(i)),
add enough elements greater than any yet mentioned in the con-
struction to the equivalence class of φn(xn(i)) to make

(∣∣[φn(xn(i)]C
∣∣ =∣∣[y]A

∣∣)[s+1], and set f(xn(i)) and all the members of its equivalence
class in A equal to members of a new equivalence class in C made up
of numbers greater than any yet mentioned in the construction.

Finally, if n has needed attention, we end the substage by undefin-
ing all parameters for requirements m > n.
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After all substages have been completed, we extend the domain of
f to all x ≤ s by assigning mapping each element in order to the least
available elements not in f ’s range and extending EC appropriately
to ensure f is an isomorphism.

Notice that as in the proofs of the previous theorems, since we
always extend EC to pairs containing at least one number that is
greater than any yet mentioned in the construction, C is computable.
Since f always maps elements to new large numbers, no pair 〈x, f(x)〉
ever appears in the graph of f more than once. Hence f is 2-c.e.

We verify that this construction works and that each requirement
needs attention at only finitely many stages by induction. Assume
that we eventually reach a stage after which no requirement m <
n needs attention. Then there is some greatest number y that is
a witness for a requirement less than the n-th. As long as every
current witness for requirement n has an infinite equivalence class
in A, we eventually reach a stage such that a new witness is chosen
for requirement n because of condition 2 in the our set of conditions
for when a requirement needs attention. Since we always pick the
next available number that is not involved in satisfying a higher-
priority requirement, we eventually find some witness xn(k) greater
than y that has a finite equivalence class in A. But then condition
1 under the defintion of needing attention guarantees that if φn(xn)
and ψn(xn) are defined and ψn(xn) bounds the number of changes
on φn(xn), then [φn(xn)]C is larger than [xn]A. Once this happens,
requirement n can never need attention again. This shows that every
requirement is satisfied and needs attention at most finitely-many
times. Since every requirement needs attention only finitely often, f
is total, which completes the proof of the result.

Notice that a very similar construction works to achieve the same result in
the case that A has infinitely many equivalence classes of at least one finite size
k and infinitely many infinite equivalence classes. In this case we can arrange
things so that for each n we eventually find a witness xn with an equivalence
class in A of size k so that if φn(xn) is defined, then [φn(xn)]C is either infinite
or has some finite size greater than k. The changes are straightforward.

Theorem 19. If A is any equivalence structure for which there exist an integer
n such that there exist infinitely many equivalence classes of size n and infinitely
many infinite equivalence classes, then there exists a computable equivalence
structure C such that C ∼= A via some graph-2-c.e. isomorphism, but C 6∼= A via
any weakly ω-c.e. isomorphism.

Corollary 20. A computable equivalence structure is computably categorical if
and only if it is weakly-ω-c.e. categorical.

Proof. Any computably categorical equivalence structure is of course a fortiori
ω-c.e. categorical. By Calvert, Cenzer, Harizanov, and Morozov, [1], Corollary
3.3, if a computable equivalence structure has either
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(i) finitely-many finite equivalence classes or

(ii) at most one finite size with infinitely-many equivalence classes of that size,
a bound on the number of finite sizes of equivalence classes, and finitely-
many infinite equivalence classes,

then that structure is computably categorical. Hence, if a computable equiva-
lence structure fails to be computably categorical, it must have infinitely many
finite equivalence classes and, in addition, there must be either

1. at least two different finite sizes with infinitely-many equivalence classes
of each of those sizes, in which case it is not weakly ω-c.e. categorical by
Corollary 17; or, failing that,

2. an unbounded number of different finite sizes of equivalence classes, in
which case it is not weakly ω-c.e. categorical by Theorem 18; or, failing
both of these,

3. infinitely-many infinite equivalence classes and at least one finite size with
infinitely-many equivalence classes of that size, in which case it is not
weakly ω-c.e. categorical by Theorem 19.

5 Some categorical structures

Although we have shown that there is no difference between ω-c.e. categoricity
and computable categoricity for computable equivalence structures, the same is
not true for graph-n-c.e. categoricity.

First we shall consider the structure SI,α which consists of infinitely many
equivalence classes of sizes i for each i ∈ I and α infinite equivalence classes.
More formally, we make the following definition.

Definition 9. Suppose α ≤ ω and I is a set of positive integers with |I| ≥ 1 and
least element i0. The basic I, α-equivalence structure is the structure SI,α =
〈ω,E〉 where for all n and m, nEm if and only if either

1. there exists i ∈ I and j, k, l ∈ ω such that n = 〈2i, j〉, m = 〈2i, k〉, and
l · i ≤ j, k < (l+1) · i; or

2. there exists i ∈ ω− I and j, k, l ∈ ω such that n = 〈2i, j〉, m = 〈2i, k〉, and
l · i0 ≤ j < (l+1) · i0.

3. there exists i < α and j, k ∈ ω such that n = 〈2i+1, j〉, and m = 〈2i+1, k〉.

4. there exists i ≥ α and j, k, l ∈ ω such that n = 〈2i+1, j〉, m = 〈2i+1, k〉,
and l · i0 ≤ j < (l+1) · i0.

Theorem 21. If I is a nonempty finite set of positive integers and α ≤ ω, then
the basic I, α-equivalence structure SI,α is relatively graph-2-c.e. categorical.
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Proof. Suppose A is an equivalence structure that is isomorphic to SI,α. Let
I = {i0 < ... < in}. We construct a EA-graph-2-c.e. isomorphism f : SI,α → A.
by defining a EA-2-c.e. set F that is the graph of f in stages. Let A[s] =

{
y ∈

A : y < s
}

and EA[s] =
{
〈y, z〉 : y < s ∧ z < s ∧ zEAy

}
. Then, for any

natural number y < s, [y]A[s] =
{
z : z < s ∧ zEAy

}
. Clearly, [y]A[s] and EA[s]

are finite sets with indices computable in EA.

Stage 0: F [0] = ∅.

Stage s+1:

Substage I. We first update our isomorphism between InfSI,α and InfA. If
there exists some y < s and z < s such that y is the image under f [s] of
some number with an infinite equivalence class in SI,α, yEAz, and z is
not in the range of f [s], then we take the least number x in this infinite
equivalence class that is not in the domain of f [s] and enumerate 〈x, z〉
into F [s+1].

Substage II. Next, suppose there exists some pair 〈x, y〉 ∈ F [s] such that
|[x]SI,α | = i and |[y]A[s]| = j, and i < j. We may assume that either j ∈ I
or j > in since if j < i0 or if im < j < im+1, then we can simply wait
until more elements are added to [y]A. Then we must correct f before
extending it to any new values. We correct all pairs that need correction
in order of their first coordinates. Let 〈x, y〉 be such a pair.

(a) We first remove all pairs 〈w, z〉 with wESI,αx from F [s+1].

(b) We then add new images for the elements of [x]SI,α by searching
for the least t > s such that there is an equivalence class [y′]A[t] of
size i that was not in EA[s]. Such a class will always be available
since the structures are isomorphic, so that there are infinitely many
equivalence classes of size i in A. Unfortunately, |[y′]A| itself may
actually be greater than i. To avoid picking the wrong class infinitely
often, we need to always pick the equivalence class at stage t that has
the smallest allowable members to send [x] to so that eventually we
will pick one of the right size. We guarantee this as follows: if there
exists any z such that |[f(z)]A[s]| = |[f(z)]A[t]| = i, and all elements
of [z]SI,α are greater than x, then let x′ be the least such number so
that the size of [f(x′)]A has appeared to be i for at least as long as
any other such number at stage t. We first remove all pairs 〈z, w〉
with zESI,αx′ from F [s+1]. Then assign the elements of [x]SI,α to
the equivalence class of f(x′)[s] by enumerating the appropriate pairs
into F [s+1]. Finally, we assign the elements of [x′]SI,α to [y′]A[t].

(c) If j ∈ I, we then map the least equivalence class of size j in SI,α that
has not been previously assigned values under f by enumerating the
appropriate pairs to do this into F [s+1].
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(d) Otherwise, |[y]A| = ω. In this case, we take the next unused infinite
equivalence class in SI,α and map the first j of its elements to those
of [y]A[s]. Such a class will always be available since the structures
are isomorphic.

Substage III. After all corrections are made, we extend f .

(a) First, we choose the least equivalence classes of each of the sizes i ∈ I
in SI,α that are not currently assigned images under f and search
for the least t ≥ s such that A[t] has equivalence classes of those
sizes consisting of elements not currently in the range of f . We then
enumerate pairs into F [s+1] to map the unassigned classes in SI,α

to these new classes of the same size in A[t].

(b) If there exists a number y such that |[y]A[s]| = j > in that is not in
the range of f [s], then we take the next unused infinite equivalence
class in SI,α and map the first j of its elements to those of [y]A[s].
As above, such a class will always be available since the structures
are isomorphic.

This completes the construction.

First, notice that the correcting action in substage II.b above only enumerates
a pair 〈x, y〉 into F [s+1] if this pair has never been in F [t] for any t ≤ s. This
is the only time that f changes value on an argument, so F is a 2-c.e. set. Since
the correcting action only changes F when some equivalence class increases in
size, the value of f on any argument can only change at most max (I) times, so
that f comes to a limit on each argument. The extension of f that takes place
at the end of each stage therefore shows that f is a total graph-2-c.e. function.
Since the equivalence class of [y′]A[t] in substage II.b is not of size i in A[s],
any number x′ that is mapped to an element of [y′]A by f [s] must belong to an
equivalence class of smaller size than i, and so it must change its value on or
before stage t. Hence the function f is one-to-one.

Since the only equivalence classes in either SI,α or A that have cardinality
greater than max (I) are the infinite ones, the action taken in substage III.b
guarantees that any number with an infinite equivalence class in A has a number
with an infinite equivalence class in SI,α mapped to it. The action taken in
substage I keeps f consistent on the infinite equivalence classes, and so the
action taken in substage III.b together with the correcting action that takes
place in substage II.d guarantee that every infinite class in SI,α is mapped to
one in A.

If [x]SI,α = i ∈ I, then this fact is computable, so that x is never mapped
to any y such that |[y]A| < i. By the extension of f that takes place in substage
III.a, x is eventually mapped to some y with |[y]A| ≥ i. If |[y]A| > i, then
the correcting action later forces x to be mapped to a new number with an
apparently smaller equivalence class. Since the structures are isomorphic and
there are infinitely-many equivalence classes of size i, there is always some y
so that |[y]A| = i, and, eventually, such a number must become available for
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x to be assigned to it. In substage II.b, we always map [x]SI,α to the class in
A[t] that has appeared to have size i for the longest time; hence, we eventually
select an image of size i. The action taken in substage III guarantees that
each y eventually gets put into the range of f . If |[y]A| is finite, then the
correcting action in substage II guarantees that at most |[y]A| different numbers
get mapped to y over the course of the construction and that whatever number
is eventually mapped to y has an equivalence class of the correct size. Hence f
is a graph-2-c.e. isomorphism, as required.

Corollary 22. If A is a computable equivalence structure with bounded finite
character (and any number of infinite equivalence classes), then A is relatively
graph-2-c.e. categorical.

Proof. If A has only finitely-many finite-sized equivalence classes, then it is
computably categorical. Otherwise, let I0 be the set of all i ∈ ω such that
there are only finitely many nonempty equivalence classes of size i in A. I0 is
finite, since A has bounded character. Then A is isomorphic to the direct sum
of a finite equivalence structure consisting of all the elements with equivalence
classes of sizes in I0 and some basic I, α equivalence structure SI,α. Such a
structure is graph-2-c.e categorical by Theorem 21.

Theorem 21 makes it possible to finish characterizing the relationship be-
tween ω-c.e. categoricity and graph-2-c.e. categoricity for computable equiva-
lence relations.

Corollary 23. Any weakly ω-c.e. categorical computable equivalence structure
is graph-2-c.e. categorical. There is a graph-2-c.e. categorical computable equiv-
alence structure that is not ω-c.e. categorical.

Proof. Since weakly ω-c.e. categorical computable equivalence structures are
computably categorical, the first assertion is trivial. By Theorem 21, the basic
1/2 equivalence structure S1/2 is graph-2-c.e. categorical. By Theorem 14, it is
not weakly ω-c.e. categorical.

A computable equivalence structure need not have bounded finite character
in order to be graph-2-c.e. categorical.

Theorem 24. If A is a computable equivalence structure such that for every
i ≤ ω, A has only finitely many equivalence classes of size i, then A is relatively
graph-2-c.e categorical.

Proof. Let A be a computable equivalence structure with only finitely many
equivalence classes of each size i ≤ ω and let B be a computable equivalence
structure isomorphic to A. Without loss of generality, we can in fact assume that
A has no infinite equivalence classes since there will always be a EB-computable
mapping from any finite number of infinite equivalence classes in A to the same
number of classes in B. Also, by Corollary 22, we can assume A has unbounded
finite character.
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As in the proof of Theorem 21, we construct an EB-graph-2-c.e. isomorphism
f : A→ B. by defining a EB-2-c.e. set F that is the graph of f in stages. Let
B[s] =

{
y ∈ B : y < s

}
and EB[s] =

{
〈y, z〉 : y < s ∧ z < s ∧ zEBy

}
. Then,

for any natural number y < s, [y]B[s] =
{
z : z < s ∧ zEBy

}
. Again, [y]B[s]

and EB[s] are finite sets with indices computable in EB. We make analogous
definitions for A. For each s, [x]A[s] and EA[s] have computable indices. Notice
that this definition ensures that elements enter equivalence classes in increasing
order during the construction.

An important difference here from the situation in Theorem 21 is that for
each x ∈ ω, we knew the size of [x]SI,α , whereas here have in general no knowl-
edge in advance of the size of [x]A. The key problem we have is the following.
Suppose at stage s+1 we assign f(x) = y because |[x]A[s]| = |[y]B[s]| and then
at a later stage s′, the size of y’s equivalence class increases, although at this
stage we can still find a new number z so that |[x]A[s′]| = |[z]B[s′]|. So far there
is no problem, since, just as in the proof of Theorem 21, we can remove 〈x, y〉
from the graph of f and add 〈x, z〉. But now, suppose that at a later stage
s′′, the size of x’s equivalence class increases so that |[x]A[s′′]| 6= |[z]B[s′′]|, but
|[x]A[s′′]| = |[y]B[s′′]|. Now it is impossible to re-enumerate 〈x, y〉 into the graph
of f since this set is supposed to be relatively EB-2-c.e., not EB-3-c.e. However,
since both |[x]A| and |[y]B| have increased since stage s, there must be new ele-
ments x′ and y′ in each of these sets respectively. We can use the extra leeway
these new elements give us to map [x]A[s′′] onto [y]B[s′′] at stage s′′+1 without
repeating any of the actual values we assigned at stage s+1. Fortunately, be-
cause there are never infinitely-many equivalence classes of any particular size i,
we do no have to change f ’s value on any x except when the size of either [x]A

or [f(x)B] changes. We cannot do this in proof of Theorem 25 below, which
forces our isomorphism there to be merely graph-ω-c.e.

Stage 0: F [0] = ∅.

Stage s+1: We first correct f , then extend it.

Substage I. Suppose there exists some pair 〈x, y〉 ∈ F [s] such that |[x]A[s]| 6=
|[y]B[s]|. We correct all pairs that need correction in order of their first
coordinates. Let 〈x, y〉 be such a pair. We search for the least t ≥ s such
that there exists a y′ such that |[x]A[t]| = |[y′]B[t]| and for all z, if f(z)[s] ∈
[y′]B[t], then either zEA[t]x or |[z]|A[t]| 6= |[y′]B[t]|. Notice that if s < t′,
[x]A = [x]A[t′], and

{
z < t′ : |[z]|B = |[x]A|

}
=
{
z : |[z]|B = |[x]A|

}
, then

t ≤ t′, so this search terminates. There are two cases.

(a) Suppose there is such a y′ so that there does not exist any z such that
f(z)[s] ∈ [y′]B[t]. Remove all pairs 〈z, f(z)[s]〉 such that f(z)[s] ∈
[y]B[s] from F [s+1]. Let [x]A[t] = {x0 < x2 < . . . < xk} and let
[y′]B[t] = {y0 < y2 < . . . < yk}. For each j ≤ k, enumerate 〈xj , yk−j〉
into F [s+1].

(b) Otherwise, suppose for all such y′, there exists a z such that f(z)[s] ∈
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[y′]B[t]. Choose the least such y′. First, remove all pairs 〈z, f(z)[s]〉
such that f(z)[s] ∈ [y]B[s] from F [s+1]. Next, for all z such that
f(z)[s] ∈ [y′]B[t], remove 〈z, f(z)[s]〉 from F [s+1]. Finally, let [x]A[t] =
{x0 < x2 < . . . < xk} and let [y′]B[t] = {y0 < y2 < . . . < yk}. For
each j ≤ k, enumerate 〈xj , yk−j〉 into F [s+1].

Substage II. After all corrections are made, we extend f . For every equiv-
alence class in A[s] that is currently unassigned in f [s], we pick the
least representative x and search for the least t ≥ s such that there is
some y < t with |[x]A[t]| = |[y]B[t]|. Such a t is guaranteed to exist
since A is isomorphic to B and all equivalence classes are finite. Let
[x]A[t] = {x0 < x2 < . . . < xk} and let [y]B[t] = {y0 < y2 < . . . < yk}. For
each j ≤ k, enumerate 〈xj , yk−j〉 into F [s+1].

This completes the construction.
The function f is well-defined, since it can only change from a previously-

defined value at substages I.a or I.b and the pair defining the previous value is
removed from F at that point. Similarly, f is one-to-one, since the only case
where x 6= z and f(x)[s+1] = f(z)[s] is in substage I.b and there 〈z, f(z)[s]〉 is
removed from F [s+1]. Our actions in substage I ensure that the function f is
structure-preserving and our actions in substage II ensure that f is total. Since
there are only finitely many equivalence classes of any particular size and f is
a total, injective homomorphism, it is evidently onto as well. Hence f is an
isomorphism.

All that remains is to show that F is 2-c.e. relative to EB. Clearly, the
construction is computable in EB. Suppose there exists some x and s0 < s1 < s2

so that f(x)[s0] = f(x)[s2], but f(x)[s0] 6= f(x)[s1]. Let y = f(x)[s0], let k =
|[x]A[s0]| and let m = |[x]A[s2]|. Since |[x]A[s0]| = |[y]B[s0]|, |[x]A[s2]| = |[y]B[s2]|,
and at least one class had to increase in size, k < m. Let [x]A[s2] = {x0 < x2 <
. . . < xm} and [y]B[s2] = {y0 < y2 < . . . < ym}. There exists j ≤ k < m
such that x = xj . But then f(x)[s0] = yk−j 6= ym−j = f(x)[s2]. This is a
contradiction so that f can never return to a previous value. Hence F is 2-c.e.
relative to EB.

Corollary 20 shows there is no nondegenerate hierarchy of computable equiv-
alence structures in the case of α-c.e. categoricity. Hence there is no way to
produce analogues of the results of Koussainov, Stephan, and Yang [3] in the
case of computable equivalence structures.

Calvert, Cenzer, Harizanov, and Morozov, [1] show that a computable equiv-
alence structure is not relatively ∆0

2 categorical if and only if it has unbounded
character and infinitely many infinite equivalence classes. Hence, the following
result, together with Theorem 21, shows that a computable equivalence struc-
ture is relatively ∆0

2 categorical if and only if it is graph-ω-c.e. categorical.

Theorem 25. Any computable equivalence structure with a finite number of
infinite equivalence classes is relatively graph-ω-c.e categorical.
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Proof. Let A be a computable equivalence structure with only finitely many
infinite equivalence classes and let B be a computable equivalence structure
isomorphic to A. Without loss of generality, we can in fact assume that A
has no infinite equivalence classes, since there will always be a EB-computable
mapping from any finite number of infinite equivalence classes in A to the same
number of classes in B. Also, by Corollary 22, we can assume A has unbounded
finite character.

The situation here is similar to that in Theorem 24, but we have the addi-
tional problem that, as in Theorem 21, we have to make sure that if there are
infinitely many classes of some particular size in A, then all of them eventually
get mapped to class of the same size in B. It is not too hard to incorporate the
strategy that solves this problem in the proof of Theorem 21 into the construc-
tion by giving smaller numbers priority in selecting which equivalence class they
enter. This does, however, cause the isomorphism to be relatively graph-ω-c.e.
rather than graph-2-c.e. The details are similar to those in the proof of Theorem
24.

Stage 0: F [0] = ∅.

Stage s+1: We first correct f , then extend it.

Substage I. Suppose there exists some pair 〈x, y〉 ∈ F [s] such that |[x]A[s]| 6=
|[y]B[s]|. We correct all pairs that need correction in order of their first
coordinates. Let 〈x, y〉 be such a pair. We search for the least t ≥ s
such that there exists a y′ such that |[x]A[t]| = |[y′]B[t]| and for all z, if
f(z)[s] ∈ [y′]B[t], then either zEA[t]x or |[z]|A[t]| 6= |[y′]B[t]|. Such a stage
t clearly exists if there are infinitely many equivalence classes in A with
the same size as [x]A. Otherwise there exists some t′ such that s < t′,
[x]A = [x]A[t′] and

{
z < t′ : |[z]|B = |[x]A|

}
=
{
z : |[z]|B = |[x]A|

}
. As

in the proof of Theorem 24, then, there must exist an appropriate t ≤ t′.
Either way, this search terminates. By the conditions on t, there must exist
some y′ such that |[x]A[t]| = |[y′]B[t]| and for all z, if f(z)[s] ∈ [y′]B[t], then
either zEA[t]x or |[z]|A[t]| 6= |[y′]B[t]|. Hence, there must also exist some
y′ such that |[x]A[t]| = |[y′]B[t]| and for all z, if f(z)[s] ∈ [y′]B[t], then
either zEA[t]x or |[z]|A[t]| 6= |[y′]B[t]| or x < z. Choose the least such
y′ that has the least s′ for which [y′]B[s′] = [y′]B[t]. (As in the proof of
Theorem 21, we intend to map [x]A[t] to the best equivalence class in B
that is not the image of some higher-priority equivalence class.) Remove
all pairs 〈z, f(z)[s]〉 such that f(z)[s] ∈ [y]B[s] from F [s+1]. For all z
such that f(z)[s] ∈ [y′]B[t], remove 〈z, f(z)[s]〉 from F [s+1]. Finally, let
[x]A[t] = {x0 < x2 < . . . < xk} and let [y′]B[t] = {y0 < y2 < . . . < yk}.
For each j ≤ k, enumerate 〈xj , yk−j〉 into F [s+1].

Substage II. After all corrections are made, we extend f , using the same pro-
cedure as above. For every equivalence class in A[s] that is currently unas-
signed in f [s], we pick the least representative x. We search for the least
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t ≥ s such that there exists a y′ such that |[x]A[t]| = |[y′]B[t]| and for all z, if
f(z)[s] ∈ [y′]B[t], then either zEA[t]x or |[z]|A[t]| 6= |[y′]B[t]|. By the condi-
tions on t, there must exist some y′ such that |[x]A[t]| = |[y′]B[t]| and for all
z, if f(z)[s] ∈ [y′]B[t], then either zEA[t]x or |[z]|A[t]| 6= |[y′]B[t]| or x < z.
Choose the least such y′ that has the least s′ for which [y′]B[s′] = [y′]B[t].
Remove all pairs 〈z, f(z)[s]〉 such that f(z)[s] ∈ [y]B[s] from F [s+1]. For
all z such that f(z)[s] ∈ [y′]B[t], remove 〈z, f(z)[s]〉 from F [s+1]. Finally,
let [x]A[t] = {x0 < x2 < . . . < xk} and let [y′]B[t] = {y0 < y2 < . . . < yk}.
For each j ≤ k, enumerate 〈xj , yk−j〉 into F [s+1].

This completes the construction.

The function f is well-defined, since it can only change from a previously-
defined value in substage I and the pair defining the previous value is removed
from F at that point. Similarly, f is one-to-one, since whenever x 6= z and
f(x)[s+1] = f(z)[s], 〈z, f(z)[s]〉 is removed from F [s+1]. Our actions in sub-
stage I ensure that the function f is structure-preserving and our actions in
substage II ensure that f is total. If there are only finitely many equivalence
classes of the same size as [y]B, then the fact that f is a total, injective homo-
morphism, shows y is in the image of f . Otherwise, suppose there are infinitely
many equivalence classes with the same size as [y]B. Eventually, [y]B is the
equivalence class of that size that has been available for the longest time. Then,
as soon as a new equivalence class of that size in A appears, it will be assigned
to [y]B at substage II. Since there are infinitely many such equivalence classes
in A, one will eventually appear and, hence, y is in the image in this case as
well. Thus f is onto.

All that remains is to show that F is ω-c.e. relative to EB. Clearly, the
construction is computable in EB. Suppose there exists some x and s0 < s1 < s2

so that f(x)[s0] = f(x)[s2], but f(x)[s0] 6= f(x)[s1]. Let y = f(x)[s0], let
k = |[x]A[s0]| and let m = |[x]A[s2]|. Let [x]A[s2] = {x0 < x2 < . . . < xm} and
[y]B[s2] = {y0 < y2 < . . . < ym}. There exists j ≤ k ≤ m such that x = xj . If
k < m, then f(x)[s0] = yk−j 6= ym−j = f(x)[s2]. This is a contradiction so that
it must be the case that k = m. But then f(x) must have changed value under
I because some [x′]A[s1] with x′ < x was temporarily assigned to [f(x)]B[s1]
and then later [x′] was unassigned, giving [x] a chance to be restored. A bound
on the number of times this can happen can be computed recursively from x,
in fact, it is less than 2x+1. Hence f is relatively graph-ω-c.e., as required.

We conjecture that in fact this result can be improved to show that such a
structure must be relatively graph-2-categorical. In that case, it would follow
that for computable equivalence relations, relative ∆0

2 categoricity is identical
with relative graph-2-categoricity. This would provide an even sharper con-
trast with the case of finite graph, since there would only be three possibilities
for a computable equivalence structure: weakly-ω-c.e. categorical, which is the
same as computably categorical; not computably categorical, but still graph-2-
computably categorical; and not even ∆0

2 categorical.
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