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Abstract

We study computability theoretic properties of Σ0
1 and Π0

1 equiv-
alence structures and how they differ from computable equivalence
structures or equivalence structures that belong to the Ershov differ-
ence hierarchy. Our investigation includes the complexity of isomor-
phisms between Σ0

1 equivalence structures and between Π0
1 equivalence

structures.
Keywords: computability theory, equivalence structures, effec-
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1 Introduction

Computable model theory deals with the algorithmic properties of effective
mathematical structures and the relationships between such structures. Per-
haps the most basic kind of relationship between two structures is that of
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isomorphism. It is natural to study the isomorphism problem in the context
of computable mathematics by investigating the following question.

Given two effective structures which are isomorphic, what is the least
complex isomorphism between them?

In what follows, we restrict our attention to countable structures for com-
putable languages. Hence, if a structure is infinite, we can assume that its
universe is the set of natural numbers, ω. We recall some basic definitions.
If A is a structure with universe A for a language L, then LA is the language
obtained by expanding L by constants for all elements of A. The atomic
diagram of A is the set of all quantifier-free sentences of LA true in A. The
elementary diagram of A is the set of all first-order sentences of LA true in
A. A structure A is computable if its atomic diagram is computable, and
a structure A is decidable if its elementary diagram is computable. We call
two structures computably isomorphic if there is a computable function that
is an isomorphism between them. A computable structure A is relatively
computably isomorphic to a possibly noncomputable structure B if there is
an isomorphism between them that is computable in the atomic diagram of
B. A computable structure A is computably categorical if every computable
structure that is isomorphic to A is computably isomorphic to A. A com-
putable structure A is relatively computably categorical if every structure
that is isomorphic to A is relatively computably isomorphic to A. Similar
definitions arise for other naturally definable classes of structures and their
isomorphisms. For example, for any n ∈ ω, a structure is ∆0

n if its atomic
diagram is ∆0

n; two structures are ∆0
n isomorphic if there is a ∆0

n isomor-
phism between them; and a computable structure A is ∆0

n categorical if
every computable structure that is isomorphic to A is ∆0

n isomorphic to A.
Among the simplest nontrivial structures are equivalence structures, i.e.,

structures of the form A = (ω,E) where E is an equivalence relation. The
study of the complexity of isomorphisms between computable equivalence
structures was recently carried out by Calvert, Cenzer, Harizanov, and Mo-
rozov in [2]. Similarly, the study of structures and functions within the
Ershov difference hierarchy has been recently carried out by Khoussainov,
Stephan, and Yang in [9], and by Cenzer, LaForte, and Remmel in [3] where
they investigated equivalence structures in particular. In this paper, we study
Σ0

1 and Π0
1 equivalence structures. Here, we say that an equivalence struc-

ture A = (ω,E) is Σ0
1 (or c.e.) if E is a c.e. set, and, similarly, A is Π0

1

(or co-c.e.) if E is a Π0
1 set. It is also the case that Σ0

1 and Π0
1 structures
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have been studied since the beginning of modern computable model theory.
For example, in [11], Metakides and Nerode studied c.e. vector spaces, which
consist of a structure V over the natural numbers such that the operations
of vector addition and scalar multiplication are computable but where there
is a c.e. equivalence relation ≡ the equivalences classes of which form a vec-
tor space under the vector addition and scalar multiplication. Similarly, in
[13], Remmel studied co-c.e. structures where the underlying operations are
computable.

Equivalence relations play an important role in mathematical logic and
many other areas of mathematics. For example, isomorphism and elementary
equivalence, as well as their effective versions such as computable isomor-
phism or Σ0

n-equivalence, are equivalence relations. Similarly, a number of
interesting applications of equivalence arise from the so-called classification
problems where two structures are termed equivalent if they possess certain
invariant properties.

We shall see that the complexity of isomorphisms between Σ0
1 equiva-

lence structures and between Π0
1 equivalence structures is different from the

complexity of isomorphisms between computable equivalence structures or
between equivalence structures that lie in the Ershov difference hierarchy.
Before we can state our results, we need some notation and definitions. For
an equivalence structure A = (A,E) where A = ω, we let [a]A denote the
equivalence class of a, i.e., [a]A = {b ∈ A : aEb}. In computability theory, it
is useful to split A into two parts, InfA and FinA, where InfA consists of
the elements in infinite equivalence classes, and FinA consists of the elements
with finite equivalence classes. It is natural to consider different sizes of the
equivalence classes of the elements in FinA since these sizes code information
into the equivalence relation. The character of an equivalence structure A is
the set

χ(A) = {(k, n) : n, k > 0 and A has at least n equivalence classes of size k}.
This set provides a kind of skeleton for FinA. Any set K ⊆ (ω − {0}) ×
(ω − {0}) such that for all n > 0 and k, (k, n + 1) ∈ K implies (k, n) ∈ K,
is called a character. We say a character K is bounded if there is some finite
k0 such that for all (k, n) ∈ K, we have k < k0. Khisamiev [8] introduced
the concepts of an s-function and an s1-function as a means of computably
approximating the characters of equivalence relations.

Definition 1.1. Let f : ω2 → ω. The function f is an s-function if the
following hold:
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1. for every i, s ∈ ω, f(i, s) ≤ f(i, s+ 1) and
2. for every i ∈ ω, the limit mi = limsf(i, s) exists.

We say that f is an s1-function if, in addition:
3. for every i ∈ ω, mi < mi+1.

Calvert, Cenzer, Harizanov and Morozov [2] gave conditions under which
a given character K can be the character of a computable equivalence struc-
ture. In particular, they observed that ifK is a bounded character and α ≤ ω,
then there is a computable equivalence structure with character K and ex-
actly α infinite equivalence classes. To prove the existence of computable
equivalence structures for unbounded characters K, they needed additional
information given by s- or s1-functions. They showed that if K is a Σ0

2

character, r < ω, and either

(a) there is an s-function f such that

(k, n) ∈ K ⇔ card({i : k = lim
s→∞

f(i, s)}) ≥ n, or

(b) there is an s1-function f such that for every i ∈ ω, (lims f(i, s), 1) ∈ K,
then there is a computable equivalence structure with character K and ex-
actly r infinite equivalence classes. In addition to these positive results, in
[2] the authors also constructed an infinite ∆0

2 set D such that for any com-
putable equivalence structure A with unbounded character and no infinite
equivalence classes, {k : (k, 1) ∈ K} is not a subset of D.

Σ0
1 equivalence structures were first considered by Ershov [5] where they

are called positive equivalence relations. Bernardi and Sorbi [1] referred to
Σ0

1 equivalence structures as ceers (computably enumerable equivalence rela-
tions) and they developed a notion of reducibility between ceers. Computably
isomorphic structures are equivalent under this reducibility but the converse
does not hold. This notion was developed further by Gao and Gerdes [6].
C.e. equivalence relations have also been studied by Lachlan [10] and Nies
[12].

Definition 1.2. Let α ≤ ω.

1. We say the structure A is weakly α-c.e. isomorphic to the structure
B if there are α-c.e. functions f and g such that f is an isomorphism
from A to B and g is an isomorphism from B to A.
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2. We say the structure A is α-c.e. isomorphic to the structure B if there
is an α-c.e. function f such that f−1 is α-c.e. and f is an isomorphism
from A to B.

3. We say the structure A is graph-α-c.e. isomorphic to the structure B if
there is a graph-α-c.e. function f such that f is an isomorphism from
A to B, where a function f is graph-α-c.e. if the graph of f is an α-c.e.
set.

In [3], Cenzer, LaForte, and Remmel obtained the following results. First
they proved the following basic properties of α-c.e. and graph-α-c.e functions.

(a) Any nonempty Σ0
2 set is the range of a 2-c.e. function.

(b) For every n ∈ ω, there is an (n+ 1)-c.e. function that is not graph-n-c.e.

(c) There is a graph-2-c.e. function that is not ω-c.e.

(d) There is a 2-c.e. bijection f such that f−1 is not ω-c.e.

Cenzer, LaForte, and Remmel established the following results about
characters in the Ershov hierarchy.

(i) For any n-c.e. character K, there is a computable equivalence structure
with character K and without infinite equivalence classes.

(ii) There is an ω-c.e. character K such that any equivalence structure with
character K must have infinite equivalence classes.

(iii) For any ∆0
2 character K, there exists a d.c.e. equivalence structure with

no infinite equivalence classes and with character K.

Cenzer, LaForte, and Remmel proved the following results about isomor-
phisms between equivalence structures in the Ershov hierarchy.

(I) For every n ∈ ω, there exist two computable equivalence structures that
are (n+ 1)-c.e. isomorphic, but not weakly n-c.e. isomorphic.

(II) There are two computable equivalence structures that are graph-2-c.e.
isomorphic, but not weakly ω-c.e. isomorphic.
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Cenzer, LaForte, and Remmel [3] also proved that a computable equiva-
lence structure is computably categorical if and only if it is weakly ω-c.e.
categorical. Furthermore, they showed that any computable equivalence
structure with bounded character is relatively graph-2-c.e. categorical and
that any computable equivalence structure with a finite number of infinite
equivalence classes is relatively graph-ω-c.e. categorical. It then follows that
a computable equivalence structure is ∆0

2 categorical if and only if it is graph-
ω-c.e. categorical.

We will prove a number of results about the complexity of isomorphisms
of Σ0

1 and of Π0
1 equivalence structures. For example, in Section 2, we show

that any Σ0
1 equivalence structure A with infinitely many infinite equivalence

classes is isomorphic to a computable structure. On the other hand, there
are Σ0

1 equivalence structures with finitely many infinite equivalence classes,
which are not isomorphic to any computable structure. We show that if Σ0

1

equivalence structures A1 and A2 are isomorphic to a computable structure
A that is computably categorical or relatively ∆0

2 categorical, then A1 and
A2 are ∆0

2 isomorphic. In Section 3, we first observe that if B is a computably
categorical computable equivalence structure anyA is a Π0

1 equivalence struc-
ture which is isomorphic to B, then A and B are ∆0

2 isomorphic. If B is a
computable equivalence structure which is not computably categorical, then
in several cases we construct a Π0

1 structure A which is isomorphic to B but
is not ∆0

2 isomorphic to B. The simplest case is when B consists of infinitely
many equivalence classes of sizes 1 or 2, and no other classes; if B is ∆0

2 cate-
gorical, then we show that the Π0

1 structure A is moreover not ∆0
2 isomorphic

to any Σ0
1 structure. In Section 4, we consider the spectrum question, which

is to determine the possible sets (or degrees of sets) that can be the sets of
elements in equivalence classes of size k, for some fixed k, in a computable
equivalence structure of a given isomorphism type. For example, we show
that for any infinite c.e. set B, there is a computable equivalence structure
with infinitely many equivalence classes of size 1, infinitely many classes of
size 2, and no other equivalence classes, such that B = {x : card([x]) = 2}.
In Section 5, we consider the complexity of the theory Th(A) of a computable
equivalence structure A, as well as the complexity of its elementary diagram
FTh(A). We explore the connection between the complexity of the character
χ(A) and the theory Th(A). We show that if Th(A) is decidable, then the
character χ(A) is computable. We show that if an equivalence structure B
has a computable character, then there is a decidable structure A isomorphic
to B.
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A preliminary version of this paper [4] appeared in the Proceedings of the
5th Conference on Computability in Europe.

2 Σ0
1 equivalence structures

In this section, we consider properties of Σ0
1 equivalence structures and their

existence and categoricity. It is easy to show that the complexity of the
character for Σ0

1 equivalence structures is at the same level of the arithmetical
hierarchy as for computable equivalence structures.

Lemma 2.1. For any Σ0
1 equivalence structure A, we have:

(a) {(k, a) : card([a]A) ≥ k} is a Σ0
1 set;

(b) InfA is a Π0
2 set;

(c) χ(A) is a Σ0
2 set.

Thus, if A is a Σ0
1 equivalence structure with infinitely many infinite

equivalence classes, then it follows from Lemma 2.1 and Lemma 2.3 of [2]
that A is isomorphic to a computable equivalence structure. However, it
was shown in [2] that there is a ∆0

2 character K such that any computable
equivalence structure with character K must have infinitely many infinite
equivalence classes. It was shown in [3] that for any ∆0

2 character K, there
is a d.c.e. equivalence structure A with character K and with no infinite
equivalence classes. Hence there is a d.c.e. A that is not isomorphic to any
computable equivalence structure. Now, for Σ0

1 equivalence structures we
have the following existence result.

Theorem 2.2. For any Σ0
2 character K and any finite m ≥ 1, there is

a Σ0
1 equivalence structure A with character K and with exactly m infinite

equivalence classes.

Proof. Let K be a Σ0
2 character. Let B be the equivalence structure given by

Lemma 2.3 in [2] such that B has character K and infinitely many infinite
equivalence classes, and, in addition, FinB is a Π0

1 set. Simply define A =
(ω,EA) by EA = EB ∪ (InfB × InfB). Then the structure A is Σ0

1 since
InfB is a Σ0

1 set, A has the same character K, and the infinitely many infinite
equivalence classes of B collapse into a single equivalence class InfA in A.
For m > 1, we can then append (m − 1) computable infinite equivalence
classes.
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Corollary 2.3. There exists a Σ0
1 equivalence structure A that is not iso-

morphic to any computable equivalence structure.

Proof. Let K be a Σ0
2 character that does not have an s1-function. Then,

by Lemma 2.6 of [2], there is no computable structure with character K and
with finitely many infinite equivalence classes.

We will next consider the effective categoricity of Σ0
1 equivalence struc-

tures. It was shown in [2] that a computable equivalence structure A is
computably categorical if and only if A is relatively computably categorical,
and that a computable equivalence structure A is computably categorical if
and only if one of the following conditions is satisfied:

1. A has only finitely many finite equivalence classes, or

2. A has finitely many infinite equivalence classes and bounded charac-
ter, and there is at most one finite k such that A has infinitely many
equivalence classes of size k.

It is also shown in [2] that a computable equivalence structure A is rel-
atively ∆0

2 categorical if and only if A has finitely many infinite equivalence
classes or A has a bounded character.

Clearly, a noncomputable Σ0
1 structure cannot be computably isomorphic

to a computable structure, but we have the following best possible result.

Theorem 2.4. Let A be a Σ0
1 equivalence structure. Let B be a computable

equivalence structure isomorphic to A such that B is computably categorical
or relatively ∆0

2 categorical. Then A and B are ∆0
2 isomorphic.

Proof. Suppose first that B is computably categorical. It follows from The-
orem 3.16 of [2] that B is relatively computably categorical. Hence there is
an isomorphism f from B and A, which is computable in A. Since A is Σ0

1,
it follows that f is ∆0

2.
Next, suppose that B is relatively ∆0

2 categorical. Then:
(i) B has finitely many infinite equivalence classes, or
(ii) B has bounded character.

First, consider the computable structure B. In Case (i), it is immediate
that both InfB and FinB are computable. In Case (ii), it follows from
Lemma 2.4 of [2] that there is a computable structure B′ isomorphic B such
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that InfB
′

is computable. Thus, we may assume, without loss of generality,
that InfB and FinB are computable.

Next, consider the Σ0
1 structure A. In Case (i), InfA is Σ0

1 since there
is a finite set of representatives {a1, . . . , am} for the infinite classes, so a ∈
InfA ⇐⇒ aEAa1 ∨ · · · ∨ aEAam. In Case (ii), InfB is also Σ0

1. That
is, if n is an upper bound for the size of a finite equivalence class, then
a ∈ InfB ⇐⇒ card([a]) > n.

Thus, both FinA and InfA, and FinB and InfB are computable in ∅′.
Moreover, it is easy to see that if x ∈ FinA, then we can find the equiva-
lence class [x]A computably in ∅′. That is, we simply search until we find
an n such that {y : yEAx & y > n} is empty, which we can decide from an
∅′-oracle. Then we know that [x]A = {z : zEAx & z ≤ n}, which also can be
computed from an ∅′-oracle. Similarly, we can find the equivalence class [y]B

computably in ∅′ for any y ∈ FinB. Then we can use a simple back-and-forth
argument to define an isomorphism f : FinA → FinB that is computable in
in ∅′. That is, computably in ∅′, we can compute enumerations a0 < a1 < · · ·
of FinA, and b0 < b1 < · · · of FinB. We then define f in stages, and let fs
denote the finite function defined at the end of stage s.

Stage 0. Search for the least bi such that card([a0]A) = card([bi]
B) and

define f0 so that it maps [a0]A onto [bi]
B in an increasing fashion. If i > 0,

then we search for the least aj such that card([aj]
A) = card([b0]B), and then

define f0 so that it maps [aj]
A onto [b0]B in an increasing fashion.

Stage s+1. Assume we have defined fs so that its domain and range are finite
unions of equivalence classes in A and B, respectively, and that

⋃s
i=0[ai]

A is
contained in the domain of fs, and

⋃s
i=0[bi]

B is contained in the range of fs.
Then, to extend fs to fs+1, we search for the least i such that ai is not in the
domain of fs. We then search for the least bk not in the range of fs such that
card([ai]

A) = card([bk]
B), and define fs+1 so that it maps [ai]

A onto [bk]
B in

an increasing fashion. Next, we search for the least n such that bn is not in
the range of fs and n 6= k. We then search for the least m such that am is
not in the domain of fs, and m 6= i, and card([am]A) = card([bn]B). Then
define fs+1 so that it maps [am]A onto [bn]B in an increasing fashion.

It is easy to see that the construction is computable in ∅′, and that at each
stage we can find the appropriate elements since we are assuming that FinA

and FinB are isomorphic. Thus, f will be a ∆0
2 function, which is an isomor-
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phism from FinA and FinB.
Similarly, it is easy to construct a function g that is computable in ∅′ and

which is an isomorphism from InfA and InfB. Hence A is ∆0
2 isomorphic

to B.

Corollary 2.5. Let A and B be isomorphic Σ0
1 equivalence structures that

satisfy one of the following conditions:

(i) A has bounded character, or

(ii) A has only finitely many infinite equivalence classes.

Then A and B are ∆0
2 isomorphic.

Next, we briefly discuss the connection with bi-reducibility of equivalence
structures as studied by Bernardi and Sorbi [1], Lachlan [10], and Gao and
Gerdes [6].

We say that one equivalence relation R is strongly reducible to another
equivalence relation S (written R ≤ S) if and only if there exists a com-
putable function f such that for all x, y ∈ ω,

xRy ⇔ f(x)Sf(y).

If R ≤ S and S ≤ R, then R and S are bi-reducible. If (ω,R) is computably
isomorphic to (ω, S), then they are certainly bi-reducible. The converse
does not hold. That is, Gerdes and Gao [6] proved that every computable
equivalence relation is bi-reducible to one of the following types:

1. for some finite n, the equivalence relation x ≡ y mod n, which defines
a computable equivalence structure with n infinite equivalence classes
and without finite classes;

2. the equality relation, which defines a computable equivalence structure
with infinitely many classes of size one, and no other classes.

Thus, the partial ordering (C,<) of the computable equivalence structures
modulo strong reducibility, is isomorphic to ω + 1. In fact, it is easy to see
that two computable equivalence structures are bi-reducible if and only if
they have the same number of equivalence classes. Thus, in particular, bi-
reducible structures need not be isomorphic. For example, if A consists of
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infinitely many classes of size 1, and B consists of infinitely many classes
of size 2, then A and B are bi-reducible but not isomorphic. Furthermore,
we have already seen that, even if two computable equivalence structures
are isomorphic, they need not be computably isomorphic. For computable
equivalence structures, the given effective notion of bi-reducibility is identical
to the noneffective version.

A Σ0
1 equivalence relation (or ceer) S is said to be universal if R ≤ S for

any Σ0
1 equivalence relation R. Bernardi and Sorbi [1] showed that universal

ceers exist.

3 Π0
1 equivalence structures

In this section, we show that even simple Π0
1 equivalence structures do not

have to be ∆0
2 isomorphic to computable structures. Note that if B is a Π0

1

equivalence structure, and A is an isomorphic computable structure that is
computably categorical, then, since A is also relatively computably categor-
ical, A and B are ∆0

2 isomorphic. Thus, we have the following result.

Theorem 3.1. Let A and B be isomorphic Π0
1 equivalence structures such

that A satisfies one of the following conditions:

(i) A has only finitely many finite equivalence classes, or

(ii) A has finitely many infinite equivalence classes and bounded character,
and there is at most one finite k such that A has infinitely many equiv-
alence classes of size k.

Then A and B are ∆0
2 isomorphic.

However, our next two results show that Theorem 3.1 does not extend to
all equivalence structures that are isomorphic to computable, relatively ∆0

2

categorical structures.

Theorem 3.2. Suppose that B is a computable equivalence structure with a
bounded character for which there exist k1 < k2 ≤ ω such that B has infinitely
many equivalence classes of size k1 and infinitely many equivalence classes
of size k2. Then there exists a Π0

1 structure A that is not ∆0
2 isomorphic to

B and, moreover, A is not ∆0
2 isomorphic to any Σ0

1 structure.
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Proof. We first suppose that B has no other equivalence classes. It suffices
to build a Π0

1 equivalence structure A such that {a : card([a]A) = k2} is not
a ∆0

2 set. That is, it follows from Lemma 2.1 that for any Σ0
1 structure, the

set of elements that belong to an equivalence class of (finite) size k is a ∆0
2

set. So if A were ∆0
2 isomorphic to a Σ0

1 structure, then A would also have
this property.

For simplicity of the construction, we let A have universe ω \ {0}. Let
φ : ω3 → {0, 1} be a computable function such that for every ∆0

2 set D, there
is some e for which for all n ∈ ω, the limit δe(n) =def lim

t→∞
φ(t, e, n) exists

and δe is the characteristic function of D. If δe(n) is defined and has values
in {0, 1} for all n, we let De = {n : δe(n) = 1}. The function φ exists by the
Limit Lemma (see [14]). We will construct the equivalence relation E = EA

so that for each e, if De exists, then card([2e]A) = k1 if and only if 2e /∈ De.
We construct EA in stages. That is, at each stage s, we shall define a com-

putable equivalence relation Es so that Es+1 ⊆ Es for all s, and EA =
⋂
s

Es.

Let [a]s denote the equivalence class of a in Es. At each stage s, we shall
also define an intended equivalence class Is[2

e], either of size k1 or of size k2.
We will ensure that for each e, there is some stage se such that for all s ≥ se,
we have [2e] = Is[2

e]. Furthermore, for all s, [2e]s+1 ⊆ [2e]s, and
⋂
s

[2e]s =

[2e]. We shall also define a number of permanent classes [a] of size k1 at each
stage s.

Construction

Stage 0. We start with the equivalence classes {2e(2k + 1) : k ∈ ω} for
e ≥ 0. For each e ≥ 0, we let I0[2e] = {2e, 3 · 2e, 5 · 2e, . . . , (2k1 − 1) · 2e}.

Stage s+1. At the end of stage s, assume that for each e, [2e]s = {2e, a1, a2, . . . },
and we have defined the intended equivalence class Is[2

e] so that Is[2
e] is an

initial subset of [2e]s with cardinality either k1 or k2. Moreover, assume that
if φ(s, e, 2e) = 1, then Is[2

e] has cardinality k1, and if φ(s, e, 2e) = 0, then
Is[2

e] has cardinality k2. For each e, we say that the element 2e requires
attention at stage s+ 1 if φ(s+ 1, e, 2e) 6= φ(s, e, 2e).

If 2e requires attention at stage s+ 1, we take the following action according
to whether Is[2

e] has cardinality k1 or k2.



3 Π0
1 EQUIVALENCE STRUCTURES 13

Case (i). If card(Is[2
e]) = k2, then let Is+1[2e] = {2e, a1, . . . , ak1−1}, let

[2e]s+1 = {2e, a1, . . . , ak1−1, a2k1 , a2k1+1, . . . }, and create a permanent equiva-
lence class {ak1 , ak1+2, . . . , a2k1−1} of size k1.

Case (ii). If card(Is[2
e]) = k1, then do the following. First suppose that

k2 is finite. Then we let Is+1[2e] = {2e, a1, . . . , ak2−1}, let
[2e]s+1 = {2e, a1, . . . , ak2−1, ak2+k1 , ak2+k1+1, . . . }, and create a permanent
equivalence class {ak2 , ak2+1, . . . , ak2+k1−1} of size k1. If k2 = ω, then we
simply let Is+1[2e] = [2e]s+1 = [2e]s.

If 2e does not require attention, then, again, there are two cases. If k2 = ω
and Is[2

e] = [2e]s is infinite, then we let Is+1[2e] = [2e]s+1 = [2e]s. If
card([Is[2

e]) = km is finite, then we let Is+1[2e] = {2e, a1, . . . , akm−1}, let
[2e]s+1 = {2e, a1, . . . , akm−1, akm+k1 , akm+k1+1, . . . , and create a permanent
equivalence class {akm , akm+1, . . . , akm+k1−1} of size k1.

Clearly, the equivalence relation Es is uniformly computable, and we have
Es+1 ⊆ Es for every s. Thus, E =

⋂
s

Es is a Π0
1 equivalence relation.

First, we show that every equivalence class in E has either k1 or k2 el-
ements. The elements which are (ever) removed from [2e]s form permanent
equivalence classes of size k1. Thus, we only need to check the classes [2e]s
for each e. By our construction, [2e]s is infinite for every s. There are
two cases. If lim

s→∞
φ(s, e, 2e) exists, then there is some stage s such that

φ(s, e, 2e) = φ(t, e, 2e) for all t ≥ s. Let [2e]s = Is[2
e] ∪ {a1 < a2 < · · · }.

If Is[2
e] has cardinality k2 and k2 = ω, then [2e]t = [2e]t+1 for all t ≥ s

so that [2e] is infinite. If Is[2
e] has cardinality k1 or k2, and k2 is finite,

then [2e]s+n = Is[2
e] ∪ {akn+1 < akn+2 < · · · }, so [2e] = Is[2

e] which, by
construction, has cardinality either k1 or k2.

Next, suppose that there are infinitely many s such that φ(s+ 1, e, 2e) 6=
φ(s, e, 2e). Let s0 < s1 < · · · be the stages s + 1 such that φ(s, e, 2e) = 1
and φ(s + 1, e, 2e) = 0 so that card(Is[2

e]) = k2 and card(Is+1[2e]) = k1.
At each such stage sn, we will remove the second k1 elements from [2e]sn
and make it a permanent equivalence class of size k1. Thus, it follows that
∩n[2e]sn = {2e, 3 · 2e, . . . , (2k1 − 1) · 2e}, so that card([2e]) = k1.

Next, we check that A = {e : card([2e]) = k2} is not a ∆0
2 set. If it

were, then, for some e, χA(n) = lim
s→∞

φ(s, e, n) exists for all n. Let t0 be
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large enough so that χA(2e) = φ(s, e, 2e) for all s ≥ t0. By the construction,
card([2e]t0) = k2 if and only if φ(t0, e, 2

e) = 0. By the definition of t0,
χA(2e) = φ(s, e, 2e) and the element 2e never requires attention after stage
t0, so that card([2e]) = card([It0 [2e]. Thus, card([2e]) = k2 if and only if
lim
s→∞

φ(s, e, 2e) 6= χA(2e).

Finally, suppose that B is a structure that has bounded character and has
infinitely many classes of size k1 and of size k2, but also has other equivalence
classes. Recall that the character χ(B) is a Σ0

2 set. Now we may remove
{(ki, n) : n ∈ ω & i ∈ {1, 2} & ki is finite} from χ(B) and still have a Σ0

2

character K. We now have several cases.
First, suppose that k1 is finite and k2 = ω. Then K is a bounded charac-

ter, and hence we can construct a computable equivalence structure C with
character K. Let A be the Π0

1 structure that has infinitely many equivalence
classes of size k1 and k2, but no other equivalence classes, and which is not
∆0

2 isomorphic to any Σ0
1 structure. Then the disjoint union A ⊕ C will be

isomorphic to B. We may assume that k1 is the largest size of an equivalence
class that is finite and such that there are infinitely many equivalence classes
of that size in B. Thus, in any Σ0

1 structure B∗ that is isomorphic to B, the
set S of all elements that belong to finite equivalence classes of sizes bigger
than k1 is finite. The set D of elements d in B∗ such that card([d]B

∗
) ≥ k1 is

clearly a c.e. set, so that D−S is a c.e. set consisting of all elements of B∗ the
equivalence classes of which are of sizes k1 or k2. Then, clearly, B∗ � D − S
is computably isomorphic to a Σ0

1 structure. But then A ⊕ C cannot be ∆0
2

isomorphic to any such Σ0
1 structure B∗, since any isomorphism would have

to map A onto B∗ � (D − S).
Next, suppose that k1 and k2 are finite and B has r < ω infinite equiv-

alence classes. It is easy to modify the construction to ensure that A has r
infinite equivalence classes, in addition to infinitely many equivalence classes
of size k1 and infinitely many equivalence classes of size k2, so that A is not
∆0

2 isomorphic to any Σ0
1 structure. Since K is a bounded character, it is

easy to construct a computable structure C with character K and no infinite
equivalence classes. Thus, A⊕ C will be a Π0

1 structure which is isomorphic
to B. We may assume that k1 and k2 are the two largest sizes of equivalence
classes that are finite and such that there are infinitely many equivalence
classes of those sizes in B. Thus, in any Σ0

1 structure B∗ isomorphic to B,
there are only finitely many elements S that belong to finite equivalence
classes the sizes of which are bigger than k2. The set D of elements d in B∗
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such that card([d]B
∗
) ≥ k1 is clearly a c.e. set, so that D − S is a c.e. set

consisting of all elements of B∗ the equivalence classes of which are of sizes
k1 or k2, together with r infinite equivalence classes in B∗. Clearly, B∗ � D
is computably isomorphic to a Σ0

1 structure. However, then A ⊕ C cannot
be ∆0

2 isomorphic to any such Σ0
1 structure B∗, since such an isomorphism

would have to map A onto B∗ � (D − S).

Corollary 3.3. If B is a computable equivalence structure with bounded char-
acter which is not computably categorical, then there exists a Π0

1 structure A
that is not ∆0

2 isomorphic to B, and, moreover, A is not ∆0
2 isomorphic to

any Σ0
1 structure.

Proof. Let the computable equivalence structure B have bounded character
such that B is not computably categorical. Suppose first that B has only
finitely many infinite equivalence classes. It was proved in [2] that if B has
finitely many infinite equivalence classes, and at most one finite k such that
there are infinitely many equivalence classes of size k, then B is computably
categorical (see Corollary 3.3 and Theorem 3.16 of [2]). Hence there exist
finite k1 < k2 such that B has infinitely many equivalence classes of size k1

and infinitely many equivalence classes of size k2. Next, suppose that B has
infinitely many infinite equivalence classes. If B has a finite character, then
B is computably categorical. Thus, χ(B) is both bounded and infinite, so
that there must exist a finite k such that B has infinitely many equivalence
classes of size k, as well as infinitely many infinite equivalence classes. Thus,
Theorem 3.2 applies in either case.

Next, we shall consider structures with unbounded characters and with
only finitely many infinite equivalence classes.

Theorem 3.4. Suppose that B is a computable equivalence structure that has
an unbounded character and only finitely many infinite equivalence classes
(and is therefore relatively ∆0

2 categorical). Then there exists a Π0
1 structure

A that is isomorphic to B, but not ∆0
2 isomorphic to B, and, moreover, A is

not ∆0
2 isomorphic to any Σ0

1 structure.

Proof. Let φ : ω3 → {0, 1} be the computable function defined in Theorem
3.2 for which for every ∆0

2 set D, there is some e such that for all n ∈ ω, the
limit δe(n) =def lim

t→∞
φ(t, e, n) exists and δe is the characteristic function of

D.
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By Lemma 2.6 of [2], there is a computable s1-function f such that mi =
limsf(i, s) exists and is finite for all i, and such that for each i, B has an
equivalence class of size mi. Note that M = {mi : i ∈ ω} is a ∆0

2 set. Thus,
by Lemma 2.8 of [2], there exists a computable structure which consists of
exactly one equivalence class of size mi for each i.

First, assume that B has no other equivalence classes, i.e., B consists
of exactly one equivalence class of size mi for each i. It suffices to build a
Π0

1 equivalence structure A such that {a : card([a]A) = m2i for some i} is
not a ∆0

2 set. That is, we observe that the functions fE and fO, defined
by fE(i, s) = f(2i, s) and fO(i, s) = f(2i + 1, s) are also s1-functions so it
follows by Lemma 2.7 of [2] that the sets M0 = {m2i : i ∈ ω} and M1 =
{m2i+1 : i ∈ ω} are both ∆0

2 and hence there exist computable structures B0

and B1 which consist of precisely one class of size m2i for B0 (respectively
m2i+1 for B1). Hence in the structure B0 ⊕ B1, the set {x : card([x]) ∈ M0}
is computable. Since we have assumed that B is relatively ∆0

2 categorical, it
follows from Theorem 2.4 that for any Σ0

1 equivalence structure with character
{〈m, 1〉 : m ∈M0 ∪M1}, the set {x : card([x]) ∈M0} is ∆0

2.
The construction of EA is again by stages. That is, at each stage s we

shall define a computable equivalence relation Es so that Es+1 ⊆ Es for all
s, and EA =

⋂
s

Es. Again, we let [a]s denote the equivalence class of a in

Es, and we let Is[a] denote the intended equivalence class of a at stage s.
At any given stage s, the intended classes have exactly the sizes f(i, s) for
i ∈ ω and Is[2

e] will either of size f(2e, s) or be of size f(1 + 2e(2j+ 1), s) for
some j. The construction will ensure that, for each i, there exists t such that
f(i, t) = mi and the class of size mi has become permanent. For each e, 2e

belongs to the class of size f(2e, s) at stage s if and only if φ(s, e, 2e) = 0. It
follows that for each e, ifDe exists, then card([2e]A) ∈M1 if and only 2e /∈ De.

Construction

Stage 0: E0 consists of the equivalence classes {2n(2k + 1) : k ∈ ω} for
n ≥ 0. For each e ≥ 0, we let I0[2e] = {2e, 3 · 2e, 5 · 2e, . . . , (f(2e, 0)− 1) · 2e}.
We then partition the remaining elements of {2n(2k + 1) : k ∈ ω} consecu-
tively into the intended classes I(2e(2k+1), 0) of size f(2e(2k+1), 0) for k > 0.

Stage s + 1: There are three tasks to accomplish at stage s + 1. We will
perform them sequentially.
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First, we suppose f(i, s+1) > f(i, s) for some i. In fact, we can construct
f such that this occurs for exactly one i and that, in fact, f(i, s + 1) =
f(i, s) + 1. Now the class Is[a] intended to have size mi lies in some infinite
class [a]s = C0, where it is followed by intended classes C1, C2, . . . . Here we
assume that for any 0 ≤ i < j, the elements of Ci are all smaller than the
elements of Cj. The required action is to take for each i ≥ 0, the first element
of Ci+1 and move it to Ci. This will make card(Is+1[a]) = f(i, s + 1), while
leaving the other intended classes with the same cardinalities.

Second, we may have φ(s + 1, e, 2e) 6= φ(s, e, 2e). Again we assume this
occurs for exactly one e. Here the class Is[2

e] is an initial subset of some
infinite class [2e]s, beginning with 2e, and is followed by intended classes
C1, C2, . . . having cardinalities c1, c2, . . ., respectively. Let [2e]s ∪ C1 ∪ C2 ∪
· · · = {a1, a2, . . . }. Suppose that the previous requirements have changed the
intended size from f(2e, r) or from f(1 + 2e(2i + 1), r) for each i < n. The
required action now is to change the cardinality of I[2e] either from f(2e, s)
to f(1 + 2e(2n + 1), s) or vice versa. Suppose that intended cardinality
Is+1[2e] is now going to be c0 = f(j, s) where j ∈ {2e, 1 + 2e(2n + 1)}. Let
di = c0 + · · ·+ ci for each i. Then we let Is+1[2e] = {a1, . . . , ac0} and, for each
i, we convert Ci+1 into {adi , adi+1, . . . , adi+ci+1−1}, so that the other classes
maintain their cardinality. Next, we declare that I[2e]s+1 is intended for mj.
Observe once again that for any i < j, the elements of Ci are all smaller than
the elements of Cj.

Finally, suppose that I[2e] was previously intended to have size mk and
now has size mj. Then we have to work on the class C which was previously
intended to have size mj and change it over to size f(j, s+ 1). The intended
class C lies in the middle of some infinite class and we proceed as we did for
the class [2e] above. Again, we observe that the elements of the class C are
all larger than those of the class Is[2

e].
Third, we have to ensure that the actual classes [a]s will converge to finite

classes with the intended cardinality. We accomplish this as follows. For each
class C = [a]s, let C be the union of intended classes C1, C2, . . . We partition
C into new classes Di = ∪kC(2k+1)·2i . In this way we ensure that any two
intended classes will eventually be separated.

This completes the construction.

We claim that for each a, the class I[a]s eventually converges to the class
[a] and is associated with some intended cardinality mi.
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First, consider the class [2e]. Choose t such that f(2e, t) = m2e . Suppose
first that φ(s+ 1, e, 2e) 6= φ(s, e, 2e) infinitely often. Then infinitely often we
have Is[2

e] = C as the first m2e elements of [2e]s, and at the other type of
stages we have C ⊆ Is[2

e], so that C ⊆ [2e]. By the third type of action,
all other elements are eventually not equivalent to 2e, so that [2e] = C and
[2e] has cardinality m2e . Next, suppose that φ(s + 1, e, 2e) 6= φ(s, e, 2e) only
finitely many times. Then we may assume that after stage t, I[2e] is never
changed by the second type of action.

There are two possibilities. If It[2
e] is intended to have size f(2e, t) = m2e ,

then it cannot be affected by the first type of action (by the assumption
above), and hence it cannot be affected by the third type of action, since it
does not change any of the intended classes. If It[2

e] is intended to have size
f(1 + 2e(2j+ 1), t) for some j, then the intended size of this class will not be
changed again by any action of the first type. Hence, once f(1+2e(2j+1), s)
stops changing, it will have a fixed size. Since Is[2

e] is always an initial
segment of [2e]s it is never affected by any other type of action. Thus, it will
stabilize to a class of size mk, where k = 2e(2j + 1). Finally, actions of the
third type will eventually remove all other elements from [2e].

Now, consider elements a which do not end up in [2e] for any e. It follows
from the construction (by the third type of action) that Is[a] is eventually
an initial segment of [a]s. Take t large enough so that:

1. a /∈ [2e]s for any e and any s > t,

2. Is[a] is an initial segment of [a]s for any s > t,

3. f(k, t) = mk, where It[a] is intended to have size mk.

Then for any s > t, I[a]s will be an initial segment of C = [a]s of size
mk, and hence C ⊆ [a]. By the third type of action, no other elements will
belong to [a], and thus [a] = C.

Finally, suppose that De(x) = limsφ(s, e, x) is a ∆0
2 set. Then by the

construction, I[2e] will stabilize once φ(s, e, x, ) has stabilized and we will
have card([2e]) ∈M1 ⇐⇒ 2e /∈ De.

Thus, in our Π0
1 structure A, {x : card([x]) ∈ M0} is not a ∆0

2 set and
therefore A is not ∆0

2 isomorphic to any Σ0
1 structure.

Now, suppose that B does not consist only of one equivalence class of size
mi for each i ≥ ω. Moreover, suppose that B has r infinite equivalence classes
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for some r < ω. In this case, we will take the corresponding s1-function f
and let N0 = {m3i : i ∈ ω}, N1 = {m3i+1 : i ∈ ω}, and N2 = {m3i+2 : i ∈ ω}.
Then N0, N1, and N2 are ∆0

2 sets. The sets K0 = {(k, n) ∈ K : k ∈ N0},
K1 = {(k, n) ∈ K : k ∈ N1}, and K2 = {(k, n) ∈ K : k 6∈ N0 ∪ N1},
are Σ0

2 characters. Each of these sets has an s1-function since g0(i) = f(3i)
is an s1-function for K0, g1(i) = f(3i + 1) is an s1-function for K1, and
g2(i) = f(3i + 2) is an s1-function for K2. By Lemma 2.8 of [2], there exist
computable equivalence structure R, S, and T such that:

1. R has character K0 an no infinite equivalence classes,

2. S has character K1 an no infinite equivalence classes, and

3. R has character K2 and r infinite equivalence classes.

Thus, B is isomorphic to B∗ = R⊕(S⊕T ). Clearly, in B∗, {x : card([x]B
∗
) ∈

N0} is a computable set. Thus, by the relative ∆0
2 categoricity of B, it must be

the case that in any Σ0
1 structure D isomorphic to B, the set {x : card([x]D) ∈

N0} is ∆0
2.

However, we can clearly modify the construction so that we obtain a
Π0

1 equivalence structure A such that A has exactly one equivalence class
of size m3i and one equivalence class of size m3i+1 for all i ∈ ω, and {x ∈
A : card([x]A) ∈ N0} is not a ∆0

2 set. Next, observe that, since B has
a Σ0

2 character K, the set K∗ = {(k, n) ∈ K : k 6∈ N0 ∪ N1} ∪ {(k, n) :
k ∈ N0 ∪ N1 & (k, n + 1) ∈ K} is also a Σ0

2 character, which has an s1-
function witnessed by g2. Thus, by Lemma 2.8 of [2], there is a computable
structure C such that C has character K∗ and r infinite equivalence classes.
Hence A ⊕ C is a Π0

1 structure that is isomorphic to B. Now, if A ⊕ C
were ∆0

2 isomorphic to a Σ0
1 structure B∗, which is isomorphic to B, then,

since in B∗, the set {x : card([x]B
∗
) ∈ N0} is a ∆0

2 set, it would follow
that {x : card([x]A⊕C) ∈ N0} is a ∆0

2 set. However, if that were the case,
then {2x : card([2x]A⊕C) ∈ N0} would also be a ∆0

2 set, which it is not
by the construction of A. Thus, A ⊕ C cannot be ∆0

2 isomorphic to a Σ0
1

structure.

By Corollary 4.8 of [2], a computable structure A is relatively ∆0
2 categor-

ical if and only if A has finitely many equivalence classes or A has a bounded
character. Thus we can combine the previous two theorems to conclude the
following.
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Theorem 3.5. Suppose that B is a computable equivalence structure that is
relatively ∆0

2 categorical, but not computably categorical. Then there exists a
Π0

1 structure A that is not ∆0
2 isomorphic to B and, moreover, A is not ∆0

2

isomorphic to any Σ0
1 structure.

Proof. If B has bounded character, this follows from Corollary 3.3. If B has
unbounded character, then this follows from Theorem 3.4.

We note that Theorem 3.5 does not cover all ∆0
2 categorical computable

equivalence structures since Kach and Turetsky [7] showed that there exists
a computable ∆0

2 categorical equivalence structure B which has infinitely
many infinite equivalence classes and an unbounded character, but has no
computable s1-function, and has only finitely many equivalence classes of size
k for any finite k. The next result will cover this case. In such a case, we
shall show that there exists a Π0

1 structure A which is isomorphic to B such
that InfA is a Π0

2 complete set.

Theorem 3.6. Let B be a computable equivalence structure with infinitely
many infinite equivalence classes and with unbounded character such that for
each finite k, there are only finitely many equivalence classes of size k. Then
there is a Π0

1 structure A which is isomorphic to B such that InfA is Π0
2

complete. Furthermore, if B is ∆0
2 categorical, then A is not ∆0

2 isomorphic
to any computable structure.

Proof. We fix a computable bijection t : ω3 → ω. For any subset S ⊆
ω3, the function t induces a total ordering of type ω on S by defining for
(a1, b1, c1), (a2, b2, c2) ∈ S, (a1, b1, c1) < (a2, b2, c2) if and only if t(((a1, b1, c1)) <
t((a2, b2, c2)).

Let B have character K. Since K is Σ0
2, there is a computable relation Q

such that
(k,m) ∈ K ⇐⇒ (∃w)(∀s)Q(s, w, k,m).

We may assume, without loss of generality, that for each (k,m), there is at
most one w such that (∀s)C(s, w, k,m). Let C = {(w, k,m) : (∀s)Q(s, w, k,m)}.
Then there is a one-to-one correspondence between C and K given by map-
ping (w, k,m) to (k,m).

For each s, we have the uniformly computable set

Cs = {(w, k,m) : ∀t < s) C(t, w, k,m)},
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which can be enumerated, relative to the order induced by t described above,
as {(w, k,m)i,s : i ∈ ω}. For each s, Cs+1 ⊆ Cs and ∩sCs = C. For each
k and m, we know that (k,m + 1) ∈ K =⇒ (k,m) ∈ K, so that we may
assume that if (w, k,m) /∈ Cs, then for all v and all n > m, (v, k, n) /∈ Cs.

We will construct the Π0
1 equivalence relation E as the intersection ∩sEs

of uniformly computable equivalence relations defined at stage s. At stage s,
we will have for each (w, k,m) ∈ Cs, some equivalence class that is intended
to have cardinality k. For example, if I[2e] is the intended equivalence class
associated with (w, k,m) as stage s, then just as we did in the proof of
Theorems 3.2 and 3.4, we will attempt to ensure that [2e] has the correct
cardinality by gradually removing all but the first k elements [2e]s. That
is, if at stage t > s, [2e]t = {a0 < a1 < · · · }, then we remove all elements
of the form ak+2i for i ≥ 0 from [2e]t and have these elements form a new
permanent infinite equivalence class.

Now, let P be a complete Π0
2 set such that for some computable relation

R we have for all n, n ∈ P ⇐⇒ {x : R(n, x)} is infinite). We may assume,
without loss of generality, that for each x, there is exactly one n such that
R(n, x) and that n ≤ x.

At each stage s of the construction, we will define an ordering n0,s, n1,s, . . .
of ω of type ω so that the intended equivalence class Is[2ni,s] is associated with
(w, k,m)i,s, which means that at stage s, we intend [2ni,s] to have cardinality
k.

The construction will ensure that for each i /∈ P , the class [2i] even-
tually becomes associated with a fixed (w, k,m) ∈ C and thus has finite
cardinality k in A. For each i ∈ P , the construction will ensure that [2i]
is associated with an increasing sequence of triples (w, k,m)s of larger and
larger size so that in the limit, [2i] is infinite. Thus, it will follow that
i ∈ P ⇐⇒ 2i ∈ InfA, and, hence, InfA will be a Π0

2 complete set.

Construction

Stage 0. At stage 0, we have C0 enumerated as (w, k,m)i,0 = (wi, ki,mi) : i ∈
ω}. For each i, we let ni,0 = 2i for all i so that the intended class I[2i] is to
have cardinality ki at stage 0. The odd numbers are partitioned among the
classes [2i]0 in some computable fashion, say [2i]0 = {2i}∪{1+2i+1(2n+1) :
n ∈ ω}. Thus, (x, y) ∈ E0 if and only if x and y belong to the same class
[2i]0 for some i.
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Stage s+1. After stage s, we have an equivalence relation Es and an ordering
2n1,s, 2n2,s, . . . of the even numbers, so that 2ni,s is associated with the triple
(w, k,m)i,s. At stage s + 1, let i ≤ s + 1 be the unique number such that
R(s + 1, ni,s). Let j > s + 1 be large enough so that no number np,s with
p ≥ j has been used during the construction. Then we simply move ni,s to
location j and let all of the nr,s in between move down one position. That is,
we let nj,s+1 = ni,s, nr,s+1 = nr+1,s for all r with i ≤ r < j and nr,s+1 = nr,s
for all r such that either r < i or r > j. Finally, for all i, we define Es+1 as
follows. For each class [2n], let n = ni,s+1, and let (w, k,m) = (w, k,m)i,s+1.
Suppose that [2n]s = {2n < a1 < a2 < · · · < ak−1 < ak < · · · }. Then we let
[2n]s+1 = {2n, a1, . . . , ak−1, ak+1, ak+3, . . . } and we create a new, permanent,
infinite class {ak, ak+2, . . . }. Previously created permanent, infinite classes
are left untouched.

Claim 1: If n /∈ P , then there exist i and s such that for all t ≥ s,
n = ni,t.

Proof of Claim 1. Since {x : R(n, x)} is finite, we may choose t to be
large enough so that for all x > t, ¬R(n, x). Let n = ni,t. It follows from the
construction that for all s > t, if n = nj,s, then j ≤ i and hence j can only
decrease a finite number of times before becoming fixed at some stage s.

For n /∈ P , let i(n) be the limit of {i : n = ni,s}, as shown to exist in
Claim 1. Let I = {i(n) : n /∈ P} and denote n by Ni if i = i(n).

Claim 2: I = ω.

Proof of Claim 2. Observe that I is infinite since ω − P is infinite. Now
suppose that I 6= ω. Then there must be some i such that i + 1 ∈ I but
i /∈ I. Let t > i be a stage such that Ni+1 = ni+1,s for all s ≥ t. Then for any
s > t, it can never happen that R(s + 1, ni,s). Otherwise, the construction
would make ni,s+1 = Ni+1, contrary to the choice of t.

Claim 3: For each (k,m) ∈ K, there exist at least m classes in A of size
exactly k.

Proof of Claim 3. For each (k,m) ∈ K, we have some (w, k,m) ∈ C. After
some stage s, we will have a fixed i such that (w, k,m) = (w, k,m)i,t for all
t > s and a fixed n /∈ P (by Claim 2) such that n = Ni = ni,t for all t > s.
Suppose that [2n]s = {2n, a1, a2, . . . }. Then, It[2n] = {2n, a1, . . . , ak−1} for
all t > s. It is easy to see that in such a situation ak+r /∈ [2n]s+r+1 for all
r. Hence [2n] = {2n, a1, . . . , ak−1} and has size k as desired. Similarly for
1 ≤ p < m, we will have a class of size k and these classes will all be distinct.
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Claim 4: If n ∈ P , then for any r, there exists s such that for all t > s,
n = ni,t with i > r.

Proof of Claim 4. Given r, just let s be large enough so that for all i ≤ r
and all t > s, we have ni,t = Ni. Since each Ni /∈ P , it follows that n 6= ni,t
for any i ≤ r.

Claim 5: If n ∈ P , then [2n] is infinite.

Proof of Claim 5. Suppose n ∈ P . We will define an infinite sequence
{a1, a2, . . . } such that each ai is in [2n]. Since there are only finitely many
classes in B of any fixed finite size, there is only a finite number of elements
in C of the form (w, 1, r), say (w1, 1, 1), (w2, 1, 2), . . . , (wm, 1,m) . Let r be
large enough so that each of these elements is among the first r elements of
C. Let s be large enough, by Claim 4, so that for all t ≥ s, n = ni,t with
i > r, and let the intended class be Is[2n] = {2n, b1, b2, . . . }. It follows from
the construction that b1 ∈ [2n]t for all t ≥ s, so we can define a1 = b1.

To determine bj+1, we similarly find sj large enough so that the intended
class of [2n] has at least j + 2 elements for all t ≥ sj, and let bj+1 be the
j + 2-th element of [2n]sj .

It follows that A has infinitely many infinite classes.

Claim 6: χ(A) = K.

Proof of Claim 6. By Claim 3, we haveK ⊆ χ(A). For the other direction,
we have, by Claim 5, that [2n] is infinite for n ∈ P . By Claim 1, we see that
for n /∈ P , there is some i such that n = Ni, and hence some (w, k,m) such
that Is[2n] has size k for all sufficiently large s. So, by the construction, [2n]
is the unique class of size k corresponding to (k,m).

Finally, suppose that B is ∆0
2 categorical. By Lemma 2.3 of [2], there is

a computable equivalence structure D which has character K and infinitely
many infinite equivalence classes such that FinD is a Π0

1 set. Thus, D is
isomorphic to B and InfD is ∆0

2. Hence it must be the case that in any
computable equivalence structure C that is isomorphic to B, InfC must be
∆0

2 and, hence, A is not ∆0
2 isomorphic to C.

There is one final result in order to cover all possible computable equiv-
alence structures.

Theorem 3.7. Suppose that B is a computable equivalence structure with
infinitely many infinite equivalence classes and with unbounded character and
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there is some finite k such that B has infinitely many equivalence classes of
size k. Then there is a Π0

1 structure A which is not ∆0
2 isomorphic to B and,

moreover, A is not ∆0
2 isomorphic to any Σ0

1 structure.

Proof. By the proof of Theorem 3.2, there is a Π0
1 structure A0 which consists

of infinitely many infinite equivalence classes and infinitely many equivalence
classes of size k such that Fin(A0) = {c : card([c]) = k} is not ∆0

2. Define
the Σ0

2 character K to be χ(B)− k × ω and let C be a computable structure
with character K. Now let A = A0 ⊕ C, so that {a ∈ A : card([a]) = k} =
{a ∈ A0 : card([a]) = k} × {0} and is hence not a ∆0

2 set. However, in any
Σ0

1 structure D, the set {d ∈ D : card([d]) = k} is a ∆0
2 set. Thus A is a Π0

1

equivalence structure which is isomorphic to B but ∆0
2 isomorphic to any Σ0

1

structure.

Thus we have the following.

Theorem 3.8. Suppose that B is a computable equivalence structure which
is not computably categorical. Then there is a Π0

1 structure A which is iso-
morphic to B but is not ∆0

2 isomorphic to B.

Proof. There are three possible cases for B.

Case I : B has bounded character. Then since B is not computably cate-
gorical, B must have infinitely many infinite classes. Thus, there must exist
a finite k1 such that B has infinitely many classes of size k1. Moreover, it
must be the case that either B has infinitely many infinite equivalence classes
or there exists a finite k2 6= k1 such that B also has infinitely many equiva-
lence classes of size k2. Then the result follows from Theorem 3.2.

Case II : Suppose that B has unbounded character and has finitely many
infinite equivalence classes. Then B is relatively ∆0

2 categorical and the re-
sult follows from Theorem 3.4.

Case III : Suppose that B has unbounded character and infinitely many infi-
nite equivalence classes. There are two possibilities. First, there may exist a
finite k such that B has infinitely many equivalence classes of size k. Then
the result follows from Theorem 3.7. Second, it may be that for each finite
k, there are only finitely many classes of size k. Then the result follows from
Theorem 3.6 if B is ∆0

2 categorical and is easy if B is not ∆0
2 categorical,



4 SPECTRA OF EQUIVALENCE STRUCTURES 25

since then there is a computable structure A which is not ∆0
2 isomorphic to

B.

For ∆0
2 categorical structures, we have the following immediate corollary.

Corollary 3.9. Suppose that B is a ∆0
2 categorical, but not computably cat-

egorical. Then there is a Π0
1 structure A that is isomorphic to B such that A

is not ∆0
2 isomorphic to any computable equivalence structure.

4 Spectra of equivalence structures

In this section, we begin to examine the spectrum question for equivalence
structures. For a computable (Σ0

1, Π0
1, respectively) equivalence structure

A and any cardinal k ≤ ω, we consider the possible Turing degrees of {a :
card([a]) = k} and {a : card([a]) ≥ k}. For example, we know that for
any c.e. equivalence structure A, InfA is Π0

2 and FinA is Σ0
2. Thus, a

natural question is to ask whether there exists for any Σ0
2 Turing degree c,

a computable equivalence structure A with FinA of degree c. We will not
pursue such question in this paper. Instead, we shall prove two results about
spectra in computable structures.

We now give an initial result for computable equivalence structures with
infinitely many equivalence classes of size 1, infinitely many equivalence
classes of size 2, and with no other equivalence classes. Clearly, for such
computable equivalence structure, the elements in classes of size 2 form a
c.e. set, and the elements in classes of size 1 form a co-c.e. set. In this case,
we obtain not only every c.e. degree, but also every c.e. set.

Theorem 4.1. For any infinite c.e. set B, there is a computable equivalence
structure A with character {1, 2} × (ω − {0}) and no infinite equivalence
classes such that {a : card([a]) = 2} = B.

Proof. Let {b0, b1, . . .} be a computable 1-1 enumeration of B. We will first
give an enumeration {c0, c1, . . .} ofB such that for every n and each i < 2n+1,
ci < c2n+1. Let c0 = b0 and let c1 be equal to bi, where i is the least j such
that bj > b0. Then for n ≥ 1, we inductively define:
(1) c2n = bi, where i is the least such that bi /∈ {c0, c1, . . . , c2n−1}, and
(2) c2n+1 = bk, where k is the least such that ci < bk for all i ≤ 2n.

Now, consider the equivalence structure A = (ω,E), where E = {(n, n) :
n ∈ ω} ∪ {(c2n, c2n+1) : n ∈ ω}. Then for each i, card([ci]) = 2 and for
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a /∈ B, [a] = {a}. Thus, in A, we have B = {a : card([a]) = 2}, as
desired. It remains to show that E is a computable relation. Observe that
c1 < c3 < · · · , so for every n, c2n+1 ≥ n. Now, given a < b, let n = max{a, b}.
Then it easy to see that

aEb ⇐⇒ (∃m ≤ n)[a = c2m ∧ b = c2m+1],

so E is computable.

We note that it is easy to modify the proof of Theorem 4.1 to obtain an
analogous result for computable equivalence structures which consist of in-
finitely many equivalence classes of size 1, infinitely many equivalence classes
of size k > 1, and no other equivalence classes.

The analogue of Theorem 4.1 fails for structures with infinitely many
classes of size k1 and k2 where k2 > k1 > 1. For example, we can prove the
following.

Theorem 4.2. There is a c.e. set B such that for any c.e. equivalence struc-
ture A with character {2, 3} × (ω − {0}), {a : card([a]) = 3} 6= B.

Proof. Let Ae be the e-th equivalence structure. That is, Ae has universe ω
and equivalence relation Ee which is the reflexive and transitive closure of
the e-th c.e. set We. Thus, aEeb holds if and only if

a = b ∨ (∃x0, x1, . . . , xk)[x0 = a & . . . & xk = b & (∀i < k)(〈xi, xi+1〉 ∈We)].

Let [a]e be the equivalence class of a in Ae. Let Ce = {a : card([a]e) = 3}.
Let Ee,s be the transitive closure of We,s for all e, s ≥ 0 and Ae,s be the
equivalence structure (ω,Ee,s).

We will construct a desired c.e. set B by a finite injury priority argument.
Our construction will meet the following requirements for all e ≥ 0.

Requirement Re: If χ(Ae) = {2, 3} × (ω − {0}), then Ce 6= B.

To satisfy a particular requirement Re, we find a pair ae, be such that aeEebe,
but ae ∈ B ⇐⇒ be /∈ B.

At each stage s, we will define ae,s for each e ≥ 0. We say the equivalence
structure Ae,s is active at stage s as long as there are no equivalence classes
of size > 3. If Ae,s is not active, then we will say that the requirement Re

in inactive, and that Re is permanently satisfied for all stages t ≥ s. For
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certain requirements e < s, we will also define be,s such that ae,sEe,sbe,s and
one of ae,s, be,s is in Bs, while the other is restrained by Re from entering B.
In this case, if Ae is active, then we say that the requirement Re is inactive,
and otherwise that Re is active.

We say that requirement Re with e ≤ s requires attention at stage s + 1
if Ae,s and Re are both active at stage s, be,s is undefined, and there exists
b ≤ s+ 1 such that b 6= ae,s and ae,sEe,sb.

Construction

Stage 0: For each e, set ae,0 = 2e. Let be,0 be undefined for all e ≥ 0.

Stage s + 1: Let e be the least f ≤ s + 1 such that Rf requires atten-
tion at stage s + 1. If there is no such e, then do nothing. Otherwise, let b
be the least z ≤ s+ 1 such that z 6= ae,s and ae,sEe,sz. Then we take actions
following action.

Case I: Ler b = ai,s for some i < e. Then reset ae,s+1 to be the least
x 6= b such that: (i) x /∈ Bs, and (ii) x 6= aj,s for any j, and x 6= bj,s for any
j for which bj,s is defined. Note that such x always exists since initially each
ak,s is even, and only a finite number of odd elements will be used up to any
stage s of the construction. We then let ai,s+1 = ai,s for all i 6= e, and let
bj,s = bj,s+1 for all j such that bj,s is defined. Then go to stage s+ 2.

If we are not in Case I, then we know that b 6= ai,s for every i ≤ e.

Case II: Let b /∈ Bs. Then put ae,s ∈ Bs+1, set be,s+1 = b, and let Re restrain
b from entering B. We then let ai,s+1 = ai,s for all i, and let bj,s = bj,s+1 for
all j such that bj,s is defined.

Case III: Letb ∈ Bs. In this case, we have Re restrain ae,s from entering B
and set be,s+1 = b. We then let ai,s+1 = ai,s for all i, and let bj,s = bj,s+1 for
all j such that bj,s is defined.

In either Case I or Case II, if b = ai,s+1 for some i > e, then reset ai,s+1

to be the least x 6= b such that: (i) x /∈ Bs, and (ii) x 6= aj,s+1 for any
j 6= i, and x 6= bj,s+1 for any j such that bj,s+1 is defined. Note that such
x always exists since initially each ak,s is even, and only a finite number of
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odd elements will be used up to any stage s of the construction. Let bi,s+1

become undefined. This might injure the requirement Ri.

This completes the construction.

Since each requirement Re can only be injured by the (higher priority)
requirements Ri with i < e, it is clear that Re will require attention only
a finite number of times. Thus, the limit ae = limsae,s exists for each e.
Similarly, for each e, there exists a stage se such that for all t ≥ se, either:
(a) be,t undefined at stage t, or (b) be,t = be,se , and ae,t = ae,se , and ae,tEe,tbe,t,
and ae,t ∈ Be,t ⇐⇒ be /∈ Be,t. IfAe has characteristic {2, 3}×(ω−{0}), then
card([ae]) ≥ 2 and, hence, there exists b with aeEeb. Consider any stage s
after which no action for any requirements Ri with i ≤ e will take place, and
there is b ≤ s+ 1 such that aeEe,sb. Then either Ae is inactive at stage s+ 1,
in which case requirement Re is permanently satisfied or Ae is active at stage
s+1. In the second case, requirementRe must be inactive at stage s+1 so that
be,s+1 is defined, ae,s+1Ee,s+1be,s+1, and ae,s+1 ∈ Be,s+1 ⇐⇒ be,s+1 /∈ Be,s+1.
Since no requirement Ri with i ≤ e requires attention after stage s + 1, we
will never add either ae,s+1 or be,s+1 to B after stage s, so that ae,s+1 and
be,s+1 will witness that B 6= Ce.

Note that the c.e. set B constructed in this proof has the property that
for any c.e. structure A with all equivalence classes of size ≥ 2 and for all
k ≤ ω, B 6= {a : card([a]) = k}.

For equivalence structures with equivalence classes of three or more dif-
ferent cardinalities k1 < k2 < · · · < kn, the elements of an intermediate size
equivalence class will form a d.c.e. set. Thus it is natural to ask whether any
d.c.e. set can be represented in this way. Similar questions can be asked for
Σ0

1 and Π0
1 equivalence structures.

5 Decidability of structures and theories

Recall that for any structure A, Th(A) denotes the first-order theory of
A, and FTh(A) denotes the elementary diagram of A. In this section, we
consider the decidability of equivalence structures and their theories. The
intuitive idea is that the character of an equivalence structure, together with
the number of infinite classes, determines its theory. Similarly, the character,



5 DECIDABILITY OF STRUCTURES AND THEORIES 29

together with the function mapping any element to the size of its equivalence
class, determines its elementary diagram.

Proposition 5.1. If Th(A) is decidable, then the character χ(A) is com-
putable.

Proof. It follows from the definition of χ(A) that the character is uniformly
definable by first-order formulas. That is, it is easy to write down first-order
formulas ψn,k so that

(k, n) ∈ χ(A) if and only if A |= ψn,k.

It follows from the argument above that, in fact, χ(A) is many-one re-
ducible to Th(A). Define the set K(A) ⊆ ω × (ω − {0}) by

(a, k) ∈ K(A) ⇐⇒ card([a]) ≥ k.

Theorem 5.2. For any equivalence structure A, the elementary diagram of
A is Turing reducible to the join of the set K(A) with the atomic diagram of
A.

Proof. First, assume thatA has only finitely many equivalence classes. Then,
clearly, FTh(A) is axiomatizable and hence computable. That is, for sim-
plicity, let a1, . . . , an be representatives of the n classes having cardinali-
ties k1, . . . , kn, respectively. Then in the expanded language with names for
a1, . . . , an, we have the following axioms.

(i) Every element is equivalent to one of a1, . . . , an:

(∀x)[xEa1 ∨ . . . ∨ xEan].

(ii) For every finite class [a] with the representative a, there is an axiom
giving the size k of the class:

(∃x1, . . . , xk)[
k∧
i=1

xiEa ∧∧
i6=j

1≤i,j≤k

xi 6= xj ∧ (∀z)(aEz =⇒ (z = x1 ∨ . . . ∨ z = xk))].
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(iii) For every infinite class [a], we have an axiom for every n:

(∀x1, . . . , xn)(∃y)[yEa ∧ y 6= x1 ∧ · · · ∧ y 6= xn].

Now, we assume that A has infinitely many equivalence classes. We
proceed by quantifier elimination. We first expand the language by adding
the relation symbols γk such that A |= γk(a) if and only if (a, k) ∈ K(A).
Let ψ(x, t1, . . . , tn) be any conjunction of literals in this expanded language,
where t1, . . . , tn are either variables or elements of A, and let θ be (∃x)ψ.
Without loss of generality, we may assume that ψ includes either ti = tj or
¬(ti = tj) for all i, j where we set x = t0. Similarly, we may assume that ψ
includes either tiEtj or ¬(tiEtj) for all i, j. As usual, it suffices to eliminate
the quantifier from ψ. There are three cases.

Case 1. If ψ has a conjunct x = ti with i > 0, then θ is logically equivalent
to the quantifier-free formula ψ− obtained from ψ by replacing all occurrences
of x with ti.

In the remaining cases, ψ has the conjuncts ¬(x = ti) for all i > 0.

Case 2. Suppose that ψ has the conjunct xEtm for some m. Let k
be the number of distinct terms (modulo ψ |= ti = tj) out of x, t1, . . . , tn
such that tiEtm. Then θ is logically equivalent to the quantifier-free formula
ψ−∧γk+1(tm). That is, the desired x will exist if and only if card([tm]) ≥ k+1,
so that A contains an additional element of [tm].

Case 3. Suppose that ψ has the conjuncts ¬xEti for all i. Then, again,
θ is equivalent to the formula ψ−. This is true since A has infinitely many
distinct equivalence classes.

At the end of quantifier elimination, we can determine whether the re-
duced formula ψ holds in A by consulting the diagram of A as well as
K(A).

Theorem 5.3. For any equivalence structure B, there is a structure A iso-
morphic to B, such that A and K(A) are computable from χ(A).

Proof. We may assume, without loss of generality, that B has no infinite
equivalence classes, since, if needed, we can simply adjoin either infinitely
many or some fixed finite number of infinite equivalence classes. We may also
assume that B has infinitely many classes with at least two elements, since
otherwise B certainly has a decidable copy. The structure A will contain a
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distinct equivalence class [〈k, n〉] for each (k, n) ∈ χ(B), where we let 〈k, n〉 =
2k+1 · 3n+1. Let χ(B) be enumerated numerically as 〈k0, n0〉, 〈k1, n1〉, . . . and
let b0, b1, . . . enumerate ω − χ(B). Then E = EA is defined by using the
elements b0, b1, . . . to fill out the equivalence classes [〈k0, n0〉], [〈k1, n1〉], . . . in
order, as needed. It is easy to see that A and K(A) are computable from
χ(A).

Putting these results together, we have the next two theorems along with
some immediate corollaries.

Theorem 5.4. For any equivalence structure A, Th(A) and χ(A) have the
same Turing degree.

Proof. It follows from the argument in Proposition 5.1 that χ(A) is Turing
reducible to Th(A). Conversely, let B be an equivalence structure and let
A, isomorphic to B, be given by Theorem 5.3, so that A and K(A) are
both computable from χ(A) (which, of course, equals χ(B)). It follows from
Theorem 5.2 that FTh(A) is computable from χ(B). Now Th(B) = Th(A) is
computable from FTh(A), and, hence, is computable from χ(B) as desired.

Corollary 5.5. For any equivalence structure A, Th(A) is decidable if and
only if χ(A) is computable.

Theorem 5.6. For any equivalence structure B with computable character
χ(B), there is a decidable structure A isomorphic to B. (Hence Th(B) is
decidable.)

Proof. Again, it suffices to assume that B has no infinite equivalence classes.
By Theorem 5.3, there is a structure A isomorphic to B, which is computable
from χ(A), and hence A and K(A) are also computable. It now follows from
Theorem 5.2 that FTh(A) is decidable, and hence Th(A), which equals
Th(B), is decidable.

Clearly, any bounded character is computable.

Corollary 5.7. If the equivalence structure A has bounded character, then
Th(A) is decidable.

For computably categorical structures, we can say more.
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Corollary 5.8. If A is a computably categorical equivalence structure, then
A is decidable.

Proof. Let A be computably categorical. Then A has bounded character, so
χ(A) is computable. Hence by Theorem 5.6, there is a structure B isomorphic
to A, which is decidable. Since A is computably categorical, A is computably
isomorphic to B and, therefore, A is also decidable.

Note that there are equivalence structures that are not computably cat-
egorical, which have decidable theories. For example, fix k1 < k2 ≤ ω and
let A have infinitely many equivalence classes of size k1 and infinitely many
classes of size k2 and no other classes. Then χ(A) is computable and, thus,
Th(A) is decidable. We note that in all considered cases of decidable theories,
one could, in fact, give a complete set of axioms for the theory.
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