K-Triviality of Closed Sets and Continuous Functions

George Barmpalias, School of Mathematics, University of Leeds, Leeds LS2 9JT, England
Douglas Cenzer, Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville, Florida 32611 email: cenzermath.ufl.edu
Jeffrey B. Remmel, Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112
Rebecca Weber, Department of Mathematics, Dartmouth College, Hanover, NH 03755-3551

March 25, 2008

Abstract

We investigate the notion of K-triviality for closed sets and continuous functions in $2^{\mathbb{N}}$. For every K-trivial degreee \mathbf{d}, there exists a closed set of degree \mathbf{d} and a continuous function of degree \mathbf{d}. Every K-trivial closed set contains a K-trivial real. There exists a K-trivial Π_{1}^{0} class with no computable elements. A closed set is K-trivial if and only if it is the set of zeroes of some K-trivial continuous function. We give a density result for the Medvedev degrees of K-trivial Π_{1}^{0} sets. If $W \leq_{T} A^{\prime}$, then W can compute a path through every A^{\prime}-decidable random closed set if and only if $W \equiv{ }_{T} A^{\prime}$.

1 Introduction

The study of algorithmic randomness has been an active area of research in recent years. The basic problem is to quantify the randomness of a single real

[^0]number. Here we think of a real $r \in[0,1]$ as an infinite sequence of 0 's and 1 's, i.e as an element in $2^{\mathbb{N}}$. There are three basic approaches to algorithmic randomness: the measure theoretic, the compressibility and the betting approaches. All three approaches have been shown to yield the same notion of (algorithmic) randomness, under suitable effectivity assumptions. Here we will only use notions from the compressibility approach, incorporating a number of non-trivial results in this area. For background and history of algorithmic randomness we refer to $[13,12,16]$.

Prefix-free (Chaitin) complexity for reals is defined as follows. Let M be a prefix-free function with domain $\subset\{0,1\}^{*}$. For any finite string τ, let $K_{M}(\tau)=$ $\min \{|\sigma|: M(\sigma)=\tau\}$. There is a universal prefix-free function U such that, for any prefix-free M, there is a constant c such that for all τ

$$
K_{U}(\tau) \leq K_{M}(\tau)+c
$$

We let $K(\sigma)=K_{U}(\sigma)$. Then $x \in 2^{\mathbb{N}}$ is said to be random if there is a constant c such that $K(x\lceil n) \geq n-c$ for all n. This means a real x is random exactly when its initial segments are not compressible.

In a series of recent papers $[2,6,3,5], \mathrm{P}$. Brodhead, S. Dashti and the authors have defined the notion of (algorithmic) randomness for closed sets and continuous functions on $2^{\mathbb{N}}$. Some definitions are needed. For a finite string $\sigma \in\{0,1\}^{n}$, let $|\sigma|=n$ denote the length of n. To avoid confusion, we let $\operatorname{card}(A)$ denote the cardinality of the set A. For two strings σ, τ, say that τ extends σ and write $\sigma \prec \tau$ if $|\sigma| \leq|\tau|$ and $\sigma(i)=\tau(i)$ for $i<|\sigma|$. For $x \in 2^{\mathbb{N}}$, $\sigma \prec x$ means that $\sigma(i)=x(i)$ for $i<|\sigma|$. Let $\sigma^{\frown} \tau$ denote the concatenation of σ and τ and let $\sigma \frown i$ denote $\sigma \frown(i)$ for $i=0,1$. Let $x\lceil n=(x(0), \ldots, x(n-1))$. Two reals x and y may be coded together into $z=x \oplus y$, where $z(2 n)=x(n)$ and $z(2 n+1)=y(n)$ for all n. For a finite string σ, let $I(\sigma)$ denote $\left\{x \in 2^{\mathbb{N}}: \sigma \prec x\right\}$. We shall call $I(\sigma)$ the interval determined by σ. Each such interval is a clopen set and the clopen sets are just finite unions of intervals. Now a nonempty closed set P may be identified with a tree $T_{P} \subseteq\{0,1\}^{*}$ where $T_{P}=\{\sigma: P \cap I(\sigma) \neq \emptyset\}$. Note that T_{P} has no dead ends. That is, if $\sigma \in T_{P}$, then either $\sigma^{\wedge} 0 \in T_{P}$ or $\sigma^{\frown} 1 \in T_{P}$ (or both). For an arbitrary tree $T \subseteq\{0,1\}^{*}$, let $[T]$ denote the set of infinite paths through T. It is well-known that $P \subseteq 2^{\mathbb{N}}$ is a closed set if and only if $P=[T]$ for some tree $T . P$ is a Π_{1}^{0} class, or an effectively closed set, if $P=[T]$ for some computable tree $T . P$ is a strong Π_{2}^{0} class, or a Π_{2}^{0} closed set, if $P=[T]$ for some Δ_{2}^{0} tree. The complement of a Π_{1}^{0} class is sometimes called a c.e. open set. We remark that if P is a Π_{1}^{0} class, then T_{P} is a Π_{1}^{0} set, but it is not, in general, computable. An important example of a Π_{1}^{0} class is the class $S(A, B)$ of separating sets of disjoint c. e. sets, that is,

$$
S(A, B)=\left\{x \in 2^{\mathbb{N}}:(\forall n)[(n \in A \rightarrow x(n)=1) \wedge(n \in B \rightarrow x(n)=0)]\right\}
$$

a natural effective enumeration P_{0}, P_{1}, \ldots of the Π_{1}^{0} For a detailed development of Π_{1}^{0} classes, see [7].

We define a measure μ^{*} on the space \mathcal{C} of closed subsets of $2^{\mathbb{N}}$ as follows. Given a closed set $Q \subseteq 2^{\mathbb{N}}$, let $T=T_{Q}$ be the tree without dead ends such that
$Q=[T]$. Let $\sigma_{0}, \sigma_{1}, \ldots$ enumerate the elements of T in order, first by length and then lexicographically. We then define the (canonical) code $x=x_{Q}=x_{T}$ of Q by recursion such that for each $n, x(n)=2$ if both $\sigma_{n} \frown 0$ and $\sigma_{n} \frown 1$ are in $T, x(n)=1$ if $\sigma_{n} \frown 0 \notin T$ and $\sigma_{n} \frown 1 \in T$, and $x(n)=0$ if $\sigma_{n} \frown 0 \in T$ and $\sigma_{n} \frown 1 \notin T$. We then define μ^{*} by setting

$$
\begin{equation*}
\mu^{*}(\mathcal{X})=\mu\left(\left\{x_{Q}: Q \in \mathcal{X}\right\}\right) \tag{1}
\end{equation*}
$$

for any $\mathcal{X} \subseteq \mathcal{C}$ and μ is the standard measure on $\{0,1,2\}^{\mathbb{N}}$. Informally this means that given $\sigma \in T_{Q}$, there is probability $\frac{1}{3}$ that both $\sigma \frown 0 \in T_{Q}$ and $\sigma^{\frown} 1 \in T_{Q}$ and, for $i=0,1$, there is probability $\frac{1}{3}$ that only $\sigma^{\frown} i \in T_{Q}$. In particular, this means that $Q \cap I(\sigma) \neq \emptyset$ implies that for $i=0,1, Q \cap I\left(\sigma^{-} i\right) \neq \emptyset$ with probability $\frac{2}{3}$. That is, one conceives of constructing a "random" tree T with no dead ends by starting with the empty string and then, for each node $\sigma \in T$, including either one or both of the immediate successors $\sigma^{\frown} i$ of σ with equal probability $\frac{1}{3}$. Brodhead, Cenzer, and Dashti [6] defined a closed set $Q \subseteq 2^{\mathbb{N}}$ to be (Martin-Löf) random if x_{Q} is (Martin-Löf) random. Note that the equal probability of $\frac{1}{3}$ for the three cases of branching allows the application of Schnorr's theorem that Martin-Löf randomness is equivalent to prefix-free Kolmogorov randomness. Then in $[6,3]$, the following results are proved. Every random closed set is perfect and contains no computable elements (in fact, it contains no n-c.e. elements). Every random closed set has measure 0 and has box dimension $\log _{2} \frac{4}{3}$.

A continuous function $F: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ may be represented by a function $f:$ $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that the following hold, for all $\sigma \in\{0,1\}^{*}$.
(1) $|f(\sigma)| \leq|\sigma|$.
(2) $\sigma_{1} \prec \sigma_{2}$ implies $f\left(\sigma_{1}\right) \prec f\left(\sigma_{2}\right)$.
(3) For every n, there exists m such that for all $\sigma \in\{0,1\}^{m},|f(\sigma)| \geq n$.
(4) For all $x \in 2^{\mathbb{N}}, F(x)=\bigcup_{n} f(x\lceil n)$.

We define the space \mathcal{F} of representing functions $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ to be those which satisfy clauses (1) and (2) above. Each $f \in \mathcal{F}$ may in turn be coded by (infinitely many) $r \in\{0,1,2\}^{\mathbb{N}}$, as follows. Enumerate $\{0,1\}^{*}$ in order, first by length and then lexicographically, as $\sigma_{0}, \sigma_{1}, \ldots$. Thus $\sigma_{0}=\emptyset$, $\sigma_{1}=(0), \sigma_{2}=(1), \sigma_{3}=(00), \ldots$. Then $r \in\{0,1,2\}^{\mathbb{N}}$ corresponds to the function $f_{r}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ defined by declaring that $f_{r}(\emptyset)=\emptyset$ and that, for any σ_{n} with $\left|\sigma_{n}\right| \geq 1$,

$$
f_{r}\left(\sigma_{n}\right)= \begin{cases}f_{r}\left(\sigma_{k}\right), & \text { if } r(n)=2 \\ f_{r}\left(\sigma_{k}\right) \subset i, & \text { if } r(n)=i<2\end{cases}
$$

where k is such that $\sigma_{n}=\sigma_{k} \frown j$ for some j. Every continuous function F has a representative f as described above, and, in fact, it has infinitely many representatives. We define a measure $\mu^{* *}$ on \mathcal{F} induced by the standard probability
measure on $\{0,1,2\}^{\mathbb{N}}$. Brodhead, Cenzer, and Remmel [5] defined an (MartinLöf) random continuous function on $2^{\mathbb{N}}$ which has a representation in \mathcal{F} which is Martin-Löf random. It is shown that any Martin-Löfrandom $r \in\{0,1,2\}^{\mathbb{N}}$ in fact represents a continuous function. The following results are proved in $[2,5]$. Random Δ_{2}^{0} continuous functions exist, but no computable function can be random and no random function can map a computable real to a computable real. The image of a random continuous function is always a perfect set and hence uncountable. For any $y \in 2^{\mathbb{N}}$, there exists a random continuous function F with y in the image of F. Thus the image of a random continuous function need not be a random closed set. The set of zeroes of a random continuous function is a random closed set (if nonempty).

There has been a considerable amount of work on studying reals whose complexity is "low" or trivial from the point of view of randomness. Chaitin defined a real x to be K-trivial if $K\left(x\lceil n) \leq K\left(1^{n}\right)+O(1)\right.$. We recall that there are noncomputable c.e. sets which are K-trivial and that the K-trivial reals are downward closed under Turing reducibility. The latter is a highly non-trivial result of Nies [22] who also showed that the K-trivial reals form a Σ_{3}^{0}-definable ideal in the Turing degrees. In particular, this means that if α and β are K-trivial, then the join $\alpha \oplus \beta$ is also K-trivial.

The main goal of this paper is to study K-triviality for closed subsets of $2^{\mathbb{N}}$ and for continuous functions on $2^{\mathbb{N}}$. We define a closed set Q to be K-trivial if the code x_{Q} is K-trivial and we define a continuous function $F: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ to be K-trivial if it has a representing function $f \in \mathcal{F}$ which is K-trivial. For example, in section two, we shall show that, for every K-trivial degree d, there is a K-trivial Π_{1}^{0} class of degree \mathbf{d} which is the family of separating sets of a pair of computably inseparable c.e. sets. There also exist K-trivial Π_{1}^{0} classes of positive measure with no computable member. Every K-trivial closed set contains a K-trivial member. There is no c.e. low set A such that the sets computed by A form a basis for the K-trivial classes. In section three, we shall show that for any K-trivial degree \mathbf{d}, there is a K-trivial continuous function on $2^{\mathbb{N}}$ with degree d. K-trivial functions map K-trivial reals to K-trivials. A closed set is K-trivial if and only if it is the set of zeroes of some K-trivial continuous function. In section four, we shall investigate the Medvedev degrees of difficulty of K-trivial Π_{1}^{0} classes. There is no maximal or minimal K-trivial Medvedev degree. Finally, in section five, we give a new result on the members of random closed sets, namely that for $A, W \subseteq \omega$ if $W \leq_{T} A^{\prime}$ then $W \equiv_{T} A^{\prime}$ if and only if W can compute a path through every A-random closed set P such that $T_{P} \leq_{T} A^{\prime}$.

2 K-trivial closed sets

Since every K-trivial real is Δ_{2}^{0}, we have that every K-trivial closed set is a strong Π_{2}^{0} class. Note also that the canonical code of a Π_{1}^{0} class has c.e. degree and that there are K-trivial reals with non-c.e. degree. Hence there are K-trivial closed sets which are not Π_{1}^{0} classes.

Analogous to the existence of c.e. K-trivial reals, we will construct several examples of K-trivial Π_{1}^{0} classes. Note that a Π_{1}^{0} class P is said to be decidable if the canonical tree T_{P} is computable, which is if and only if the canonical code for P is computable. Thus we want to construct K-trivial Π_{1}^{0} classes which are not decidable. The degree of a closed set Q is the degree of the tree T_{Q} and also the degree of the canonical code for T_{Q}. Since the K-trivial sets are closed under Turing reducibility, a closed set Q is K-trivial if and only if the tree T_{Q} is K-trivial. Thus we will also say that $Q=\emptyset$ is a K-trivial closed set.

We begin with those non-decidable Π_{1}^{0} classes with the simplest structure, that is, countable classes with a unique limit path. Our first construction relies on the following notion. If $A=\left\{a_{0}<a_{1}<\cdots\right\}$ is an infinite set, then A is said to be retraceable if there is a partial computable function ϕ such that $\phi\left(a_{n+1}\right)=a_{n}$ for all n. The initial subsets of A are A together with the finite sets $\left\{a_{0}, \ldots, a_{n-1}\right\}$ for each n. Dekker and Myhill [11] showed that every c.e. degree contains a retraceable Π_{1}^{0} set A. Cenzer, Downey, Jockusch and Shore [8] showed that a Π_{1}^{0} set A is retraceable if and only if the family $I(A)$ of initial subsets is a Π_{1}^{0} class. Clearly $I(A)$ has unique limit element A.

Theorem 2.1. For any noncomputable K-trivial c.e. degree d, there exists a K-trivial Π_{1}^{0} class P of degree \mathbf{d} such that P has a unique, noncomputable limit element.

Proof. Let A be a retraceable Π_{1}^{0} set of degree d. Then A is K-trivial and noncomputable and is the unique limit element of the Π_{1}^{0} class $P=I(A)$ as shown above. It remains to show that the tree T_{P} has the same degree as A. Certainly $T_{P} \leq_{T} A$, since

$$
\sigma \in T_{P} \Longleftrightarrow(\forall i<|\sigma|)[\sigma(i)=1 \rightarrow(i \in A \&(\forall j<i)(j \in A \rightarrow \sigma(j)=1))]
$$

On the other hand, $A \leq_{T} T_{P}$ since

$$
a \in A \Longleftrightarrow\left(\exists \sigma \in\{0,1\}^{a+1}\right)\left(\sigma \in T_{P} \& \sigma(a)=1\right) .
$$

We next construct a K-trivial class having only computable members.
Theorem 2.2. For any K-trivial c.e. degree d, there exists a K-trivial Π_{1}^{0} class of degree \mathbf{d} with unique limit path 0^{ω} and all elements computable.

Proof. Let B be a co-c.e. set of degree \mathbf{d} and let $Q=\left\{0^{\omega}\right\} \cup\{\{n\}: n \in B\}$. Clearly Q has all elements computable and unique limit element 0^{ω}. It is easy to check that $T_{Q} \equiv_{T} B$.

Next we wish to obtain a Π_{1}^{0} class with no computable members (a special Π_{1}^{0} class) such that the code for the class is K-trivial. To do so we rely heavily on the fact that the K-trivials form an ideal in the Turing degrees (and in particular K-triviality is closed under Turing equivalence). It follows that the separating class for two disjoint K-trivial sets A, B will be K-trivial, as the set
of its extendible nodes (and hence its code) is Turing-equivalent to $A \oplus B$. It remains to show there are recursively inseparable K-trivial sets. The following proof is due to Steve Simpson.

Theorem 2.3. There is a K-trivial Π_{1}^{0} class with no computable members.
Proof. Let B be a noncomputable c.e. K-trivial set. Split B into disjoint noncomputable c.e. A_{1}, A_{2} as in the Friedberg splitting theorem. Ohashi [24] observed that the proof of the Friedberg splitting theorem in fact gives that A_{1}, A_{2} are recursively inseparable. By the downward closure of K-triviality, they are also K-trivial. Let S be their separating class. Then by the discussion above, S is a special K-trivial Π_{1}^{0} class.

Note that the separating class constructed in Theorem 2.3 has measure zero. Next we construct K-trivial classes of arbitrarily large positive measure yet still containing no computable members. The proof makes use of the well-established cost function method from the area of algorithmic randomness, first used in Kučera-Terwijn [21] and later made explicit, e.g. in Downey-Hirschfeldt-NiesStephan [15].

Theorem 2.4. There is a K-trivial Π_{1}^{0} class (of arbitrarily large measure) with no computable paths (thus perfect).

Proof. There is a well established framework for constructing K-trivial reals in the Cantor space 2^{ω} in terms of cost functions. A good presentation of this can be found in Nies [23]. It is clear that the same method applies to the space 3^{ω}. Let K be the prefix-free complexity and

$$
\operatorname{cost}(x, t)=\sum_{x<w \leq t} 2^{-K_{t}(w)} .
$$

where $K_{t}(w)$ denotes the prefix complexity of w by stage s. It is well known that $\lim _{x} \sup _{t} \operatorname{cost}(x, t)=0$. In order to construct a K-trivial Π_{1}^{0} class P it suffices to give a monotone approximation $\left(P_{t}\right)$ to P (in the sense that $\left.P_{t} \supseteq P_{t+1}\right)$ such that if c_{t} is the code for P_{t} and x_{s} is the least number such that $c_{s-1}(x) \neq c_{s}(x)$ then

$$
\begin{equation*}
\sum_{s>0} \operatorname{cost}\left(x_{s}, s\right) \leq 1 \tag{2}
\end{equation*}
$$

Indeed in [23] it is shown that c is K-trivial iff it has a Δ_{2}^{0} approximation $\left(c_{t}\right)$ which satisfies (2). To make sure that there are no computable paths through P it suffices to satisfy the following requirements:

$$
R_{e}: \Phi_{e} \text { is total } \Rightarrow \Phi_{e} \notin P
$$

where $\left(\Phi_{e}\right)$ is an effective enumeration of all Turing functionals with binary values. The strategy for R_{e} is to modify the code c at some stage so that the tree represented by c no longer extends some initial segment of Φ_{e}. This is done
by switching a 2 in c to a 0 or 1 according to which has the desired effect. First note that each c_{t} will consist of all 2's except for a finite initial segment, so we will find a suitable digit to switch. Second note that when we change a position in c from 2 to something else (0 or 1), we can effectively adjust the tail of c (the digits after the modified digit) so that the code describes the tree that we get if we cut that branch from the branching node corresponding to the 2 above. This means that if we let R_{e} act on c in the way described above, we get an approximation to P which is co-c.e. (so P is a Π_{1}^{0} class).

The last consideration is that R_{e} cannot change digit n at stage s unless $\operatorname{cost}(n, s)<2^{-(e+1)}$. This will make $c K$-trivial. Let $\mathbb{N}^{[e]}$ be the e-th column of \mathbb{N}, i.e. the set of numbers of the form $\langle e, t\rangle$ for some $t \in \mathbb{N}$ where $\langle.,$.$\rangle is a$ computable bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}. The symbol \upharpoonright denotes restriction of the object that precedes it to the numbers $<x$. For example $\Phi_{e} \upharpoonright x \downarrow$ means that Φ_{e} is defined at all arguments $<x$. All parameters in the construction are in formation and only have current values which correspond to the current stage.

Construction. At stage s look for the least $e<s$ such that R_{e} has not acted and there is a positive $x \in \mathbb{N}^{[e]}$ with the property that

- $\Phi_{e} \upharpoonright x \downarrow$ and is on P_{s}
- $\operatorname{cost}(k(x, s), s)<2^{-(e+1)}$, where $k(x, s)$ is the position of node $\Phi_{e} \upharpoonright(x-1)$ in the code c_{s} of P_{s}.

If there is no such e go to the next stage. Otherwise note that since R_{e} has not acted and $x \in \mathbb{N}^{[e]}$, no strategy has chopped any branch from node $\Phi_{e} \upharpoonright(x-1)$ and so the latter is branching. Now switch $k(x, s)$ from 2 to $1-\Phi_{e}(x-1)$ (so that $\Phi_{e} \upharpoonright x \notin P$) and let larger positions describe the tree that we get by chopping that branch. Go to the next stage.

For the verification, the comments before the description of R_{e} explain why the approximation $\left(c_{t}\right)$ defined in the construction corresponds to a co-c.e. approximation of P, so that P is a Π_{1}^{0} class. Each R_{e} is satisfied by the standard cost-function argument: there is some x_{0} such that for all $x>x_{0}$ and all s, $\operatorname{cost}(x, s)<2^{-(e+1)}$ (by the properties of cost). Finally c is K-trivial since the approximation $\left(c_{t}\right)$ given in the construction satisfies (2) (that each R_{e} acts at most once and contributes cost at most $\left.2^{-(e+1)}\right)$. Finally note that by choosing the witnesses x sufficiently large we can make sure that P has measure arbitrarily close to 1 .

Theorem 2.5. If P is a K-trivial Π_{1}^{0} class then the leftmost path is a K-trivial real.

Proof. The leftmost path is computable from the (code of the) Π_{1}^{0} class P and since K-triviality is downward closed under Turing reductions it must be K trivial.

By Nies' top low $_{2}$ theorem (see [13]), there is a low_{2} c.e. degree above all K-trivial degrees. By Theorem 2.5, this means that the sets computed by it form a basis for the K-trivial Π_{1}^{0} classes (while no incomplete c.e. degree has this property with respect to all Π_{1}^{0} classes). The following theorem shows that such a c.e. degree cannot be low. Note however that there are low $P A$ degrees, i.e. low degrees such that the sets computed by them form a basis for all Π_{1}^{0} classes. The corresponding problem for K-trivial reals-whether there is a low degree bounding all K-trivials-was recently answered positively by Kučera and Slaman [20].

Theorem 2.6. If A is c.e. and low then there is a K-trivial Π_{1}^{0} class which contains no A-computable paths. In other words, there is no c.e. low set A such that the sets computed by A form a basis for the K-trivial Π_{1}^{0} classes.

Proof. This is similar to the proof that for every c.e. low A there is a K-trivial B such that $B \not \mathbb{Z}_{T} A$ (in the same way that the proof of Theorem 2.4 is similar to the construction of a non-computable K-trivial set). If the reader is not familiar with that construction, (s)he might like to have a look at it [23]. We wish to follow the construction of Theorem 2.4 only now we need to satisfy the following more demanding requirements:

$$
R_{e}: \Phi_{e}^{A} \text { is total } \Rightarrow \Phi_{e}^{A} \notin P .
$$

In general it is impossible to satisfy these requirements but if we know that A is low we can use the following trick (due to Robinson) to succeed. During the construction we will ask \emptyset^{\prime} a $\Sigma_{1}^{0}(A)$ question (for the sake of R_{e}). Note that since A is low, \emptyset^{\prime} can answer such questions. At each stage we will only have an approximation to \emptyset^{\prime} and so we will get a correct answer possibly after a finite number of false answers. Requirement R_{e} will use witnesses (in the sense of the proof of Theorem 2.4) from $\mathbb{N}^{[e]}$. We will ask the following:

Is there a stage s and a witness x such that

- $\Phi_{e}^{A} \upharpoonright x[s] \downarrow$ with correct A-use and $\Phi_{e}^{A} \upharpoonright x[s] \in P_{s}$
- $\operatorname{cost}(k(x, s), s)<2^{-\left(n_{e}+e+3\right)}$
where n_{e} is the number of times that some branch of P has been pruned (i.e. some digit of c has been changed) for the sake of R_{e} ?

First notice that the above question refers to the partial computable sequences $\left(P_{s}\right),\left(n_{e}[s]\right)$ which are defined during the very construction. By the recursion theorem we can ask such questions and approximate the right answers: given any partial computable sequence $\left(P_{s}^{\prime}\right)$ of Π_{1}^{0} classes and uniformly partial computable sequences ($\left.n_{e}^{\prime}[s]\right)$, we will effectively define a construction in which the questions refer to the given parameters. All of these constructions will define a sequence $\left(P_{s}\right)$ of Π_{1}^{0} classes which monotonically converges to a K-trivial Π_{1}^{0} class P which however does not necessarily satisfy the other requirements; also each will define a uniformly partial computable sequence ($n_{e}[s]$). The (double) recursion
theorem will give a construction in which the questions asked actually refer to $\left(P_{s}\right)$ and $\left(n_{e}[s]\right)$. Such a construction will succeed in satisfying all requirements. Let $g(e, s)$ be a computable function approximating the true answer to the questions above, when these are set to refer to the given parameters $\left(P_{s}^{\prime}\right),\left(n_{e}^{\prime}[s]\right)$.

Construction. For stage s and each $e<s$ such that there is an unused $x \in \mathbb{N}^{[e]}$ satisfying $\Phi_{e}^{A} \upharpoonright x[s] \in P_{s}$ and $\operatorname{cost}(k(x, s), s)<2^{-\left(n_{e}[s]+e+3\right)}$ (where $n_{e}[s]$ is as above) do the following. Wait for a stage $t \geq s$ such that $g(e, t)=1$ or the computation $\Phi_{e}^{A} \upharpoonright x[t]$ is different thant he computation $\Phi_{e}^{A} \upharpoonright x[s]$. In the first case switch $k(x, s)$ from 2 to $1-\Phi_{e}(x-1)$ (so that $\Phi_{e} \upharpoonright x \notin P$) and let larger positions describe the tree that we get by chopping that branch (say that x has been used); proceed to stage $s+1$. In the latter case do nothing and test the next value of e. If the above has run over all $e<s$ and we are still at stage s, go to stage $s+1$.

For the verification, note that if x is unused at some stage, then currently all nodes of the x th level of P are branching. So each construction defines a (possibly finite) monotone sequence of clopen sets P_{s} (and so a Π_{1}^{0} class P as a limit). Also, for every value of the input $\left(P_{s}^{\prime}\right),\left(n_{e}^{\prime}[s]\right)$ the resulting class P is K trivial as the condition (2) from the proof of Theorem 2.4 holds (at any stage at most one requirement acts and the cost of that action is small by construction). By the double recursion theorem there is a construction such that

$$
n_{e}[s]=n_{e}^{\prime}[s] \wedge P_{s}=P_{s}^{\prime}
$$

for all s, e; i.e. the input and output as (double) partial computable sequences are the same. This construction must be total (in the sense that it passes through all stages) since every search halts (for example if $\Phi_{e}^{A} \upharpoonright x[s] \in P_{s}$ with use u, $A[s] \upharpoonright u=A$ and $\operatorname{cost}(k(x, s), s)<2^{-\left(n_{e}[s]+e+3\right)}$ then $g(e)$ has to settle at 1 as it guesses correctly). Finally suppose that R_{e} is not satisfied. This means that the answer to the e-question is a negative one. So $g(e)$ would settle to 0 (since it approximates the correct answer to the e-question) and R_{e} would act finitely often. But then the cost requirement (in particular n_{e}) would remain constant and (by the properties of cost) for some large enough x, s the computation $\Phi_{e}^{A}[s] \upharpoonright x$ will be correct and $\Phi_{e}^{A} \upharpoonright x[s] \in P_{s}, \operatorname{cost}(k(x, s), s)<2^{-\left(n_{e}[s]+e+3\right)}$ which is a contradiction.

3 K-trivial continuous functions

In [5], the notion of randomness was extended to continuous functions on $2^{\mathbb{N}}$. Thus it will be natural to consider K-trivial continuous functions. It was shown in [5] that a random continuous function maps any computable real to a random real. Note that Fouche [17] has earlier used a different approach to randomness for continuous functions connected with Brownian motion, first presented by Asarin and Prokovsky [1], and has shown that, under this approach, it is also
true that for any random continuous function $F, F(x)$ is not computable for any computable input x. A general approach to randomness, which includes continuous functions, is developed by Gács [18]. The representation f for a continuous function F, as defined above in the introduction, may be viewed as a labeled tree where every node $\sigma \in\{0,1\}^{*}$ has a label from $\{0,1,2\}$ so that σ_{n} gets label $r(n)$.

Proposition 3.1. For any K-trivial computable function F and any K-trivial real $x, F(x)$ is K-trivial.

Proof. Let f be the K-trivial function which codes F. Then $y=F(x)$ may be computed uniformly from f and x as follows. For each m, search for a large enough k such that $f(x\lceil k)$ has at least m values in $\{0,1\}$ and letting $y(m)$ be the m th such value. Then it follows from the closure under join of K-trivial degrees that $f \oplus x$ is also K-trivial and then by the downward closure that F is K-trivial.

It was shown in [5] that the set of zeroes of a random continuous function is either empty or random.

Proposition 3.2. For any K-trivial continuous function F, the set of zeroes of F is a K-trivial closed set.

Proof. Let F be K-trivial and let $Q=\{x: F(x)=0\}$. The tree T_{Q} may be defined from the K-trivial representative r for F as follows. T_{Q} contains a node σ if and only if for all $\sigma_{n}=\tau \sqsubset \sigma, r(n) \neq 1$. Clearly $T_{Q} \leq_{T} r$, so that Q is K-trivial by the downward closure under Turing reducibility.

This is actually a characterization of the K-trivial closed sets, by the following.

Proposition 3.3. For any K-trivial closed set Q, there is a K-trivial continuous function F such that Q is the set of zeroes of F.

Proof. Given the K-trivial tree T_{Q}, we simply define the desired K-trivial continuous function F by the labelled tree which puts a " 0 " on all nodes of T_{Q} and puts a " 1 " on every other node. Then F is computable from T_{Q} and therefore is K-trivial.

We consider a continuous functions $F: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ always in terms of one its representing functions $f: 2^{<\mathbb{N}} \rightarrow 2^{<\mathbb{N}}$, or, equivalently, in terms of the code of one of its representing functions. Note that by slowing the convergence of the function on finite strings, we may code information into the code of the function. Hence the codes of a given function on Cantor space are always closed upwards in the Turing degrees, so the K-degree of a function should be the K degree of the canonical representation, and corresponding canonical code, that which converges as rapidly as possible. This may be defined as follows. Each $\sigma \in\{0,1\}^{*}$ is mapped to τ, where τ is the longest string of length $\leq|\sigma|$ such that, for all $x \in I(\sigma), F(x) \in I(\tau)$. It is clear that the canonical representation
of a function F may be computed from any representation. That is, given a representation f and input σ, search for n large enough so that $|f(\rho)| \geq|\sigma|$ for all extensions ρ of σ of length n and let $g(\sigma)$ be the common part of those $\left\{f(\rho): \rho \in\{0,1\}^{n}: \sigma \sqsubseteq \rho\right\}$. It follows from the downward closure of K-triviality that F is K-trivial if and only if the canonical code is K-trivial.
Theorem 3.4. For any K-trivial degree \mathbf{d}, there is a continuous function F : $2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ with canonical code of degree \mathbf{d}. Moreover, if \mathbf{d} is c.e., F may be chosen to have left-c.e. canonical code.
Proof. Let $A=\left\{a_{1}, a_{2}, \ldots\right\}$ be a set of degree \mathbf{d}. We define F monotonically increasing such that $F\left(0^{\omega}\right)=0^{\omega}$ and $F\left(1^{\omega}\right)=\chi_{A}$, the characteristic function of A. We will construct the representing function $f: 2^{<\mathbb{N}} \rightarrow 2^{<\mathbb{N}}$. To begin, let $f(0)=0^{\left(a_{1}+1\right)}$ and $f(1)=0^{a_{1}} 1$. Now suppose we have defined $f(\sigma)=\tau$ for $|\sigma|=n-1$, and that $a_{n}-a_{n-1}=m$. Then let $f(\sigma 0)=\tau 0^{m}$ and $f(\sigma 1)=$ $\tau 0^{m-1} 1$. It is clear that $f \equiv_{T} A$, so f is of degree \mathbf{d}. Furthermore, if \mathbf{d} is a c.e. degree and A is chosen c.e., the code given by f will be left-c.e., as shown by an analysis of the construction.

The code for f may be thought of as composed of blocks of length 2^{n} for $n \geq 1$, in order of increasing size, corresponding to different levels of the tree. At level n, if $n-1 \notin A$, the block will be all zeros. If $n-1 \in A$ and $\operatorname{card}(A \cap$ $\{0,1, \ldots, n-1\})=k$, the block will consist of 2^{k} subblocks of 2^{n-k} bits each, beginning with a subblock of all zeros and alternating to end with a subblock of all 1s. Thus the structure of the $n^{t h}$ block is determined entirely by whether $n-1$ is in A, and if so, how many values $<n-1$ are also in A.

Given an enumeration of A as $A_{s}, s \in \omega$, we may define an approximation to the function F with corresponding canonical code C_{s}. We show that as s increases, a bit of C_{s} holding a one may only change to zero if a preceding bit changes from zero to one; this shows that C_{s} is an increasing approximation. As the enumeration A_{s} is computable by assumption, the canonical code of F is then left-c.e. Without loss of generality we consider a single level of the tree, n, and a single stage, s. If the corresponding block of C_{s-1} is all zeros, this level causes no trouble at stage s : either it remains all zeros or half of its zeros change to ones. If the $n^{t h}$ block of C_{s-1} is half zeros and half ones, then enumeration into A at stage s may cause the subblocks to multiply and rearrange. However, this only occurs when some $k<n-1$ enters A_{s}, causing the corresponding earlier level to change from all zeros to half zeros and half ones.

4 Medvedev degrees of K-trivial classes

The degrees of difficulty of K-trivial closed sets should be of interest. Simpson [25], Cenzer and Hinman [9] and others have developed the subject of the Medvedev (or strong) degrees of Π_{1}^{0} classes. Here $P \leq_{M} Q$ means that there is a computable function mapping Q into P. The Medvedev degrees form a lattice where the meet operation is the disjoint union

$$
P \wedge_{M} Q=P \oplus Q=\left\{0^{\wedge} x: x \in P\right\} \cup\left\{1^{\frown} x: x \in Q\right\}
$$

and the join is the product,

$$
P \vee_{M} Q=P \otimes Q=\{x \oplus y \mid x \in P \text { and } y \in Q\}
$$

There is a least degree 0_{M} consisting of the classes with a computable member and a highest degree 1_{M} which can be viewed as a universal Π_{1}^{0} class (for example, the set of complete consistent extensions of Peano Arithmetic). A related structure are the Muchnik (or weak) degrees, where P is weakly reducible to $Q\left(P \leq_{w} Q\right)$ if for every $\beta \in Q$ there exists $\alpha \in P$ such that $\alpha \leq_{T} \beta$.

One general problem is where the K-trivial Π_{1}^{0} classes fit into the Medvedev (or Muchnik) degrees of the Π_{1}^{0} classes. We have only a few results so far. Since the K-trivial reals form an ideal in the Turing degrees, it follows that the family of Π_{1}^{0} classes which contain a K-trivial real form an ideal in the lattice of Medvedev degrees (and also in the lattice of Muchnik degrees). The following proposition says that the K-trivial Π_{1}^{0} classes are closed under the meet and the join operation in the Medvedev degrees.

Proposition 4.1. The K-trivial Π_{1}^{0} classes are closed under disjoint unions and under products.

Proof. The degree of the code of the disjoint union of two Π_{1}^{0} classes is the join of the degrees of the codes of these Π_{1}^{0} classes. The same holds for products and since K-triviality is invariant in the Turing degrees and closed under join (in the Turing degrees) the proposition follows.

Note however that K-triviality (for Π_{1}^{0} classes) is not closed under Medvedev equivalence. For example the least Medvedev degree contains Π_{1}^{0} classes with computable leftmost path but with a canonical code which computes the halting problem. Hence we will call a Medvedev degree K-trivial if it contains a K trivial class. Since there is no c.e. complete K-trivial real and any Medvedev complete Π_{1}^{0} class is also c.e. complete, it follows that no K-trivial Π_{1}^{0} class is Medvedev complete. A relevant question is whether there a greatest Medvedev degree among the K-trivials, or even a maximal one.

Theorem 4.2. There is no maximal K-trivial Medvedev or Muchnik degree.
Proof. Given any K-trivial Π_{1}^{0} class Q it suffices to construct a K-trivial Π_{1}^{0} class P which is not weakly reducible to Q. Indeed, in that case $P \otimes Q$ would be K-trivial strongly above Q and not weakly below Q. We argue as follows. By the Low Basis Theorem, Q contains a member α of low Turing degree. Now by Theorem 2.6, there is a K-trivial Π_{1}^{0} class P with no path computed by α. This means that P is not weakly reducible to Q.

The above proof also shows that there is no Π_{1}^{0} class P which has low canonical code and is weakly above all K-trivial Π_{1}^{0} classes.

Next we show that there is also no minimal K-trivial Medvedev or Muchnik degree. The following combines Lemma 2 and Lemma 5 from [4]. It is used there to show that any Π_{1}^{0} class $P \not{ }_{M} 0_{M}$ may be split into subclasses P_{0} and P_{1}, each properly below P and joining to P.

Lemma 4.3 (Binns). Let P be any Π_{1}^{0} class with no computable element and let A be any c. e. set. Then there exist Turing incomparable c.e. sets A^{0} and A^{1} such that (i) $A^{0} \cup A^{1}=A$ and $A^{0} \cap A^{1}=\emptyset$ and (ii) for each $i \in\{0,1\}$ and $x \in P, x \not \chi_{T} A^{i}$. Furthermore, if Q is any Π_{1}^{0} class such that $Q<_{M} P$, then we can choose A^{0} and A^{1} such that $P \not \mathbb{K}_{M}\left(\left\{A^{i}\right\} \otimes Q\right)$ for $i=0,1$.

We need another fact about separating classes.
Lemma 4.4. For any sets A, B, if A^{0}, A^{1} is a splitting of A, then $S\left(A^{0}, B\right) \otimes$ $S\left(A^{1}, B\right) \equiv_{M} S(A, B)$.

Proof. For the one direction, note that $S(A, B) \subset S\left(A^{i}, B\right)$, so that a map from $S(A, B)$ into $S\left(A^{0}, B\right) \otimes S\left(A^{1}, B\right)$ may be given by $F(X)=X \oplus X$. For the other direction, given $X_{0} \oplus X_{1}$ such that $X_{i} \in S\left(A^{i}, B\right)$, let $G\left(X_{0} \oplus X_{1}\right)=$ $X_{0} \cup X_{1} \in S(A, B)$.

Theorem 4.5. For any K-trivial Π_{1}^{0} class P with no computable member, there exists a K-trivial Π_{1}^{0} class Q such that $0<_{M} Q<_{M} P$ and similarly for the Muchnik degrees.

Proof. Given the K-trivial Π_{1}^{0} class P, let A and B be disjoint computably inseparable K-trivial c. e. sets so that $S(A, B)$ is a K-trivial Π_{1}^{0} class as in Theorem 2.3. Now apply Lemma 4.3 to obtain A^{0} and A^{1} and observe that each $A^{i} \leq_{T} A$ and is therefore also K-trivial. Now let $P^{i}=P \oplus S\left(A^{i}, B\right)$ for $i=0,1$; each $S\left(A^{i}, B\right)$ is K-trivial as in Theorem 2.3 and thus each P^{i} is K-trivial by Proposition 4.1. Certainly each $P^{i} \leq_{M} P$ since $S\left(A^{i}, B\right) \leq_{M}$ $S(A, B)$, but $P \not \leq P^{i}$, since $P^{i} \not \leq P$ since $0^{-} A^{i} \in P^{i}$ and $x \not \mathbb{K}_{T} A^{i}$ for each i. Thus $P^{i}<_{M} P$. On the other hand, it follows from distributivity that $P^{0} \vee P^{1} \equiv_{M} P \vee S(A, B) \not \neq M^{0_{M}}$, so that at least one of P^{0} and P^{1} has no computable member. Let Q be P^{i} such that $P^{i} \neq{ }_{M} 0_{M}$.

We can also obtain a splitting result for K-trivial separating classes.
Theorem 4.6. For any K-trivial Π_{1}^{0} separating classes $Q<{ }_{M} P$, there exist K trivial Π_{1}^{0} classes P^{0} and P^{1} such that $P<_{M} P^{0}, P^{1}<_{M} Q$ and $P^{0} \vee P^{1} \equiv_{M} P$.

Proof. Let $Q=S(A, B)$ where A and B are K-trivial, let A^{0} and A^{1} be given by Lemma 4.3 and let $P^{i}=\left(S\left(A^{i}, B\right) \vee Q\right)$. Since $Q<_{M} P$, it follows from the proof of Theorem 4.5 that each $P^{i}<_{M} P$. It follows from the furthermore clause of Lemma 4.3 that $P \not \mathbb{K}_{M} S^{i} \vee Q$, so that each $P^{i}<_{M} P$. Applying distributivity and Lemma 4.4, we have $P^{0} \vee P^{1} \equiv_{M} P$. Now suppose by way of contradiction that $P^{i} \leq_{M} Q$. Then $P^{i} \leq P^{1-i}$, so that $P \equiv_{M} P^{0} \vee P^{1}=P^{1-i}<_{M} P$, a contradiction. Thus $Q<_{M} P^{i}$ for each i.

To get a splitting for an arbitrary P, we would need a K-trivial separating class above P. By Theorem 4.2, there is no single such class. The question of whether every K-trivial Π_{1}^{0} class is $\leq_{M} S(A, B)$ for some K-trivial separating class may be of interest.

5 Random closed sets

We conclude with some results about the degrees of the members of a random closed set.

Theorem 5.1. If P is a random closed set then there exists $\beta \in P$ such that $\beta<_{T} P$, where P is identified with its canonical code.

Proof. Let T_{P} be the tree without dead ends which represents P and consider the least branching node σ of T_{P}. The restriction T_{*} of T_{P} below σ has the same degree as T_{P} and is random. Now let $T_{*}=T_{0} \boxplus T_{1}=\left\{0 \frown \sigma: \sigma \in T_{0}\right\} \cup\{1 \frown \sigma$: $\left.\sigma \in T_{1}\right\} \cup\{\emptyset\}$, as defined in [3] where T_{i} is the restriction of T_{*} below $\sigma * i$. By a result in [3] we have that T_{i} are random relative to each other. In particular, $T_{i} \not \mathbb{Z}_{T} T_{1-i}$ and so, $T \not \mathbb{Z}_{T} T_{i}$ for $i=0,1$. Then if β is the leftmost path of T_{0} we have $\beta \leq_{T} T_{0} \leq_{T} T$ and $T \not \mathbb{Z}_{T} \beta$, so that $\beta<_{T} T$.

Theorem 5.1 shows in particular that every Δ_{2}^{0} random closed set has an incomplete Δ_{2}^{0} path. Nevertheless the following theorem shows that for any incomplete Δ_{2}^{0} degree, there is a random closed set with no paths computable from that degree.

Theorem 5.2. Let A be an oracle and let $W \leq_{T} A^{\prime}$. Then $W \equiv_{T} A^{\prime}$ iff W can compute a path through every A-random closed set P with $T_{P} \leq_{T} A^{\prime}$.

Proof. We show the theorem for $A=\emptyset$ as a relativisation is straightforward. First of all \emptyset^{\prime} can compute a path through every Δ_{2}^{0} random closed set, as observed in [3]. For the other direction it is enough to show that if $W<_{T} \emptyset^{\prime}$ then there is a Δ_{2}^{0} random closed set P such that $\beta \not z_{T} W$ for all $\beta \in P$. We construct the canonical code of P recursively in oracle \emptyset^{\prime}. By [19] there is a Π_{1}^{0} class L in the space 3^{ω} (the space of canonical codes) which contains only random sequences, and a recursive function f such that $\mu([\sigma] \cap P)>2^{-f(|\sigma|)}$ or $[\sigma] \cap P=\emptyset$, for all $\sigma \in 3^{\omega}$ (μ is the standard measure on 3^{ω}). Recall from [3] that $\mu^{*}(\{Q \in \mathcal{C} \mid Q \cap[\tau] \neq \emptyset\})=\left(\frac{2}{3}\right)^{|\tau|}$ and let $g(n)$ be the least t such that $\left(\frac{2}{3}\right)^{t}<2^{-f(n)}$. Also let $h(n)$ be the least t such that $\emptyset^{\prime} \upharpoonright n=\emptyset^{\prime}[t] \upharpoonright n, Y_{n}$ the set of $\sigma \in 3^{<\omega}$ of length n such that $[\sigma] \cap L \neq \emptyset$ and p_{s} the largest p such that $\Phi_{e}^{W}[s] \upharpoonright p \downarrow$. We construct a random $x_{P} \in 3^{\omega}=\cup_{s} \sigma_{s}$ such that $\left|\sigma_{s}\right| \leq s$, $\sigma_{s} \subseteq \sigma_{s+1}, \sigma_{0}=\emptyset$ for all s, and

$$
R_{e}: \Phi_{e}^{W} \text { is total } \Rightarrow \Phi_{e}^{W} \notin P
$$

for all $e \in \mathbb{N}$, where Φ_{e} is an effective enumeration of all Turing functionals with binary values. We say that R_{e} requires attention at stage $s+1$ if

$$
\begin{equation*}
\left\{Q \in \mathcal{C} \mid\left[\Phi_{e}^{W} \upharpoonright p_{s}\right] \cap Q \neq \emptyset \text { and } \sigma_{s} \subset x_{Q}\right\} \neq \emptyset \tag{3}
\end{equation*}
$$

(i.e. there are extensions of σ_{s} which do not satisfy R_{e}) and either $\Phi_{e}^{W}[h(s)] \upharpoonright$ $g(s) \downarrow$ or R_{e} received attention at s. We order the strings in $3^{<\omega}$ as usual, first by length and then lexicographically.

Construction At stage $s+1$ consider the least $e<s$ such that R_{e} requires attention at $s+1$. If there is an extension ρ of σ_{s} which belongs to Y_{s} and

$$
\begin{equation*}
\left\{Q \in \mathcal{C} \mid\left[\Phi_{e}^{W} \upharpoonright g(s)\right] \cap Q \neq \emptyset \text { and } \rho \subset x_{Q}\right\}=\emptyset \tag{4}
\end{equation*}
$$

then let $\sigma_{s+1}=\sigma_{s} \frown \rho\left(\left|\sigma_{s}\right|\right)$ for the least such ρ. Otherwise, or even if there is no $e<s$ such that R_{e} requires attention, let $\sigma_{s+1}=\sigma_{s}$.

Verification By construction we have that $\left[\sigma_{s}\right] \cap L \neq \emptyset$ for every s and the sequence $\left(\sigma_{s}\right)$ is recursive in \emptyset^{\prime}. So there is some random closed set P with $x_{P} \in \cap_{s}\left[\sigma_{s}\right]$. First we show that if R_{e} stops requiring attention after some stage s_{0} then it is satisfied by all closed sets P with $x_{P} \in \cap_{s}\left[\sigma_{s}\right]$. Indeed, this is the case if Φ_{e}^{W} is not total, and if on the other hand it is total, there would be some $s_{1}>s_{0}$ such that $\Phi_{e}^{W}\left[h\left(s_{1}\right)\right] \upharpoonright g(s) \downarrow$ (otherwise W would compute a function which dominates h, thus computing \emptyset^{\prime}, a contradiction). By hypothesis R_{e} does not require attention at $s+1$ and so we must have that (3) does not hold which means that all extensions of σ_{s}, hence x_{P}, satisfy R_{e}.

Now we can show by induction that for each e the requirement R_{e} is satisfied by all closed sets P with $x_{P} \in \cap_{s}\left[\sigma_{s}\right]$. We note that it follows that $\lim _{s}\left|\sigma_{s}\right|=$ ∞ (and so there is only one such x_{P}), since otherwise $\lim _{s} \sigma_{s}=\sigma$ for some finite string σ and then the closed set P with code $\sigma^{\frown} 0^{\omega}$ clearly possesses a computable element x and does not satisfy the requirement R_{e} when $\Phi_{e}^{W}=x$. By the previous discussion it suffices to show that R_{e} requires attention finitely often, for each e. Suppose, for a contradiction, that there is a least e such that R_{e} requires attention infinitely often and let s_{1} be the least stage after which no $R_{i}, i<e$ requires attention. Then (3) holds for all s. If s_{2} is the least stage $\geq s_{1}$ at which R_{e} requires attention, by the choice of s_{1} the requirement R_{e} did not receive attention at $s_{2}-1$ and so we must have $\Phi_{e}^{W}\left[h\left(s_{2}\right)\right] \upharpoonright g(s) \downarrow$. Then R_{e} requires attention at all stages $s \geq s_{2}$. Since $\left(\frac{2}{3}\right)^{g\left(s_{2}\right)}<2^{-f\left(s_{2}\right)}$ and $\left|\sigma_{s_{2}}\right| \leq s_{2}$ there is some $\rho \supset \sigma_{s_{2}}$ such that $[\rho] \cap L \neq \emptyset$ and (4) holds with $s=s_{2}$. At some stage $s_{3} \geq s_{2}$ we will have $\rho \in Y_{s_{3}}$ and $\sigma_{s_{2}}=\sigma_{s_{3}}$ so the contruction will set $\sigma_{s_{4}}=\rho$ at some stage $s_{4} \geq s_{3}$ and for all $s \geq s_{4}$ (3) will not hold. Hence R_{e} will not require attention after s_{4}, which is a contradiction. This concludes the induction and the proof of the theorem.

References

[1] Asarin, E.A., and Prokovskiy, V., Application of Kolmogorov complexity to the dynamics of controllable systems, Automatika i Telemekhanika 1 (1986), 25-53.
[2] G. Barmpalias, P. Brodhead, D. Cenzer, J.B. Remmel, R. Weber, Algorithmic Randomness of Continuous Functions, Archive for Mathematical Logic, to appear.
[3] G. Barmpalias, P. Brodhead, D. Cenzer, S. Dashti and R. Weber, Algorithmic randomness of closed sets, J. Logic and Computation, to appear.
[4] S. Binns, A splitting theorem for the Medvedev and Muchnik lattices, Math. Logic Quarterly 49 (2003), 327-335.
[5] P. Brodhead, D. Cenzer and J. B. Remmel, Random continuous functions, in CCA 2006, Third International Conference on Computability and Complexity in Analysis, eds. D. Cenzer, R. Dillhage, T. Grubb and Klaus Weihrauch, Information Berichte, FernUniversität (2006), 79-89 and Springer Electronic Notes in Computer Science (2006).
[6] P. Brodhead, D. Cenzer and S. Dashti, Random closed sets, in Logical Approaches to Computational Barriers, eds. A. Beckmann, U. Berger, B. Löwe and J.V. Tucker, Springer Lecture Notes in Computer Science 3988 (2006), 55-64.
[7] D. Cenzer, Π_{1}^{0} Classes, ASL Lecture Notes in Logic, to appear.
[8] D. Cenzer, R. Downey, C. G. Jockusch and R. Shore, Countable thin Π_{1}^{0} classes, Ann. Pure Appl. Logic 59 (1993), 79-139.
[9] D. Cenzer and P. G. Hinman, Density of the Medvedev lattice of Π_{1}^{0} classes, Archive for Math. Logic 42 (2003), 583-600.
[10] D. Cenzer and J. B. Remmel, Π_{1}^{0} classes, in Handbook of Recursive Mathematics, Vol. 2: Recursive Algebra, Analysis and Combinatorics, editors Y. Ersov, S. Goncharov, V. Marek, A. Nerode, J. Remmel, Elsevier Studies in Logic and the Foundations of Mathematics, Vol. 139 (1998) 623-821.
[11] J. Dekker and J. Myhill, Retraceable sets, Canad. J. Math. 10 (1985), 357373.
[12] R. Downey, Five Lectures on Algorithmic Randomness, in Computational Prospects of Infinity, ed. C.T. Chong, Proc. 2005 Singapore meeting, to appear.
[13] R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, in preparation. Current draft available at〈http://www.mcs.vuw.ac.nz/~ downey/〉.
[14] R. Downey; D. Hirschfeldt; G. LaForte, Randomness and reducibility. Mathematical foundations of computer science, 2001, 316-327, Lecture Notes in Comput. Sci., 2136, Springer, Berlin, 2001.
[15] R. Downey, D. Hirschfeldt, A. Nies and F. Stephan, Trivial reals, in Proc. 7th and 8th Asian Logic Conference, World Scientific Press, Singapore (2003), 101-131.
[16] R. Downey, Some computability-theoretic aspects of reals and randomness, in The Notre Dame Lectures (P. Cholak, ed.) ASL Lecture Notes in Logic (2005).
[17] W. Fouche, Arithmetical representations of Brownian motion, J. Symbolic Logic 65 (2000), 421-442.
[18] P. Gács, Uniform test of algorithmic randomness over a general space, Theoretical Computer Science 341 (2005), 91-137.
[19] A. Kučera, Measure, Π_{1}^{0} classes, and complete extensions of PA, Springer Lecture Notes in Mathematics Vol. 1141 (1985), 245-259.
[20] A. Kučera and T. Slaman, Low upper bounds of ideals, preprint.
[21] A. Kučera and S. Terwijn, Lowness for the class of random sets, Journal of Symbolic Logic 64 (1999), 1396-1402.
[22] A. Nies, Lowness properties and randomness, Advances in Mathematics 197 (2005), 274-305.
[23] A. Nies, Computability and Randomness, in preparation. Current draft available at 〈http://www.cs.auckland.ac.nz/~nies〉.
[24] K. Ohashi, A stronger form of a theorem of Friedberg, Notre Dame J. Formal Logic 5 (1964), 10-12.
[25] S. G. Simpson, Mass problems and randomness, Bull. Symbolic Logic 11 (2005), 1-27.

[^0]: This research was partially supported by NSF grants DMS 0532644 and 0554841 and 652372. Remmel was also partially supported by NSF grant DMS 0400507. Thanks also to the American Institute of Mathematics for support during the 2006 Effective Randomness Workshop.

 Keywords: Computability, Randomness, Π_{1}^{0} Classes

