
LINEAR ORDERS WITH DISTINGUISHED FUNCTION
SYMBOL

DOUGLAS CENZER, BARBARA F. CSIMA, AND BAKHADYR KHOUSSAINOV

Abstract. We consider certain linear orders with a function on them,
and discuss for which types of functions the resulting structure is or is
not computably categorical. Particularly, we consider computable copies
of the rationals with a fixed-point free automorphism, and also ω with
a non-decreasing function.

August 23, 2007

1. Introduction

We say that computable structures A1 and A2 have the same computable
isomorphism type if there is a computable isomorphism between them. Ex-
istence of an isomorphism between computable structures does not always
imply that there is a computable isomorphism between them.

Let A be a structure. If B is computable and is isomorphic to A then B is
called a computable presentation (or copy) of A. The number of computable
isomorphism types ofA, denoted by dim(A), is called the computable dimen-
sion of A. It is obvious that dim(A) = 1 if and only if any two computable
presentations of A are computably isomorphic. In case dim(A) = 1, then
we say that A is computably categorical.

One of the central topics in computable model theory is concerned with
the study of computable dimensions of structures and characterizations of
computable categoricity. Here we provide several examples. Goncharov
proved that for any n ∈ ω ∪ {ω} there exists a structure of computable
dimension n [?]. In [?] Cholak, Goncharov, Khoussainov, Shore gave an
example of a computably categorical structure A such that for each a ∈ A
the structure (A, a) has computable dimension n, where n ∈ ω. Goncharov
and Remmel proved that a Boolean algebra A is computably categorical if
and only if it has finitely many atoms [[?, ?]]; similarly a linearly ordered
set is computably categorical if and only if the set of successive pairs in
the order is finite [[?, ?]]. Calvert, Cenzer, Harizanov and Morozov [?]
show that an equivalence structure is computably categorical if and only
if there is a bound on the sizes of finite equivalence classes, and there is
at most one t ∈ {1, ..., b} ∪ {ω} with infinitely many classes of size t. In
[REFERENCE] Khoussainov provided examples of structures of type (A, h)
where h is a function from A to A, of computable dimension n with n ∈ ω. In

Partially supported by Canadian NSERC Discovery Grant 312501.

1

2 DOUGLAS CENZER, BARBARA F. CSIMA, AND BAKHADYR KHOUSSAINOV

[REFERENCE] Ventsov studied computable dimensions of (L;≤, P) where
(L;≤) is a l.o. set and P is a unary predicate. This paper is a continuation
of the above work with an emphasis to study computable dimensions of
linearly ordered sets with distinguished endomorphisms.

In this paper we are interested in structures of the type A = (A,<A, hA)
where (A,<A) is a linearly ordered set and hA is monotonic. Recall that hA

is monotonic if for all x, y ∈ A the condition x <A y implies hA(x) <A hA(y).
We refer to monotonic functions as endomorphisms and call the structures
A = (A,<A, hA) described linearly ordered (l.o.) sets with distinguished
endomorphism. All structures we consider are countable.

A structure A is computable if its open diagram is a computable set. It
is clear that a linearly ordered set A = (A,<A, hA) with endomorphism
hA is computable if and only if A, <A, and hA are all computable. For
computable structures we may always assume that they have domain ω.

In this paper we concentrate on two types of linearly ordered sets with
distinguished endomorphism. The first will be the structures of the form
Q = (ω,<Q, hQ), where (ω,<Q) ∼= η is the order of rationals and hQ is an
automorphism; these structures will be dealt with in the next section. The
second will be structures (ω;≤, h), where (ω,≤) is the standard copy of ω
and h : ω → ω is a computable endomorphism. We note that the successivity
relation in the standard copy is decidable. The last section will study these
structures. Both sections will investigate computable categoricity.

2. Rationals with distinguished automorphism

Let Q = (ω,<Q, hQ) be a computable structure where (ω,<Q) has order
type η and hQ is an automorphism with no fixed points. That is, hQ : ω → ω
is bijective, and for all x, y ∈ ω, x <Q y ⇐⇒ hQ(x) <Q hQ(y), and x 6=
hQ(x). From now on in this section, whenever we write Q = (ω,<Q, hQ),
we mean such a structure.

For an element q ∈ ω, consider the sequence q, hQ(q), (hQ)−1(q), hQ(hQ(q)),
(hQ)−1((hQ)−1(q)), We call the sequence the orbit of q in Q. Note that
since hQ is computable and an automorphism, (hQ)−1 is also computable,
so the orbit of q is computably enumerable. We say that an element x ∈ ω
is covered by the orbit of q if there exist n,m ∈ Z such that (hQ)n(q) ≤Q
x ≤Q (hQ)m(q). Let CQ be the relation {(x, y) | y is covered by x}. The
following lemma is easy to check.
Lemma 2.1. The relation CQ is a c.e. equivalence relation. Moreover for all
x1, y1, x2, y2 ∈ ω if x1 ≤Q x2 and (x1, y1), (x2, y2) ∈ CQ and (x1, x2) 6∈ CQ
then y1 <

Q y2.

Proof. Dovetailing the enumerations of the orbits of each q ∈ ω, along with
comparing each x ∈ ω with each member of each orbit under <Q, we see
that CQ is certainly computably enumerable.

It is reflexive since for any x ∈ ω, (hQ)0(x) = x = (hQ)0(x). It is sym-
metric, since if (hQ)n(x) ≤Q y ≤Q (hQ)m(x) then (hQ)−m(y) ≤Q x ≤Q

LINEAR ORDERS WITH DISTINGUISHED FUNCTION SYMBOL 3

(hQ)−n(y). It is transitive, since if (hQ)n(x) ≤Q y ≤Q (hQ)m(x) and
(hQ)l(y) ≤Q z ≤Q (hQ)k(y), then (hQ)n+l(x) ≤Q z ≤Q (hQ)k+m(x).

Suppose x1, y1, x2, y2 ∈ ω, x1 ≤Q x2, (x1, y1), (x2, y2) ∈ CQ, and y2 ≤Q
y1. Then since (x1, y1), (x2, y2) ∈ CQ, there exist n1,m1, n2,m2 ∈ Z such
that (hQ)n1(x1) ≤Q y1 ≤Q (hQ)m1(x1) and (hQ)n2(x2) ≤Q y2 ≤Q (hQ)m2(x2).
So since y2 ≤Q y1, we have (hQ)n2(x2) ≤Q (hQ)m1(x1). Thus since hQ is an
automorphism and x1 ≤Q x2, we have (hQ)n2−m1(x2) ≤Q x1 ≤Q (hQ)0(x2),
so (x1, x2) ∈ CQ. �

Also note that for all x ∈ ω we have (x, hQ(x)) ∈ CQ. Consider the factor
set ω/CQ. By the lemma above the relation <Q induces a strict linear order
on ω/CQ. We denote it by <CQ .

The following is also an easy lemma.
Lemma 2.2. The relation ≤CQ=<Q ∪CQ is a c.e. pre-linear order on ω.
That is, ≤CQ satisfies the following:

(1) ≤CQ is computably enumerable;
(2) ≤CQ is reflexive;
(3) ≤CQ is transitive;
(4) for all x, y ∈ ω either x ≤CQ y or y ≤CQ x.

Lemma 2.3. If the equivalence relation CQ of the computable structure
Q = (ω,<Q, hQ) has a finite index then Q is computably categorical.

Proof. Note that the hypothesis of the lemma is equivalent to saying that the
linearly ordered set (ω/CQ, <CQ) is finite, say of size k. Let A = (ω,<A, hA)
be isomorphic to Q. Let q1 <

Q ... <Q qk be representatives of the k distinct
CQ-equivalence classes inQ. Let a1 <

A ... <A ak be their images under some
isomorphism A ∼= Q. We use this finite information to build a computable
isomorphism f : Q → A using a standard back-and-forth argument. Recall
that both structures have domain ω, so as we build f by stages we may
speak of the least number not yet in the domain/range of f . At each stage
s we will ensure that fs is a partial isomorphism on its domain. That is,
if x, z ∈ dom(fs) and n,m ∈ Z, we will have (hQ)n(x) ≤Q (hQ)m(z) ⇐⇒
(hA)n(fs(x)) ≤A (hA)m(fs(z)). Similarly for x, z ∈ rng(fs) we will have
(hA)n(x) ≤A (hA)m(z) ⇐⇒ (hQ)n(f−1

s (x)) ≤Q (hQ)m(f−1
s (z)).

Stage 0: Let f0(qi) = ai for i = 1, ..., k.
Stage s + 1 = 2l + 1: Let x be least such that x 6∈ dom(fs). Enumerate

the orbits of q1, ..., qk until we find i such that x is covered by qi. Since h has
no fixed points, either hQ(qi) <Q qi or qi <Q hQ(qi). Assume w.l.o.g. that
qi <

Q hQ(qi), so that hQ is strictly increasing on [qi]. Let {x1, x2, ..., xn} =
dom(fs)∩ [qi]. For each xj we can compute nj ∈ Z such that (hQ)nj (xj) ≤Q
x <Q (hQ)nj+1(xj).

If x = (hQ)nj (xj) for some j, then define fs+1(x) = (hA)nj (fs(xj)). Note
that if xj , xk ∈ dom(fs) and (hQ)nj (xj) = (hQ)nk(xk), then by induction
hypothesis (hA)nj (fs(xj)) = (hA)nk(fs(xk)), so that fs+1(x) is well defined.
Also note that (hA)nj (fs(xj)) 6∈ rng(fs) since if there were p ∈ dom(fs) such

4 DOUGLAS CENZER, BARBARA F. CSIMA, AND BAKHADYR KHOUSSAINOV

that fs(p) = (hA)nj (fs(xj)) then by induction hypothesis p = (hQ)nj (xj),
a contradiction since (hQ)nj (xj) = x 6∈ dom(fs). Thus fs+1 defined in this
way is injective.

Otherwise, we have (hQ)nj (xj) <Q x <Q (hQ)nj+1(xj) for all 1 ≤ j ≤ n.
Let (hQ)nk(xk) be Q-maximal such that (hQ)nk(xk) <Q x. Let (hQ)nl(xl)
be Q-minimal such that x <Q (hQ)nl(xl). Then since (hQ)nk(xk) <Q

(hQ)nl(xl), by induction hypothesis we have (hA)nk(fs(xk)) <A (hA)nl(fs(xl)).
Choose the least y such that (hA)nk(fs(xk)) <A y <A (hA)nl(fs(xl)), and
define fs+1(x) = y. This clearly makes fs+1 well defined and injective on its
domain. It remains to check that fs+1 still satisfies the induction hypoth-
esis. First note that for any xj and any n ∈ ω, if (hQ)n(xj) <Q x then by
definition of nj and k, (hQ)n(xj) ≤Q (hQ)nj (xj) ≤Q (hQ)nk(xk) <Q x. By
induction hypothesis, (hA)n(fs(xj)) ≤A (hA)nk(fs(xk)), and by definition
of fs+1(x), (hA)nk(fs(xk)) <A fs+1(x). Thus for any xj ∈ domfs ∩ [qi] and
any n ∈ ω we have:

(hQ)n(xj) ≤Q(hQ)m(x)

⇒ (hQ)n−m(xj) ≤Q x
⇒ (hA)n−m(fs+1(xj)) ≤A fs+1(x) (by the above argument)

⇒ (hA)n(fs+1(xj) ≤A (hA)m(fs+1(x))

A similar argument shows that

(hQ)n(x) ≤Q (hQ)m(xj)⇒ (hA)n(fs+1(x)) ≤A (hA)m(fs+1(xj)).

Again similarly we have:

(hA)n(fs+1(xj)) ≤A (hA)m(fs+1(x))

⇒ (hA)n−m(fs+1(xj)) ≤A fs+1(x)

⇒ (hQ)n−m(xj) ≤Q fs+1(x)

⇒ (hQ)n(xj) ≤Q (hQ)m(x),

where the second implication follows since x < (hQ)n−m(xj) implies
fs+1(x) ≤A (hA)n−m(fs+1(xj)).

Now for x̂ ∈ domfs such that x̂ 6∈ [qi], then x̂ ∈ [qî] for some î 6= i. But
then as we have seen, we have defined fs(x̂) ∈ [aî]. Thus

(hQ)n(x̂) ≤Q (hQ)m(xj)

⇐⇒ qî <
Q qi

⇐⇒ aî ≤
A ai

⇐⇒ (hA)n(fs(x̂)) ≤A (hA)m(fs+1(xj))

Similarly,(hQ)n(xj) ≤Q (hQ)m(x̂) ⇐⇒ (hA)n(fs+1(xj)) ≤A (hA)m(fs(x̂)).

LINEAR ORDERS WITH DISTINGUISHED FUNCTION SYMBOL 5

Thus we have maintained that for any x, z ∈ domfs+1, and any m,n ∈ Z,
(hQ)n(x) ≤ (hQ)m(z) ⇐⇒ (hA)n(fs+1(x)) ≤A (hA)m(fs+1(z)).

Stage s+1 = 2l+2: As above with dom(fs) replaced by rng(fs), q1, ..., qk
replaced by a1, ..., ak, and fs replaced by f−1

s .
Let f = ∪sfs. Then f is total and onto since f(x) and f−1(x) are defined

by stage 2x + 2. The fact that f is an isomorphism follows from the fact
that at each stage it was a partial isomorphism. �

Now our goal is to show the converse of the lemma above.
Definition 2.4. A computably enumerable pre-linear order is a structure of
the form (ω,R), where R satisfies the following properties:

(1) R is computably enumerable;
(2) R is reflexive;
(3) R is transitive;
(4) for all x, y ∈ ω either (x, y) ∈ R or (y, x) ∈ R.

By Lemma 2.2, if Q = (ω,<Q, hQ) is a computable structure of the
type we have been discussing, then the structure (ω,≤CQ) is a computably
enumerable pre-linear order.

For a c.e. pre-linear order (ω,R), define ≡R to be {(x, y) | (x, y) ∈
R and (y, x) ∈ R}. Clearly, ≡R is a c.e. equivalence relation. Moreover,
R induces a linear order (ω/ ≡R, <R), where <R is induced by R on the
equivalence classes of the relation ≡R.

We say that two pre-linearly ordered c.e. structures (ω,R) and (ω, S) are
computably isomorphic if there exists a computable function f : ω → ω that
induces an isomorphism between the linearly ordered sets (ω/ ≡R, <R) and
(ω/ ≡S , <S). Note that f need not be a bijective function on ω. We also
note that each pre-linearly ordered set (ω,R) is computably isomorphic to
(ω,R′) such that each equivalence class ≡R′ of R′ is an infinite set.

A c.e. presentation of a linearly ordered set L = (L,<L) is a pre-linearly
ordered c.e. structure (ω,R) such that L is isomorphic to (ω/ ≡R, <R).
Theorem 2.5. Any two c.e. presentations of a linearly ordered set L are
computably isomorphic if and only if L is finite.

Proof. Suppose L = (L,<L) is finite, of size k, and that (ω,R) and (ω, S) are
c.e. presentations of L. Let r1, ..., rk, s1, ..., sk ∈ ω be such that [r1] <R ... <R
[rk] and [s1] <S ... <S [sk]. We define a computable function f : ω → ω
as follows. For each x ∈ ω there exists some 1 ≤ i ≤ k such that x ∈ [ri].
Since R is c.e. and (ω/ ≡R, <R) is finite, we can compute i. Set f(x) = si.
Certainly f induces an isomorphism (ω/ ≡R, <R) ∼= (ω/ ≡S , <S).

Now suppose L is infinite and assume by the remark above that each
equivalence class of R is also infinite. We will use a priority argument to
show that there exist two c.e. presentations of L that are not computably
isomorphic. Let (ω,R) be a c.e. presentation of L. We will build another
c.e. presentation of L, (ω, S), that is not computably isomorphic to (ω,R).
The strategy to avoid a particular possible computable isomorphism will

6 DOUGLAS CENZER, BARBARA F. CSIMA, AND BAKHADYR KHOUSSAINOV

be to choose elements that appear to be in different R-equivalence classes,
and place them into different S-equivalence classes. If the isomorphism says
they are different, we will make S collapse them together. The R order
might then also collapse them. But after finitely many tries, the R order
can no longer follow the collapse, since the order must have infinitely many
equivalence classes. With priority, the lower priority requirements should
try to act elsewhere, to ensure that the order we build is a c.e. presentation
of L.

We now give the formal construction of (ω, S). We assume that (ω,R) is
revealed to us stage by stage in a way such that at each stage s, (s,Rs) is a
finite linear pre-order, Rs+1 ⊃ Rs, and R = ∪s∈ωRs. We will enumerate S
stage by stage, to ensure it is computably enumerable. We also build a map
f : ω → ω that induces an isomorphism (ω/ ≡S , <S) → (ω/ ≡R, <R) using
stage by stage approximations. At each stage s, we will have domfs an initial
segment of ω, and have domfs+1 ⊃ domfs. We will have Ss ⊆ (domfs)2

be reflexive, transitive, and for all x, y ∈ domfs have either (x, y) ∈ Ss or
(y, x) ∈ Ss, so that S will be a c.e. linear pre-order. At each stage s, we
will define fs such that fs induces an isomorphism (domfs/ ≡Ss , <Ss) ∼=
(domfs/ ≡Rs , <Rs). We will ensure that for each y ∈ ω, lims fs(y) exists,
so that f will induce an isomorphism (ω/ ≡S , <S) ∼= (ω/ ≡R, <R). We will
also meet for each e ∈ ω the requirement:

Qe : ϕe does not induce an isomorphism (ω/ ≡R, <R) ∼= (ω/ ≡S , <S)

To meet requirement Qe, we will at each stage s ≥ e have defined xe0,s ≤Ss
xe1,s. The goal will be that for each e ∈ ω and i ∈ {0, 1}, xei = lims x

e
i,s exist,

and if ϕe(xie) ↓ for i = 0, 1 then if ϕe(xe0) ≡R ϕe(xe1) then xe0 <S x
e
1, and if

ϕe(xe0) <R ϕe(xe1) then xe0 ≡S xe1, so that ϕe does not induce an isomorphism
(ω/ ∼S ,≤S) ∼= (ω/ ∼R,≤R).

Since we are building S to be a linear pre-order, we will often say “insert
z into S between x and y” as shorthand for “ for all w such that w ≤Ss
x, enumerate (w, z) ∈ Ss+1, and for all w such that y ≥Ss w, enumerate
(z, w) ∈ Ss+1.” We will also use “x ∈ Rs” as shorthand for (x, x) ∈ Rs.

Stage 0: Let x0
0 = 0 and x0

1 = 1. Speed up the enumeration of R so that
in R0 there exist u <R0 v. Enumerate (0, 1) ∈ S0, and define f0(0) = u and
f0(1) = v.

Stage s+ 1:
Begin with f̃ = fs. As we go through stage s + 1 we will make (finitely

many) changes to f̃ . We will let fs+1 be the final version of f̃ at the end of
the stage.

Step 1: Begin by letting s̃ = s. Choose the least e ∈ ω such that (1) or
(2) hold.

(1) (∃l < e)(∃i, j ∈ {0, 1})[f̃(xei,s) ≡Rs̃ f̃(xlj,s)]

LINEAR ORDERS WITH DISTINGUISHED FUNCTION SYMBOL 7

(2) f̃(xe0,s) ≡Rs̃ f̃(xe1,s) ∧ ¬(ϕe,s̃(xe0,s) ↓<Rs̃ ϕe,s̃(x
e
i,s) ↓)

For n < e, set xni,s+1 = xni,s. For each e ≤ n ≤ s, in turn, do as follows.
Speeding up the enumeration of R to a stage s′ ≥ s̃ if necessary, find the
least 〈u, v〉 ∈ ω such that u <Rs′ v and there is no xlj,s+1 with l < e and
u ≤Rs′ f̃(xlj,s+1) ≤Rs′ v. If u ∈ rngf̃ , set xn0,s+1 = f̃−1(u), otherwise
choose the least w 6∈ domf̃ , set xn0,s+1 = w, enumerate (a,w) ∈ Ss+1 for
all a ∈ domf̃ such that f̃(a) ≤Rs′ v, enumerate (w, b) ∈ Ss+1 for all b ∈
domf̃ such that v ≤Rs′ f̃(v), and define f̃(w) = u. Similarly, if v ∈ rngf̃ ,
set xn1,s+1 = f̃−1(v), otherwise choose the least w 6∈ f̃ , set xn1,s+1 = w,
enumerate (a,w) ∈ Ss+1 for all a ∈ domf̃ such that f̃(a) ≤Rs′ u, enumerate
(w, b) ∈ Ss+1 for all b ∈ domf̃ such that u ≤Rs′ f̃(b), and define f̃(w) = v.
(Here we are using the assumption that each equivalence class is infinite.)
If in speeding up the enumeration of R we caused f̃(xli,s+1) ≡Rs′ f̃(xl

′
i′,s+1)

for some l, l′ < n, then go back to the beginning of step 1 and repeat with
s̃ = s′. This process must halt since L is infinite. In step 2, when we refer
to Rs+1, we really mean the final Rs′ at the end of step 1.

Step 2: For each u ∈ Rs+1 − rngf̃ , in turn, compute y0, y1 ∈ rngf̃ such
that y0 <Rs+1 u <Rs+1 y1 and there is no z ∈ rngf̃ with y0 <Rs+1 z <Rs+1 y1.
Choose the least w 6∈ domf̃ , insert w into S between f̃−1(y0) and f̃−1(y1),
and define f̃(w) = u.

Step 3: Let e be least such that ϕe(xe0,s+1) ↓<Rs+1 ϕe(x
e
1,s+1) ↓. Enu-

merate (y, xe0,s+1) ∈ Ss+1 and re-define f̃(y) = f̃(xe0,s+1) for all xe0,s+1 ≤Ss+1

y ≤Ss+1 x
e
1,s+1. For each u ∈ Rs+1 − rngf̃ , in turn, compute y0, y1 ∈ rngf̃

such that y0 <Rs+1 u <Rs+1 y1 and there is no z ∈ rngf̃ with y0 <Rs+1

u <Rs+1 y1. Choose the least w 6∈ domf̃ , insert w into S between f̃−1(y0)
and f̃−1(y1), and define f̃(w) = u.

Let fs+1 = f̃ .

Lemma 2.6. For each e ∈ ω, i ∈ {0, 1}, xei = lims x
e
i,s exists, and f(xei) =

lims fs(xei) exists.

Proof. By induction. Suppose the lemma holds for all l < e. Let s0 be
the stage by which xlj,s = xlj and fs(xlj) = f(xlj) for all s ≥ s0 and l < e.
Let 〈u, v〉 be least such that u <R v and there is no xlj with l < n and
u ≤R f(xlj) <R v. Such a pair must exist since L is infinite. Let s1 be the
stage by which (u, v) ∈ Rs1 . If xei,s were re-defined at any stage s2 > s1,
then they would be set such that fs2(xe0,s2) = u and fs2(xe1,s2) = v. Then by
induction hypothesis we would never re-define xei,s. If at some stage s3 > s2

we found that ϕe,s3(xe0,s2) ↓<Rs3 ϕe,s3(xe0,s2) ↓ then we would have defined
fs3(xe1) = fs3(xe1), and those would be the final values of xei . �

Lemma 2.7. For each x ∈ ω, f(x) = lims fs(x) exists.

8 DOUGLAS CENZER, BARBARA F. CSIMA, AND BAKHADYR KHOUSSAINOV

Proof. The only time fs(x) is re-defined is in step 3 of the construction. If
that happens, we also set x ≡Ss xei,s for some e ∈ ω, i ∈ {0, 1}. Then since
fs is induces an isomorphism at every stage of the construction, and since
lims fs(xei,s) exists, we must have f(x) = f(xei). �

This completes the proof of Theorem �

Lemma 2.8. Let (ω,R) be a c.e. pre-linearly ordered set. There exists a
computable structure Q = (ω,<Q, hQ) such that (ω,≤CQ) is computably
isomorphic to (ω,R).

Proof. Note that if we take a computable copy of the rationals with addition,
then taking h(x) = x+ 1 covers all elements. We name this structure Q+1.
Since (ω,R) is a c.e. pre-linearly ordered set, we may assume it is revealed
to us in such a way that at stage s, for any n,m ≤ s, either (n,m) ∈ Rs or
(m,n) ∈ Rs. Recall that since R is a c.e. pre-linearly ordered set, if at stage
s we believe that n <Rs m, then we might find out at a later stage t that
n ≡Rt m. We will construct a computable structure Q = (ω,<Q, hQ) by
stages. At each stage s, we will decide where a bunch of numbers will sit in
the <Q ordering, and by the next stage at the latest, we will define hQ and
(hQ)−1 on them. When we enumerate numbers, we will give them labels. As
we proceed through the construction, the labels of the numbers will change
(though of course their position in the ordering and the values of hQ on
them will not). For each equivalence class in R, we want to build a copy of
Q+1. As we find out that members we thought were not R-equivalent turn
out to be R-equivalent after all, we must link the copies we are building.
We will define a computable function f : ω → ω stage by stage.

If n ≤ s is such that there is no m < n with m ≤Rs n, then we ensure that
n has an “active label group” at stage s. An active label group will be a
set of numbers in ω with labels 〈n, k2s 〉 with the following properties. There
will exist mn,s ≤ Mn,s ∈ Z such that for all mns ≤ k < Mn,s + 2s, there
are numbers with label 〈n, k2s 〉 such that 〈n, l

2s 〉 <
Q 〈n, k2s 〉 ⇐⇒ l < k, and

hQ(〈n, k2s 〉) = 〈n, k2s + 1〉 for mn ≤ k < Mn.
Stage 0: Give 0 the label 〈0, 0〉. Set f(0) = 0.
Stage s+1:
Step 1: If there exist n, p ≤ s such that n <Rs p but n ≡Rs+1 p, then we

must join the n and p label groups. We set h(〈n, Mn,s+k
2s 〉) = 〈p, mp,s+k2s 〉. If

n < p then we give all the numbers with p-labels new n-labels by setting
〈p, mp,s+k2s 〉 = 〈n, Mp,s+k

2s + 1〉. If p < n then we give all the numbers with
n-labels new p-labels by setting 〈n, Mn,s+k

2s 〉 = 〈p, mp,s+k2s − 1〉.
Step 2: If s+1 ≡Rs+1 n for some n ≤ s, then assume n is the least such. In

that case there is an active n-label group. Set f(s+1) = 〈n, 0〉. If s+1 6≡Rs+1

n for any n ≤ s, then we introduce a new s+1-label group. We take the next
2s many numbers in ω that have not yet been used, and give them labels
〈s+ 1, k2s 〉 where 0 ≤ k < 2s. We declare 〈s+ 1, i〉 <Q 〈s+ 1, j〉 ⇐⇒ i < j,

LINEAR ORDERS WITH DISTINGUISHED FUNCTION SYMBOL 9

〈n, i〉 <Q 〈s+ 1, j〉 if n <Rs+1 s+ 1, and 〈s+ 1, i〉 <Q 〈n, j〉 if s+ 1 <Rs+1 n.
We let f(s+ 1) = 〈s+ 1, 0〉.

Step 3: We extend each active n-label group. That is, for each active
n-label group, we let mn,s+1 = 2mn,s−1 and Mn,s+1 = 2Mn,s+1. We insert
new numbers with labels 〈n, k

2s+1 〉 where k is an odd number and mn,s+1 ≤
k < Mn,s+1 + 2s+1. For the new labels, we set h(〈n, i〉) = 〈n, i+ 1〉. �

Lemma 2.9. Assume Q = (ω,<Q, hQ) is such that (ω/CQ, <CQ) is not a
finite linear order. Then Q is not computably categorical.

Proof. Consider (ω,≤CQ). It is a c.e. pre-linear order. Let (ω,R) be a c.e.
pre-linear order isomorphic but not computably isomorphic to (ω,≤CQ).
Such (ω,R) exists by Theorem 2.5. By Lemma 2.8, there exists A = (ω,<A

, hA) such that (ω,R) and (ω,CA) are computably isomorphic. It is clear
that Q and A are isomorphic. If they were computably isomorphic then
the c.e. pre-linear orders (ω,≤CQ) and (ω,≤CA) would also be computably
isomorphic. But this would imply that (ω,≤CQ), and (ω,R) are computably
isomorphic, a contradiction. �

Theorem 2.10. Let Q = (ω,<Q, hQ) be a computable structure such that
(ω,<Q) ∼= η and hQ is an automorphism without fixed points. Then Q is
computably categorical if and only if (ω,≤CQ) is a finite linear order.

Proof. By Lemma 2.3 and Lemma 2.9. �

3. Natural numbers with distinguished endomorphisms

Now we consider (ω,≤, h), where h is a monotonic function.
We first recall that (ω,≤) is not computably categorical. The main differ-

ence between (ω,≤) and other computable copies that are isomorphic to it
is that in the standard copy the successivity relation is decidable, but this is
not true for arbitrary copies. Recall that to show (ω,≤) is not computably
categorical, we build stage by stage a computable copy where we occasion-
ally insert an extra point to kill an isomorphism. So long as we don’t insert
infinitely many points below a fixed one, we end up building a copy of ω.

Now consider the case of (ω,≤, h), where h is a monotonic function.
Notice that if h is just the identity, then we are in the case of (ω,≤),
and (ω,≤, h) is not computably categorical. On the other hand, if for
all x ∈ ω, h(x) = x + 1, and A ∼= (ω,≤) then mapping f(0) = 0A and
f(x+1) = hA(f(x)) gives a computable isomorphism, so in this case (ω,≤, h)
is computably categorical.

In the second example, every number in ω was linked to 0 via h. We
define the trace of x in (ω,≤, h) to be the set {hn(x) | n ∈ ω}. The next
theorem shows that if the trace of any member of (ω,≤, h) is infinite, then
(ω,≤, h) is computably categorical.
Theorem 3.1. If there exists x ∈ ω such that (∀n ∈ ω)[hn+1(x) > hn(x)],
then (ω,≤, h) is computably categorical.

10 DOUGLAS CENZER, BARBARA F. CSIMA, AND BAKHADYR KHOUSSAINOV

Proof. Suppose A ∼= (ω,≤, h), and suppose f : (ω,≤, h) → A is an iso-
morphism. We show how to compute f given f(x), where x is such that
(∀n ∈ ω)[hn+1(x) > hn(x)]. To compute f(y) for arbitrary y ∈ ω, first
compute n such that hn(x) > y. We then compute hn(f(x)). Then search
until we find z0 <

A z1 <
A ... <A zy <

A ... <A zhn(x) = hn(f(x)). Since
A ∼= (ω,≤, h), we will know that our approximation to A is correct up to
hn(x), so we know that f(y) = zy. �

Consider (ω,≤, h). If the trace of f on 0 is not infinite, then its trace
defines a “clump” that begins with 0 and ends with hn(0) where hn(0) =
hn+1(0). More precisely, we define the clumps of (ω,≤, h) as follows. Let
C0 = {x | (∃n)[x ≤ hn(0)]}. If max{Ci} < ∞, we let Ci+1 = {x | x >
max{Ci}&(∃n)[x ≤ hn(max{Ci}+ 1)]}.

We now describe computable categoricity of (ω,≤, h) in terms of its
clumps. Theorem 3.1 shows that if (ω,≤, h) has an infinite clump, then
it is computably categorical. In the next theorem, we see that if the size
of the clumps is bounded by a constant, then (ω,≤, h) is not computably
categorical. (Actually, the next theorem shows more, since bounded trace
does not imply bounded clumps, though the converse is obviously true).
Theorem 3.2. If there exists b ∈ ω such that for all x ∈ ω, there exists n ≤ b
such that hn+1(x) = hn(x), then (ω,≤, h) is not computably categorical.

Proof. Let A = (ω,≤, h) be given with such a bound b on the size of the
clumps and let C0, C1, . . . be as defined above. For each c ≤ b, there are a
finite number of ways (patterns) (C,≤, hC) that h can be defined on a clump
Ci of size c. Thus there exists N such that all patterns which occur only
finitely aften do not occur in any Ci with i > N and hence each pattern
which occurs in Ci with i > N occurs infinitely often. Hence we may assume
without loss of generality that every pattern in A occurs infinitely often. We
will construct B = (ω,≤B, hB) which is isomorphic to A but not computably
isomorphic. At stage s, we will have a structure Bs, with clumps Ci,s, and a
computable isomorphism fs : A → B. The construction will ensure that the
clumps converge to CBi so that the functions fs converge to an isomorphism.
We will also meet the following requirements for each e:

Re : ϕe is not an isomorphism from A to B.
We will meet this requirment by inserting clumps intoA whenever varphie

threatens to define the unwanted isomorphism.
At stage s = 0, just let B0 = A. At stage s + 1, look for the least e

such that ϕe is an isomorphism taking Bs to A as far as the first e + 1
clumps. Let C be the e + 1st clump of size k in A. Now begin to define
Bs+1 as follows. The initial segment of Bs+1 as far as the first e clumps is
preserved. Now insert into Bs another copy of Ce+1 immediately preceding
the existing copy. Then we have a partial isomorphism fs+1 mapping the
first e+ 1 clumps of A to Bs+1 which disagrees with ϕe. To complete Bs+1

LINEAR ORDERS WITH DISTINGUISHED FUNCTION SYMBOL 11

and fs+1, we will continue to insert segments into B. We need to insert a
copy of Ce+2 into Bs+1 as follows. Look for the first clump Ct after Ce+1

which has the same pattern as Ce+1 and insert the segment Ce+2, . . . , Ct−1

into Bs+1. This will extend fs+1 so that the domain includes C0, C1, . . . , Ct
and the range includes the first e clumps of Bs, the newly inserted clumps
and finally the e + 1st clump of Bs. Now continue inserting segments into
B and extending the map fs+1 to include one more clump of Bs at a time.
This gives a recursive definition of Bs+1 and fs+1. The structure B is the
limit of the structures Bs. B is computable since the ordering ≤B and the
function hB are defined on new elements as soon as they come into B and
never change. The isomorphism f : A → B is the limit of the sequence
fs : s < ω}. As usual, each requirement Re can only be injured finitely
often and thus each requirement is eventually satisfied, either because ϕe
never defines an isomorphism as far as the first e + 1 clumps of size k or
because we inserted some clump to defeat a possible isomorphism at a stage
where Re had obtained the highest priority. �

Now we look at the case where there is no infinite trace, but there is also
no bound on the length of traces.
Theorem 3.3. There exists a structure (ω,≤, h) where the traces are all
finite but the structure is computably categorical.

In order to prove the above theorem, we will make use of special clumps
that cannot be embedded into one another. Since these will also be useful
in later theorems, we define them now.
Definition 3.4. For each i ∈ ω let Di = (Di,≤, h) be a structure with
domain Di = {x0, x1, ..., xi+1}, xj < xj+1 for 0 ≤ j ≤ i, h(x0) = x2,
h(xj) = h(xj+1) for 1 ≤ j ≤ i, and h(xi+1) = xi+1.

Note that for i 6= j, Di 6↪→ Dj .

Proof of Theorem 3.3. Define h : ω → ω such that (ω,≤, h) is isomorphic
to the order D0 < D1 < Now suppose A ∼= (ω,≤, h). To define the
computable isomorphism, just enumerate the approximation to A. Since the
Di cannot embed into one another, we know that once something isomorphic
to Di shows up in A, it must be mapped to Di in (ω,≤, h). A clump in A
can be identified as a sequence a0 < a1 < · · · < ai such that hA(a0) = a2,
hA(aj) = aj+1 for j < i and hA(ai) = ai. Given a ∈ A, simply wait for a
clump of size i containing a and then map a into Di. �

Theorem 3.5. Let X = {i | (∀j > i)Ci 6↪→ Cj}. If X is not h-immune then
the order is computably categorical.

Proof. Suppose X is not hyperimmune. Then there exists a computable
function g that majorizes the principal function of X. That is, among
C0, ..., Cg(n) there are at least n-many clumps that cannot be embedded into
any later clumps. Thus given an approximation of A ∼= (ω,≤, h), we may
define a computable isomorphism as follows. To define the isomorphism on

12 DOUGLAS CENZER, BARBARA F. CSIMA, AND BAKHADYR KHOUSSAINOV

the initial segment C0 < ... < Cn of (ω,≤, h), run the approximation of A
until we see an initial segment isomorphic to C0 < ... < Cg(n). Then since
this initial segment contains n-many clumps that cannot embed into future
clumps, it must be correct on at least the first n clumps. So we can define
the isomorphism accordingly. �

However, the converse is not true.

Theorem 3.6. There exists a structure (ω,≤, h) with X hyperimmune and
(ω,≤, h) computably categorical.

Proof. We will build (ω,≤, h) using the special clumps Di from Definition
3.4. The idea will be that as we see possible computable copies that appear
to be isomorphic to the (ω,≤, h) that we are building, we use the fact that
the special clumps cannot embed into one another to force a unique (com-
putable) isomorphism. To meet the hyperimmunity requirement, we ensure
that non-repeated special clumps occur sparsely.

We build the structure by stage by stage revealing a longer initial segment
of it (we always add entire clumps). Let requirement Re work for building
a computable isomorphism between A and the structure being built by Ψe,
if it is isomorphic to A. Each Re requirement will hold two special clumps.
The two special clumps may not be repeated. When Ψe looks the same as A
up to the second special clump, we make this the first special clump, choose
a new second special clump, and allow the original first special clump to
be repeated. We extend the definition of the isomorphism up to the new
first special clump. This will have to be correct, since in order to change
the initial segment that Ψe has revealed and still be isomorphic to A, there
must be a place to absorb the first special clump. We will not provide such
a place if Ψe has changed.

To make X h-immune: When ϕe(e) ↓, ensure that there are at most e
special clumps less than ϕe(e). This will injure requirements Ri for i < e

2 ,
and we will have to completely restart our definition of the isomorphisim for
those Ri. However, each Ri will be injured at most 2i-times, after which, if
Ψi
∼= A, then it’s computable isomorphism will be total.

Stage 0: Let A0 = D0 < D1. Set c0(0, 0) = 0 and c0(0, 1) = 1.
Odd stage s: Suppose As = C0 < < Cn. If ϕe,s+1(e) ↓, then for each

i < ϕe(e) such that i 6= cs(j, k) for any j < e
2 , add a copy of Ci to As+1.

For each such i, declare fi injured. Also, plunk down new, unused special
clumps, and define cs+1(j, k) for e

2 ≤ j ≤ s+ 1. Set cs+1(j, k) = cs(j, k) for
j < e

2 .
Even stage s: Suppose an initial segment of Ψe appears to be isomorphic

to our initial segment of As up to cs(e, 1). Then extend the definition of fe
to map the initial segment of As up to cs(e, 1) to the corresponding initial
segment of Ψe. Let cs+1(e, 0) = cs(e, 1). Suppose As = C0 < ... < Cn. Let
j be least such that Dj 6= Ci for i ≤ n. Let As+1 = As < Dj , and let
cs+1(e, 1) = n+ 1.

LINEAR ORDERS WITH DISTINGUISHED FUNCTION SYMBOL 13

Lemma 3.7. X is hyperimmune.

Proof. We must show that for every computable function g, there exist infin-
itely many n ∈ ω such that g(n) ≥ pX(n). If g is computable, then there ex-
ist infinitely many n such that ϕn = g. By construction, ϕn(n) ≥ pX(n). �

Lemma 3.8. If Ψe
∼= A then fe is a total computable function and fe :

A ∼= Ψe.

Proof. Suppose that for all n ≤ 2e, ϕn(n) ↓⇒ ϕn,s(n) ↓. Then ct(e, i) will
only be redifined at odd stages after stage s. Let t0 > s. Since Ψe

∼= A,
there must have been a stage t1 ≥ t0 where Ψe appeared isomorphic to A
up to Cct0 (e,1). At that moment we would have defined fe up to Cct0 (e,1), and
set ct1(e, 0) = ct0(e, 1). Since Ψe

∼= A, there must have been a stage t2 ≥ t1
where Ψe appeared isomorphic to A up to Cct1 (e,1). This isomorphism must
have extended the isomorphism that was observed at stage t0, because there
would be nowhere to absorb Cct1 (e,0). �

This completes the proof of Theorem 3.6 �

Department of Mathematics, P.O. BOX 118105 University of Florida, 358

Little Hall, Gainesville, FL 32611

URL: www.math.ufl.edu/∼cenzer
E-mail address: cenzer@math.ufl.edu

Department of Pure Mathematics, University of Waterloo, Waterloo, ON,

Canada N2L 3G1

URL: www.math.uwaterloo.ca/∼csima
E-mail address: csima@math.uwaterloo.ca

Department of Computer Science, University of Auckland, Auckland Pri-

vate Bag 92019 Auckland New Zealand

URL: www.cs.auckland.ac.nz/∼bmk
E-mail address: bmk@cs.auckland.ac.nz

