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Abstract. The notion of superhigh computably enumerable (c.e.) de-
grees was first introduced by Mohrherr in [7], where she proved the exis-
tence of incomplete superhigh c.e. degrees, and high, but not superhigh,
c.e. degrees. Recent research shows that the notion of superhighness is
closely related to algorithmic randomness and effective measure theory.
Jockusch and Mohrherr proved in [4] that the diamond lattice can be
embedded into the c.e. tt-degrees preserving 0 and 1 and that the two
atoms can be low. In this paper, we prove that the two atoms in such
embeddings can also be superhigh.

1 Introduction

Lachlan proved in 1966 in [5] the classical Non-Diamond Theorem: no diamond
can be embedded in the c.e. Turing degrees preserving both 0 and 1. However,
Cooper showed that such a diamond can be embedded into the Δ0

2 degrees if
we do not require that the atoms be c.e. [1]. Later, Epstein showed that both
atoms can be made low and that both atoms can be made high [3], and Downey
proved in [2] that both atoms can be d.c.e. degrees, giving an extremely sharp
result in terms of the Ershov hierarchy.

Alternately, we can consider the possibility of constructing a diamond preserv-
ing 0 and 1 if we consider a stronger reducibility. Since the proof of Lachlan’s
Non-Diamond Theorem holds in the c.e. wtt-degrees as well, no such diamond
exists in the c.e. wtt-degrees. However, Jockusch and Mohrherr showed in [4]
that the diamond lattice can be embedded into the c.e. tt-degrees preserving 0
and 1 and, furthermore, that the two atoms can be low. In this paper, we present
a proof that such a diamond can be embedded into the c.e. tt-degrees in such a
way that both atoms are superhigh.

The notion of superhigh c.e. degrees was first introduced by Mohrherr in [7],
where a computably enumerable set A is defined to be superhigh if A′ ≡tt ∅′′.
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In the same paper, Mohrherr proved the existence of incomplete superhigh c.e.
degrees and also the existence of high, but not superhigh, c.e. degrees. More re-
cently, Ng has shown in [8] that there is a minimal pair of superhigh c.e. degrees.
Recent research in computability theory shows that the notion of superhighness
is closely related to algorithmic randomness and effective measure theory. For
instance, Simpson showed that uniformly almost everywhere dominating degrees
are all superhigh [9] (the uniformly almost everywhere dominating degrees are
all high follows from the characterization of highness via domination due to Mar-
tin), and Kjös-Hanssen, Miller and Solomon showed that the uniformly almost
everywhere dominating degrees are exactly the degrees containing a set A such
that ∅′ is K-trivial relative to A.

Our theorem is stated as follows.

Theorem 1. There are superhigh computably enumerable sets A and B such
that 0, degtt(A), degtt(B), and 0′

tt form a diamond in the computably enumerable
tt-degrees.

Our construction differs from Jockusch and Mohrherr’s in several important
ways. Jockusch and Mohrherr’s construction involves only a finite injury argu-
ment, while ours involves an infinite injury argument, which is necessary to make
A and B superhigh. Due to this, our sets A and B will not have some of the
nice properties that Jockusch and Mohrherr’s do. For instance, they were able to
build their atoms A and B with A∪B = K, guaranteeing that K ≡tt A∪B in a
very obvious way. In our construction, the superhighness strategies will force us
to enumerate elements into A and B from time to time to maintain our computa-
tions that witness A′ ≥tt TOT and B′ ≥tt TOT , where TOT = {e : ϕe is total}
is a Π2-complete set. To ensure that K ≤tt A ⊕ B, we dedicate the numbers of
the form 〈x, 0〉 to meeting this requirement. This allows us to replace Jockusch
and Mohrherr’s conclusion that x ∈ K if and only if x ∈ A ∪ B by the slightly
more complicated conclusion that x ∈ K if and only if 〈x, 0〉 ∈ A ∪ B. Again,
for the consistency between the superhighness strategies and the minimal pair
strategies, we need to be extremely careful when we switch from one outcome
to another one.

Our notations and terminologies are standard and generally follow Soare [10].
Let ϕe and ΦA

e be the e-th partial computable function and the e-th A-partial
computable function, respectively. In particular, if ϕe(x) ↓, then [e](x) denotes
the truth table with index ϕe(x) in some effective enumeration of all truth tables,
denoted as τϕe(x), and |[e](x)| denotes the length of this truth table. For any set
A, [e]A(x) is 0 or 1 depending on whether or not A satisfies the truth table
condition with index ϕe(x) (denoted by A |= [e](x) if [e](x) = 1, otherwise,
A �|= [e](x)). Given two sets A and B, we say that A ≤tt B iff there is an e with
ϕe total such that for all x, [e]B(x) = A(x). When we choose a fresh number as
a γ-use or a δ-use at stage s, this number is the least number bigger than the
corresponding restraint that is not of the form 〈x, 0〉.



422 D. Cenzer et al.

2 Requirements and Basic Strategies

To prove Theorem 1, we will construct two c.e. sets A and B such that both of
them are superhigh, K is truth-table reducible to A⊕B, and the tt-degrees of A
and B form a minimal pair in the tt-degrees. A and B will satisfy the following
requirements:

P : K ≤tt A ⊕ B;
SA: TOT ≤tt A′;
SB : TOT ≤tt B′;
Ni,j : [i]A = [j]B = f total ⇒ f is computable;

Recall that TOT = {e : ϕe is total} is a Π0
2 -complete set. Therefore, if SA and

SB are satisfied, then A and B will both be superhigh.

2.1 The P-Strategy

To satisfy the requirement P , we simply code K into A ⊕ B. We will fix a
computable enumeration of K such that at each odd stage s, exactly one number,
ks, enters K. At each odd stage s, we will enumerate 〈ks, 0〉 into A, B, or both.
We will decide which of these sets to enumerate 〈ks, 0〉 into based on the actions
of the minimal pair strategies Ni,j . If k �∈ K, then numbers of the form 〈k, 0〉 will
never be enumerated into A and B. It is obvious that we will have the equality
K = {k : 〈k, 0〉 ∈ A ∪ B}, and hence K ≤tt A ⊕ B.

The P-requirement is global, so we do not need to place it on the construction
tree.

2.2 An SA
e -Strategy

To make A superhigh, instead of giving a truth-table reduction from TOT to A′

explicitly, we will construct a binary functional Γ A(e, x) such that for all e ∈ ω,

TOT(e) = lim
x→∞Γ A(e, x)

with |{x : Γ A(e, x) �= Γ A(e, x + 1)}| bounded by a computable function h,
which will ensure that TOT ≤tt A′. (In the case of B, we will construct a binary
functional ΔB(e, y) with use δ(e, y) satisfying a similar requirement.) The crucial
point is to find this computable bounding function h.

As usual, SA is divided into infinitely many substrategies SA
e , e ∈ ω, each

of which is responsible for the definition of Γ A(e, x) for x ∈ ω, and has two
outcomes, ∞ (a Π0

2 -outcome) and f (a Σ0
2-outcome), where ∞ denotes the

guess that ϕe is total and f denotes the guess that ϕe is not total. The main
idea is that all the SA

e strategies (they will be arranged on a single level on the
construction tree) work for the definition of Γ A(e, x), x ∈ ω, jointly, and the one
on the true path defines Γ A(e, x) for almost all x such that limx→∞ Γ A(e, x)
exists and equals to TOT (e).
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Let β be an SA
e -strategy on the priority tree. As usual, we have the following

standard definition of length agreement function:

l(β, s) = max{ x < s : s is a β-stage and ϕe(y)[s] ↓ for all y < x};
m(β, s) = max{ l(β, t) : t < s is a β-stage}.

Say that s is a β-expansionary stage if s = 0 or l(β, s) > m(β, s).
Let s be a β-stage. If s is a β-expansionary stage, then we believe that ϕe is

total, and for those Γ A(e, x) either defined by lower priority strategies, or defined
by β itself, but with value 0, we undefine them by enumerating the corresponding
γ(e, x) into A and then define Γ A(e, y) to be 1 for the least y such that Γ A(e, y)
is undefined. If s is not an β-expansionary stage, then we believe that ϕe is not
total, and again, we undefine those Γ A(e, x) defined by lower priority strategies
by enumerating the corresponding γ(e, x) into A and then define Γ A(e, y) to be
0 for the least y with Γ A(e, y) not defined. Thus, if there are infinitely many
β-expansionary stages (so ϕe is total, e ∈ TOT, and ∞ is the true outcome of
β), then Γ A(e, x) is defined as 1 for almost all x ∈ ω. On the other hand, if there
are only finitely many β-expansionary stages (so ϕe is not total, e �∈ TOT, and
f is the true outcome of β), then Γ A(e, x) is defined as 0 for almost all x ∈ ω.

Thus, for a fixed SA
e -strategy β on the construction tree, β will attempt to

redefine Γ A(e, x) for almost all x. The only γ-uses which it will not be allowed
to enumerate into A are (a) some γ-uses are prevented from being enumerated
into A by higher priority strategies (when a disagreement is produced), or (b)
Γ A(e, x) is defined by another SA

e -strategy with higher priority. In particular, if
β is the SA

e -strategy on the true path, then there are only finitely many strategies
with higher priority that can be visited during the whole construction, and hence
β can succeed in defining Γ A(e, x) for almost all x.

Suppose that SA
e is assigned to nodes on level n. We will see that |{x :

Γ A(e, x) �= Γ A(e, x + 1)}| ≤ 23n+1. To see this, note that (a) above can happen
at most 23n

times, as there are at most 3n many strategies with length less than
n, and each time when one of them produces (not preserves) a disagreement, a
restraint is set, preventing α from rectifying Γ A(e, x) for some x. Note that after
an N -strategy α (see below) produces a disagreement, say at stage s, whenever
α requires us to preserve this disagreement, all the strategies with lower priority
will be initialized, and at the same time, all of the γ-uses and δ-uses defined after
stage s will be enumerated into A and B respectively (one by one, as pointed
out above, for the sake of the N -strategies with priority higher than α). It is
crucial for us to ensure that TOT is truth-table reducible to A′ and B′, as we
will discuss below.

Here, when β is initialized by a strategy with higher priority with length ≥ n,
an SA

e -strategy β′ on the left of β is visited, and β′ takes the responsibility of
rectifying Γ A(e, x) for some x, which can lead to an equality between Γ A(e, x)
and Γ A(e, x + 1). Thus, (b) can happen at most 3n many times. In total, the
number of those x such that β cannot rectify Γ A(e, x) is at most 23n+1, which
ensures that Tot ≤tt A′, where the corresponding bounding function h is given
by h(e) = 233e+1.
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We remark here that as a bounding function, h is not tight, but it is enough
to show that TOT is truth-table reducible to A′, as we want.

2.3 An Ni,j-Strategy

Recall that if [i] is a tt-reduction, then for any oracle X ⊆ ω and any input x,
[i]X(x) converges. The computation [i]X(x) can be injured at most finitely many
times due to the enumeration of numbers less than or equal to |τϕi(x)| into X in
our construction.

For the requirement Ni,j , we apply the diagonalization argument introduced
by Jockusch and Mohrherr in [4]. That is, once we see a disagreement between
[i]A and [j]B, we will preserve it forever to make [i]A �= [j]B . On the other hand,
if [i]A and [j]B are equal and total, then we will ensure that they are computable.

Given values for As and Bs at stage s, we will define As+1 and Bs+1 at stage
s + 1 by possibly enumerating into them. Furthermore, if we know that [i]A and
[j]B differ at k at stage s, we will have to preserve this disagreement at stage
s + 1. This is achieved by the following. Let n be a number we want to put into
As+1 ∪ Bs+1. There are two cases.

(1) Our number n is of the form 〈x, 0〉 for some x. Then n is enumerated into
A, B, or both for the sake of the requirement P . There are three subcases.

Subcase 1: If [i]As(k) = [i]As∪{n}(k), then n will be enumerated into A but
not into B. The disagreement is preserved as well.

Subcase 2: If Subcase 1 does not apply but [j]Bs(k) = [j]Bs∪{n}(k), then n
is enumerated into B but not into A. As in Case 1, the disagreement is
preserved.

Subcase 3: If [i]As(k) �= [i]As∪{n}(k) and [j]Bs(k) �= [j]Bs∪{n}(k), then n is
enumerated into both A and B. In this case, the disagreement is again pre-
served, as both values are changed.

Note that once one subcase above applies, then we initialize all the strategies
with lower priority to avoid conflict among the N -strategies — obviously, such
initializations can happen at most finitely often. We need to be careful here when
more N -strategies are considered. It can happen that if we decide to enumerate
into A, B, or both, we also need to take care of those N -strategies with higher
priority, say Ni′,j′ , as we need to avoid the following situation: according to the
Ni,j-strategy, at stage s1, a number n1 is enumerated into A, and at stage s2,
a number n2 is enumerated into B (corresponding to Subcases 1 and 2, respec-
tively), and such enumerations change [i′]A(m) and [j′]B(m), though separately,
and at the next Ni′,j′ -expansionary stage, we may have [i′]A(m) = [j′]B(m),
which is different from its original value — Ni′,j′ is injured.

With this in mind, when we see that an Ni,j-strategy wants to enumerate a
number into A (or B, or both), instead of enumerating it immediately, we first
check whether such an enumeration into A can lead to a disagreement between
[i′]A and [j′]B. If not, then we just work as described above (in Subcase 3, we
now enumerate n into B and check whether this enumeration into B can lead
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to a disagreement for Ni′,j′ — here n is enumerated into A and B separately).
Otherwise, we start to preserve this disagreement to satisfy Ni′,j′ — the Ni,j

considered above is initialized, and again, even if Subcase 3 applies, we do not
enumerate n into B.

The N -strategies are arranged linearly according to priority, and each time
P decides to act it checks for the highest priority N -strategy for which the
enumeration of 〈k, 0〉 into A or B will change an N -computation. We then act
for N as in subcases 1-3 above. This clearly injures an N ′-strategy of lower
priority and it will need to be initialized, but it is easy to see that each N ′ is
injured in this way by the global P only finitely often.

(2) Our number n is a number chosen by an SA
e -strategy or an SB

e -strategy.
Without loss of generality, suppose that n is selected by an SA

e -strategy and
we want to put it into A. As in the standard construction of high sets, we
only consider believable computations; for instance, [i]A(m). Therefore, when
we see [i]A and [j]B, if this SA

e -strategy has higher priority than Ni,j , then the
enumeration of n into A does not affect the computation [i]A(m). We will have
more discussion on this soon.

An Ni,j-strategy has three outcomes: ∞, f and d, where ∞ denotes that there
are infinitely many expansionary stages, f denotes that there are only finitely
many expansionary stages, but no disagreement is produced, and d denotes that
a disagreement between [i]A and [j]B is produced and preserved successfully.

2.4 More on Interactions among Strategies

We have seen some interactions between the P-strategy and the N -strategies.
Now we describe the interactions between the N -strategies, the S-strategies, and
the P-strategy.

Assume that α is an Ni,j -strategy, β is an SA
e -strategy, and ζ is an SB

e′ -strategy
with β�∞ ⊆ ζ�∞ ⊆ α. The following may happen: at a stage s, a disagreement
between [i]A and [j]B appears at α, so α wants to preserve this disagreement by
initializing all strategies with lower priority. However, this disagreement can be
destroyed by β and ζ, as they may enumerate small γ-uses and δ-uses into A and
B separately. To avoid this, we only use α-believable computations, a standard
technique in the construction of high degrees.

Definition 1. Let α be an Ni,j-strategy, and β be an SA
e -strategy with β�∞⊆α.

(1) A computation [i]As(m) is α-believable at β at stage s if for each x with
γ(e, x)[s] defined by β and less than the length of the truth-table of [i](m),
Γ As(e, x)[s] is equal to 1.

(2) A computation [i]As(m) is α-believable at stage s if it is α-believable at β at
stage s for any SA

e -strategy β, e ∈ ω, with β�∞ ⊆ α.

Similarly, we can define an α-believable computation [j]Bs(m).

We are ready to define an α-expansionary stage for an Ni,j-strategy α.
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Definition 2. Let α be an Ni,j-strategy. The length of agreement between [i]A

and [j]B is defined as follows:

l(α, s) = max{x < s : for all y < x, [i]A(y)[s] = [j]B(y)[s]
via α-believable computations}.

m(α, s) = max{l(α, t) : t < s is an α-stage}.

Say that a stage s is α-expansionary if s = 0 or l(α, s) > m(α, s).

At an α-expansionary stage, before α is allowed to access outcome ∞, it has to
clear every γ, δ-use in FA

α ∪ FB
α , where FA

α , FB
α are the collections of γ, δ-uses

defined by S-strategies with priority lower than α after the last α-expansionary
stage. We enumerate these uses one at a time into A or B respectively, until a
disagreement is produced at some N ′-strategy β ⊂ α. We then stop and do not
access the nodes extending α�∞ at this current stage. This is alright because
a strong priority β has made permanent (subject to β’s ability to protect this
disagreement) progress on its basic strategy. We will refer to this enumeration
process as an “outcome-shifting enumeration process” for simplicity. So a tt-
minimal pair strategy does does enumerate numbers into sets, which is completely
difference from the minimal pair argument used in the c.e. Turing degrees.

Now we consider the situation when β, an SA
e -strategy, changes its outcome

from f to ∞ at a β-expansionary stage. Again, when β sees such an change of
outcome, it also perform the outcome-shifting enumeration process by enumer-
ating numbers into A and B as needed. That is, let s′ be the last β-expansionary
stage. Unlike the construction of high degrees, to make A and B superhigh, we
need to enumerate all the γ-uses and δ-uses defined by strategies below outcome
f , including those uses defined by β under the outcome f , between stages s′ and
s into A and B respectively. Again, these numbers cannot be enumerated into A
and B simultaneously, as discussed above in the section on the N -strategies, for
the sake of N -strategies with priority higher than β. Let FA

β and FB
β be the col-

lections of these γ-uses and δ-uses respectively. We put the numbers in FA
β ∪FB

β

into A or B correspondingly, one by one, from the smallest to the largest, and
whenever one number is enumerated, we reconsider the N -strategies with higher
priority to see whether a disagreement appears. Once such a disagreement ap-
pears at an N -strategy, say α, we stop the enumeration as we need to satisfy α
via this disagreement. In this case, β is injured. Note that β can be injured in
this way only by those N -strategies α such that α ⊂ β.

2.5 Construction

First, we define the priority tree T and assign requirements to the nodes on T as
follows. Suppose σ ∈ T . If |σ| = 3e, then σ is assigned to the Ni,j-strategy such
that e = 〈i, j〉. It has three possible outcomes: ∞, f , and d, with ∞ <L f <L d.
If |σ| = 3e + 1, then σ is assigned to the SA

e -strategy. If |σ| = 3e + 2, then σ is
assigned to the SB

e -strategy. In the latter two cases, σ has two possible outcomes:
∞ and f , with ∞ <L f .
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P is a global requirement, and we do not put it on the tree.
We assume that K is enumerated at odd stages. That is, we fix an enumeration

{k2s+1}s∈ω of K such that at each odd stage 2s +1, exactly one number, k2s+1,
is enumerated into K.

In the construction, we say that an Ni,j-strategy α sees a disagreement at k
at a stage s if k ≤ s, [i]As and [j]Bs agree on all arguments ≤ k, and one of the
following cases applies:

(i) s is odd (ks enters K and we need to put 〈ks, 0〉 into A ∪ B). In this case,
either
(1) [i]As(k) �= [i]As∪{〈ks,0〉}(k),
(2) [j]Bs(k) �= [j]Bs∪{〈ks,0〉}(k), or
(3) there is an N -strategy α′ ⊃ α that attempts to preserve a disagreement,

and the enumeration of 〈ks, 0〉 into A or B or both (depending on α′)
and an one-by-one enumeration of elements of FA

α′ ∪ FB
α′ into A and

B (in increasing order, as described in the S-strategies) leads to either
[i]A(k) �= [i]As(k) or [j]B(k) �= [j]Bs(k). Here, FA

α′ and FB
α′ are the finite

collections of γ-uses and δ-uses defined below outcome α′�d after the
last stage α′ that produces or preserves its disagreement.

If (1) is true, then we enumerate 〈ks, 0〉 into A. If (1) is not true but (2)
is, then we enumerate 〈ks, 0〉 into B. Otherwise, (3) is true, and we enu-
merate 〈ks, 0〉 into A or B or both, according to α′. We also enumerate the
corresponding numbers in FA

α′ ∪ FB
α′ into A and B respectively.

As a consequence, a disagreement between [i]A(k) and [j]B(k) is pro-
duced, and α will preserve this disagreement forever unless it is initialized
later.

(ii) s is even (s is a β-expansionary stage for some S-strategy β).
Let β be such a strategy, and let s′ be the last β-expansionary stage. At
stage s, to change its outcome from f to ∞, we need to enumerate all of
the elements in FA

β and FB
β into A and B respectively one by one. Here, FA

β

and FB
β are the finite collections of γ-uses and δ-uses defined below outcome

β�f , including those defined by β under the outcome f , after stage s′. Again,
we enumerate these numbers into A and B in increasing order until we find
that either [i]A(k) �= [i]As(k) or [j]B(k) �= [j]Bs(k) is true; that is, until a
disagreement between [i]A(k) and [j]B(k) is produced. From now on, α will
preserve this disagreement forever unless it is initialized later.

We recall that an Ni,j-strategy α preserves a disagreement at k at an odd
stage s if this disagreement was produced before and has been preserved so far
(so [i]As(k) �= [j]Bs(k)) and 〈ks, 0〉 is less than one of the lengths of the truth-
tables [i](k) and [j](k). Enumerating 〈ks, 0〉 into A∪B causes one of the following
to happen:

1. If [i]As(k) = [i]As∪{〈ks,0〉}(k), then 〈ks, 0〉 is enumerated into A but not into
B. Both values are preserved, and the disagreement is preserved as well.

2. If [j]Bs(k) = [j]Bs∪{〈ks,0〉}(k), then 〈ks, 0〉 is enumerated into B but not into
A. As in Case 1, the disagreement is preserved.
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3. If [i]As(k) �= [i]As∪{〈ks,0〉}(k) and [i]Bs(k) �= [i]Bs∪{〈ks,0〉}(k), then 〈ks, 0〉
is enumerated into both A and B. In this case, the disagreement is again
preserved, as both values are changed.

Note that whenever α produces or preserves a disagreement in this manner, all
the strategies below the outcome α�d are initialized. Such initializations can
happen at most finitely often.

Construction

Stage 0: Initialize all the nodes on T and set A0 = B0 = ∅. Let Γ A(e, x)[0] and
ΔB(e, x)[0] be undefined for each e and x.

Stage s > 0:

Case 1: s is odd. We will put 〈ks, 0〉 into A ∪ B at this stage.

First check whether there is an N -strategy that can produce a disagreement or
needs to preserve a disagreement. Let α be the least such N -strategy. Enumerate
〈ks, 0〉 into A or B or both accordingly. Initialize all the strategies with lower
priority.

Case 2: s is even. We define the approximation to the true path σs of length
≤ s. Suppose that σs�u has been defined for u ≤ t and let ξ be σs�t. We will
define σs(t). We have the following two subcases.

Subcase 1: ξ is an Ni,j-strategy for some i and j. If ξ has produced a dis-
agreement before and ξ has not been initialized since then, we let σs(t) = d.
Otherwise, we check whether s is a ξ-expansionary stage. If not, then let
σs(t) = f . If it is, then we start the outcome-shifting enumeration process
to enumerate those γ-uses from FA

ξ and δ-uses from FB
ξ defined below the

outcome ξ�f from the last ξ-expansionary stage into A and B respectively,
one by one and in increasing order. At the same time, each time we enumer-
ate such a number, we check whether there is an N -strategy α ⊂ ξ that can
produce a disagreement. If there is, then we stop the enumeration of FA

ξ and
FB

ξ into A and B and let δs = α. Declare that α produces a disagreement
at stage s, let σs = α, and go to the ‘defining’ phase. If not, then after all
numbers in FA ∪FB have been enumerated, we let σs(t) = ∞ and go to the
next substage.

Subcase 2: ξ is an SA
e -strategy or an SB

e -strategy for some e. If s is not a ξ-
expansionary stage, let σs(t) = f and go to the next substage. Otherwise,
we start the outcome-shifting enumeration process as described in Subcase
1. Here FA

ξ and FB
ξ should also contain those γ-uses or δ-uses defined by ξ

under the outcome f .

Defining Phase of stage s: For those SA
e -strategies β with β�∞ ⊆ σs, find the

least y such that Γ A(e, y) is currently not defined, define it as 1 and let the use
γ(e, y) be a fresh number, and for those SA

e -strategies β with β�f ⊆ σs, find
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the least y such that Γ A(e, y) is currently not defined, define it as 0, and let the
use γ(e, y) be a fresh number. For those SB

e -strategies β, we define ΔB(e, y) in
the same way. Initialize all the strategies with lower priority than σs and go to
the next stage.

Note that the enumeration of those γ-uses and δ-uses at substages into A
and B ensures that those Γ A(e, x) and ΔB(e, y) defined by those strategies with
priority lower than σs are undefined.

This completes the construction.
Let TP = lim infs σ2s be the true path of the construction. We can first prove

that TP is infinite and then verify that the construction given above satisfies all
the requirements. Also it is obvious from the construction that

x ∈ K ⇐⇒ 〈x, 0〉 ∈ A ∪ B,

and hence K ≤tt A ⊕ B.
This completes the proof of Theorem 1.
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