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Abstract

We extend the notion of immunity to closed sets and to Π0
1 classes in

particular in two ways: immunity meaning the corresponding tree has no
infinite computable subset, and tree-immunity meaning it has no infinite
computable subtree. We separate these notions from each other and that
of being special, and show separating classes for computably inseparable
c.e. sets are immune and perfect thin classes are tree-immune. We define
the notion of prompt immunity and construct a positive-measure promptly
immune Π0

1 class. We show that no immune-free Π0
1 class P cups to the

Medvedev complete class DNC of diagonally noncomputable sets, where
P cups to Q in the Medvedv degrees of Π0

1 classes if there is a class R such
that the product P ⊗ R ≡M Q. We characterize the interaction between
(tree-)immunity and Medvedev meet and join, showing the (tree-)immune
degrees form prime ideals in the Medvedev lattice. We show that every
random closed set is immune and not small, and every small special class
is immune.

Keywords: Computability, Π0
1 Classes
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1 Introduction

The notion of a simple c.e. set and the corresponding complementary notion of an
immune co-c.e. set are fundamental to the study of c.e. sets and degrees. Together
with variations and related notions such as effectively immune, promptly simple,
hyperimmune and so forth, they permeate the classic text of R.I. Soare [25] and
its updated version.

Many of the results on c.e. sets and degrees have found counterparts in the
study of effectively closed sets (Π0

1 classes). See the surveys [12, 13] for examples.
In particular, hyperhyperimmune co-c.e. sets correspond to thin Π0

1 classes [8, 11,
15] and hyperimmune co-c.e. sets correspond to several different notions including
smallness studied by Binns [5, 6].

In this paper we consider the notion of immune sets as applied to Π0
1 classes

and closed sets in general. We work in 2N with the topology generated by basic
clopen sets called intervals. For any σ ∈ {0, 1}∗ the interval I(σ) is {X : σ ≺ X},
where ≺ means initial segment. Notation is standard; we note that λ denotes the
empty string, σ � n is the length-n initial segment of σ, and if T ⊆ {0, 1}∗ is a
tree (i.e., it is closed under initial segment), [T ] ⊆ 2N denotes the set of infinite
paths through T . A node σ ∈ T is a leaf of T if σai /∈ T for any i. For any set
P ⊆ 2N, we may define the tree TP = {σ ∈ {0, 1}∗ : I(σ) ∩ P 6= ∅}; the closed
sets P ⊆ 2N are exactly those for which P = [TP ]. A Π0

1 class is a closed set for
which some computable tree T ⊇ TP has [T ] = P ; in this case TP is a Π0

1 set. For
any tree T , let Ext(T ) be the set of nodes of T which have an infinite extension
in [T ], so if P = [T ], Ext(T ) = TP .

A partial computable functional Φ : 2N → 2N is given by a computable rep-
resentation ϕ : {0, 1}∗ → {0, 1}∗ such that σ ≺ τ implies ϕ(σ) � ϕ(τ); Φ(X) is
defined when

⋃
n ϕ(X � n) is infinite, and in that case they are equal. Similar

representations hold for functions on NN.
An infinite set C ⊆ ω is called immune if it does not include any infinite c.e.

subset, or equivalently if it has no infinite computable subset. A c.e. set which is
the complement of an immune set is simple.

Definition 1.1. Let P be a closed subset of 2N.

1. P is immune if TP is immune.

2. P is tree-immune if TP has no infinite computable subtree.
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It is easy to see that an immune closed set must be tree-immune, and both
must be special ; i.e., have no computable paths. In section 2 we separate all three
notions. We also show that the class of separating sets S(A,B) for any pair of
computably inseparable sets A and B is immune and that any perfect thin Π0

1

class is tree-immune. We define the notion of prompt immunity and construct an
example of a Π0

1 class of positive measure which is promptly immune.
In section 3, we consider connections between immunity and Binns’ notion

of smallness [5]. We show that every special hyperimmune Π0
1 class is tree-

immune and that every small special Π0
1 class is immune. In section 4, we consider

connections with the Medvedev degrees of difficulty [20, 23]. We show that for
closed sets P and Q, the meet P ⊕Q is (tree-)immune if and only if both P and
Q are (tree-)immune, whereas the join P ⊗ Q is (tree-)immune if and only if at
least one of P and Q are (tree-)immune. We show that for any Π0

1 class P with
no computable element, there is a non-immune Π0

1 class Q with no computable
element which is Medvedev reducible to P . In section 5, we show that no immune-
free degree cups to any generalized separating class (in the sense of Cenzer and
Hinman [10], and hence every immune-free Medvedev degree is non-cuppable.

In section 6, we show that any random closed set (in the sense of [2]) is
immune. We also show that any random closed set is not small.

2 Immunity for Π0
1 classes

We begin with two useful characterizations of immunity.

Lemma 2.1. A closed set P is immune if and only if TP has no infinite c.e.
subtree.

Proof. Certainly if TP has an infinite c.e. subtree, then it has an infinite com-
putable subset. For the converse, let S ⊆ TP be an infinite computable subset
and define the tree T by

σ ∈ T ⇐⇒ (∃τ ∈ S)σ � τ.

Then T is an infinite c.e. subtree of TP .

Theorem 2.3 shows we cannot ensure that every infinite c.e. tree has an infinite
computable subtree.

Lemma 2.2. P is not immune if and only if there is a computable sequence
{σn : n ∈ ω} such that σn ∈ TP ∩ {0, 1}n for each n.

Proof. The reverse implication is immediate. Now suppose that C is an infinite
computable subset of TP and enumerate C as {τ0, τ1, . . . }. Observe that C must
have arbitrarily long elements and define σn to be τi � n, where i is the least such
that |τi| ≥ n.
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It is clear any immune class is tree-immune, and any tree-immune class is
special. The following results show that neither implication reverses.

Theorem 2.3. There exists a tree-immune Π0
1 class P that is not immune.

Proof. Let Se be the eth computable tree, with characteristic function ϕe : {0, 1}∗ →
{0, 1}. We will say that Se has height ≥ m at stage s if ϕe,s(σ) is defined for all
σ ∈ {0, 1}m and Se has at least one node of length m.

We will build a sequence of nested computable trees Ts such that TP =
⋂
s Ts

and a prefix-free infinite c.e. set A such that As = {σ0, . . . , σs} ⊆ Ext(Ts) and
|σs| > s. We have the following requirements:

Ne : |Se| =∞ ⇒ Se * TP .

Each Ne has an associated ms(e), the minimum height of Se required before we
act for Ne. For all e, m0(e) = 2e+ 1.

To meet a single requirement N0 we wait until the stage s when S0 attains
height ≥ 1 (= m0(0)). Then we choose the leftmost τ in S0 ∩ {0, 1}, let ms(0) =
1 + max{|σi| : i < s}, and choose all σt, t ≥ s, to be incompatible with τ . Then
at stage t > s when S0 reaches height ≥ ms(0), we choose τ ′ ∈ Se ∩ {0, 1}ms(0)

extending τ and let Tt+1 be the result of removing from Tt all extensions of τ ′. If
Se has no extensions of τ of length ms(0), then if τ = 1, or τ = 0 but 1 /∈ Se, we
abandon N0, as Se is finite. Otherwise we reset τ to 1 and mt(0) = 1 + max{|σi| :
i < t} and wait again, avoiding the cone above the new τ (and no longer avoiding
the old) in future σi choices.

The same module holds for all other requirements; we maintain a set R of
bases of cones that must be avoided by A. Each ms(e) changes its value at most
22e+1 times, and the values it takes on are sufficiently large that standard measure
arguments show we always have room to choose new σi nodes and maintain their
extendibility.

Stage 0: ∀e m0(e) = 2e+ 1; A0 = R0 = ∅; T0 = {0, 1}∗.
Stage s > 0: Step 1. For each e ≤ s such that Se has height ≥ 2e + 1 newly

at stage s, set ms(e) = 2e+ 1 + max{|σi| : i < s} and set τe to the leftmost string
in Se ∩ {0, 1}e+1. Enumerate all such τe into Rs.

Step 2. For each e ≤ s such that ms−1(e) > 2e + 1, Se has height ms−1(e)
newly at s, and Se ∩ {0, 1}ms−1(e) ⊆ Ts−1, if there exists a string τ � τe in
Se∩{0, 1}ms−1(e) remove the leftmost such from Ts. If there does not exist such a
τ , remove τe from Rs. If τe is the rightmost string in Ss ∩ {0, 1}2e+1, do nothing.
Otherwise choose the leftmost of the strings to the right of τe, label it the new
τe, put this new τe into Rs, and set ms(e) = 2e+ 1 + max{|σi| : i < s}.

Step 3. For any e not treated above, let ms(e) = ms−1(e); let Ts be Ts−1

minus the strings removed in the previous step (if any) and all their extensions.
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Step 4. Finally, let Q be the part of Ts uncovered by A and R. That is,

Q = Ts − {τaρ : τ ∈ As−1 ∪Rs, ρ ∈ {0, 1}∗}.

Note that since we only remove strings from T that are within the intervals of
permanent members of R, we would get the same Q if we replaced Ts with {0, 1}∗.
Choose the leftmost σ ∈ Q of length at least s+ 2 and let it be σs ∈ As.

To verify the construction works, first note every σi has an extension by a
straightforward measure argument: we remove at most one node τ on behalf of
each Se, and for any i such that τ � σi, we ensure µ(I(τ)) ≤ 2−2e−1−|σi|. The
sum of the measure removed from any I(σi) is hence bounded by 2

3
µ([σi]).

Another measure argument shows there is always enough room in Q to choose
a new string in A without covering all of Ts. Since each Se has at most one node
in R at a time, the measure of Q at stage s is at least

x = 1−
s∑
e=0

2−2e−1 −
s−1∑
i=1

2−i−2,

which we need to be greater than (at most) 2−s−2. It is easily checked that
x− 2−s−2 is

1

12
+

1

3 · 22s+1
+

1

2s+2
,

which is clearly positive.
Since it is clear that the requirements are met, P is a Π0

1 class, and A ⊂ TP
is computable, the proof is complete.

Theorem 2.4. There is a special Π0
1 class that is not tree-immune.

Proof. This is a corollary of Theorem 4.8; any Q∗ where Q is special is also special
but not tree-immune.

The next results show many Π0
1 classes of interest are immune. Recall S(A,B)

denotes the class of separating sets for A and B (all C such that A ⊆ C and
B ∩ C = ∅); it is a closed set, and when A and B are c.e. it is a Π0

1 class.

Proposition 2.5. If A and B are computably inseparable, then S(A,B) is im-
mune.

Proof. Suppose that W ⊂ TS(A,B) is an infinite c.e. set, enumerated without
repetition as σ0, σ1, . . . . Note that for any σ ∈ W and any n < |σ|, n ∈ A ⇒
σ(n) = 1 and n ∈ B ⇒ σ(n) = 0. Since W must have elements of arbitrary
length, we may computably define i(n) to be the least i such that |σi| > n, and
let X(n) = σi(n)(n) to compute a separating set for A and B.
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The notion of a thin Π0
1 class corresponds to that of a hyperhyperimmune

set and has been studied extensively by many researchers in articles including
[8, 11, 15]. A Π0

1 class P is thin if for any Π0
1 class Q ⊂ P , there is a clopen set U

such that Q = P ∩ U . This is equivalent to saying that the family of Π0
1 subsets

of P is complemented, that is, for any Π0
1 class Q ⊂ P , P \Q is also a Π0

1 class.
Since any hyperhyperimmune set is also immune, the following result is natural.

Proposition 2.6. If P is a perfect thin Π0
1 class, then P is tree-immune.

Proof. Let P be perfect thin (and therefore having no computable member) and
suppose that some infinite computable tree W ⊆ TP . Let L be the set of leaves
of W , that is

L = {σ ∈ W : σa0 /∈ W & σa1 /∈ W}.

Then the elements of L are pairwise incomparable and, since P has no com-
putable elements, L is infinite. To see this, note that if L were finite, then Ext(W )
would be computable and thus W would have a computable element (in partic-
ular the leftmost path), which would also belong to P . That is, suppose that L
were finite and let m be the maximum length of a node in L, then, for any σ,

σ ∈ Ext(W ) ⇐⇒ (∃τ ∈ W ∩ {0, 1}m+1)σ ≺ τ.

Note that for each σ ∈ L, σ ∈ TP . Now we can partition P into the following
subsets:

P0 = {X ∈ P : (∀n)Xdn /∈ L}

and

P1 = {X ∈ P : (∃n)Xdn ∈ L}.

P0 is a Π0
1 class and therefore, since P is thin, P1 is also a Π0

1 class.
Let L = {σ0, σ1, . . . } and observe that the closed set P1 is covered by the

family {I(σi) : i ∈ ω}. It follows by compactness that P1 ⊆ I(σ0) ∪ · · · ∪ I(σk)
for some finite k. But this contradicts the fact that every σi ∈ TP and that the
σis are pairwise incomparable.

A c.e. set A is called promptly simple if for some enumeration {An}n∈N of A
there is a computable function π such that for any infinite c.e. set We ⊆ N there
are n, s with n ∈ We,s+1 −We,s and n ∈ Aπ(s).

For P a Π0
1 class, let T be a computable tree giving P . For each s, let

Ts be the collection of nodes of T which have length-s extensions in T . Let
{σn}n∈N = {λ, 0, 1, 00, 01, 10 . . .} denote the length-lexicographical ordering of the
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elements of {0, 1}∗. We say that P is promptly immune if there is a computable
function π such that for any infinite c.e. set W , there exist n, s such that

n ∈ Ws+1 −Ws & σn /∈ Tπ(s).

There exist Π0
1 classes with positive measure which have no computable ele-

ments. The next result is an improvement on this.

Theorem 2.7. There exists a Π0
1 class P of positive measure which is promptly

immune.

Proof. We define the Π0
1 class P = [T ] in stages Ts and let T =

⋂
s Ts. P will be

promptly immune via the function π(s) = s+1. For each e, we will wait for some
n such that |σn| > 2e to come into We at stage s+1 and then remove σn from Ts+1

by removing σn and all extensions (if any) from T . Initially T0 = {0, 1}∗. After
stage s, we will have satisfied some of the requirements. At stage s+ 1, we look
for the least e ≤ s which has not yet been satisfied and such that some suitable
n ∈ We,s+1−We,s. We meet this requirement by setting Ts+1 = Ts−{τ : σn � τ}.
Note that this action removes from [T ] a set of measure ≤ 2−2e−1, so that the
total measure removed is

≤
∑
e

2−2e−1 =
2

3
.

It follows that Ts 6= ∅ for any s and therefore P = [T ] is not empty, and in fact
has measure at least 1

3
.

3 Smallness and Hyperimmunity

In this section, we compare immunity with other “smallness” notions for Π0
1

classes. Some definitions are needed.
There is a one-to-one correspondence between the set of natural numbers and

the set of finite subsets of natural numbers, given as follows. For any n > 0, let
n be uniquely expressed in binary form as n =

∑k
j=1 2ej for some finite sequence

e1 < e2 < · · · < ek; the finite set {e1, . . . , ek} is denoted by Dn and n is its
canonical index. We set D0 = ∅. For any computable function f , the sequence
Df(n) is called a strong array ; it is called disjoint if the sets Df(n) are pairwise
disjoint.

A set C ⊆ N is called hyperimmune if there is no disjoint strong array
〈Df(n)〉 such that, for all n, Df(n) ∩ C 6= ∅. A well-known theorem by Kuznecov,
Medvedev, and Uspenski ([25] V.2.3) states that C = {c0 < c1 < . . . } is hyperim-
mune if and only if there is no infinite computable function g such that g(n) > cn
for all n.
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A finite string σ ∈ {0, 1}n has Gödel number
∑n

i=0 σ(i)2i. If F is a finite set
of (Gödel numbers of) strings, then F ∗ =

⋃
{I(σ) : σ ∈ F}. Binns [6] called

a sequence 〈Df(n)〉 of finite sets of (Gödel numbers of) strings a disjoint strong
array if the sets D∗f(n) are pairwise disjoint.

Definition 3.1. 1. (Binns [5]). A closed set P is small if there is no com-
putable function g such that, for all n, card({0, 1}g(n) ∩ TP ) > n.

2. (Binns [6]). A closed set P is hyperimmune if there is no disjoint strong
array 〈Df(n)〉 such that P ∩D∗f(n) 6= ∅ for all n.

Binns [6] showed that the class DNC2 of diagonally non-computable functions
is not small, and in fact not hyperimmune. By Proposition 2.5, this gives an
example of an immune class of measure 0 which is not small. It is also easy to see
that a class of positive measure cannot be small, so the immune class of Theorem
2.7 is also not small.

For any tree T ⊆ {0, 1}∗, we say that σ is a branching node of T if both σa0
and σa1 are in T ; let Br(T ) denote the set of branching nodes of T .

Theorem 3.2 (Binns [5]). A Π0
1 class P is small if and only if Br(TP ) is

hyperimmune.

Theorem 3.3 (Binns [6]). Every small Π0
1 class is hyperimmune.

The converse to Theorem 3.3 does not hold. It is not clear whether every
special hyperimmune Π0

1 class must be immune, because the nodes witnessing
immunity need not be incomparable. However, we have the following result.

Theorem 3.4. Every special hyperimmune Π0
1 class is tree-immune.

Proof. Assume P is not tree-immune, and let T ⊆ TP be a computable tree.
Since P is special, T has an infinite, computable set L = {σ0, σ1, . . . } of leaves.
Then we may define a disjoint strong array

Df(n) = {σn}.

Hence P is not hyperimmune.

Cenzer, Weber, and Wu [14] asked whether every small special Π0
1 class is

immune. We can now answer this question.

Theorem 3.5. Every small special Π0
1 class is immune.

Proof. Suppose that P is special and small but not immune, and let T ⊆ TP be
an infinite c.e. subtree.
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Claim 3.6. Br(T ) is infinite.

Proof. Suppose by way of contradiction that Br(T ) is finite and let s be the
maximum length of any σ ∈ Br(T ). It follows that any node in T of length ≥ s
must extend one of the finite set of nodes of length s. Since T is infinite, there
must be a single node τ ∈ T which has infinitely many extensions in T . Since
there is no branching above τ , all of those extensions are comparable, so that
there is a unique infinite path X in T through τ . Since T is c.e., we may compute
the path X as follows. Given i, enumerate the elements of T until we find a string
σ with |σ| ≥ i which is comparable with τ and then X(i) = σ(i). This violates
the assumption that P is special.

Now Br(T ) is itself a c.e. set, since we can enumerate σ ∈ Br(T ) once σ, σa0,
and σa1 have all been enumerated into T . Hence Br(T ) has an infinite, increasing
computable subset and is certainly not hyperimmune. It follows that the larger
set Br(TP ) is also not hyperimmune, so by Theorem 3.2 P is not small.

4 Degrees of Difficulty

Π0
1 classes are often viewed as collections of solutions to some mathematical prob-

lem. Muchnik and Medvedev reducibility, defined for closed subsets of 2N and
indeed NN in general, order classes based on this viewpoint. The class A is Much-
nik (a.k.a. weakly) reducible to the class B (A ≤w B) if for every X ∈ B there
is Y ∈ A such that Y ≤T X [21]. The class A is Medvedev (a.k.a. strongly) re-
ducible to B (A ≤s B) if there is a single Turing reduction procedure which, when
given any element of B as an oracle, computes an element of A; it is exactly the
uniformization of Muchnik reduction [20]. These reductions have been studied
extensively by Binns (e.g., [4]), Cenzer and Hinman [9, 10] and Simpson (e.g.,
[24]) and have connections to randomness [22]. We will need the result from [9]
that any partial computable Φ : P → Q for two Π0

1 classes P and Q may be ex-
tended to a total computable functional. The Medvedev degrees are equivalence
classes under P ≡s Q, defined as (P ≤s Q) & (Q ≤s P ), and similarly for the
Muchnik degrees. Let Ps denote the partial ordering of the Medvedev degrees of
Π0

1 classes.

Proposition 4.1. If P is not (tree-)immune and Q is Medvedev reducible to P
then Q is also not (tree-)immune.

Proof. Let P be a Π0
1 class which is not tree-immune, and V ⊆ TP an infinite

computable tree. Let Φ witness Q ≤s P and set S = Φ(V ); note that S is a tree.
By the definition of partial computable functional and the fact that Φ must be
defined on all of P , S ⊆ TQ and S is infinite. It remains to show S is computable.
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To determine whether τ ∈ S, compute ϕ(σ) for all σ ∈ 2<ω in lexicographical
order until |ϕ(σ)| ≥ |τ | for all σ ∈ P of some length n. Then τ ∈ S if and only if
τ � ϕ(σ) for some σ ∈ V ∩ {0, 1}n.

If P is not immune, then there is an infinite c.e. tree V ⊆ TP and the argument
above shows that Φ(V ) is an infinite c.e. subtree of TQ, so that Q is also not
immune.

Let us say that a Medvedev degree d ∈ Ps is (tree-)immune if there is some
class P ∈ d which is (tree-)immune and otherwise d is (tree-)immune-free.

Corollary 4.2. 1. If d ∈ Ps contains a non-(tree-)immune Π0
1 class, then d

is (tree-)immune-free.

2. If d ∈ Ps contains a (tree-)immune Π0
1 class, then every member of d is

(tree-)immune.

For X, Y ∈ 2N, the join X⊕Y = Z is given by Z(2n) = X(n) and Z(2n+1) =
Y (n). Similarly, for finite sequences σ and τ of equal length, we may define
σ ⊕ τ = ρ, where ρ(2n) = σ(n) and ρ(2n+ 1) = τ(n).

The quotient structure of the Π0
1 classes under either Muchnik or Medvedev

equivalence is a lattice, and both have the same join and meet operators. The
join of P and Q is given by

P ⊗Q = {X ⊕ Y : X ∈ P, Y ∈ Q}.

If P = [S] and Q = [T ], then P ⊗Q = [S ⊗ T ], where

S ⊗ T = {σ ⊕ τ, (σ ⊕ τ)i : σ ∈ S, τ ∈ T, |σ| = |τ |, i ∈ {0, 1}};

since all finite joins are of even length, we branch at odd levels. The meet of P
and Q is given by

P ⊕Q = {0aX : X ∈ P} ∪ {1aY : Y ∈ Q}.

If P = [S] and Q = [T ], then P ⊕Q = [S ⊕ T ], where

S ⊕ T = {0aσ : σ ∈ S} ∪ {1aτ : τ ∈ T}.

Binns [6] showed that P ⊕Q and P ⊗Q are small if and only if both P and
Q are small. The results for immunity are not quite the same.

Theorem 4.3. For any closed sets P and Q, P ⊕Q is (tree-)immune if and only
if both P and Q are (tree-)immune.
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Proof. Suppose first that P is not immune and let C ⊆ TP be an infinite com-
putable set. Then {0aσ : σ ∈ C} is a computable subset of TP⊕Q. Suppos-
ing P is not tree-immune, let V ⊆ TP be an infinite computable tree. Then
{λ} ∪ {0aσ : σ ∈ V } is an infinite computable subtree of TP⊕Q. The arguments
when Q is not (tree-)immune are, of course, symmetric.

Next suppose that P ⊕ Q is not immune and let C ⊆ TP⊕Q be an infinite
computable set. Let Ci = {σ : iaσ ∈ C} for i = 0, 1. Then C0 ⊆ TP , C1 ⊆ TQ
and both sets are computable. Clearly either C0 is infinite or C1 is infinite, which
implies that either P is not immune or Q is not immune. A similar argument
applies if P ⊕ Q is not tree-immune, where V ⊆ TP⊕Q is an infinite computable
tree and the corresponding V0 ⊆ TP and V1 ⊆ TQ are computable trees.

Theorem 4.4. For any closed sets P and Q, P ⊗Q is (tree-)immune if and only
if at least one of P and Q is (tree-)immune.

Proof. Suppose first that P ⊗ Q is not tree-immune and let V ⊆ TP⊗Q be an
infinite computable tree. Let

VP = {σ : (∃τ ∈ {0, 1}|σ|)(σ ⊕ τ ∈ V )}

and similarly
VQ = {τ : (∃σ ∈ {0, 1}|τ |)(σ ⊕ τ ∈ V )}.

Then VP is an infinite computable subtree of TP and VQ is an infinite computable
subtree of TQ, so that neither P nor Q is tree-immune. A similar argument applies
if P ⊗Q is not immune, where V , VP and VQ are now infinite c.e. trees.

Next suppose that both P and Q are not tree-immune and let VP ⊆ TP and
VQ ⊆ Q be infinite computable trees. Then VP ⊗ VQ is an infinite computable
subtree of TP ⊗ TQ = TP⊕Q. A similar argument applies if P are Q are both not
immune, where VP , VQ and VP ⊗ VQ are all infinite c.e. trees.

Corollary 4.5. The immune-free degrees and the tree-immune-free degrees each
form a prime ideal in the lattice Ps.

Corollary 4.6. The tree-immune-free Medvedev degrees form a proper subideal
of the immune-free Medvedev degrees.

Proof. Let d be the Medvedev degree of the tree-immune, non-immune Π0
1 class

P constructed in Theorem 2.3. Then by Corollary 4.2, d is tree-immune but
immune-free.

We now turn to questions of density. Let 0s denote the least Medvedev degree,
which consists of all Π0

1 classes that have a computable member. Binns has shown
there is a nonsmall class of every nonzero Medvedev degree. We have the following
bounding result for nonimmune classes.
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Theorem 4.7. For any nonzero Π0
1 class P , there is a Π0

1 class Q with 0s <s

Q ≤s P which is not tree-immune, and hence not immune.

Proof. Let R be the Π0
1 class of Theorem 2.4 which is nonzero and not tree-

immune. It follows from Theorem 4.3 that P ⊕ R is not tree-immune, but it is
also special and certainly P ⊕R ≤s P .

Theorem 4.8. For every Π0
1 class Q, there exists a Π0

1 class Q∗ ≤s Q such that
Q∗ has tree-immune-free Medvedev degree, and Q∗ is Muchnik equivalent to Q.
Furthermore, if Q is immune, then Q∗ <s Q.

Proof. The case that Q is not special is obvious. Let Q be a special Π0
1 class,

and let T be a computable tree such that [T ] = Q. We note that the set L of all
leaves of T is computable. We set

T ∗ = T ∪ {σaτ : σ ∈ L & τ ∈ T}.

and let Q∗ = [T ∗], so that

Q∗ = Q ∪ {σaX : σ ∈ L & X ∈ Q}.

Then Q∗ is a Π0
1 class and Q ⊆ Q∗, so Q∗ ≤s Q. T is a computable subtree of

TQ∗ , so that Q∗ is not tree-immune, and hence by Corollary 4.2, Q∗ has tree-
immune-free degree. At the same time, every member of Q∗ is Turing equivalent
to a member of Q, so that Q∗ is Muchnik equivalent to Q.

If Q is immune, it follows from Proposition 4.1 that we may not have Q ≤s Q∗,
since Q∗ is not immune.

Lemma 4.9 (Essentially by Simpson [23]). There exists a Medvedev complete
set Q and a computable function q such that, for any e, the eth Π0

1 class Pe is
Medvedev reducible to Q via a computable functional Φq(e).

Remark 4.10. Every Medvedev complete set has this property.

Lemma 4.11. Let P ≤s Q be special Π0
1 classes, S and T computable trees with

[S] = P and [T ] = Q, and LS and LT the computable sets of all leaves of S and
T , respectively. Then there is a computable functional Φ∗ such that Φ∗(Q) ⊆ P
and Φ∗(LT ) ⊆ LS.

Proof. Since P is special, any σ ∈ S has an extension in LS. Assume P ≤s Q
via the computable functional Φ and let ϕ be a representing function for Φ. We
construct the desired functional Φ∗ with representing function ϕ∗.

First suppose τ ∈ 2<ω has no initial segment which is a leaf of T . If ϕ(τ) ∈ S,
then we let ϕ∗(τ) = ϕ(τ). If ϕ(τ) /∈ S, then we let σ be the longest initial
segment of ϕ(τ) which belongs to S, so that σ ∈ LS, and let ϕ∗(τ) = σ. Note
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that if X ∈ Q, it follows that ϕ∗(X � n) = ϕ(X � n), so that Φ∗(Q) ⊆ P as
desired.

Next suppose that τ � σ for some leaf σ of T . If ϕ(σ) /∈ S, then as above
let ϕ∗(σ) be the longest initial segment of ϕ(σ) which belongs to S. If ϕ(σ) ∈ S,
let ϕ∗(σ) be the shortest and leftmost leaf of S which extends ϕ(σ). Then let
ϕ∗(τ) = ϕ∗(σ)a0|τ |−|σ|. It follows that ϕ∗ maps LT into LS.

It is easy to check that ϕ∗ is monotonic and defines a computable functional
Φ∗.

Theorem 4.12. There is a greatest tree-immune-free Medvedev degree.

Proof. Let Q be a Medvedev complete set, T a computable tree such that Q = [T ]
and Q∗ as defined in Theorem 4.8. Fix any non-tree-immune Π0

1 class P and let
V ⊆ TP be an infinite computable tree. We may assume that P has no computable
path. By the Medvedev completeness of Q and Lemma 4.11, [V ] ≤s Q via some
computable functional Φ with representing function ϕ such that ϕ maps LT into
LV .

Let f be a computable function such that Pf(σ) = P ∩ I(σ) for all σ ∈ LV ,
and observe that since V ⊆ TP , Pf(σ) is a nonempty subset of P .

We now construct a computable functional Ψ : Q∗ → P . Let X ∈ Q∗. We
define the partial output ψ(X � n) as follows. As long as ϕ(X � n) ∈ V , simply
let ψ(X � n) = ϕ(X � n). If ϕ(X � n) ∈ V , but ϕ(X � n + 1) /∈ V , then
there exists σ ∈ LV with ϕ(X � n) � σ ≺ ϕ(X � n + 1). Furthermore, since
Φ : Q→ [V ] and ϕ(X � n+ 1) /∈ V , it follows that X /∈ Q. In this case, it follows
by the assumption from Lemma 4.11 that X � n + 1 ∈ LV . To see this, let k be
the least such that X � k ∈ LV . Then ϕ(X � k) = σ by the assumption from
Lemma 4.11 and the monotonicity of ϕ. Also k ≤ n since ϕ(X � n+ 1) /∈ V and
hence ϕ(X � n) = σ as well.

Now define Ψ(X) = Φq(f(σ))(X), where q is the function from Lemma 4.9.
Since we know σ ≺ Φq(f(σ))(X), we can let ψ(X � n+ r) = σ∪ϕq(f(σ))(X � n+ r),
that is, ψ(X � n+ r) = σ if ϕq(f(σ))(X � n+ r) � σ and otherwise ψ(X � n+ r) =
ϕq(f(σ))(X � n+ r).

Corollary 4.13. The c-immune-free Medvedev degrees forms a principal prime
ideal in Ps.

5 Non-Cupping

Cenzer-Weber-Wu [14] suggested the problem of determining the cuppable Π0
1

classes in Ps. Here we say that an incomplete Π0
1 class P is cuppable if there

exists an incomplete Π0
1 class Q such that P ⊗ Q is Medvedev complete. In

general, P cups to R >s P if there exists Q <s R such that P ⊗Q ≡s R.
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The first result in this direction is the following.

Theorem 5.1 (Simpson [23]). Any Π0
1 class that cups to a separating class

must have measure 0.

Hence, the positive measure Medvedev degrees POS form a subideal of Medvedev
non-cupping degrees NCup, and, by Theorem 2.7, a non-cuppable promptly im-
mune Π0

1 class exists. However, we will observe a further relationship between
immunity and non-cuppability.

Recall for disjoint sets A,B, S(A,B) is the class of all separating sets C ⊇ A,
C ∩ B = ∅. In particular, DNC2 = S(A0, A1) where Ai = {e : ϕe(e) = i}. A
generalized separating class is the product

∏
n Fn where {Fn}n∈ω is a computable

sequence of finite subsets of N. For S(A,B) the set Fn = {0} if n ∈ B, {1} if
n ∈ A and {0, 1} if n /∈ A ∪ B. Generalized separating classes were studied by
Cenzer and Hinman [10]. It is important to note that any generalized separating
class P is computably bounded and hence is computably homeomorphic to a Π0

1

class Q ⊆ {0, 1}ω (see Lemma 1.3 of [7]). Hence the Medvedev degrees of the
generalized separating classes are included in the Medvedev degrees of subsets of
Cantor space.

Theorem 5.2. No immune-free degree cups to any generalized separating class.

Proof. Let P be an non-immune Π0
1 class and V ⊆ TP an infinite computable set,

with fixed enumeration {σi}i∈ω. Let S =
∏

n Fn be a generalized separating class
for a sequence {Fn}n∈ω of finite sets. Suppose that for some Q, S ≤ P ⊗Q via a
computable functional Φ. We will write an input X ⊕Y to Φ as the ordered pair
X, Y .

We construct a computable functional Ψ witnessing S ≤s Q. Given Y ∈ Q,
define Z = Ψ(Y ) as follows. For each n, let Z(n) = Φ(σi, Y )(n), where i is
the least such that Φ(σi, Y )(n) is defined. We know that such i exists since, by
compactness, there is some m such that |ϕ(σ, τ)| > n for all σ ∈ TP , τ ∈ TQ with
length ≥ m.

It remains to confirm that Z = Ψ(Y ) ∈ S; that is, Z(n) ∈ Fn for all n.
Given n and σi ∈ V such that Z(n) = Φ(σi, Y )(n), we can find X ∈ P such that
σi ≺ X (since σi ∈ TP ). It follows that Φ(X, Y ) ∈ S and hence Φ(σi, Y )(n) =
Φ(X,Y )(n) ∈ Fn.

Corollary 5.3. Every immune-free Medvedev degree is Medvedev non-cuppable.

Proof. The class of 2-valued diagonally noncomputable functions, DNC2, is a
Medvedev complete generalized separating class, and hence no immune-free de-
gree can cup to it.



6 IMMUNITY AND RANDOMNESS 15

We get new subideals IM and TIM of Medvedev non-cuppable degrees NCup,
which consist of immune-free and tree-immune-free degrees, respectively. How-
ever, immunity does not necessarily give a cupping property. Actually, as seen
before, a positive measure promptly immune degree in Cenzer-Weber-Wu [14] is
an example of a non-cuppable immune degree.

Corollary 5.4. A Muchnik complete Medvedev non-cuppable degree exists.

Proof. By Theorem 4.12, max TIM exists and it is clearly Muchnik complete since
it is degree-isomorphic to any Medvedev complete class. Moreover, it is non-
cuppable by Corollary 5.3.

Theorem 5.5. For c = max TIM, a measure 0 immune non-cuppable degree > c
exists.

Proof. Let d be a positive measure, promptly immune Medvedev degree. Then
d 6≤ c holds since tree-immune-free degrees are downward closed. We claim
a = c ∪ d is the desired degree. This follows from the results that immune
degrees and non-cuppable degrees form ideals, positive measure-free degrees form
a filter, and d has positive measure-free degree by its Muchnik completeness (see
Simpson [23]).

Corollary 5.6. The immune-free Medvedev degrees IM and the tree-immune-free
Medvedev degrees TIM form proper subideals of the noncuppable Medvedev degrees
NCup.

6 Immunity and randomness

Finally we consider the immunity of random closed sets. A closed set P may
be coded as an element of 3N; P is called random if that sequence is Martin-Löf
random (for background on randomness see [16]). The code of P is defined from
TP ; the nodes of TP are considered in order by length and then lexicographically,
and each one is represented in the code by 0, 1, or 2 according to whether the
node has only the left child, only the right child, or both children, respectively.
Randomness for closed sets is defined and explored in [2, 3], where it is shown
among other results that no Π0

1 class is random, and that no random closed set
contains an f -c.e. path for any computable f bounded by a polynomial. The
following theorem does not follow immediately but is not surprising.

Theorem 6.1. If P is a random closed set, then P is immune.

Proof. Fix a computable sequence C = (σ1, σ2, . . . ) such that |σn| = n for each
n. For n > 0, let Sn = {Q : (∀i ≤ n) σi ∈ TQ}. Then Sn is a clopen set in
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the space of closed sets and the sequence {Sn : n ∈ ω} is uniformly c.e. It is
clear that C ⊆ TP if and only if P ∈ Sn for all n. Now consider the Lebesgue
measure µ(Sn). Certainly µ(S1) = 2/3. Given µn = µ(Sn) and σn+1, let i ≤ n
be the largest such that σi ≺ σn+1. Then µn+1 = (2

3
)n+1−iµn ≤ 2

3
µn. Hence

µ(Sn) ≤ (2
3
)n for each n. It follows that {S2n : n ∈ ω} is a Martin-Löf test and

hence no random closed set can belong to every Sn. Hence if P is random, C
is not a subset of TP . Since this holds for every such C, it follows that random
closed sets are immune.

Since a random ternary sequence must contain 1
3

2s in the limit, intuitively
the tree it codes must branch too much to be small. This is a straightforward
consequence of the following, which is drawn from Lemma 4.5 in [2].

Lemma 6.2. Let Q be a random closed set. Then there exist a constant C ∈ N
and k ∈ N such that for all m > k,

C

(
4

3

)m (
1−m−

1
4

)
< card(TQ ∩ {0, 1}m) < C

(
4

3

)m (
1 +m−

1
4

)
.

Corollary 6.3. If Q is a random closed set, Q is not small.

Proof. For C, k as in Lemma 6.2, define the function g(n) as

g(n) = max

{
k + 1,min

{
m : n < C

(
4

3

)m (
1−m−

1
4

)}}
.

It is clear that g is computable, and by Lemma 6.2, for all n the number of
branches at level g(n) will be at least n.
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