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The Third International Conference on Computability and Complexity in
Analysis took place November 1-5, 2006 at the University of Florida in Gainesville,
Florida as part of the National Science Foundation-sponsored Special Year in
Logic. This special issue consists of selected papers from the conference.

Computability and complexity are two central areas of research in math-
ematical logic and theoretical computer science. Computability theory is the
study of the limitations and abilities of computers in principle. Computational
complexity provides a framework for understanding the cost of solving compu-
tational problems, as measured by the requirement for resources such as time
and space. Classical computability and complexity theory consider algorithms
as operating on finite strings of symbols from a finite alphabet, which may
represent various discrete objects such as integers or algebraic expressions.

Computability theory over the real numbers and over more general continu-
ous data structures is needed for most mathematical models in applied science.
Computable analysis is the theory of the computability and complexity of real
numbers and functions of real variables. This includes the analyzing the ef-
fective content of results from classical and modern analysis. The topics of
interest include foundational work on various models and approaches for de-
scribing computability and complexity over the real numbers. The CCA 2006
conference focused in particular on effectively closed sets and on algorithmic
randomness of reals, including randomness of real continuous functions.

Manuel Campagnolo and Kerry Ojakian [The elementary computable func-
tions over the real numbers: Applying two new techniques] present two new
techniques (approximation and lifting) to construct function algebras for the
real (Kalmar or C2) elementary computable functions in a new way.

Vasco Brattka [Borel Complexity and Computability of the Hahn-Banach
Theorem analyzes the Hahn-Banach theorem, which states that any linear
bounded functional defined on a linear subspace of a normed space admits a
norm-preserving linear bounded extension to the whole space. He shows that
the Hahn-Banach extension operator is upper semi-computable, whereas it is
known that it cannot be lower semi-computable in general.

The paper of Josef Berger and Douglas Bridges [The anti-Specker property, a
Heine–Borel property, and uniform continuity] is part of the ongoing program of
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constructive reverse mathematics. Working within Bishop’s constructive frame-
work, the authors examine the connection between a weak version of the Heine–
Borel property, an antithetical property from Specker’s theorem in recursive
analysis, and the uniform continuity theorem for integer-valued functions.

Mathematical theorems frequently postulate the existence of a (real) solution
to a certain problem. For example, the Intermediate Value Theorem states that
a continuous function which takes on both positive and negative values must
have a zero. The set of solutions to such a problem may be assigned a degree
of difficulty in the sense of Medvedev, where a set P of reals is less difficult
than a set Q if there is a computable function mapping Q into P , so that from
any element of Q, we may compute an element of P . If P represents the set of
solutions to problem A and Q represents the set of solutions to problem B, then
from any solution of B we can compute some solution of A. For a computable
problem, the set of solutions generally makes up an effectively closed set, or Π0

1

class.
The study of Π0

1 classes has been an important part of computability theory
since its inception. Of particular interest are the complexity of the members
of a Π0

1 class and the structure of the family of Π0
1 classes, including both the

lattice of degrees of difficulty and the lattice under inclusion. A closed subset
K of 2ω may be represented as the set of infinite paths through a tree T ⊆ 2<ω

and K is a Π0
1 class (effectively closed) if it can be represented by a computable

tree. Since there is an effective one-to-one correspondence between ω and 2<ω,
a tree T ⊆ 2ω may be encoded as a subset of ω and hence as a real number.
The complexity (and also the randomness) o a closed set K may be measured
by the complexity (respectively, randomness) of this parameter.

Cenzer and Peter G. Hinman [Degrees of difficulty of generalized r.e. sepa-
rating classes] study the degrees of difficulties of certain effectively closed sets;
that is, generalized computably enumerable separating classes. Given a k-tuple
A1, . . . , Ak of c.e. sets, let GSk(A1, . . . , Ak) be the set of functions f ∈ ωk

such that x ∈ Ai implies f(x) 6= i. An example is the set of k-ary diagonally
noncomputable functions. Results include density and the splitting property for
this family.

Josh Cole [Embedding FD(ω) into Ps Densely] shows that the free distribu-
tive lattice on countably many generators may be embedded between any two
Medvedev degrees, greatly improving the original density result of Cenzer and
Hinman.

Another way to determine the complexity of a problem is via index sets. The
Π0

1 classes have a natural enumeration P0, P1, . . . and the index set associated
with a given propertyR is {e : R(Pe)}. For example, {e : Pe has a computable member}
is a Σ0

3-complete set. This significantly refines and improves the fact that a
nonempty Π0

1 class need not contain a computable member. Then if one simi-
larly enumerates the computably continuous functions as F0, F1, . . . , it follows
that {e : Fe has a computable zero} is Σ0

3 complete.
Paul Brodhead and Cenzer [Effectively Closed Sets and Enumerations] ex-

amine the theory of enumerations, or numberings, of Π0
1 classes. In particular,

one numbering (P0, P1, . . . ) is reducible to another (Q0, Q1, . . . ) if there is a com-
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putable function f such that Pe = Qf(e). Many commonly used numberings of
Π0

1 classes are shown to be mutually reducible via a computable permutation.
A computable injective numbering is given and numberings are also studied for
various subfamilies, such as the decidable Π0

1 classes and the thin classes.
The notion of algorithmic randomness is directly related to Π0

1 classes by
way of the Martin-Löftest. That is, a real number x is Martin-Löfrandom if
it belongs to the union of any effective, increasing sequence of Π0

1 classes with
measure (effectively) approaching one. It turns out that any Martin-Löfrandom
real belongs to a Π0

1 class of positive measure which contains only random reals.
Since a closed set K of reals may be represented by a real parameter, we

may say that K is Martin-Löfrandom if the parameter is Martin-Löfrandom.
Similarly a continuous real function F is computable relative to some real
parameter and F may be said to be Martin-Löfrandom if this parameter is
Martin-Löfrandom. George Barmpalias, Cenzer, Jeffrey Remmel and Weber
[Algorithmic Randomness of Continuous Functions] have extended the notion
of algorithmic randomness to closed sets and to continuous functions. They
show that random ∆0

2 continuous functions exist, but no computable function
can be random and no random function can map a computable real to a com-
putable real. The set of zeroes of a random continuous function is always a
random closed set, but the image of a random continuous function need not be
a random closed set.

The notion of triviality and lowness for randomness has been of great inter-
est. A real x is low for randomness if any random real y is random relative to
x. Nies showed that this is equivalent to x being K-trivial; that is, having low
Kolmogorov complexity.

Johanna Franklin [Schnorr Trivial Reals: A construction] examines an alter-
nate notion of algorithmic randomness is that a real is (Schnorr) random if it
belongs to the union of any increasing sequence of Π0

1 classes Qi which have mea-
sure exactly 1−2−i. A notion of Schnorr triviality is developed, and it is shown
that although Schnorr randomness is closely related to Martin-Löfrandomness,
the set of Turing degrees containing K-trivial reals has very different properties
from the set of Turing degrees that contain Schnorr trivial reals. In particular,
if h′ ≥T 0′′, then h contains a Schnorr trivial real.
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