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Abstract An effectively closed set, or ITY class, may viewed as the set of
infinite paths through a computable tree. A numbering, or enumeration, is
a map from w onto a countable collection of objects. One numbering is re-
ducible to another if equality holds after the second is composed with a
computable function. Many commonly used numberings of IT{ classes are
shown to be mutually reducible via a computable permutation. Computable
injective numberings are given for the family of IT9 classes and for the sub-
classes of decidable and of homogeneous II classes. However no computable
numberings exist for small or thin classes. No computable numbering of trees
exists that includes all computable trees without dead ends.

1 Introduction

The general theory of numberings was initiated in the mid-1950s by Kol-
mogorov, and continued under the direction of Mal’tsev and Ershov [13]. A
numbering, or enumeration, of a collection C of objects is a surjective map
F :w — C [22]. In one of the earliest results, Friedberg constucted an in-
jective computable numbering 1 of the X9 or computably enumerable (c.e.)
sets such that the relation “n € (e)” is itself 9. More generally, we will
say that a numbering 1 of collection of objects with complexity C (such as
n-c.e., X0, or II?) is effective if the relation “z € v (e)” has complexity C.
We will also consider enumerations where the relation “x € 1(e)” has a dif-
ferent complexity than C. (For example, there is a c.e., but not computable,
numbering of the computable sets.)
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A numbering 1 is acceptable with respect to a numbering v, denoted v < p,
iff there is a total computable function f such that v = po f. If p is acceptable
with respect to all effective numberings, then p is said to be acceptable [21].
The ordering < gives rise to an equivalence relation =, and two numberings in
the same equivalence class are called equivalent. Furthermore, the structure
L(C) of all numberings of C' modulo = forms an upper semilattice under <.
Here injective numberings occur only in the minimal elements and acceptable
numberings occur only in the greatest element. This article is a study of
effective numberings of families of effectively closed sets, also known as IT¢
classes.

A subset T of w<¥ is a tree if it is closed under initial segments. The set
[T] of infinite paths through T is defined by X € [T] < (Vn)X[n € T,
where X [n denotes the initial segment (X(0), X(1),...,X(n—1)). Let 077
denote the concatenation of ¢ with 7 and ™4 denote o™ (i) for ¢ € w. Then
P is a I1{ class if P = [T] for some computable tree T. The string o € T is
a dead end if no extension 777 is in T'. For any class P, Tp will denote the
unique tree without dead ends so that P = [Tp]. P is said to be decidable
if Tp is a computable tree. In general, even a I1{ class P C {0,1}* does
not necessarily contain a computable member, whereas a decidable IT{ class
must contain a computable member. P is said to be special if it does not
contain a computable member.

Enumerations of IT{ classes were given by Lempp [18] and Cenzer and
Remmel [8,9], where index sets for various families of II{ classes were
analyzed. For a given enumeration (e) = P. of the II{ classes and a
property R of sets, {e : R(FP.)} is said to be an index set. For example,
{e : P. has a computable member} is a X9 complete set. See [7] for many
more results on index sets.

There are several equivalent definitions of IT{ classes; in particular P is a
II) class if and only if P = [T] for some primitive recursive tree 7' and also
if and only if P = [T for some IT9 tree T. Numberings based on primitive
recursive trees and on I1{ trees are both studied in the literature (see [8,9,
7,10]).

Certain types of IT{ classes are of particular interest. Let P be a IT} class.
We will say that P is thin if for every II{ subclass Q of P, there is clopen
set U such that Q = U N P. We say that P is homogenous if, given distinct
o,T € Tp of the same length,

o0 1 €Tp < 7 1€ Tp.

For P C {0,1}*, P is homogeneous if and only if P is the class of separating
sets S(A, B) for two disjoint c.e. sets A, B, that is,

S(A,B)={C Cw:ACCand BNC = 0}.

P is small if there is no computable function ¢ such that, for all n, card(TpN
w?(™)) > n. Let 1p(n) be the least k such that card(Tp Nw*) > n; then P is
very small if the function ¢ p dominates every computable function g — that
is, ¥p(n) > g(n) for all but finitely many n.
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In Section 2, several commonly used numberings of IT classes are shown
to be equivalent via a computable permutation. In Section 3, we give a Fried-
berg numbering of the ITY classes; this motivates a study of a general class
of families of IT) classes, called string verifiable families in Section 4. In
Sections 5-6, numberings for decidable, homogeneous, and thin classes are
considered. Finally, in Section 7, motivated by some work by Binns [1], num-
berings for small classes are considered.

The partial computable {0, 1}—valued functions are indexed as {®¢}ecw
and primitive recursive functions as {7, }ec,,. Partial computable functionals
take natural numbers (m) and reals (x) as inputs and are indexed as @.; we
will write &% (m) for the result of applying @, to m and z. We generally follow
the notation of Soare [24] for these functions. For example, ¢ s denotes that
portion ¢, defined by stage s, and ¢.(x)| means that ¢, is defined on x
(and T means undefined). Let (o, ®) : w? — w be a computable bijection such
that (0,0) = 0. A and P(A) denote the complement and power set of A,
respectively.

We generally follow the notation of Cenzer [6] for IT{ classes. In particular,
for any o € {0,1}*, I(o) is the interval of all infinite sequences extending o.
Now a c.e. open set is defined to be the complement of a IT{ class. That is,
if P = [T], then w* — P = {J,y¢r {(c). Thus for any c.e. set W, we define

the c.e. open set generated by W to be

ow) = J{I(0): (o) e W}.
Also let
OW)In={xn:xecOW)and (Vj <n) z(j) <n}.

A tree T C 2<% and set [T] are clopen if there is a nonempty finite S C w<*
sothat T=0orT={c:0C7or7LC o for some T € S}.

A numbering e — [T.] of II{ classes is called a tree numbering and written
e — T,. If the set {(e,0) : 0 € T,} is computable, then the numbering
P(e) = [T.] is said to be a computable numbering.

2 Equivalent Numberings

In this section, we present several different numberings of IT) classes and show
that certain of them are mutually equivalent via a computable permutation.

Numbering 1: Primitive Recursive Functions [8]

For each e, let 7, be the eth primitive recursive function from w to w and
let
celU, < (VrCo) m({(r))=1.

Then U, is a (uniformly) primitive recursive tree for all e and if {0 : 7({0)) =
1} is any primitive recursive tree, then U, is that tree. Therefore the se-
quence Uy, Uy, ... contains all primitive recursive trees and hence the map-
ping 11 (e) = [Ue] is a computable numbering of the IT{ classes.

Numbering 2: Computably Enumerable Sets [7]
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Let
a(e) = w? — O(We).

This is an effective numbering since the relation “z € 9(e)” is I1{ . This
can actually be improved to a computable numbering, as follows.

For each e, recall that W, , is the set of elements enumerated into the eth
c.e. set W, by stage s and let

c€S. = (VT o) (1) ¢ Wy

Then S, is a (uniformly) primitive recursive tree for all e. Let P = [T] be a
IV class, where T is a computable tree. It follows that for some e,

c€T < (o) ¢ W,.

Then P = [S.]. It follows that the sequence [Spl,[S1],... contains all IT¢
classes and hence the mapping ¢ (e) = [S,] is a computable numbering of the
IT) classes. It is easy to see that in fact [S.] = 12(e).

Numbering 3: Universal II{ Relation [16, p.73]

There is a universal I1¥ relation U C w x 2 such that if Q(x) is a II?
class, then there is an e € w such that Q = {x : U(e,z)}. U is defined in
terms of the Kleene T-predicate, so that essentially

Ule,z) < P2(0) 1.

(That is, the universal relation in [16] is given by &%({m1,...,mg)) T with
number variables my, ..., my and when k = 0 we have () = 0.

Define v3(e) = {z : U(e,x)} to obtain an effective numbering.

To see that this is a computable numbering, let

c€R. = P7(0) 7.
so that ¥3(e) = [R.] and the trees R, are uniformly primitive recursive.

Numbering 4: The Halting Problem [17]
Consider the mapping given by

pale) = {z: 2L (e)(e)T}
This is a computable numbering, since 14(e) = [T.], where
oceT, < P7(e) 1.

For any computable tree T', choose a so that &7 (n) converges if and only if
o €T. Then
ceT < P7(a) |,

so that [T] = ¥4(a).
Numbering 5: Total Computable Functions

Here we will consider an effective, but not computable numbering ¥ based
on computable trees. This numbering will be used in connection with decid-
able classes in Section 4.
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Let v5(e) = [Te], where
oeTe < (V7 20)[¢.((1)) |— ¢c(({r)) = 1].

This enumeration is uniformly IT{, but is not computable, since the relation
be(m) | is c.e. non-computable. Clearly each s (e) is a IT9 class. If ¢ is total
and T is a tree such that, for all o, we have 0 € T' <= ¢.({0)) = 1, then
T, =T and is a II{ class. Hence this enumeration has the crucial property
that, for every computable tree T, there exists e such that T' = T,.

Proposition 2.1 (a) For each pair i,j with 1 <i <5 and 1 < j <4, there
is a computable function f such that ¢; = ;o f.
(b) For each j <5, there is a AY function f such that 5 = 1); o f.

Proof (¢1 < t3): Use the S — m —n Theorem to define f so that

Wiy = {n: me(n) # 1}.

Then 0 € U <= 0 € Sy(e).
(2 < 1)3): Define f so that, for all m,

(e)(m) = (least n)(z[n) € We).

Then () = ¥3(f(e)).
(3 < ¢4): Define f so that &%, (n) = @7(0) for all n. Then z €
P3(e) <= z € Pa(f(e)).

(16 < th1): Recall that s (e) = [{o : 87 (e)1}]
Define the primitive recursive function g so that for each e,

1, ita(e) 1y
Tg(e)((0)) = {07 otherwise.

Then ¢ (e) = a(g(e))-
(1 < 15): Define the primitive recursive function f such that, for each

6,

Pr(e)((0) = {(1) if (V7 C o)me((7)) = 1,

Then 1 (e) = ¥5(f(e)).

The rest of the proof follows by composition.

otherwise.

Theorem 2.2 For any computable numbering ¢ which is computably equiv-
alent to 19, there is a computable permutation p such that 12 = ¢ o p.
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Proof The proof is a modification of an argument due to Jockusch [24, p.
25]. Let 1 = 5. By assumption, there are computable functions f and g
such that ¢¥(f(e)) = ¢(e) and ¢(g(e)) = ¥(e). Since the numbering 5 is
based on an enumeration of the partial computable functions, we can ensure
by padding that f is injective. To modify g into an injective function g, it
is sufficient to effectively compute from each e an infinite set S, of indices
such that ¢(g(i)) = ¢(e) for all i € S.. We proceed as follows. Let A and B
be computably inseparable c.e. sets and define computable functions k£ and
¢ such that, for all e and m:

o= {0 1228

and

P(e), if me A,
w(lle.m)) = {2% e
That is, we build a tree for ¥ (k(e, m)) which exactly equals the tree for ¥ (e)
for strings of length s until m € B,y1, in which case no strings of length
s+ 1 are put into ¥(k(e,m)). To build the tree for ¢(¢(e,m)), we put in all
strings of length s until m € A,41, in which case we include only the strings
of length s + 1 which are in 9 (e).
Now let C, = {k(e,m) : m € A} and D, = {{(e,m) : m € A} and let
Se = g(Ce U D.). Then for j = g(i) € S, it follows from the definition that
(i) = ¢(e) and therefore ¢(g(i)) = ¢(g(e)). We will prove in two cases that
either g(C,) is infinite or g(D,) is infinite.

Case I: Suppose that ¥ (e) # () and suppose by way of contradiction that
g(C,) is finite. Then S = {m : g(k(e,m)) € g(C)} is a computable set. Now
A C g(C.) by definition. On the other hand, if j = g(k(e,m)) € g(C.) where
m € A, then p(j) = ¥(k(e,m)) = ¢(e) # 0. But for m € B, ¢(g(k(e,m)) =
P(k(e,m)) = 0, so that SN B = (). This contradicts the assumption that A
and B are computably inseparable.

Case II: Suppose that ¢(e) = 0. It follows as in Case I that g(D.) is
infinite.

Thus we may assume without loss of generality that both f and g are one-
to-one. Now define a sequence {e,, : n € w} and two partitions of w as follows.
Let eg = 0 and for each n, e, is the least e such that p(e) # p(e;) for every
i < n. Let A, = {e : ¢(e) = ¢(e,)} and B, = {e : p(e) = ¥(e,)}. Then
w =, An = U,, Bn and each sequence is pairwise disjoint. Furthermore,
f(B,) C A, and g(A,) C B,. The remainder of the proof follows as in the
Myhill Isomorphism Theorem [24, p. 24].

A similar argument shows that if ¢ is a A numbering of the IT{ classes,
then there is a A} permutation p with ¢ = 15 o p. It follows that each of the
computable numberings 11, ..., %, are acceptable, that is, they occur in the
greatest element of the semilattice £(P). In the next section, we will see that
minimal elements exist in the semilattice— that is, injective numberings.
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3 Injective Numberings

In this section, we construct a computable injective numbering of the IT¢
classes in 2%, by modifying Friedberg’s original presentation. An alternative
proof was sketched by Raichev [20].

Theorem 3.1 There is a 1-1 computable numbering of all I1? classes in 2.

Proof The proof is a modification of the Friedburg construction [14] of an
injective numbering for the c.e. sets of natural numbers.

Let {W,}eew be a computable numbering of the c.e. subsets of 2<¢. We
will construct a computable numbering {Y. : e € w} in stages Y, s of a family
of c.e. subsets of 2<% so that {O(Y.)}ecw is an injective numbering of the
X9 classes. It is important to note that an injective numbering of the c.e.
subsets of 2<“ will not automatically yield an injective numbering of the X9
classes, since each X9 class will equal O(W) for many different c.e. sets W.
However, if O(V) # O(W) for two c.e. sets V and W, then there must be
some interval (o) which is included in, say O(V') but not included in O(W)
and hence some stage s such that O(Vs) [ s # O(W;) [ s at stage s and at
any later stage.

In the construction, we will use the notion of one Y-index i following a
W-index e with the idea that in the end Y; will equal W,. At some point,
however, we may decide that ¢ will no longer follow e and we will say that ¢
is released. If 7 is never released from e, then it is said to be a loyal follower
and otherwise it is disloyal. Once released, an index remains free and is never
again the follower of any e. At any particular stage, a Y-index that is not
following any W-index is said to be free. A nonzero Y-index that has never
followed any W-index is said to be unused.

To ensure that no c.e. set is excluded from the Y-sets, we will ensure
that each W, is infinitely often given the opportunity to be followed. To do
this, at stage s = (n,e,) all actions in the construction will be taken with
respect to W,_. At each stage s, we initiate at most one new Y, so that after
stage s, we have sets Yy, Yq,..., Y, for some ks < s. Let Yy = {0}, so that
O(Yy) = 2~.

Construction: There are three possible cases at each stage s.

Case 1: If i follows e4 and there exists e < e, such that O(W, ) [(i — 1) =
O(We, s) I (i — 1), then release i and go on to stage s + 1.

Case 2: Suppose that Case 1 does not occur. If O(We, 5) = O(Y; s-1), and
either i follows some e < ey, or i is free and either i < ez or 7 was previously
displaced (see Case 3) by ey and released, then go on to stage s + 1 without
taking any action.

Case 3: Suppose that Cases 1 and 2 do not occur. Now we ensure e; has a
follower. If it does not, choose the least unused i # 0, 1 to follow e;. Now let
Yvi,s = Wes,s~

If Y; 1 for some j # i satisfies O(Yj 1) = O(W,, s), then put some
o; € 2=¢, defined in what follows, into Y; so that O(Y} ) # O(W, s).
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Let BEs ={j ew:j#i& Os—1) = O(We, )} be the set of indices
of equivalent Y-open sets and suppose that E, = {1 < €2 < ... < ¢}
Now define Str(k,s) = {c € 2¥ : 0 & O(W,_,) [ k}. Let £(s) be the least k
such that |Str(k,s)| > |Es|. Then £(s) is the least level of O(W,, ;) where
there is enough room to give each equivalent Y; ;1 an additional string to
d1st1ngu1§h O(Y;,s—1) from O(W,, ;). (Notice that O(W., s) # 2* by Case

2.) Suppose that Str(¢(s),s) = {01 < 02 < ... < U\Str(é(s),sn}' Now put o
into Y, and release ¢, if it is a follower. We say that €; is released or displaced
at stage s.

Verification: Given ¢ € w, let é be the least k such that [O(Wy) =
O(W,)]. We will show:

(i) (Ve)(3i) Yi= We;

(ii) ¢ ;é J implies that O(Y;) and O(Y}) are not equal when both are clopen.

(iii) ¢ # j implies that O(Y;) and O(Y;) are not equal when both are not
clopen.

Verification of (i). Fix e. First note that although é can have different
followers at different stages, it cannot have an infinite number of disloyal
followers. That is, if s and = are sufficiently large, then by the definition of €,
for all j < é, O(W; ) [z # O(W;s) [ x. Hence release can only occur in Case
1 a finite number of times. Furthermore, Case 2 ensures that release in Case
3 can only occur for any s when e; < é. Therefore, by the above, if ¢ > =
is follower of é and ¢ > s, then O(Y;;—1) = O(We—1) # O(We, +). Hence i
will not be released in Case 3. Therefore release can only occur in Case 3 a
finite number of times.

Now let s be a stage after which é never loses a follower. If Case 3 occurs
infinitely often after stage s for é, then it has a permanent follower i so
that O(Y;) = O(We). Therefore assume Case 3 occurs only finitely often.
Since é never loses a follower, Case 1 cannot occur. Thus Case 2 must occur
infinitely often. However there are only a finite number of ¢ such that the
hypothesis of Case 2 holds with O(We ) = O(Y; s—1). To see this, consider
the three sub-cases. First, each e < ez has only finitely many followers by the
argument above; second, there are only finitely many ¢ < eg; and third, only
a finite number of ¢ are displaced by e, due to Case 3 occuring only a finite
number of times. This contradiction shows that é has a permanent follower,
as desired.

Verification of (ii). Suppose that U = O(Y;) = O(Y]) is clopen and let
U = O(We). It follows from compactness, that there is some finite s such
that, for all ¢t > s, O(Y;¢) [t = OY4) [t = OY;). It follows from the
verification of (i) above that there is a stage t > s such that Case 3 applies
to é. But then at least one of O(Y;), O(Y;) must change at stage t. This
contradiction verifies (ii).

Verification of (iii). Assume both Y; and Y; are not clopen and i # j.
It follows that O(Y;) must change infinitely often since of course O(Y; ;) is
clopen for each s, and similarly for O(Y;). Now ¢ must eventually follow some
W-index. If 7 is ever released, then it is free Thereafter Y; acquires members
in Case 3 at stage s only When We, s = Yis—1. This implies that Case 2 does
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not apply at stage s and thus es < i. But each e < ¢ can only displace ¢ once,
again by the hypothesis of Case 2. Thus if ¢ is a disloyal follower, then in fact
O(Y;) is clopen. Thus we may assume that i is a loyal follower of e and j is a
loyal follower of €. Then O(W,) = O(W,/) but e # ¢/, since each e can have
at most one loyal follower. Without loss of generality suppose e < €.

Since O(W,) = O(W,/), there will be a stage s large enough so that
OWe) 1 (i—1) = O(W) | (i —1). Then since i follows e < €/, i will be
released in Case 1 at stage s, contradicting the assumption that ¢ is a loyal
follower.

This verification completes the proof.

The following generalization of Theorem 3.1 will be useful. Let C be the
family of clopen subsets of 2¢.

Theorem 3.2 For any family F of I1? classes in 2% which has a computable
numbering, there is a 1-1 computable numbering of C U F.

Proof Let the computable enumeration P, be given. We may assume that
C C F by simply enumerating the clopen sets as {Q2. : € < w} and letting
Q2¢+1 = P.. Then the proof of Theorem 3.1 produces a 1-1 computable
enumeration of C U F as desired.

The problem of finding an injective enumeration of the IT¢ classes in w*
remains.

Suppose we modify each c.e. set in the standard numbering to enumer-
ate an element only as long as it is larger than any previously enumerated
element. Applying Friedberg’s argument to this class of c.e. sets yields an ef-
fective injective numbering e — C, of the computable sets [26]. Furthermore
each C, still enumerates its elements in increasing order.

Now suppose {Xe}eew is a corresponding set of characteristic functions.
One characterization of a IT) class P is that P = w* \ O(W) for some
computable set W [7]. As a result, e — w*\O(C,) = w“\O({n : x.(n) =1})
is an alternative effective numbering based on total computable functions
(replacing noneffective Numbering 2).

It is known, for fixed n > 0, that there is a effective injective numbering
of the n-c.e. sets [15]. We conjecture that, for each n, there is a numbering
e — N, of n-c.e. sets such that there is an injective computable numbering
e — w?\ O(N,) of all closed sets of this form. For n = 1 the result is given
by Theorem 3.1.

We next show that Theorem 3.1 is not obtainable by any computable
procedure that uniformly selects the minimal index of every IT) class.

Theorem 3.3 There is no computable choice function for indices of IIY
classes. (i.e. a computable function f such that f(e) is an index of P. and

P, =P.= f(i) = f(e))

Proof Suppose that f exists. Let ag,a1,... be an enumeration of a noncom-
putable c.e. set A. Define a computable function g and trees Ty so that if
|o| = n, then

0 € Tye) < e & {ao,...,an}.
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Then

P — 0 if ec A
9(e) = Y 2% otherwise

For any a € Aje € A «— f(g(e)) = f(g(a)), making A computable.

It is still possible, however, that some interesting proper family of I7{
classes may be enumerated by selecting minimal indices from the enumeration
of all IT) classes.

4 String Verifiable Families of Classes

In this section, we examine a family of classes which can be computably
enumerated. Let Fy, FY, ... be a computable enumeration of the finite subsets
of 2<¥, that is, for any n, 0 € F,, <= b,({0)) = 1, where b, is the
binary expression for the natural number n. Let E denote the family of finite
sequences of positive integers of even length. Let Py = [Tp], P1 = [T1],... be
some computable enumeration of the IT9 classes in 2.

Definition 4.1 A string function is a computable function f : 2<% — E.
A family H of trees (or, more generally, of subsets of 2<¢) is string
verifiable if there is a string function h : 2<% — FE so that for all T,
T € H if and only if the following condition is satisfied for all o € T', where
h(o) = (m1,ma,...,may) and D; = F,,, fori=1,...,n:
There exists ¢ < n such that Dy;y1 € T and T'N Dy; 12 = @ — that is,
[T] € S(D2it1,D2i12) (the family of separating sets of Da; 1 and Da;12).

Note that the family of trees itself is string verifiable among the family
of all subsets of 2<% via the function h(c) = (a,b), where F, ={r: 7 C o}
and F}, = 0.

Ezample 4.2 (a) The Homogeneous Trees. A tree T is said to be homogeneous
if
Vo,7 € T[lo| =] = (Mi)(cTieT < 177ieT)].

Define the string verification function h as follows. Let Aj, Ao, Az, Ay
enumerate P({0,1}) and let By, ..., Bys| enumerate the strings of length
o. Let h(o) enumerate in order the set of mg(; )41 and myj py4o for

1§j§4and1§k§2“",where

F,

M2 (j5,k)+1

={r"i:i€ A;,T € By}

and

Fon, ={r:7¢B}U{ri:i¢ A;,T € By}

(3, k)+2

That is, h(o) verifies that T is homogeneous by selecting the unique set
By = {|7] = |o| & 7 € T'} and the unique set A; such that for 7 € By,
T eT, <= i€ Aj.
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(b) The Extendible Trees. Recall that a closed set P is decidable if the P = [T
for some computable tree T' without dead ends. For the purpose of string
verification, let us say that a tree T is extendible if T has no dead ends.
This means that that for any o € T, either 070 € T or 071 € T. In
general, Ext(T) = {o : I(o0) N [T] # 0} is the set of extendible nodes of
T and T is extendible if and only if T = Ext(T). Thus we let h(o) =
(mqy,ma, m3, my), such that F,,, = {c70}, Fp,, = F,,, = 0 and F,,, =
{o™1}. That is, h verifies that T has no dead ends by either showing that
c0eTitF, CTorthato"1eTifF,, CT.

Definition 4.3 (a) A II? class P satisfies a finite set of relations H; C
P(2<¥) (¢ < n) if there is a computable tree T' such that P = [T] and
H;(T) for each i < n.

(b) A II class P strongly satisfies a finite set of relations H; C P(2<%)
(i < n)if there is a primitive recursive tree T such that P = [T'] and H;(T)
for each i < n).

Definition 4.4 A family F of classes is [strongly] string verifiable (s.v.)
if there is some finite set of string verifiable relations so that: P € F if P
[strongly] satisfies these relations.

Note that any string verifiable family of trees contains the empty tree,
so that any string verifiable family of IT{ classes contains the empty class. If
P =0, then P = [T] if and only if T is finite, so any tree T with P = [T] is
primitive recursive. So any strongly string verifiable family also contains the
empty class.

Theorem 4.5 (a) Any strongly string-verifiable family of IIY classes has a
computable numbering.
(b) Any string-verifiable family of IIY classes has an effective numbering.

Proof Suppose F is a [strongly] string-verifiable family of IT{ classes satisfy-
ing string verifiable (tree) relations Ho, Hi, ..., Hm, with corresponding string
functions hg, h1, ..., huy,. For part (a), let the standard computable enumera-
tion of the IT{ classes in 2 be given by P. = [T.], where the sequence T, is
uniformly primitive recursive (for example, the numbering 15 given in Sec-
tion 2). We will define a uniformly computable sequence S, of trees such that
the sequence Q. = [S.] enumerates exactly the family of IT{ classes strongly
satisfying Ho, H1, ..., Hum-

For any o € {0,1}", we determine whether o € S, as follows. First
check that o € T,. If so, for each 7 € {0,1}" and each i < m, compute
hi(t) = (D1,Da,...,D;) and determine whether there exists i < j such
that Doj1 C T, and Dagjio NT, = (). This process is computable since each
Dy is a canonical finite set. If the answer is yes, for every 7 € {0,1}", then
o € S, and otherwise, o ¢ S.. It is clear that if T, satisfies all of the relations
Ho, Hi, ..oy Hon, then T, = S,. It follows that every IT9 class in F occurs in
the enumeration Q. = [S.]. On the other hand, if T, fails any of the relations,
then S, is a finite set and Q. = 0. By assumption, Q. € F in this case as
well, so that the sequence {Q. : e < w} enumerates exactly the family F, as
desired.
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For part (b), let P, = 15(e) = T, the uniformly I enumeration which
has the property that every computable tree occurs in the list {7, : e < w}.
We need to do the string verification in a IT? fashion and in particular to
check that Dyjo NTe = 0, which appears to be 9. However, we can simply
check that, if p € Dgjio and ¢e(p) |, then ¢.(p) = 0. Then the sequence
S, is uniformly ITY and, if T, has characteristic function ¢, and satisfies the
string relations, it follows that S, = Te.

Now let us say that a IT{ class P is strongly decidable if there is a primitive
recursive tree T with no dead ends such that P = [T] and that P is strongly
homogeneous if there is a homogeneous primitive recursive tree T" with no
dead ends such that P = [T7].

Corollary 4.6 (a) The family of decidable IT{ classes in 2 has an effective
numbering and the family of strongly decidable IT? classes in 2° has a
computable numbering.

(b) The family of homogeneous I19 classes in 2* has an effective numbering
and the family of strongly homogeneous IT) classes in 2% has a computable
numbering.

We can improve Theorem 4.5 to obtain a computable numbering of any
string-verifiable family which includes the clopen sets. The following is rem-
iniscent of the result of Pour-El and Putnam [19] that any family of c.e. sets
containing all finite sets possesses an injective numbering.

Theorem 4.7 If F is any string-verifiable family of IIY classes, then there
is a computable numbering of C U F.

Proof We modify the proof of Theorem 4.5 so that when the string-verifiable
relations fail, we extend all nodes rather than making them dead ends. Once
again, the construction is based on the enumeration ¢, of the partial com-
putable functions. The construction is in stages, where at stage s we will
have

Ne,s = maz{n : (Vo € {0,1}")¢. s((o)) |},

Jes = {0 €{0,1}" : ¢ 5((0)) = 1},
and

Qe7s = UJE,S = [Se,s]-

Then Q. = [, Qe,s = [Se] will be the desired numbering. To ensure that this
numbering is computable, we will determine whether o € S, at stage |o].
For this argument, we assume that ¢.(0) = 1 for all e.

Construction At stage 0 we have n.o = 0, Jeo = Seo = {0} and
Qe,O = 2%,

At stage s+1, we check to see whether ¢, s41({c)) | forall o € {0, 1}"=F1.
If not, then ne s4+1 = Nes, Je,s41 = Js and Se 5311 = Se sU{0 77 :0 € Se 5,1 =
0,1}. If so, then we check to see that ¢, s+1 is the characteristic function of
a tree on {0,1}"<=*1 and we verify the string relations up to {0, 1} +1. If
this verification fails, then again n¢ s41 = ne,s and Je 541 = Jes. In this case,
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verification will also fail at all future stages, so that Q. = Q. s is a clopen
set.

If the tree and string-verifications succeed, then ne s41 = n. s +1, so that
Jes+1 € {0,1}es* 1 and Q. s11 change as indicated above. In this case,

Se,s—i—l = Se,s U {0 € {O, 1}S+1 ‘o r(ne,s+1) € Je,s-{-l}-

If ¢, is the characteristic function of the computable tree T, and if P, =
[T.] € F, then it follows from the construction that Q. = P, so that Q. € F
and furthermore, any I1? class P, € F will thereby occur in the numbering.
Otherwise, the construction will make Q). a clopen set.

Corollary 4.8 For any string verifiable family F of IIY classes, there a 1-1
computable numbering of C U F.

Proof Let F be a string verifiable family. Then there is a computable num-
bering of CUF by Theorem 4.7. It then follows from Theorem 3.2 that there
is a 1-1 computable numbering of C U F.

Corollary 4.9 There a 1-1 computable numbering of any string verifiable
family of ITY classes containing all clopen classes.

This corollary applies to the family of decidable classes, which we shall
return to in the next section. However, clopen sets are not necessarily homo-
geneous, so we need a different argument for the homogeneous classes.

Theorem 4.10 There is a 1-1 computable numbering of the homogeneous
IIY classes.

Proof Tt is well-known [7] that a IT? class P is homogeneous if and only if P =
S(A, B) for two c.e. sets A, B. Friedberg’s construction of a 1-1 enumeration
We of the c.e. sets may be modified to obtain an effective 1-1 enumeration
of all ordered pairs (A, B.) of disjoint r.e. sets. (See [3] for details.) Now let
P, = S(A., B.) to obtain a 1-1 enumeration of the homogeneous II classes.
Furthermore, S(A., Be) = [T¢], where

oceT, < (VWn<|o|)[(n€ Aes — o(n)=1) & (n € Bes — o(n) =0)].

This shows that the numbering is computable.

5 Decidable Classes

Since decidability is string-verifiable and every clopen set is decidable, it
follows from Corollary 4.9 that the decidable classes have a 1-1 computable
numbering.

This result could not be obtained by using the standard numbering of the
IV classes and modifying each tree as it becomes known that is has a dead
end. (For example, simply extend each such node with, say, all ones.) This
is because, as a consequence to the following theorem, P being decidable is
insufficient to ensure that the unique tree Tp without dead ends shows up in
a computable tree numbering.
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Theorem 5.1 In any computable numbering of computable trees in 2<%
there is a computable tree without dead ends outside the image of the num-
bering.

Proof Let {T. : e < w} be a uniformly computable sequence of trees. Now
use a diagonalization argument to construct a tree T such that for all n,
Tn{0,1}"+ £ T,n{0,1}"*1, as follows. At stage 0 let 7N{0,1}° = {0}. At
stage n+1 we are given T'N{0, 1}" # (. Therefore there are at least 2 subtrees
of {0,1}"*! without dead ends extending T'N {0, 1}". Define 7' N {0,1}"*!
to be an extension which is different from T;, N {0, 1}+1.

Corollary 5.2 For any computable numbering P, = [T.] of the II? classes
in 2%, there is a decidable IT? class P such that P # [T.] for any T, without
dead ends.

Proof Let P = [T] where T is the computable tree without dead ends pro-
vided by Theorem 5.1. Suppose that P = [T,] for some e. Since T has no
dead ends, it follows that T" = Tp and if T, also had no dead ends, then
T. = Tp = T. But by the construction, T'N {0, 1} # T, N {0,1}"L, so
that T # Ts.

It follows from this corollary that in the standard numbering, {e : T, has
no dead ends} # {e : P, = [T.] is decidable}. In fact both have distinct
complexities. By Konig’s Lemma, Ext(P,) = {oc € 2<% : I(c) N P. # 0} is
II?. So {e : T, has no dead ends} = {e : T, = Ext(P.)} is I1{. However,
{e : P, is decidable} = {e : P. = [T] for some computable T" without dead
ends} = {e : (3a) @, is a characterstic function for Ext(P.)} is X9. An
alternate proof of Corollary 5.2 is as a corollary of the following.

Theorem 5.3 For any acceptable numbering v of the I1{ classes,
{e : (e) is decidable} is X9 complete.

Proof Tt suffices to prove this for the standard numbering (¢2). We will make
use of the well-known [24] X9 completeness of {e : W, is computable}. It is
easy to see that {e : 1s(e) is decidable} is XY. For the completeness, define
the uniformly computable trees T () so that

(i) 0™ € Ty for all n;
(i) O"1° € Tpe) < n ¢ W

It follows that 0"1 € Ext(Ty)) <= n ¢ W, so that if . is
decidable, then W, is computable. On the other hand, Ext(T) = {0" :
ne€wlU{0"1®:s € wn ¢ W.}, so that if W, is computable, then ¥(f(e))
is decidable. Thus W, is computable if and only if ¢(f(e)) is decidable.

Note that in [8], a IT{ class P, = [T.] in the standard numbering is said
to be decidable if T, has no dead ends, which we now see is probably not the
right approach.
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6 Thin Classes

In the literature, a Martin-Pour El theory is a consistent c.e. propositional
theory with additional ‘thinness’ conditions. The conditions imposed have
varied depending upon the context and motivation of the authors, but in-
clude: (1) few c.e. extensions, (2) essentially undecidable, and (3) well-
generated. Some authors have chosen to only impose (1) [5], while oth-
ers (1) and (2) [6], [9], and finally others (1), (2), and (3) [12], [11], [4].
The complete consistent extensions of these theories correspond to thin, per-
fect thin (or equivalently, special thin [6]), and homogenous thin classes,
respectively. This section is devoted towards demonstrating the nonexistence
of computable numberings of the first two cases by modifying the classical
Martin-Pour El construction of a perfect thin class. Recently Solomon [25]
also modified this theorem to construct a homogeneous thin class and there-
fore we conjecture that no computable numberings exist for these classes.

A perfect class may be defined by a function g : 2<¢ — 2<% such that
for all o, 7, o C 7 implies g(o) C 7; let us say that g is extension preserving.
Let G(z) = U,, g9(z [ n). Then G(2¥) is a perfect class. If g is defined in
uniformly computable, extension-preserving stages gs (with corresponding
G :2¥ — 2¥), so that gs(0) C gs11(0), then we have G(2¢) = N.G.(2%), so
that G(2¢) is a II) class.

Theorem 6.1 (Martin—Pour-El) For any computable extension-
preserving function g : 2<% — 2<% there exists a perfect thin IIY
class P C G(2¥).

Proof Let {P. = [T.] : e € w} be the standard numbering of the I} classes
and {¢. : e € w} be the standard numbering of the {0,1}-valued partial
computable functions. We will construct a computable tree S, corresponding
IT? class P = [S], and a surjective homeomorphism F : 2 — P. F will
be constructed by means of an extension-preserving map f : 2<% — S,
with corresponding map F : 2 — 2 defined by F(z) = U, f(z [n). We
will define f in stages to obtain uniformly computable, extension-preserving
functions fs so that f = lim, fs. To ensure that P is thin, we will meet the
following requirement for each e:

Thin(e) : (Vo € {0,1})(V7) [(f(o) €T. Ao T 1) — f(1) €T

To see that Thin(e) makes P thin, let U = {I(f(0)) : |o| = e+1 & f(o) € Te}
and observe that if P, C P, then P, = PNU.

Construction. Let fy = g. At stage t+ 1, we define f;;1 as follows. Look
fore <t+1,0 € {0,1}¢*!, and 7 3 o with |7| < ¢+ 1 such that f;(0) € T,
but fi(7) & Te. If no such e, o, and 7 exist, then fir; = f;. Otherwise take
the least such e and the lexicographically least ¢ and 7 for that e. For all
p € 2<% let fiy1(c™p) = fi(r7p); for p C o (with p # o) or p incomparable
with o, let fi11(p) = fi(p).

Verification. It is easy to see by induction on |o| that for each o, f,(0)
converges to a limit f(o). Then by induction on e, each requirement Thin(e)
is satisfied. To see that f is injective, suppose towards a contradiction that
flo) = f(r) for ¢ # 7. By the constuction, o and 7 must be comparable.
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Assume, without loss of generality, that 7 = 07 p (p # (). By induction it
is clear that for all ¢, fi(0) # fi(c™p) = fi(7). Let Fe(z) = Up fe(z [ n), so
that P = N.F.(2¥). Since fy = g, it follows that P C G(2¥).

Theorem 6.2 Any computable numbering of 11 classes in 2% of Lebesgue
measure zero omits some perfect thin class from its image.

Proof Let P, = [T.], where {T. : e € w} is uniformly computable. We will
construct a computable extension-preserving function g : 2<¢* — 2<% such
that for all e and all o € {0,1}"!, g(0) ¢ T.. Then letting G(z) = U, g(z In)
we will ensure that G(2¢) N P, = (. Replacing fy by g in Theorem 6.1, we
obtain a perfect thin class P such that PN P, = () (and hence certainly
P # P,), for all e.

We define g : 2<% — 2<% recursively, as follows. Define g(f) = . Then for
each o € {0, 1}¢, compute the shortest and lexicographically least extension
7 of g(o) such that 7 ¢ T,. Since [T,] has measure zero, it is nowhere dense
and thus such a 7 always exists. Then let g(c7i) = 774 for ¢ € {0,1}.

Corollary 6.3 There is no computable numbering of all thin or of all perfect
thin IT) classes.

Proof All thin classes have Lebesgue measure zero [23]. Therefore if e — P,
were a numbering of (perfect) thin classes then Theorem 6.2 would provide
a (perfect) thin class P such that P # P, for all e, a contradiction.

7 Small Classes

Binns defined in [1] the notions of small and very small classes as a means
of guaranteeing incompleteness in the lattice of the Medvedev and Muchnik
degrees of subsets of w®. A nonempty II) class P is small if there is no
computable function @ such that for all n, |Tp Nw®™| > n. Let ¥(n) be the
least k such that |Tp Nw¥| > n. A nonempty I1{ class P is very small if the
function ¥ dominates every computable function g; that is, ¥(z) > g(z) for
all but finitely many z. Let A be a coinfinite c.e. set, say A = {ag < a; <
...}. Recall that A is hypersimple if there is no computable function f such
that f(n) > a, for all n and it is dense simple if n +— a,, dominates every
computable function. In this section we will use these sets to show that no
computable numbering exists for the small or very small classes.

First modify Shoenfield’s Thickness Lemma [24, p. 131] as follows. Some
definitions are needed. For B C w, let BY = {(y,2) € B : z € w} and say
that B is piecewise computable if B¥! is computable for all y. For B C A C w,
we say that B is a thick subset of A if for all y, B \A[y] is finite.

Lemma 7.1 (Thickness Lemma) For any uniformly c.e. sequence {W; :
1 € w} of noncomputable c.e. sets and any piecewise computable c.e. set B,
there is a thick c.e. subset A of B so that W,, L1 A for all n.

Proof The proof as in [24] is modified to ensure that the length and restraint
functions and the requirements incorporate the pair (i, k) in place of the single
argument ¢ to make the argument go through with each W; in conjuction with
each functional @y.
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We obtain the following corollary.

Corollary 7.2 For any uniformly c.e. sequence {W,, : n € w} of noncom-
putable c.e. sets, there is a high c.e. set A such that for all i, W; L1 A.

Proof This follows from the modified thickness lemma above by the same
argument found in [24, p. 133].

Corollary 7.3 (a) There is no uniformly c.e. numbering of all high c.e. sets.
(a) There is no uniformly c.e. numbering of all noncomputable c.e. sets.

In fact, it follows that there is no uniformly c.e. numbering of the high or
noncomputable c.e. degrees. Inasmuch as the computable sets resemble the
decidable IT) classes, we conjecture that there is no effective numbering of
all nondecidable IT} classes.

The degree of a II{ class P is defined to be the degree of Tp and is thus
always a c.e. degree (since Tp is a co-c.e. set).

We will use the following two classic results.

(1) [Martin] Any high degree contains a maximal (and hence dense simple)
set [24, pp. 211-217].

(2) [Dekker] Any noncomputable c.e. degree contains a hypersimple
set [24, p. 81].

Proposition 7.4 A c.e. degree is high if and only if it contains a very small
H? class P C 2%,

Proof (—): Suppose a is high, and let A € a be a maximal set, and let p
be the principal function of w — A, so that p dominates every computable
function. Now let P4 = {04} U {0"10% : n ¢ A}. Then Py is a II? class and
for each n, the least k such that |T» N {0,1}"| > k is precisely p(n) + 1 for
n > 0 and hence dominates every computable function.

(«—): Let a be a c.e. degree and suppose that Tp €a for some very small
P. Then the function f(n) = (least k)[|T» N {0,1}*| > n], which dominates
every computable function, is computable from T'p. It follows from Martin’s
Theorem [24, p. 208] that Tp is high.

Proposition 7.5 A c.e. degree is noncomputable if and only if it contains
an infinite, small ITY P C 2¢.

Proof (—): Suppose a is a noncomputable c.e. degree, let A € a be hyper-
simple, and p be the principal function of w — A, so that p is not dominated
by any computable function. Then the ITY class P4 as defined in the proof
of Proposition 7.4 will have degree a and will be small.

(+—): Suppose that P is an infinite IT{ class and Tp is computable. Then
the function g(n) = (least k)[|Tp N {0, 1}*| > n] is computable and it follows
that P is not small.

Theorem 7.6 There is no effective (IIY ) numbering of all nondecidable, of
all infinite small, or of all very small 1T classes in 2“.
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Proof Suppose, towards a contradiction, that {Q, = [T,,] : n € w} is an
effective numbering of IT) classes such that each @,, is nondecidable. Then

Wy

= {(0) : 0 ¢ Ezt(T},)} is a uniformly c.e. numbering of noncomputable

c.e. sets. By Corollary 7.2, there is a high c.e. set A such that for all n,
W, &1 A. Therefore A is a high degree that contains a (very) small class
not amongst the @);, a contradiction.
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