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Abstract

For a pseudojump V X and a Π0
1 class P , we consider properties of the set {V X : X ∈ P}.

We show that if P is Medvedev complete or if P has positive measure, and ∅′ ≤T C, then
there exists X ∈ P with V X ≡T C. We examine the consequences when V X is Turing
incomparable with V Y for X 6= Y in P and when WX

e = WY
e for all X,Y ∈ P . Finally,

we give a characterization of the jump in terms of Π0
1 classes.
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1 Introduction

The study of pseudojumps is a natural extension of the study of c.e. sets and
degrees, which are fundamental in computability theory. These operators have
been of particular interest in computability theory since the seminal papers [8]
and [9] by Jockusch and Shore. Although it is not usual in the literature, it
will be useful for us to make a distinction between pseudojumps and the more
restricted class of CEA operators. If φXe is the eth partial computable functional
with oracle X, then WX

e = {n : φXe (n) ↓} is an c.e. operator. If X ≤T WX
e ,

then WX
e is relatively computably enumerable in and above X. If this holds

for every X ∈ 2N, then WX
e is said to be a pseudojump. In particular, the

jump operator J(X) = X ′ = {e : φXe (e) ↓} is a pseudojump. Since it is a
noncomputable question to decide in general whether or not a given c.e. operator
is a pseudojump, the notion of CEA operator is sometimes more convenient. For
any index e ∈ ω, the eth CEA operator, Je, maps X to Je(X) = X ⊕WX

e . Thus
every CEA operator is a pseudojump, and every pseudojump operator has a
Turing-equivalent CEA operator. We will often denote an arbitrary pseudojump
by V . Friedberg in [4] constructed a noncomputable c.e. set A such that A′ ≡T ∅′.
The fundamental theorem for CEA operators, from [8], states that for any index
e, there exists a noncomputable c.e. set A such that WX

e ≡T ∅′, which generalizes
the result of Friedberg. On the other hand, if V is obtained by relativizing the
construction of a noncomputable low set, then (V A)′ = A′, so that if V A ≡T ∅′,
then A′ = ∅′′. In each of these examples, X <T V

X for all X. We will say that a
pseudojump V is strongly nontrivial if X <T V

X for all X. V is weakly nontrivial
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if X <T V X for all c.e. X. In the recent paper [2], it was shown that for any
weakly nontrivial pseudojump V , there exist Turing incomparable c.e. sets A and
B such that V A ≡T V B ≡T ∅′.

Another important area of study in computability theory is that of effectively
closed sets of reals, the so-called Π0

1 classes, which play an important role in
many areas of computable mathematics. Characterizing the possible degrees
of members of Π0

1 classes is of great interest here. For example, every Π0
1 class

Q ⊆ 2N has a member of c.e. degree, but there exist Π0
1 classes with no computable

member. A survey of results on Π0
1 classes may be found in [1]. For each partial

computable function φe : <ω2 → 2, let Te =
{
τ : ∀σ ⊂ τφe,|τ |(σ) 6= 1

}
; in

this case Pe =
{
x : x ∈ [Te]

}
is a uniform enumeration of all Π0

1 classes. The
topology here is given by a basis of clopen sets of the form I(σ) = {X : σ ⊂ X}
for σ ∈ 2<ω, where σ ⊂ X means that σ(i) = X(i) for all i < |σ|.

In this paper, we consider the interaction between pseudojumps and Π0
1 classses,

in particular how pseudojumps act on Π0
1 classes. Recent work of Simpson [13]

on the Medvedev degrees of Π0
1 classes has characterized the complete degrees

in several ways. Below, we show that if V is a CEA operator, P is a Medvedev
complete Π0

1 class, and C is any set in which K = ∅′ is computable, then there
exists X ∈ P with V X ≡T X⊕∅′ ≡T C. A related result was proved by Jockusch
and Soare in [7], where they showed that the jump operator has this property for
any Π0

1 class having no recursive member.
For any Π0

1 class P of positive measure, we again show that for any CEA
operator V X and any C ≥T K, there exists X ∈ P with V X ≡T X ⊕ ∅′ ≡T C.
Downey and Miller [3] recently obtained a stronger result for Σ0

2 sets C and for
V X = X ′ by making X ≤T K. Note that a class of positive measure is not
Medvedev complete and that a class of positive measure may or may not contain
a recursive member.

We also consider for a Π0
1 class Q, properties of the set {V X : X ∈ Q}. by

examining the consequences of having WX
e = W Y

e for all X ∈ Q and of having
WX
e Turing incomparable with W Y

e for all X 6= Y in Q. Finally, we give a new
characterization of the jump in terms of Π0

1 classes and discuss a method for
defining pseudojumps in terms of Π0

1 classes.
It is easy to find a nonempty Π0

1 class P and a CEA operator V such that
V X 6=T ∅′ for any X ∈ P . For example, if P contains only computable elements
and V X is lowX , then (V X)′ ≡ ∅′ for all X ∈ P . On the other hand, if P is
complicated enough, then it should have a member with V X ≡T ∅′.

For Π0
1 classes with no computable members, we still might not have a c.e.

member or even a member of c.e. degree with V X ≡T ∅′. We can find examples
of such special Π0

1 classes with no members X of c.e. degree such that V X ≡T ∅′.
Jockusch [5] constructed a Π0

1 class P with no c.e. members at all. Jockusch
and Soare [6] constructed a Π0

1 class Q such that for any c.e. degree b and any
X ∈ P , if deg(X) ≤ b, then b = ∅′. Thus if X has c.e. degree and X ∈ Q,
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then X ≡T ∅′, so that if V X ≤T ∅′, then V X ≡T X, so that V fails to be
strongly non-trivial. Recall that the Low Basis Theorem of Jockusch and Soare
[7] shows that any nonempty Π0

1 class P ⊆ 2N must contain a member of low
degree. More generally, In fact, it is also shown in [7] that if the Π0

1 class P has
no computable elements, then for any C above ∅′, P contains an element X such
that X ′ ≡T X ⊕ ∅′ ≡T C.

2 Medvedev complete sets and pseudojumps

Since V X ≤T X ′ for any set X and any pseudojump V , the following is an
immediate corollary of the low basis theorem. We sketch a proof in preparation
for the main theorem. Let K denote the halting problem {e : φe(e) ↓}.

Proposition 1. For any pseudojump V and any nonempty Π0
1 class P , there

exists X ∈ P with V X ≤T K.

Proof. This is an simple modification of the Low Basis Theorem of [7]. Let
P = [T ] and fix e such that V X = WX

e = {n : φXe (n) ↓}. For each n, define the
computable tree

Un = {σ ∈ {0, 1}∗ : φσe (n) ↑}.
Then [Un] = {X : φXe (n) ↑}. Now define a sequence of Π0

1 trees {Sn : n < ω} as
follows. Let S0 = T and for each n, define

Sn+1 =

{
Sn ∩ Un, if Sn ∩ Un is infinite,

Sn, otherwise.

Now let S = ∩nSn and Q = [S] = ∩n[Sn]. By assumption, P is nonempty so that
T is infinite and it follows from the construction, by induction, that each Sn is
infinite. Thus Q is nonempty.

The construction is computable in K and therefore {n : Sn ∩Un is infinite} is
computable in K. Now for X ∈ [Sn+1], it is clear that if Sn ∩ Un is infinite, then
n /∈ V X . On the other hand, if Sn ∩ Un is finite, then [Sn] ∩ [Un] = ∅, so that for
X ∈ [Sn], n ∈ V X . This gives a computation of V X using K. Note that for any
X, Y ∈ Q, we have V X = V Y .

For any computable set R, {R} is a Π0
1 class; so, unless V Y has the same

degree as Y ′ on all computable Y , V X <T K for the X above. Hence there is
no hope of finding a set in a given Π0

1 class completing an arbitrary pseudojump
operator without some condition guaranteeing the “richness” of the class.

We now turn to the main result. Let B be the computable Boolean algebra
of clopen sets in {0, 1}N. A clopen set is simply a finite union of intervals. A
Π0

1 class P is said to be productive if there is a computable splitting function
g : N→ B such that, for any e, if Pe∩P is nonempty, then both Pe∩P ∩g(e) and
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Pe ∩ P − g(e) are nonempty. Simpson [14] showed that a Π0
1 class is productive

if and only if it is Medvedev complete. The Medvedev complete classes are the
most difficult in the sense that if Q is Medvedev complete and P is any Π0

1 class,
then there exists a computable map Φ mapping Q into (in fact, onto) P . It is
not hard to directly construct a nonempty Π0

1 class that is Medvedev complete by
uniformly coding a standard enumeration of the Π0

1 classes as the infinite paths
in a single recursive tree, as in Simpson [14], Lemma 3.3. There are many other
examples, for instance, classes consisting of completions of Peano Arithmetic are
Medvedev complete.

By combining the idea for the proposition above with a method for coding
information into V , we can prove an analogue of Friedberg’s jump theorem for
Medvedev complete classes.

Theorem 1. Let V be a pseudojump, K ≤T C, and P be a Medvedev complete
Π0

1 class. Then there exist infinitely many X ∈ P with V X ≡T X ⊕K ≡T C.

Proof. Let P = Pc = [T ] be Medvedev complete and let g be a splitting function
for P . Let Q be the usual basis of clopen sets for 2N,

{
I(σ) : σ ∈ <ω2

}
. We

now modify the proof of Proposition 1 above so that the set C will be coded into
V X via a function f : N→ Q, computable in V X , such that

X ∈ f(n) if and only if n ∈ C.

Fix e such that V X = WX
e and let Ua =

{
σ ∈ {0, 1}∗ : φσe,|σ|(a)

x}, just as in

Proposition 1 as above. Now define the sequences {Rn : n < ω} and {Qn : n < ω}
of Π0

1 classes as follows. Let Q0 = P = Pc and let

Rn =

{
Qn ∩ [Un], if Qn ∩ [Un] is nonempty,

Qn, otherwise.

Let Rn = Pr(n). By the construction, Rn is a nonempty subset of P , so that

Rn ∩ [g(r(n))] and Rn ∩ [g(r(n))] are both nonempty subsets of P . Then define

Qn+1 =

{
Rn ∩ [g(r(n))], if n ∈ C,
Rn ∩ [(g(r(n))], otherwise.

As before, let Q = ∩nQn. Clearly, each Rn and Qn are nonempty closed sets
of reals and hence Q is nonempty. Let X ∈ Q. For any Π0

1 class P we write TP
for the computable tree such that P = [TP ].

First, we claim V X ≤T C. Note that r(0) = c if and only if 0 ∈ V X , which
happens if and only if the computable tree TQ0 ∩ U0 is finite. This can be deter-
mined by K ≤T C. Hence C can determine V X(0) and the index r(0) of R0.

Now, if 0 ∈ C, Q1 = R(0)∩ [g(r(0)], and, if 0 6∈ C, Q1 = R(0)∩ g(r(0))]. Since g
is a computable function, C can therefore compute an index q(1) for Q1. Using
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this as a model, it follows by a routine induction that functions r and q giving the
indices of Rn and Qn respectively for all n are computable in C. Since n ∈ V X if
and only if TQn ∩Un is finite, and this fact is computable in K ≤T C, V X ≤T C.

Next, we claim V X ≤T X ⊕K. The only place where we use C rather than K
in the previous argument is to determine the index of TQn+1 . But if X ∈ [g(r(n))],

Qn+1 = Rn ∩ [g(r(n))]; and if X 6∈ [g(r(n))], Qn+1 = Rn ∩ [g(r(n))]. Since g is a
computable function, this is computable in X, so that q(n+1) is computable in
X ⊕K.

Notice that as X ≤T V X , and K, V X ≤T C, we have V X ≤T X ⊕K ≤T C.
By definition of Qn+1, n ∈ C if and only if X ∈ [g(r(n))], so to show that
C ≤T V X , we need only show that the index function r is computable in V X .
But this follows again from a routine induction: knowing q(n), V X can determine
the index r(n), since that depends on whether or not n ∈ V X , and, knowing the
index r(n), V X can determine the index q(n+1), since that depends on whether
or not V X ∈ [g(r(n))] and g is a computable function.

To obtain infinitely many X with V X ≡T X ⊕K ≡T C, note that for any σ
such that P ∩ I(σ) 6= ∅, P ∩ [σ] is also Medvedev complete. This is because the
splitting function for P is easily adapted to a splitting function for P ∩ [σ]. This
means that for every σ such that P ∩ [σ] 6= ∅, there exists X ∈ [σ] as required.
Thus there are infinitely many such X ∈ P .

Many properties indicating the richness of Medvedev complete classes follow
directly from the theorem. As in the case of the similar result 2.1 in [8], Theorem
1 can be used to show that virtually every phenomenon in the c.e. degrees occurs
inside of every Medvedev complete class. For example, suppose V is an operator
that constructs a noncomputable low c.e set, and C = K. Then the set X given
by the theorem must have high degree, since K is low over it. Since such a V
is uniformly nontrivial, X <T K. Hence every Medvedev complete class must
contain an incomplete high degree.

Using Theorem 1 makes it possible to show many other facts about members
of Medvedev complete classes. For instance, it follows immediately from Theo-
rem 1 that every Medvedev complete class must have a nonarithmetic member,
since we can take C to be the hyperjump. More generally, taking V to be the
trivial operator in Theorem 1 actually shows that any Medvedev complete Π0

1

class contains sets of every degree above ∅′, a fact due to Simpson, in [14], where
he uses his characterization of Medvedev complete Π0

1 classes by means of pro-
ductive funcions to show that every Medvedev complete Π0

1 class is effectively
homeomorphic to the class of completions of Peano Arithmetic. The fact then
follows from the fact that the class of completions of Peano Arithmetic is closed
upward under Turing reducibility, a result due to Solovay.

The set X constructed in Theorem 1 is ∆0
2 if and only if C ≡T K. Since any

Π0
1 class must contain a set of c.e. degree, we would like to strengthen Theorem

1 as in [8] complete pseudojump operators with an X of c.e. degree in a given
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Medvedev complete set. However, Jockusch and Soare showed in [7] that the only
c.e. degree that contains a completion of Peano Arithmetic is 0′, so the result of
Simpson shows that this is impossible.

3 Classes with positive measure

In this section, we consider pseudojump inversion for Π0
1 classes of positive mea-

sure. Downey and Miller recently proved that for any Π0
1 class P of positive

measure and any Σ0
2 set Y ≥T ∅′, there exists a ∆0

2 real X ∈ P such that
X ′ ≡T Y .

We need the following result of Kucera [11].

Lemma 2. Let P be a Π0
1 class of positive measure. Then there is a Π0

1 class
Q ⊆ P and a computable function g such that µ(Q) > 0 and, for all e ∈ ω,

Q ∩ Pe 6= ∅ ⇒ µ(Q ∩ Pe) ≥ 2−g(e).

Theorem 2. Let V be a pseudojump, K ≤T C, and P be a Π0
1 class with positive

measure. Then there exist infinitely many X ∈ P with V X ≡T X ⊕K ≡T C.

Proof. Let P be a Π0
1 class of positive measure and let Q and g be given by

Lemma 2. Now define the Π0
1 relation E by

E = {〈e, σ〉 : σ ∈ 2g(e)+1 & I(σ) ∩Q ∩ Pe 6= ∅}.

Then we will define two functions λ and ρ, computable in K, which will provide
distinct Π0

1 subclasses Pλ(e) and Pρ(e) of Pe ∩ Q when Pe ∩ Q 6= ∅. That is, if

Pe ∩ Q 6= ∅, then µ(Q ∩ Pe) ≥ 2−g(e) and hence {σ : E(e, σ)} has at least two
elements. Let σe,l be the leftmost string such that E(e, σ) and let

Pλ(e) = Pe ∩Q ∩ I(σe,l;

similarly, let σe,r be the righttmost string such that E(e, σ) and let

Pρ(e) = Pe ∩Q ∩ I(σe,r.

We modify the proof of Theorem 1 above, using the functions λ and ρ in place of
the splitting function g.

Fix e such that V X = WX
e and let

Ua =
{
σ ∈ {0, 1}∗ : φσe,|σ|(a)

x},
just as in Theorem 1 as above. Now define the sequences {Rn : n < ω} and
{Qn : n < ω} of Π0

1 classes as follows. Let Q0 = Q = Pc and let

Rn =

{
Qn ∩ [Un], if Qn ∩ [Un] is nonempty,

Qn, otherwise.
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Let Rn = Pr(n). By the construction, Rn is a nonempty subset of Q, so that
Pλ(r(n)) and Pρ(r(n)) are both nonempty subsets of Q. Then define

Qn+1 =

{
Pλ(r(n)), if n ∈ C,
Pρ((r(n)), otherwise.

Let X be any element of ∩nQn. Recall that, for any Π0
1 class P , TP is the

computable tree such that P = [TP ].
First, we claim V X ≤T C. Note that r(0) = c if and only if 0 ∈ V X , which

happens if and only if the computable tree TQ0 ∩ U0 is finite. This can be deter-
mined by K ≤T C; hence C can determine V X(0) and the index r(0) of R0. Now,
if 0 ∈ C, Q1 = Pλ(r(0), and, if 0 6∈ C, Q1 = Pρ(r(0)). Since λ and ρ are computable
in K, it follows that C can compute an index q(1) for Q1. Using this as a model,
it follows by a routine induction that functions r and q, giving the indices of Rn

and Qn respectively for all n, are computable in C. Since n ∈ V X if and only if
TQn ∩ Un is finite, and this fact is computable in K ≤T C, V X ≤T C.

Next, we claim V X ≤T X ⊕K. The only place where we use C rather than
K in the previous argument is to determine the index of Qn+1 from r(n). We
can instead use K to compute the strings σr(n),l and σr(n),r and then use X
to determine which of these is an initial segment of X. If σr(n),l @ X, then
X ∈ I(λ(r(n))) and Qn+1 = Rn∩I(λ(r(n))); if σr(n),r @ X, then X ∈ I(ρ((r(n)))
and Qn+1 = Rn ∩ ρ(g(r(n))). Since λ and ρ are computable in K, it follows that
q(n+1) is computable in X⊕K. It follows as above that V X is computable from
X ⊕K.

Thus we have V X ≤T X⊕K ≤T C. It remains to show that C ≤T V X and for
this we show that the construction is computable from V X . Given an index q for
Qn, we can compute an index for Qn ∩ [Un] and we know that Rn = Qn ∩ [Un] if
n ∈ V X , and Rn = Qn otherwise. Thus we can obtain an index for Rn from V X

and an index for Qn. Next, given the index r(n) for Rn, we can compute g(r(n))
and σ = Xdg(r(n)) + 1. Then we can use the formula Qn+1 = Rn ∩Q ∩ I(σ), to
obtain an index for Qn+1. Furthermore, we know that σ is either the leftmost or
the rightmost string in TRn of length g(r(n)) + 1 and we can determine which of
these cases holds as follows. Enumerate the complement of TR(n) until either (i)
all strings of length g(r(n)) + 1 to the left of σ have been enumerated or (ii) all
strings of length g(r(n)) + 1 to the right of σ have been enumerated; note that
only one of these is possible since there are at least two strings in TRn of length
g(r(n)) + 1. In case (i), we conclude that σ = σr(n),l and hence n ∈ C. In case
(ii), σ = σr(n),r and n /∈ C.

To obtain infinitely many X with V X ≡T X ⊕K ≡T C,
Now for any σ such that µ(P ∩ I(σ)) > 0, it follows that P ∩ I(σ) contains

some X with V X ≡T X ⊕K ≡T C. But given µ(P ) > 0, we can easily find an
infinite sequence of disjoint intervals I(σk) such that P ∩ I(σk) > 0 for each k
and thus an infinite sequence Xk ∈ I(σk) ∩ P with the desired properties.
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We conjecture that if C = S ′, then it is possible to obtain X ≤T S ⊕ K in
Theorem 2.

We can obtain several corollaries to Theorem 2. Taking V to be the trivial
operator in Theorem 1 actually shows the following:

Corollary 3. Any Π0
1 class of positive measure contains sets of every degree above

∅′.

Taking V to be the jump, we have the following:

Corollary 4. If P has positive measure and ∅′ ≤T C, then there exists X ∈ P
so that X ′ ≡T C.

It is well-known that there exists a Π0
1 class P with positive measure containing

only 1-random reals. Hence we can also obtain new results on jump inversion by
1-random reals.

Corollary 5. Let V be a pseudojump, and let K ≤T C. Then there is a 1-random
real X with V X ≡T X ⊕K ≡T C.

Taking V to be the jump, we have another proof of the result that 1-random
reals can have all possible jumps. Taking V to be the trivial operator, we have
the following.

Corollary 6. There exist 1-random reals of every degree above ∅′.

4 Images of Π0
1 classes under c.e. operators

Although the class Q constructed in Theorem 1 is not a Π0
1 class, it is a strong

Π0
2 class with the property that {V X : X ∈ Q} is a singleton, since, given any

X ∈ Q, for every n, n ∈ V X if and only if TQn ∩ Un is finite. It seems natural
to consider the question of a Π0

1 class P where V X is unique for X ∈ P . A
classical result is that if P = {X} itself is a singleton, then X is computable. Of
course, for an CEA operator, Je, if Je(X) = Je(Y ), then X = Y . In fact, there
seems to be no good reason at the outset to restrict ourselves to pseudojumps,
so we consider the more general case of c.e. operators WX

e without demanding
that X ≤T WX

e . Of course, it is easy to give examples where the Π0
1 set is not

a singleton, since WX
e might not consult the oracle X at all, or more generally,

only consult some fixed finite amount of the oracle: for instance, if

WX
e =

{
ω, if 0 ∈ X
X, otherwise,

the the class of all sets containing 0 is an uncountable example. The following
proposition shows that any example is bound in some sense to make an inessential
use of the oracle X, as least as far as the Π0

1 class is concerned.
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Proposition 7. If P is a Π0
1 class and

{
WX
e : X ∈ P

}
is a singleton, then the

unique WX
e for X ∈ P is a c.e. set.

Proof. Fix a computable tree T such that P = [T ]. We claim

a ∈ V X if and only if (∃n)[(∀σ ∈ {0, 1}n ∩ T )a ∈ V σ].

Suppose first that a ∈ V X for all X ∈ P . Then by compactness, there exists
m such that a ∈ V X�m for all X ∈ P . Let S = {σ ∈ {0, 1}m : P ∩ I(σ) 6= ∅} =
{X � m : X ∈ P}. For σ ∈ {0, 1}m−S, T contains only finitely many extensions
of σ. Thus we can find n > m such that τ � m ∈ S for all τ ∈ {0, 1}n ∩ T . This
n satisfies the formula above.

Next suppose that n exists as in the formula. Then for every X ∈ P , a ∈ V X�n

and therefore a ∈ V X .

When WX
e is actually a pseudojump, we can say more, using a classical fact

due to Kreisel.

Proposition 8. Suppose P is a Π0
1 class and for all X, X ≤T WX

e . If
{
WX
e :

X ∈ P
}

is countable, then
{
WX
e : X ∈ P

}
has a c.e. member.

Proof. Since X ≤T WX
e for all X, and

{
WX
e : X ∈ P

}
is countable, P must

itself be countable. Then by Kreisel [10], P has a computable member, R. Since
WR
e is a c.e. member of

{
WX
e : X ∈ P

}
, the result follows immediately.

Corollary 9. Suppose P is a Π0
1 class and for all X, X ≤T WX

e . If
{
WX
e :

X ∈ P
}

all lies in one Turing degree w, then w is a c.e. degree.

The same considerations used in the proof of Proposition 8 also yield the
following when e involves the construction of an incomplete c.e. degree.

Proposition 10. Suppose P is a Π0
1 class and for all X, X ≤T WX

e and that{
WX
e : X ∈ P

}
all lies in one Turing degree w. If for all computable R,

WR
e <T K, then w < 0′.

For the other extreme, suppose that V X is Turing incomparable with V Y for
all X 6= Y in P . It was also shown in [7] that there exist Π0

1 classes containing
continuum many elements, with each pair Turing incomparable. This will serve
as an example with V X = X.

Of course if V X = X ′, then any Π0
1 class Q must contain X with V X ≡T K

and therefore, if nontrivial, Q must contain distinct X,Y with V X ≡T K ≡T V Y .

Proposition 11. Let WX denote either WX
e or X ⊕WX

e and suppose that P
is an infinite Π0

1 class such that WX and W Y are Turing incomparable for any
X, Y ∈ P . Then there is no X ∈ P such that K ≤T WX .

Proof. Suppose by way of contradiction that K ≤T WX for some X ∈ P . Since
P is infinite, there is some Y ∈ P with Y 6= X. Let n be the least such that
X(n) 6= Y (n) and let Q = P ∩I(Y � n+1). By Proposition 1, there exists Z ∈ Q
with WZ ≤T K ≤T V X .
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5 Using Π0
1 classes to define pseudojumps

Finally, we observe that Π0
1 classes may be used to define the jump and also

general c.e. operators.

Proposition 12. Let
{
Pe : e ∈ ω

}
be the standard enumeration of Π0

1 classes;

then, for any set X,
{
e : X ∈ Pe

}
≡T X ′.

Proof. Let WX =
{
e : X ∈ Pe

}
. Then WX ≤T X ′ since

e ∈ WX if and only if (∀n)X � n /∈ We.

For the completeness, use the s-m-n theorem to define a computable function f
such that Pf(e) =

{
X : φXe (e)

x}. Then

e ∈ X ′ if and only if f(e) /∈ WX

gives a reduction of X ′ to WX .

One can define more general operators using Π0
1 classes as follows. Given

X ∈ 2N, let πi(X) =
{
j : 〈i, j〉 ∈ X

}
. For a Π0

1 class P , let πi(P ) =
{
πi(X) :

X ∈ P
}

, the projection of P onto the ith coordinate.
Then let

V π,X
e = {i : X ∈ πi(Pe)}.

Since Pe is Π0
1, πi(Pe) is a Σ1

1 set; however, V π,X
e is itself merely Π0

1(X). To
see this, let R be a primitive recursive predicate so that Y ∈ Pe if and only if
∀z, R(Y � z). For any σ ∈ <ω2, let

σ[i](j) = σ(〈i, j〉).

Let T =
{
σ ∈ <ω2 : R(σ) ∧ σ[i] = X � i

}
. T is clearly an X-computable tree,

and [T ] is empty if and only if i 6∈ V π,X
e . Since this is a Σ0

1(X) question, V π,X
e

is Π0
1(X). Strictly speaking, V π,X

e defined this way is not a pseudojump, since
it produces the complement of a Σ0

1(X) set. So, of course, if an operator can be
defined in both ways, it is uniformly trivial, since it only gives sets computable in
the operand. Note that V π,X

e ≡T X ′ when Pe is a particular Medvedev complete
class, namely, one such that πi(P ) runs over all Π0

1 classes.
The natural question that arises is whether (up to complementation) every

c.e. operator can be expressed in this form. If P = ∅, then {i : X ∈ πi(Pe)} = ω.
Once we rule out this trivial case, there is a natural condition that answers this
question.

Proposition 13. Let e ∈ ω and suppose there exists some X so that WX
e 6= ω.

Then the following are equivalent:
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(a) For every j ∈ ω there exists some Y such that φYe (j)
x.

(b) There exists a nonempty Π0
1 class P such that for all X,WX

e = V π,X
e .

Proof. First, suppose e is such that for every j ∈ ω there exists some Y such that
φYe (j)

x. Let

T =
{
σ : ∀i φσie (i)

x},
where σi(j) is defined as above. We claim X ∈ πi([T ]) if and only if i 6∈ WX

e .
Now suppose X ∈ πi([T ]), and let Y ∈ [T ] such that πi(Y ) = X. Now, if

φXe (i)
y, then ∃σ ⊂ X so that φσe (i)

y. Let τ = Y � |σ|2. Since σ ⊆ τ i, φτ
i

e (i)
y.

But then τ 6∈ T , hence Y 6∈ [T ], a contradiction. Hence, If X ∈ πi([T ]), i 6∈ WX
e .

On the other hand, suppose i 6∈ WX
e . By assumption, ∀j ∃Y φYe (j)

x. For each
j, let Yj be such a set. Let

Z(〈j, w〉) =

{
X(w), if j = i, and

Yj(w), otherwise.

Then ∀j φπj(Z)
e (j)

x, so Z ∈ [T ]. Since πi(Z) = X, X ∈ πi([T ]). This shows
(a)⇒ (b).

For the other direction, suppose that there is some j such that for every Y
φYe (j)

y. Then if P is such that for all X,WX
e =

{
i : X ∈ πi(P )

}
, we must have

for every X, X 6∈ πi(P ). Hence P = ∅. But then, for every X and i, X 6∈ πi(P ),
so that for every X, WX

e = ω, a contradiction.

That this limitation is really just an inessential feature of using projections,
can be seen from the following observation:

Proposition 14. There exist computable functions f and g such that

1. for every e ∈ ω, We =∗ Wf(e) and We =∗ Wg(e);

2. for every e and j, there exists Y such that φYf(e)(j)
x;

3. for every e there exists j, such that for every Y φYg(e)(j)
y.

Proof. For any oracle X, let

φXf(e)(j) =

{x, if X = {j}, and

φXe (j), otherwise;

and let

φXg(e)(j) =

{
0, if j = 0, and

φXe (j), otherwise.

The condition X = {j} is Π0
1(X), so φXf(e) is X-computable. It is straightforward

to check that f and g are otherwise as required.

Thus any c.e. operator is almost equivalent both to one that can be expressed in
terms of projections of effectively closed sets and one that cannot be so expressed.
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