ALGORITHMIC RANDOMNESS AND CAPACITY OF CLOSED SETS

PAUL BRODHEAD, DOUGLAS CENZER, FERIT TOSKA, AND SEBASTIAN WYMAN

Indian River State College, Fort Pierce, Florida
Department of Mathematics, University of Florida, Gainesville, Florida 32611-8105
e-mail address: cenzer@ufl.edu
University of Florida
University of Florida

Abstract

We investigate the connection between measure, capacity and algorithmic randomness for the space of closed sets. For any computable measure m, a computable capacity T may be defined by letting $T(Q)$ be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an effective version of Choquet's capacity theorem by showing that every computable capacity may be obtained from a computable measure in this way. We establish conditions on the measure m that characterize when the capacity of an m-random closed set equals zero. This includes new results in classical probability theory as well as results for algorithmic randomness. For certain computable measures, we construct effectively closed sets with positive capacity and with Lebesgue measure zero. We show that for computable measures, a real q is upper semi-computable if and only if there is an effectively closed set with capacity q.

Introduction

The study of algorithmic randomness has been an active area of research in recent years. The basic problem is to quantify the randomness of a single real number. Here we think of a real $r \in[0,1]$ as an infinite sequence of 0 's and 1 's, i.e. as an element in $2^{\mathbb{N}}$. There are three basic approaches to algorithmic randomness: the measure-theoretic approach of Martin-Löf tests, the incompressibility approach of Kolmogorov complexity, and the betting approach in terms of martingales. All three approaches have been shown to yield the same notion of (algorithmic) randomness. The present paper will consider only the measure-theoretic approach. A real x is Martin-Löf random if for any effective sequence S_{1}, S_{2}, \ldots of c. e. open

1998 ACM Subject Classification: F.4.1 Mathematical Logic-Computability Theory, Recursive Function Theory.

Key words and phrases: computable analysis, algorithmic randomness, effectively closed sets, effective capacity.

A preliminary version of this paper appeared in the CCA 2010 proceedings EPCTS 24.
This research was partially supported by NSF grants DMS 0532644 and 0554841 and 652372.
sets with $\mu\left(S_{n}\right) \leq 2^{-n}, x \notin \bigcap_{n} S_{n}$. For background and history of algorithmic randomness we refer to $[\mathbf{~} 8,[15]$.

The study of random sets and in particular of random closed sets is a vibrant area in probability and statistics, with many applications in science and engineering. The notion of capacity plays an important role here as a part of the analysis of imprecise or uncertain observations, for example in intelligent systems. For background on the theory of random sets see [14].

In a series of recent papers [4, [2], G. Barmpalias, P. Brodhead, D. Cenzer, S. Dashti, J.B. Remmel and R. Weber have defined a notion of algorithmic randomness for closed sets and continuous functions on $2^{\mathbb{N}}$. Here the Polish space $2^{\mathbb{N}}$ is equipped with usual product topology and has a basis of clopen sets. Definitions are given below in section [1]. The space \mathcal{C} of closed subsets of $2^{\mathbb{N}}$ has the hit-or-miss or Fell topology which is also described in section [1]. In general when we discuss closed sets in this paper we are refering to closed subsets of $2^{\mathbb{N}}$.

The study of randomness for closed sets and continuous functions has several interesting aspects concerning properties of those sets and properties of the members of such sets. The topological and measure-theoretic properties of effectively random closed sets has been studied. For example, it is shown in [4] that every effectively random closed set is perfect and has Lebesgue measure 0 . The complexity of effectively random closed sets as subsets of $2^{\mathbb{N}}$ was considered in [4], where it was shown that no effectively closed $\left(\Pi_{1}^{0}\right)$ set is random but there is a random Δ_{2}^{0} closed set.

The members of a closed set are reals and hence we can study the complexity of the members of an effectively random closed set. The following results were obtained in [4]. Every effectively random closed set contains a random member but not every member is random. Every random real belongs to some random closed set. Every effectively random Δ_{2}^{0} closed set contains a random Δ_{2}^{0} member. Effectively random closed set contain no computable elements (in fact, no n-c. e. elements). It was shown in [Z] that the set of zeroes of an effectively random continuous function is an effectively random closed set.

Just as an effectively closed set in $2^{\mathbb{N}}$ may be viewed as the set of infinite paths through a computable tree $T \subseteq\{0,1\}^{*}$, an algorithmically random closed set in $2^{\mathbb{N}}$ may be viewed as the set of infinite paths through an algorithmically random tree T. Diamondstone and Kjos-Hanssen [II, [10] give an alternative definition of algorithmic randomness for closed sets according to the Galton-Watson distribution and show that this definition produces the same family of algorithmically random closed sets.

We note that in probability theory a random closed subset of a topological space X is considered a random variable which takes on the values in the space $\mathcal{C}(X)$ of closed subsets of X. That is, let (Ω, \mathcal{A}, P) be a probability space with underlying topological space Ω, σ-algebra $\mathcal{A} \subseteq \mathcal{P}(X)$ and measure P such that $P(\Omega)=1$ and $P(S)$ is defined for all sets $S \in \mathcal{A}$. For example, we might have $\Omega=2^{\mathbb{N}}, \mathcal{A}$ the family of Borel subsets of $2^{\mathbb{N}}$, and P the standard Lebesgue measure. The map X induces a probability measure P_{X} on $\mathcal{C}(X)$ given by $P\left(X^{-1}(S)\right.$. Classically, the statement that a random closed set has no computable elements means that the collection of closed sets with no computable elements has measure one. In effective randomness, there is a particular collection R of algorithmically random closed sets which has measure one. In this context, the statement that effectively random closed sets have no computable elements is to say that the closed sets in R have no computable elements. The latter result of course implies the former, but is stronger.

A random closed set is a specific type of random recursive construction, as studied by Graf, Mauldin and Williams [9]. McLinden and Mauldin [13] showed that the Hausdorff dimension of a random closed set is $\log _{2}(4 / 3)$, that is, almost every closed subset of $2^{\mathbb{N}}$ has Hausdorff dimension $\log _{2}(4 / 3)$. It was shown in [4] that every effectively random closed set has box dimension $\log _{2}(4 / 3)$. The effective Hausdorff dimension of members of effectively random closed sets is studied in [II]. It is shown that every member of an effectively random closed set has effective Hausdorff dimension $\geq \log _{2}(3 / 2)$ and that any real with effective Hausdorff dimension $>\log _{2}(3 / 2)$ is a member of some effectively random closed set.

In the present paper we will examine the notion of computable capacity and its relation to computable measures on the space \mathcal{C} of nonempty closed sets. Given a domain U, a capacity \mathcal{T} is a real-valued function defined on some σ-field of subsets of U, which is closely related to measure. \mathcal{T} may be thought of as a belief function in the context of reasoning with uncertainty. (See [14, p. 71] and also [[18].) The capacity $\mathcal{T}(A)$ for a set A is the probability that a randomly chosen set S is a subset of A.

Choquet [6] developed the Choquet capacity for the space \mathcal{C} of closed subsets of an infinite set X. A probability measure μ^{*} on \mathcal{C} induces a capacity \mathcal{T} on \mathcal{C} by defining the capacity $\mathcal{T}(C)$ of a closed set C to be $\mu^{*}(\{K \in \mathcal{C}: K \subseteq C\})$. Choquet's capacity theorem states that every capacity \mathcal{T} on \mathcal{C} arises in this way from some measure μ^{*}.

In section one, we give some basic definitions including the definition of the space of $\mathcal{C}(X)$ of closed subsets of a computable Polish space X. We present a family of computable measures on \mathcal{C} which will lead to different notions of effective randomness for closed sets.

In section two, we define the notion of computable capacity and show how a measure on the space of closed sets induces a capacity. An effective version of Choquet's capacity theorem is proved.

The main theorem of section three gives conditions under which the capacity $\mathcal{T}(Q)$ of a μ^{*}-random closed set Q is either equal to 0 or >0. In particular, suppose that the measure μ_{b} on $\{0,1,2\}^{\mathbb{N}}$ is defined so that, for all $\sigma \in\{0,1,2\}^{*}, \mu_{b}\left(I\left(\sigma^{\frown} i\right)\right)=b \cdot \mu_{b}(I(\sigma))$ for $i=0,1$ and define the corresponding probability measure μ_{b}^{*} and capacity \mathcal{T}_{b} on the space \mathcal{C} of closed sets and the corresponding capacity \mathcal{T}_{b}. This means that for any node σ in the tree T_{Q}, σ has unique extension $\sigma \frown 0$ in T_{Q} with probability b, and similarly σ has unique extension $\sigma \frown 1$ with probability b. Then we show the following. If $b \geq 1-\frac{\sqrt{2}}{2}$, then every effectively μ_{b}^{*}-random closed set Q has capacity $\mathcal{T}_{b}(Q)=0$. It is important to note that, since the random closed sets have measure one in the space \mathcal{C} of closed sets, this result implies that almost all closed sets have capacity zero. This is a new result about the classical measure and capacity of closed sets in general and not only about algorithmic randomness or computability.

On the other hand, if $b<1-\frac{\sqrt{2}}{2}$, then every effectively μ_{b}^{*}-random closed set Q has capacity $\mathcal{T}_{b}(Q)>0$, and hence almost every closed set has positive capacity. A more general result is given.

In section four, we consider the capacity of effectively closed sets. Fix computable reals b_{0} and b_{1} such that $0<b_{1} \leq b_{0}$ and $b_{0}+b_{1}<1$ and define the measure μ on $\{0,1,2\}^{\mathbb{N}}$ so that for any $\sigma \in\{0,1,2\}^{*}$ and for $i \in\{0,1\}, \mu\left(I\left(\sigma^{\frown} i\right)\right)=b_{i} \cdot \mu(I(\sigma))$. Let μ^{*} be the corresponding measure on \mathcal{C} and let \mathcal{T} be the corresponding capacity. It is easy to see that for any effectively closed set $Q, \mathcal{T}(Q)$ is an upper-semi-computable real. Conversely, for any upper-semi-computable real q, there exists an effectively closed set Q with capacity $T(Q)=q$. We also show that if $b_{0}=b_{1}$, there exists an effectively closed set Q with Lebesgue measure zero and with positive capacity.

A preliminary version [3] of this paper appeared in the electronic proceedings of the conference CCA 2010. The current paper contains several improvements and new results, including Theorems [7, 8, (10) and [13). We thank the referees for very helpful comments.

1. Computable Measures on the Space of Closed Sets

We present an effective version of Choquet's theorem connecting measure and capacity. In this section, we describe the hit-or-miss topology on the space \mathcal{C} of closed sets, we define certain probability measures μ_{d} on the space $\{0,1,2\}^{\mathbb{N}}$ and the corresponding measures μ_{d}^{*} on the homeomorphic space \mathcal{C}. These give rise to notions of algorithmic randomness for closed sets.

Some definitions are needed. For a finite string $\sigma \in\{0,1\}^{n}$, let $|\sigma|=n$. Let λ denote the empty string so that $|\lambda|=0$. For two strings σ, τ, say that σ is an initial segment of τ and write $\sigma \sqsubseteq \tau$ if $|\sigma| \leq|\tau|$ and $\sigma(i)=\tau(i)$ for $i<|\sigma|$. For $x \in 2^{\mathbb{N}}, \sigma \sqsubset x$ means that $\sigma(i)=x(i)$ for $i<|\sigma|$. Let $\sigma^{\frown} \tau$ denote the concatenation of σ and τ and let $\sigma^{\frown} i$ denote $\sigma^{\frown}(i)$ for $i=0,1$. For $\sigma \in\{0,1\}^{*}$ and $x \in 2^{\mathbb{N}}, \sigma^{\frown} x=(\sigma(0), \ldots, \sigma(|\sigma|-1), x(0), x(1), \ldots)$. Let $x\lceil n=(x(0), \ldots, x(n-1))$. Two reals x and y may be coded together into $z=x \oplus y$, where $z(2 n)=x(n)$ and $z(2 n+1)=y(n)$ for all n. For a finite string σ, let $I(\sigma)$ denote $\left\{x \in 2^{\mathbb{N}}: \sigma \sqsubset x\right\}$. We shall call $I(\sigma)$ the interval determined by σ. Each such interval is a clopen set and the clopen sets are just finite unions of intervals. We let \mathcal{B} denote the computable Boolean algebra of clopen sets. Note that this is a countable atomless Boolean algebra.

A set $T \subseteq\{0,1\}^{*}$ is a tree if it is closed under initial segments. For an arbitrary tree $T \subseteq\{0,1\}^{*}$, let $[T]$ denote the set of infinite paths through T. It is well-known that $P \subseteq 2^{\mathbb{N}}$ is a closed set if and only if $P=[T]$ for some tree $T . P$ is a Π_{1}^{0} class, or an effectively closed set, if $P=[T]$ for some computable tree T.

A closed set P may be identified with a tree $T_{P} \subseteq\{0,1\}^{*}$ where $T_{P}=\{\sigma: P \cap I(\sigma) \neq \emptyset\}$. Note that T_{P} has no dead ends. That is, if $\sigma \in T_{P}$, then either $\sigma^{\frown} 0 \in T_{P}$ or $\sigma^{\frown} 1 \in T_{P}$. The complexity of the closed set P is generally identified with that of T_{P}. Thus P is said to be a Π_{2}^{0} closed set if T_{P} is Π_{2}^{0}; in this case $P=[T]$ for some Δ_{2}^{0} tree T. The complement of an effectively closed set is sometimes called a c. e. open set. We remark that if P is an effectively closed set, then T_{P} is a Π_{1}^{0} set, but it is not, in general, computable. For any $\sigma \in\{0,1\}^{*}$ and any $Q \subseteq 2^{\mathbb{N}}$, we let $\sigma^{\frown} Q$ denote $\left\{\sigma^{\frown} x: x \in Q\right\}$. There is a natural effective enumeration P_{0}, P_{1}, \ldots of the effectively closed sets and thus an enumeration of the c. e. open sets. Thus we can say that a sequence S_{0}, S_{1}, \ldots of c. e. open sets is effective if there is a computable function, f, such that $S_{n}=2^{\mathbb{N}}-P_{f(n)}$ for all n. For a detailed development of effectively closed sets, see [5].

It was observed in [4] that there is a natural isomorphism between the space \mathcal{C} of nonempty closed subsets of $\{0,1\}^{\mathbb{N}}$ and the space $\{0,1,2\}^{\mathbb{N}}$ (with the product topology) defined as follows. Given a nonempty closed $Q \subseteq 2^{\mathbb{N}}$, let $T=T_{Q}$ be the tree without dead ends such that $Q=[T]$. Let $\sigma_{0}, \sigma_{1}, \ldots$ enumerate the elements of T in order, first by length and then lexicographically. We then define the code $x=x_{Q}=x_{T}$ by recursion such that for each $n, x(n)=2$ if both $\sigma_{n} \frown 0$ and $\sigma_{n} \frown 1$ are in $T, x(n)=1$ if $\sigma_{n} \frown 0 \notin T$ and $\sigma_{n} \frown 1 \in T$, and $x(n)=0$ if $\sigma_{n} \frown 0 \in T$ and $\sigma_{n} \frown 1 \notin T$. For a finite tree $T \subseteq\{0,1\} \leq n$, the finite code ρ_{T} is similarly defined, ending with $\rho_{T}(k)$ where σ_{k} is the lexicographically last element of $T \cap\{0,1\} \leq n$.

We defined in [G] a measure μ^{*} on the space \mathcal{C} of closed subsets of $2^{\mathbb{N}}$ as follows.

$$
\begin{equation*}
\mu^{*}(\mathcal{X})=\mu\left(\left\{x_{Q}: Q \in \mathcal{X}\right\}\right) \tag{1.1}
\end{equation*}
$$

for any $\mathcal{X} \subseteq \mathcal{C}$ and μ is the standard measure on $\{0,1,2\}^{\mathbb{N}}$. Informally this means that given $\sigma \in T_{Q}$, there is probability $\frac{1}{3}$ that both $\sigma \frown 0 \in T_{Q}$ and $\sigma^{\frown} 1 \in T_{Q}$ and, for $i=0,1$, there is probability $\frac{1}{3}$ that only $\sigma^{\frown} i \in T_{Q}$. In particular, this means that $Q \cap I(\sigma) \neq \emptyset$ implies that for $i=0,1, Q \cap I\left(\sigma^{\wedge} i\right) \neq \emptyset$ with probability $\frac{2}{3}$.

Then we say that a closed set $Q \subseteq 2^{\mathbb{N}}$ is (Martin-Löf) random if x_{Q} is (Martin-Löf) random. Note that the equal probability of $\frac{1}{3}$ for the three cases of branching allows the application of Schnorr's theorem that Martin-Löf randomness is equivalent to prefix-free Kolmogorov randomness.

The standard (hit-or-miss) topology [$\mathbb{\square}$, p. 45] on the space \mathcal{C} of closed sets is given by a sub-basis of sets of two types, where U is any open set in $2^{\mathbb{N}}$.

$$
V(U)=\{K: K \cap U \neq \emptyset\} ; \quad W(U)=\{K: K \subseteq U\}
$$

Note that $W(\emptyset)=\{\emptyset\}$ and that $V\left(2^{\mathbb{N}}\right)=\mathcal{C} \backslash\{\emptyset\}$, so that \emptyset is an isolated element of \mathcal{C} under this topology. Thus we may omit \emptyset from \mathcal{C} without complications.

A basis for the hit-or-miss topology may be formed by taking finite intersections of the basic open sets. We want to work with the following simpler basis. For each n and each finite tree $A \subseteq\{0,1\} \leq n$, let

$$
U_{A}=\left\{K \in \mathcal{C}:\left(\forall \sigma \in\{0,1\}^{\leq n}\right)(\sigma \in A \Longleftrightarrow K \cap I(\sigma) \neq \emptyset)\right\} .
$$

That is,

$$
U_{A}=\left\{K \in \mathcal{C}: T_{K} \cap\{0,1\}^{\leq n}=A\right\} .
$$

Note that the sets U_{A} are in fact clopen. That is, for any tree $A \subseteq\{0,1\} \leq n$, define the tree $A^{\prime}=\left\{\sigma \in\{0,1\}^{\leq n}:\left(\exists \tau \in\{0,1\}^{n} \backslash A\right) \sigma \sqsubseteq \tau\right\}$. Then $U_{A^{\prime}}$ is the complement of U_{A}.

For any finite n and any tree $T \subseteq\{0,1\}^{\leq n}$, define the clopen set $[T]=\bigcup_{\sigma \in T} I(\sigma)$. Then $K \cap[T] \neq \emptyset$ if and only if there exists some $A \subseteq\{0,1\}^{\leq n}$ such that $K \in U_{A}$ and $A \cap T \neq \emptyset$. That is,

$$
V([T])=\bigcup\left\{U_{A}: A \cap T \neq \emptyset\right\} .
$$

Similarly, $K \subseteq[T]$ if and only if there exists some $A \subseteq\{0,1\}^{n}$ such that $K \in U_{A}$ and $A \subseteq T$. That is,

$$
W([T])=\bigcup\left\{U_{A}: A \subseteq T\right\}
$$

The following lemma can now be easily verified.
Lemma 1. The family of sets $\left\{U_{A}: A \subseteq\{0,1\} \leq n A\right.$ is a tree $\}$ is a basis of clopen sets for the hit-or-miss topology on \mathcal{C}.

Recall the mapping from \mathcal{C} to $\{0,1,2\}^{\mathbb{N}}$ taking Q to x_{Q}. It can be shown that this is in fact a homeomorphism. (See Axon [I] for details.) Let \mathcal{B}^{*} be the family of clopen subsets of \mathcal{C}; each set is a finite union of basic sets of the form U_{A} and thus \mathcal{B}^{*} is a computable atomless Boolean algebra. Note that elements U of \mathcal{B}^{*} are collections of closed sets and are closed and open in the hit-or-miss topology on the space \mathcal{C} of closed subsets of $\{0,1\}^{\mathbb{N}}$. Recall that \mathcal{B} denotes the family of clopen subsets of $\{0,1\}^{\mathbb{N}}$.
Proposition 2. The space \mathcal{C} of nonempty closed subsets of $2^{\mathbb{N}}$ is computably homeomorphic to the space $\{0,1,2\}^{\mathbb{N}}$. Furthermore, the corresponding map from \mathcal{B} to \mathcal{B}^{*} is a computable isomorphism of these computable Boolean algebras.

Next we consider probability measures μ on the space $\{0,1,2\}^{\mathbb{N}}$ and the corresponding measures μ^{*} on \mathcal{C} induced by μ.

A probability measure on $\{0,1,2\}^{\mathbb{N}}$ may be defined as in [I6] from a function d : $\{0,1,2\}^{*} \rightarrow[0,1]$ such that $d(\lambda)=1$ and, for any $\sigma \in\{0,1,2\}^{*}$,

$$
d(\sigma)=\sum_{i=0}^{2} d\left(\sigma^{\frown} i\right) .
$$

The corresponding measure μ_{d} on $\{0,1,2\}^{\mathbb{N}}$ is then defined by letting $\mu_{d}(I(\sigma))=d(\sigma)$. Since the intervals $I(\sigma)$ form a basis for the standard product topology on $\{0,1,2\}^{\mathbb{N}}$, this will extend to a measure on all Borel sets. If d is computable, then μ_{d} is said to be computable. The measure μ_{d} is said to be nonatomic or continuous if $\mu_{d}(\{x\})=0$ for all $x \in\{0,1,2\}^{\mathbb{N}}$. We will say that μ_{d} is bounded if there exist bounds $b, c \in(0,1)$ such that, for any $\sigma \in\{0,1,2\}^{*}$ and $i \in\{0,1,2\}$,

$$
b \cdot d(\sigma)<d\left(\sigma^{\frown} i\right)<c \cdot d(\sigma)
$$

It is easy to see that any bounded measure must be continuous. We will say that the measure μ_{d} is uniform if there exist constants b_{0}, b_{1}, b_{2} with $b_{0}+b_{1}+b_{2}=1$ such that for all σ and for $i \leq 2, d\left(\sigma^{\frown} i\right)=b_{i} \cdot d(\sigma)$.

Now let μ_{d}^{*} be defined by

$$
\mu_{d}^{*}(\mathcal{X})=\mu_{d}\left(\left\{x_{Q}: Q \in \mathcal{X}\right\}\right)
$$

Let us say that a measure μ^{*} on \mathcal{C} is computable if the restriction of μ^{*} to the family \mathcal{B}^{*} of clopen sets is computable. That is, if there is a computable function F mapping \mathcal{B}^{*} to $[0,1]$ such that $F(B)=\mu^{*}(B)$ for all $B \in B^{*}$.
Proposition 3. For any computable d, the measure μ_{d}^{*} is a computable measure on \mathcal{C}.
Proof. For any tree $A \subseteq\{0,1\}^{\leq n}$, it is easy to see that

$$
K \in U_{A} \Longleftrightarrow \rho_{A} \sqsubset x_{K},
$$

so that $\mu_{d}^{*}\left(U_{A}\right)=\mu_{d}\left(I\left(\rho_{A}\right)\right)$.

2. Computable Capacity and Choquet's Theorem

In this section, we define the notion of capacity and of computable capacity. We present an effective version of Choquet's theorem connecting measure and capacity. For details on capacity and random set variables, see Nguyen [14] and also Matheron [172].
Definition 4. A capacity on \mathcal{C} is a function $\mathcal{T}: \mathcal{C} \rightarrow[0,1]$ with $\mathcal{T}(\emptyset)=0$ such that
(1) \mathcal{T} is monotone increasing, that is,

$$
Q_{1} \subseteq Q_{2} \longrightarrow \mathcal{T}\left(Q_{1}\right) \leq \mathcal{T}\left(Q_{2}\right)
$$

(2) \mathcal{T} has the alternating of infinite order property, that is, for $n \geq 2$ and any $Q_{1}, \ldots, Q_{n} \in$ \mathcal{C}

$$
\mathcal{T}\left(\bigcap_{i=1}^{n} Q_{i}\right) \leq \sum\left\{(-1)^{|I|+1} \mathcal{T}\left(\bigcup_{i \in I} Q_{i}\right): \emptyset \neq I \subseteq\{1,2, \ldots, n\}\right\}
$$

(3) If $Q=\bigcap_{n} Q_{n}$ and $Q_{n+1} \subseteq Q_{n}$ for all n, then $\mathcal{T}(Q)=\lim _{n \rightarrow \infty} \mathcal{T}\left(Q_{n}\right)$.

We will also assume, unless otherwise specified, that the capacity $\mathcal{T}\left(2^{\mathbb{N}}\right)=1$.
We will say that a capacity \mathcal{T} is computable if it is computable on the family of clopen sets, that is, if there is a computable function F from the Boolean algebra \mathcal{B} of clopen sets into $[0,1]$ such that $F(B)=\mathcal{T}(B)$ for any $B \in \mathcal{B}$.

Define $\mathcal{T}_{d}(Q)=\mu_{d}^{*}(V(Q))$. That is, $\mathcal{T}_{d}(Q)$ is the probability that a randomly chosen closed set meets Q. Here is the first result connecting effective measure and effective capacity. This follows easily from the classical proof of Choquet.
Theorem 5. If μ_{d}^{*} is a (computable) probability measure on \mathcal{C}, then \mathcal{T}_{d} is a (computable) capacity.
Proof. Certainly $\mathcal{T}_{d}(\emptyset)=0$. The alternating property follows by basic probability. For (iii), suppose that $Q=\bigcap_{n} Q_{n}$ is a decreasing intersection. Then by compactness, $Q \cap K \neq \emptyset$ if and only if $Q_{n} \cap K \neq \emptyset$ for all n. Furthermore, $V\left(Q_{n+1}\right) \subseteq V\left(Q_{n}\right)$ for all n. Thus

$$
\mathcal{T}_{d}(Q)=\mu_{d}^{*}(V(Q))=\mu_{d}^{*}\left(\bigcap_{n} V\left(Q_{n}\right)\right)=\lim _{n} \mu_{d}^{*}\left(V\left(Q_{n}\right)\right)=\lim _{n} \mathcal{T}_{d}\left(Q_{n}\right)
$$

If d is computable, then \mathcal{T}_{d} may be computed as follows. For any clopen set $I\left(\sigma_{1}\right) \cup$ $\cdots \bigcup I\left(\sigma_{k}\right)$ where each $\sigma_{i} \in\{0,1\}^{n}$, we compute the probability distribution for all trees of height n and add the probabilities of those trees which contain one of the σ_{i}.

Choquet's Capacity Theorem states that any capacity \mathcal{T} is determined by a measure, that is $\mathcal{T}=\mathcal{T}_{d}$ for some d. See [14] for details. We now give an effective version of Choquet's theorem. It is not so easy, but this does follow from the classical proof of Choquet [6]. See also [[I2] and Axon [प].
Theorem 6 (Effective Choquet Capacity Theorem). If \mathcal{T} is a computable capacity, then there is a computable measure μ_{d}^{*} on the space of closed sets such that $\mathcal{T}=\mathcal{T}_{d}$.
Proof. Given the values $\mathcal{T}(U)$ for all clopen sets $I\left(\sigma_{1}\right) \cup \cdots \cup I\left(\sigma_{k}\right)$ where each $\sigma_{i} \in\{0,1\}^{n}$, there is in fact a unique probability measure μ_{d} on these clopen sets such that $\mathcal{T}=\mathcal{T}_{d}$ and this can be computed as follows.

Suppose first that $\mathcal{T}(I(i))=a_{i}$ for $i<2$ and note that each $a_{i} \leq 1$ and $a_{0}+a_{1} \geq 1$ by the alternating property. If $\mathcal{T}=\mathcal{T}_{d}$, then we must have $d((0))+d((2))=a_{0}$ and $d((1))+d((2))=a_{1}$ and also $d((0))+d((1))+d((2))=1$, so that $d((2))=a_{0}+a_{1}-1$, $d((0))=1-a_{1}$ and $d((1))=1-a_{0}$. This will imply that $\left.\left.\mathcal{T}(I \tau)\right)\right)=\mathcal{T}_{d}(I(\tau))$ when $|\tau|=1$. Now suppose that we have defined $d(\tau)$ and that τ is the code for a finite tree with elements $\sigma_{0}, \ldots, \sigma_{n}=\sigma$ and thus $d\left(\tau^{\curvearrowright} i\right)$ is giving the probability that σ will have one or both immediate successors. We proceed as above. Let $\mathcal{T}\left(I\left(\sigma^{\frown} i\right)\right)=a_{i} \cdot \mathcal{T}(I(\sigma))$ for $i<2$. Then as above $d\left(\tau^{\sim} 2\right)=d(\tau) \cdot\left(a_{0}+a_{1}-1\right)$ and $d\left(\tau^{\frown} i\right)=d(\tau) \cdot\left(1-a_{i}\right)$ for each i.

3. Zero Capacity

In this section, we compute the capacity of a random closed set under certain computable probability measures. In particular, suppose that μ_{d} is a symmetric measure, that is, let $d\left(\sigma^{\frown} 0\right)=d\left(\sigma^{\frown} 1\right)$ for all σ. We show the following. If $d\left(\sigma^{\frown} 2\right) \leq \frac{\sqrt{2}}{2} d(\sigma)$ for all σ, then $\mathcal{T}_{d}(R)=0$ for any μ_{d}^{*}-random closed set R. Thus for the uniform measure with $d\left(\sigma^{\frown} 0\right)=d\left(\sigma^{\frown} 1\right)=\frac{1}{3} \cdot d(\sigma)$ for all σ, effectively random closed sets have capacity zero. Thus for almost all closed sets $R, \mathcal{T}_{d}(R)=0$. If $d\left(\sigma^{\sim} 2\right) \geq b \cdot d(\sigma)$ for all σ, where $b>\frac{\sqrt{2}}{2}$
is a constant, then $\mathcal{T}_{d}(R)>0$ for any μ_{d}^{*}-random closed set R. Thus for almost all closed sets $R, \mathcal{T}_{d}(R)>0$. This result, and others in this section are new results about classical measure and capacity as well as results about algorithmic randomness.

For non-symmetric measures, where $d\left(\sigma^{\complement} i\right)=b_{i} \cdot d(\sigma)$ for $i<2$, the question of whether a random closed set has zero capacity depends on the sum $b_{0}+b_{1}$ and also on their difference. If $b_{0}+b_{1} \geq 2-\sqrt{2}$ and $\left|b_{0}-b_{1}\right|$ is sufficiently small, then every μ_{d}^{*}-random closed set will have capacity zero (so that for almost all closed sets $R, \mathcal{T}_{d}(R)=0$) and otherwise there is a μ_{d}^{*}-random closed set with positive capacity.

We say that $K \in \mathcal{C}$ is μ_{d}^{*}-random if x_{K} is Martin-Löf random with respect to the measure μ_{d}. (See [[6] for details.) Our results show that the \mathcal{I}_{d} capacity of a μ_{d}^{*}-random closed set depends on the particular measure.

In the following proofs, the key idea is that an arbitrary closed set Q can be given as the intersection of a sequence $\left\langle Q_{n}\right\rangle_{n \in \omega}$ of a sequence of clopen sets, so that the capacity $\mathcal{T}(Q)=\lim _{n} \mathcal{T}\left(Q_{n}\right)$. Thus we want to compute the capacity q_{n} of Q_{n} when Q is a random closed set, or at least to compute bounds on this capacity. Now the capacity of Q is the probability that $Q \cap K \neq \emptyset$ for a random closed set K, that is to say $\mathcal{T}(Q)=\mu_{d}^{*}(\{K$: $Q \cap K \neq \emptyset\})$. Thus we first compute the probability that $Q_{n} \cap K_{n} \neq \emptyset$ for randomly chosen closed sets Q and K and use this to determine $\mathcal{T}(Q)$ for a random closed set. In the first two theorems, these computations can be converted into Martin-Löf tests, so that the capacity of an effectively μ_{d}^{*}-random closed set can be determined.
Theorem 7. Suppose that the measure μ_{d} is defined by d such that, for all sufficiently long $\sigma \in\{0,1\}^{*}, d\left(\sigma^{\frown} 2\right) \leq \frac{\sqrt{2}}{2} d(\sigma)$ and $d\left(\sigma^{\frown} 0\right)=d\left(\sigma^{\frown} 1\right)$. Then, for any μ_{d}^{*}-random closed set $R, \mathcal{T}_{d}(R)=0$. Thus for almost all closed sets $R, \mathcal{T}_{d}(R)=0$.

Proof. We first present the proof for a uniform measure μ_{d} and then give the modifications necessary for non-uniform measure.

Fix b with $1-2 b \leq \frac{\sqrt{2}}{2}$ and suppose that, for all $\sigma, d\left(\sigma^{ค} 2\right)=(1-2 b) \cdot d(\sigma)$ and, for $i=0,1, d\left(\sigma^{\frown} i\right)=b \cdot d(\sigma)$. Now let $\mu^{*}=\mu_{d}^{*}$. We will compute the probability, given two closed sets Q and K, that $Q \cap K$ is nonempty. Here we define the usual product measure on the product space $\mathcal{C} \times \mathcal{C}$ of pairs (Q, K) of nonempty closed sets by letting $\mu^{2}\left(U_{A} \times U_{B}\right)=\mu^{*}\left(U_{A}\right) \cdot \mu^{*}\left(U_{B}\right)$ for arbitrary subsets A, B of $\{0,1\}^{n}$.

Let

$$
Q_{n}=\bigcup\left\{I(\sigma): \sigma \in\{0,1\}^{n} \& Q \cap I(\sigma) \neq \emptyset\right\}
$$

and similarly for K_{n}. Then $Q \cap K \neq \emptyset$ if and only if $Q_{n} \cap K_{n} \neq \emptyset$ for all n. Let p_{n} be the probability that $Q_{n} \cap K_{n} \neq \emptyset$ for two arbitrary closed sets K and Q, relative to our measure μ^{*}. It is immediate that $p_{1}=1-2 b^{2}$, since $Q_{1} \cap K_{1}=\emptyset$ only when $Q_{1}=I(i)$ and $K_{1}=I(1-i)$. Next we will determine the quadratic function f such that $p_{n+1}=f\left(p_{n}\right)$. There are 9 possible cases for Q_{1} and K_{1}, which break down into 4 distinct cases in the computation of p_{n+1}.

Case (i): As we have seen, $Q_{1} \cap K_{1}=\emptyset$ with probability $1-2 b^{2}$.
Case (ii): There are two chances that $Q_{1}=K_{1}=I(i)$, each with probability b^{2} so that $Q_{n+1} \cap K_{n+1} \neq \emptyset$ with probability p_{n}.

Case (iii): There are four chances where $Q_{1}=2^{\mathbb{N}}$ and $K_{1}=I(i)$ or vice versa, each with probability $b \cdot(1-2 b)$, so that once again $Q_{n+1} \cap K_{n+1} \neq \emptyset$ with relative probability p_{n}.

Case (iv): There is one chance that $Q_{1}=K_{1}=2^{\mathbb{N}}$, with probability $(1-2 b)^{2}$, in which case $Q_{n+1} \cap K_{n+1} \neq \emptyset$ with relative probability $1-\left(1-p_{n}\right)^{2}=2 p_{n}-p_{n}^{2}$. This is because $Q_{n+1} \cap K_{n+1}=\emptyset$ if and only if both $Q_{n+1} \cap I(i) \cap K_{n+1}=\emptyset$ for both $i=0$ and $i=1$.

Adding these cases together, we see that

$$
p_{n+1}=\left[2 b^{2}+4 b(1-2 b)\right] p_{n}+(1-2 b)^{2}\left(2 p_{n}-p_{n}^{2}\right)=\left(2 b^{2}-4 b+2\right) p_{n}-\left(1-4 b+4 b^{2}\right) p_{n}^{2} .
$$

Next we investigate the limit of the computable sequence $\left\langle p_{n}\right\rangle_{n \in \omega}$. Let $f(p)=\left(2 b^{2}-\right.$ $4 b+2) p-\left(1-4 b+4 b^{2}\right) p^{2}$. Note that $f(0)=0$ and $f(1)=1-2 b^{2}<1$. It is easy to see that the fixed points of f are $p=0$ and $p=\frac{2 b^{2}-4 b+1}{(1-2 b)^{2}}$. Note that since $b<\frac{1}{2}$, the denominator is not zero and hence is always positive.

Now consider the function $g(b)=2 b^{2}-4 b+1=2(b-1)^{2}-1$, which has positive root $\hat{b}=1-\frac{\sqrt{2}}{2}$ and is decreasing for $0 \leq b \leq 1$.

There are three cases to consider when comparing b with \hat{b}.
Case 1: If $b>\hat{b}$, then $g(b)<0$ and hence the other fixed point of f is negative. Furthermore, $2 b^{2}-4 b+2<1$ so that $f(p)<p$ for all $p>0$. It follows that the sequence $\left\{p_{n}: n \in \mathbb{N}\right\}$ is decreasing with lower bound zero and hence must converge to a fixed point of $f\left(\right.$ since $\left.p_{n+1}=f\left(p_{n}\right)\right)$. Thus $\lim _{n} p_{n}=0$.

Case 2: If $b=\hat{b}$, then $g(b)=0$ and $f(p)=p-(4 b-1) p^{2}$, so that $p=0$ is the unique fixed point of f. Furthermore, $4 b-1=3-2 \sqrt{2}>0$, so again $f(p)<p$ for all p. It follows again that $\lim _{n} p_{n}=0$.

In these two cases, we can define a Martin-Löf test to prove that $T_{d}(R)=0$ for any μ-random closed set R.

For each $m, n \in \mathbb{N}$, let

$$
B_{m}=\left\{(K, Q): K_{m} \cap Q_{m} \neq \emptyset\right\},
$$

so that $\mu^{*}\left(B_{m}\right)=p_{m}$ and let

$$
A_{m, n}=\left\{Q: \mu^{*}\left(\left\{K: K_{m} \cap Q_{m} \neq \emptyset\right\}\right) \geq 2^{-n}\right\} .
$$

Claim 7.1. For each m and $n, \mu^{*}\left(A_{m, n}\right) \leq 2^{n} \cdot p_{m}$.
Proof. Define the Borel measurable function $F_{m}: \mathcal{C} \times \mathcal{C} \rightarrow\{0,1\}$ to be the characteristic function of B_{m}. Then

$$
p_{m}=\mu^{2}\left(B_{m}\right)=\int_{Q \in \mathcal{C}} \int_{K \in \mathcal{C}} F(Q, K) d K d Q .
$$

Now for fixed Q,

$$
\mu^{*}\left(\left\{K: K_{m} \cap Q_{m} \neq \emptyset\right\}\right)=\int_{K \in \mathcal{C}} F(Q, K) d K
$$

so that for $Q \in A_{m, n}$, we have $\int_{K \in \mathcal{C}} F(Q, K) d K \geq 2^{-n}$. It follows that

$$
\begin{aligned}
p_{m}=\int_{Q \in \mathcal{C}} \int_{K \in \mathcal{C}} F(Q, K) d K d Q & \geq \int_{Q \in A_{m, n}} \int_{K \in \mathcal{C}} F(Q, K) d K d Q \\
& \geq \int_{Q \in A_{m, n}} 2^{-n} d Q=2^{-n} \mu^{*}\left(A_{m, n}\right) .
\end{aligned}
$$

Multiplying both sides by 2^{n} completes the proof of Claim 7.1.

Since the computable sequence $\left\langle p_{n}\right\rangle_{n \in \omega}$ converges to 0 , there must be a computable subsequence m_{0}, m_{1}, \ldots such that $p_{m_{n}}<2^{-2 n-1}$ for all n. We can now define our MartinLöf test. Let

$$
S_{r}=A_{m_{r}, r}
$$

and let

$$
V_{n}=\bigcup_{r>n} S_{r} .
$$

It follows that

$$
\mu^{*}\left(S_{r}\right) \leq 2^{r+1} \mu^{*}\left(B_{m_{r}}\right)<2^{r+1} 2^{-2 r-1}=2^{-r}
$$

and therefore

$$
\mu^{*}\left(V_{n}\right) \leq \sum_{r>n} 2^{-r}=2^{-n}
$$

Now suppose that R is a random closed set. The sequence $\left\langle V_{n}\right\rangle_{n \in \omega}$ is a computable sequence of c. e. open sets with measure $\leq 2^{-n}$, so that there is some n such that $R \notin S_{n}$. Thus for all $r>n, \mu^{*}\left(\left\{K: K_{m_{r}} \cap R_{m_{r}} \neq \emptyset\right\}\right)<2^{-r}$ and it follows that

$$
\mu^{*}(\{K: K \cap R \neq \emptyset\})=\lim _{n} \mu^{*}\left(\left\{K: K_{m_{n}} \cap R_{m_{n}} \neq \emptyset\right\}\right)=0 .
$$

Thus $\mathcal{T}_{d}(R)=0$, as desired.
This completes the proof when the function d is independent of σ.
Next suppose that the value b such that $d\left(\sigma^{\curvearrowright} i\right)=b \cdot d(\sigma)$ for $i=0,1$, depends on σ, say $b_{\sigma}=d\left(\sigma^{\subset} i\right) / d(\sigma)$ and that $b_{\sigma} \geq \hat{b}$ for all σ.

Let $f_{b}(p)=\left(2 b^{2}-4 b+2\right) p-\left(1-4 b+4 b^{2}\right) p^{2}$ as above and let $f_{\hat{b}}(p)=f(p)$. Let p_{n} be the probability computed above corresponding to $b_{\sigma}=\hat{b}$ for all σ, so that $p_{n+1}=f\left(p_{n}\right)$. Define p_{n}^{d} to be the probability, under μ_{d}^{*}, that $K_{n} \cap Q_{n} \neq \emptyset$, for closed sets K and Q. We will argue by induction on n that $p_{n}^{d} \leq p_{n}$.

Claim 7.2. For any reals $b, c, p \in[0,1]$, if $b<c$, then $f_{c}(p) \leq f_{b}(p)$.
Proof. Fixing p and taking the derivative of $f_{b}(p)$ with respect to b, we obtain

$$
\frac{\partial f}{\partial b}(b, p)=(4 b-4) p-(8 b-4) p^{2} \leq-4 b p \leq 0
$$

with the inequality due to the fact that $p^{2} \leq p$ on $[0,1]$.
Now suppose that for all $\sigma \in\{0,1\}^{*}$ and for $i<2, d\left(\sigma^{ค} i\right) \geq \hat{b} d(\sigma)$ and again let p_{n}^{d} be the μ_{d}-probability that $K_{n} \cap Q_{n} \neq \emptyset$. Clearly $p_{0}^{d}=1=p_{0}$.

Now assume that $p_{n}^{d} \leq p_{n}$ for any d as above. Let d be given as above with $d((0))=$ $d((1))=b \geq \hat{b}$ and define d_{i} for $i=0,1$ as follows.

$$
d_{i}\left(\sigma^{\frown} j\right)=d\left(i \frown \sigma^{\frown} j\right) .
$$

Let p^{i} be the probability under d_{i} that $Q_{n} \cap K_{n} \neq \emptyset$. Then the probability under d_{i+1} that $Q_{n+1} \cap K_{n+1} \neq \emptyset$ can be computed in the four cases as above to equal

$$
b^{2}\left(p^{0}+p^{1}\right)+2 b(1-2 b)\left(p^{0}+p^{1}\right)+(1-2 b)^{2}\left(1-\left(1-p^{0}\right)\left(1-p^{1}\right)\right) .
$$

By induction, both of p^{0} and p^{1} are $\leq p_{n}$ and it follows easily that
$b^{2}\left(p^{0}+p^{1}\right)+2 b(1-2 b)\left(p^{0}+p^{1}\right)+(1-2 b)^{2}\left(1-\left(1-p^{0}\right)\left(1-p^{1}\right)\right) \leq f_{b}\left(p_{n}\right) \leq f\left(p_{n}\right)=p_{n+1}$.

Finally, suppose that we only have that $b_{\sigma} \geq \hat{b}$ for σ with $|\sigma| \geq n$. Let R be μ_{d}^{*}-random and for each σ of length n, let d_{σ} be defined so that $d_{\sigma}(\tau)=d\left(\sigma^{\wedge} \tau\right)$ and let $R_{\sigma}=\left\{X: \sigma^{\wedge} X \in\right.$ $R\}$. Then R_{σ} is d_{σ}-random for each σ, so that the capacity $\mathcal{T}_{d_{\sigma}}\left(R_{\sigma}\right)=0$. It follows that $\mathcal{T}_{d}(R)=0$ since $Q \cap R \neq \emptyset$ if and only if $Q \cap R \cap I(\sigma) \neq \emptyset$ for some σ of length n.

The appropriate Martin-Löf test can now be given as before to show that any μ_{d}^{*}-random closed set will have capacity zero.

Next we consider the case where random closed sets will have positive capacity.
Theorem 8. Suppose that $b<\hat{b}=1-\frac{\sqrt{2}}{2}$ is fixed and that the measure μ_{d} is defined by d such that, for all sufficiently long $\sigma, d\left(\sigma^{\frown} 0\right)=d\left(\sigma^{\frown} 1\right) \leq b \cdot d(\sigma)$. Then $\left\{R \in \mathcal{C}: \mathcal{T}_{d}(R)>0\right\}$ has μ_{d}^{*} measure one and furthermore every μ_{d}^{*}-random closed set has positive capacity. Thus for almost all closed sets $R, \mathcal{T}_{d}(R)>0$.
Proof. First fix $b<\hat{b}$ and fix d so that $d\left(\sigma^{\frown} i\right)=d(\sigma) \cdot b$ for all σ and for $i<2$, and let $\mu^{*}=\mu_{d}^{*}$. Since $0<2 b^{2}-4 b+1<1$, the function $f=f_{b}$ defined above has a positive fixed point $m_{b}=\frac{2 b^{2}-4 b+1}{(1-2 b)^{2}}$. It is clear that $f(p)>p$ for $0<p<m_{b}$ and $f(p)<p$ for $m_{b}<p$. Furthermore, the function f has its maximum at $p=\left[\frac{1-b}{1-2 b}\right]^{2}>1$, so that f is monotone increasing on $[0,1]$ and hence $f(p)>f\left(m_{b}\right)=m_{b}$ whenever $p>m_{b}$. As in the proof of Theorem 7 let p_{n} be the probability that $Q_{n} \cap K_{n} \neq \emptyset$ for arbitrary closed sets Q and K. Observe that $p_{0}=1>m_{b}$ and hence the sequence $\left\{p_{n}: n \in \mathbb{N}\right\}$ is decreasing with lower bound m_{b}. It follows that $\lim _{n} p_{n}=m_{b}>0$.

Now $B=\{(Q, K): Q \cap K \neq \emptyset\}=\bigcap_{n} B_{n}$ is the intersection of a decreasing sequence of sets and hence $\mu^{2}(B)=\lim _{n} p_{n}=m_{b}>0$.

Claim 8.1. $\mu^{*}\left(\left\{Q: \mu^{*}(\{K: K \cap Q \neq \emptyset\})>0\right\}\right) \geq m_{b}$.
Proof. Let $B=\left\{(K, Q): K \cap Q \neq \emptyset\right.$, let $A=\left\{Q: \mu^{*}(\{K: K \cap Q \neq \emptyset\})>0\right\}$ and suppose that $\mu^{*}(A)<m_{b}$. As in the proof of Claim 7.1, we have

$$
m_{b}=\mu^{2}(B)=\int_{Q \in \mathcal{C}} \int_{K \in \mathcal{C}} F(Q, K) d K d Q .
$$

For $Q \notin A$, we have $\int_{K \in Q} F(Q, K) d K=\mu^{*}(\{K: K \cap Q \neq \emptyset\})=0$, so that

$$
m_{b}=\int_{Q \in A} \int_{K \in Q} F(Q, K) d K d Q \leq \int_{Q \in A} d Q=\mu^{*}(A)
$$

which completes the proof of Claim 8.1.
Claim 8.2. $\left\{Q: \mathcal{T}_{d}(Q) \geq m_{b}\right\}$ has positive measure.
Proof. Recall that $T_{d}(Q)=\mu^{*}(\{K: Q \cap K \neq \emptyset\})$. Let $B=\{(K, Q): K \cap Q \neq \emptyset$, let $A=\left\{Q: T_{d}(Q) \geq m_{b}\right\}$ and suppose that $\mu^{*}(A)=0$. As in the proof of Claim 7.1, we have

$$
m_{b}=\mu^{2}(B)=\int_{Q \in \mathcal{C}} T_{d}(Q) d Q
$$

Since $\mu^{*}(A)=0$, it follows that for any $B \subseteq \mathcal{C}$, we have

$$
\int_{Q \in B} T_{d}(Q) d Q \leq m_{b} \mu^{*}(B)
$$

Furthermore, $T_{d}(Q)<m_{b}$ for almost all Q, so there exists some P with $T_{d}(P)<m_{b}-\epsilon$ for some positive ϵ. This means that for some $n, \mu^{*}\left(\left\{K: P_{n} \cap K_{n} \neq \emptyset\right\}\right)<m_{b}-\epsilon$. Then for any closed set Q with $Q_{n}=P_{n}$, we have $T_{d}(Q)<m_{b}-\epsilon$. But $E=\left\{Q: Q_{n}=P_{n}\right\}$ has positive measure, say $\delta>0$. Then we have

$$
\begin{aligned}
m_{b}=\int_{Q \in \mathcal{C}} T_{d}(Q) d Q & =\int_{Q \in E} T_{d}(Q) d Q+\int_{Q \notin E} T_{d}(Q) d Q \\
& \leq \delta\left(m_{b}-\epsilon\right)+(1-\delta) m_{b}=m_{b}-\epsilon \delta<m_{b} .
\end{aligned}
$$

This contradiction demonstrates Claim 8.2.
It is now easy to see that $\mathcal{T}_{d}(R)>0$ with probability one. That is, let p be the probability that $\mathcal{T}_{d}(R)=0$. Then by considering the first level of R, we can see that $p=2 b p+(1-2 b) p^{2}$ and hence either $p=0$ or $p=1$. Since we know that $p<1$, it follows that $p=0$.

Since the set of μ^{*}-random closed sets has measure one, there must be a random closed set R such that $\mathcal{T}_{d}(R) \geq m_{b}$ and furthermore, almost every μ^{*}-random closed set has positive capacity.

Furthermore, we can construct a Martin-Löf test as follows. First observe that for any computable $q,\left\{Q: \mathcal{T}_{d}(Q)<q\right\}$ is a c. e. open set. This is because $\mathcal{T}_{d}(Q)<q \Longleftrightarrow$ $(\exists n) \mathcal{T}_{d}\left(Q_{n}\right)<q$ and $\mathcal{T}_{d}\left(Q_{n}\right)$ can be uniformly computed from Q.

Now let $h(p)$ be the probability that $\mathcal{T}_{d}(Q)<p$. Note that if $\mathcal{T}_{d}\left(Q_{i}\right) \geq p$ for $i=0$ or for $i=1$, then $\mathcal{T}_{d}(Q) \geq b p$. It follows that $h(b p) \leq h(p)^{2}$. Since $\mathcal{T}_{d}(Q)=0$ with probability zero, it follows that $\lim _{p \rightarrow 0} h(p)=0$. Take a rational q small enough so that $h(q)<\frac{1}{2}$. Then $h\left(b^{n} q\right) \leq\left(\frac{1}{2}\right)^{2^{n}} \leq 2^{-n}$. Let $S_{n}=\left\{Q: \mathcal{T}_{d}(Q) \leq b^{n} q\right\}$. Then $\mu_{d}^{*}\left(S_{n}\right) \leq 2^{-n}$ and the sequence (S_{n}) is effectively c. e. open, so that no random closed set can be belong to all S_{n}. But if $\mathcal{T}_{d}(Q)=0$, then of course $Q \in S_{n}$ for all n. Thus every μ_{d}^{*} random closed set must have positive capacity.

This completes the proof when d is independent of σ.
Next suppose that $b<\hat{b}$ and that, for all $\sigma, d\left(\sigma^{\frown} 0\right)=d\left(\sigma^{\frown} 1\right) \leq b \cdot d(\sigma)$. Let p_{n}^{d} now be the μ_{d}^{*} probability that $Q_{n} \cap K_{n} \neq \emptyset$. It follows from the monotonicity of f (Claim 3)) that $p_{n}^{d} \geq p_{n}$ for all d as above and thus $\lim _{n} p_{n}^{d} \geq m_{b}$. The same argument as above now shows that $\left\{Q: \mathcal{T}_{d}(Q) \geq m_{b}\right\}$ has positive measure and thus $\mathcal{T}_{d}(Q)$ has positive capacity with probability one. The argument that every μ_{d}^{*}-random closed set has positive capacity follows as above.

Note that random closed sets can have arbitrarily small positive capacity. This follows from the fact that $\mathcal{T}_{d}\left(0^{\wedge} Q\right)=(1-b) \mathcal{T}_{d}(Q)$.

Thus for certain measures, there exists a random closed set with measure zero but with positive capacity. For the standard measure, a random closed set has capacity zero.
Corollary 9. Let d be the uniform measure with $b_{0}=b_{1}=b_{2}=\frac{1}{3}$. Then for any $\mu_{d}^{*}-$ random closed set $R, \mathcal{T}_{d}(R)=0$.

Finally, we consider non-symmetric measures, where $d\left(\sigma^{`} 0\right)$ does not necessarily equal $d\left(\sigma^{\frown} 1\right)$. We will give the result where μ_{d} is a uniform measure. The proofs follow the same outline as those of Theorems [] and

Theorem 10. Fix b and let μ_{d} be a measure defined by d where $d\left(\sigma^{\frown} i\right)=b_{i} \cdot d(\sigma)$ with $b_{0}+b_{1}=2 b>0$ and $b_{2}=1-2 b>0$ and let $\hat{b}=1-\frac{\sqrt{2}}{2}$. Then
(1) If $b \geq \hat{b}$ and $\left|b_{0}-b_{1}\right| \leq \sqrt{8 b-4 b^{2}-2}$, then for any μ_{d}^{*}-random closed set R, $\mathcal{T}_{d}(R)=0$. Thus for almost all closed sets $R, \mathcal{T}_{d}(R)=0$.
(2) If $b>\hat{b}$ or $\left|b_{0}-b_{1}\right|>\sqrt{8 b-4 b^{2}-2}$, then there is a μ_{d}^{*}-random closed set R with $\mathcal{T}_{d}(R)>0$.
Proof. For convenience let $\mu=\mu_{d}^{*}$ and let $\mu^{2}=\mu \times \mu$ be the usual product measure on the product space $\mathcal{C} \times \mathcal{C}$. We will compute the probability $p=\mu^{2}(\{(Q, K): Q \cap K \neq \emptyset\})$.

As in the proof of Theorem 7 let p_{n} be the probability that $Q_{n} \cap K_{n} \neq \emptyset$ for arbitrary closed sets Q and K, so that $p=\lim _{n} p_{n}$ Clearly, $p_{1}=1-2 b_{0} b_{1}$ since $Q_{1} \cap K_{1}=\emptyset$ only when $Q_{1}=I(i)$ and $K_{1}=I(1-i)$. We will compute as before a quadratic function f so that $p_{n+1}=f\left(p_{n}\right)$. Considering the various cases as in the proof of Theorem 7 , we see that

$$
\begin{aligned}
p_{n+1} & =\left(b_{0}^{2}+b_{1}^{2}+4 b(1-2 b)\right) p_{n}+(1-2 b)^{2}\left(2 p_{n}-p_{n}^{2}\right) \\
& =\left(2 b_{0}-4 b b_{0}+4 b^{2}+4 b+2\right) p_{n}-(1-2 b)^{2} p_{n}^{2}
\end{aligned}
$$

Next, we investigate $\lim _{n} p_{n}$. Let

$$
f(p)=\left(2 b_{0}-4 b b_{0}+4 b^{2}+4 b+2\right) p-(1-2 b)^{2} p^{2}
$$

This function has fixed points $p=0$ and $p=\frac{2 b_{0}-4 b b_{0}+4 b^{2}+4 b+1}{(1-2 b)^{2}}$. Note that we must have $b<\frac{1}{2}$ so $(1-2 b)^{2}>0$.

Now consider the functions $g(a)=2 a-4 b a+4 b^{2}+4 b+1$, which has roots $a_{ \pm}=$ $b \pm \sqrt{-b^{2}+2 b-\frac{1}{2}}$ and $h(b)=-b^{2}+2 b-\frac{1}{2}=-2\left(2(b-1)^{2}-1\right)$, which has root \hat{b}. There are 3 cases to consider when comparing b and \hat{b}.
(1) If $b>\hat{b}$ and $a_{-} \leq b_{0} \leq a_{+}$, then $g\left(b_{0}\right)<0$ and hence the nonzero fixed point of f is negative. Since $\left(p_{n}\right)$ is decreasing with lower bound 0 the sequence converges to a non-negative fixed point of f. Hence $p=\lim _{n} p_{n}=0$.
(2) If $b=\hat{b}$ and $b_{0}=b$ or if $b_{0}=a_{ \pm}$then $g\left(b_{0}\right)=0$ and so $p=0$ is the only fixed point of f hence $p=\lim _{n} p_{n}=0$.
(3) If $b<\hat{b}$ or $b_{0} \notin\left[a_{-}, a_{+}\right]$, then $g\left(b_{0}\right)>0$ and so f has positive fixed point $m_{b, b_{0}}=$ $\frac{2 b_{0}-4 b b_{0}+4 b^{2}+4 b+1}{(1-2 b)^{2}}$. Furthermore, f has its maximum at $p=\frac{b_{0}-2 b b_{0}+2 b^{2}+2 b+1}{(1-2 b)^{2}}>1$ (since $2 b>2 b b_{0}$). Thus f is increasing for $p<1$, so if $p>m_{b, b_{0}}$, then $f(p)>$ $f\left(m_{b, b_{0}}\right)=m_{b, b_{0}}$. Hence, since $p_{0}=1,\left(p_{n}\right)$ is bounded below by $m_{b, b}$ and so, $p=\lim _{n} p_{n}=m_{b, b_{0}}>0$.
Due to he inequalities needed for $\left|b_{0}-b_{1}\right|$ in the theorem, it seems that the proof given above does not easily extend to provide a result for non-uniform measures or to prove that, in the second case above, every random closed set has positive capacity.

4. Effectively Closed Sets

In this section, we consider the capacity of effectively closed sets. A random closed set can never be effectively closed. But we can still construct an effectively closed set with measure zero and with positive capacity.

We begin by characterizing the possible capacity of effectively closed sets. For the following results we will take $\mathcal{T}=\mathcal{T}_{d}$ where μ_{d} is the computable measure defined by $d\left(\sigma^{\frown} i\right)=b_{i}$ with $0<b_{1} \leq b_{0}$ and $1>b_{0}+b_{1}>0$. For any effectively closed set
$Q=[T], Q$ is the effective intersection of the decreasing sequence $\left[T_{n}\right]$ of clopen sets, where $T_{n}=T \cap\{0,1\} \leq n$. Thus for a computable measure \mathcal{T}_{d}, the capacity $\mathcal{T}_{d}(Q)$ is the limit of a computable, decreasing sequence and is therefore an upper semi-computable real. We will show that for every upper semi-computable real $q \in[0,1]$, there exists an effectively closed set Q with $\mathcal{T}_{d}(Q)=q$.

Lemma 11. Let $Q=0^{\complement} Q_{0} \cup 1^{\complement} Q_{1}$ and let $q_{i}=\mathcal{T}\left(Q_{i}\right)$ for $i \leq 1$. Then, $\mathcal{T}(Q)=$ $\left(1-b_{1}\right) q_{0}+\left(1-b_{0}\right) q_{1}-\left(1-\left(b_{0}+b_{1}\right)\right) \cdot q_{0} q_{1}$.
Proof. For a closed set $K, K \cap Q \neq \emptyset$ if and only if one of the following holds:
(1) $K=0 \frown K_{0}$ and $Q_{0} \cap K_{0} \neq \emptyset$ (which has probability $b_{0} \cdot \mathcal{T}\left(Q_{0}\right)$), or
(2) $K=1^{\wedge} K_{1}$ and $Q_{1} \cap K_{1} \neq \emptyset$ (which has probability $b_{1} \cdot \mathcal{T}\left(Q_{1}\right)$), or
(3) $K=0 \frown K_{0} \cup 1^{\frown} K_{1}$ and either $Q_{0} \cap K_{0} \neq \emptyset$ or $Q_{1} \cap K_{1} \neq \emptyset$ (which has probability $\left(1-\left(b_{0}+b_{1}\right)\right)\left(1-\left(1-\mathcal{T}\left(Q_{0}\right)\left(1-\mathcal{T}\left(Q_{1}\right)\right)\right)\right.$.
Thus,

$$
\begin{aligned}
\mathcal{T}(Q) & =b_{0} q_{0}+b_{1} q_{1}+\left(1-\left(b_{0}+b_{1}\right)\right)\left(1-\left(1-q_{0}\right)\left(1-q_{1}\right)\right) \\
& =\left(1-b_{1}\right) q_{0}+\left(1-b_{0}\right) q_{1}-\left(1-\left(b_{0}+b_{1}\right)\right) q_{0} q_{1}
\end{aligned}
$$

Lemma 12. Let $Q=\bigcup_{k=0}^{k=n} I\left(\sigma_{k}\right)$. Then for each $j \leq k, \mathcal{T}(Q)-\mathcal{T}\left(Q \backslash I\left(\sigma_{j}\right)\right) \leq\left(1-b_{1}\right)^{\left|\sigma_{j}\right|}$.
Proof. The proof is by induction on $\left|\sigma_{j}\right|$. If $\left|\sigma_{j}\right|=0$, this is trivial.
Let $Q=0^{\wedge} Q_{0} \cup 1^{\frown} Q_{1}$ and let $q_{i}=\mathcal{T}\left(Q_{i}\right)$ for $i=0,1$. If $\sigma_{i}=(i)$, then $\mathcal{T}(Q)=$ $\left(1-b_{1-i}\right)+b_{1-i} \cdot q_{i}$ and $\mathcal{T}(Q \backslash I(i))=\left(1-b_{i}\right) \cdot q_{1-i}$. Thus, $\mathcal{T}(Q)-T(Q \backslash I(i))=$ $\left(1-b_{1-i}\right)-\left(1-\left(b_{0}+b_{1}\right)\right) \cdot q_{i} \leq\left(1-b_{1}\right.$.

Now let $\left|\sigma_{j}\right|=n>0$ and let $\sigma_{j}=i^{\frown} \tau$ for some $i \leq 1$ and some τ. Let $r=\mathcal{T}\left(Q_{i} \backslash I(\tau)\right)$. Then, $\mathcal{T}(Q)-\mathcal{T}\left(Q \backslash I\left(\sigma_{j}\right)\right)=\left(1-b_{1-i}\right)\left(q_{i}-r\right)-\left(1-\left(b_{0}+b_{1}\right) q_{1-i}(q-r) \leq\left(1-b_{1}\right)(q-r) \leq\right.$ $\left(1-b_{1}\right)\left(1-b_{1}\right)^{n-1}$, where the last inequality holds by the induction hypothesis.
Theorem 13. Let the real number $q \in[0,1]$ be upper semi-computable, i.e. there is a computable, decreasing sequence $\left\{q_{n}: n \in \mathbb{N}\right\}$ such that $\lim q_{n}=q$. Then there exists an effectively closed set P such that $\mathcal{T}(P)=q$. Moreover, P can be written as $\bigcap_{n} P_{n}$ where $\left\{P_{n}: n \in \mathbb{N}\right.$ is a computable sequence of clopen sets with $q_{n+1} \leq \mathcal{T}\left(P_{n}\right) \leq q_{n}$.
Proof. We may assume without loss of generality that $q_{0}=1$. We will construct P_{n} by recursion beginning with $P_{0}=2^{\mathbb{N}}$. Now suppose we have constructed the clopen set $Q_{n-1}=$ $\bigcup_{k=0}^{m} I\left(\sigma_{k}\right)$ such that $q_{n} \leq \mathcal{T}_{d}\left(Q_{n-1}\right) \leq q_{n-1}$.

Let $\delta=q_{n}-q_{n-1}$ and compute s large enough so that $\left(1-b_{1}\right)^{s}<\delta$ and so that $\left|\sigma_{k}\right| \leq s$ for all $k \leq m$. Then we can rewrite each interval $I\left(\sigma_{k}\right)$ as a union of intervals $I(\tau)$ with $|\sigma|=s$ and thus obtain $Q_{n-1}=\bigcup_{k=0}^{r} I\left(\tau_{k}\right)$ with $\left|\tau_{k}\right|=s$ for all $k \leq r$. Now let $Q_{n-1, k}=\bigcup_{j=0}^{k-1} I\left(\tau_{j}\right)$ for each $k \leq r+1$, so that $Q_{n-1, k}=Q_{n-1, k+1} \backslash I\left(\tau_{k}\right)$ for each $k \leq r$. Observe that $\mathcal{T}_{d}\left(Q_{n-1, r+1}\right)=\mathcal{T}_{d}\left(Q_{n-1}\right) \geq q_{n}$ and that $\mathcal{T}_{d}\left(Q_{n-1,0}\right)=\mathcal{T}_{d}(\emptyset)=0 \leq q_{n}$.

It follows from Lemma 12 that, for any $k, \mathcal{T}_{d}\left(Q_{n-1, k+1}\right)-\mathcal{T}_{d}\left(Q_{n-1, k}\right) \leq \delta$. Now let k be the least such that $\mathcal{T}_{d}\left(Q_{n-1, k}\right) \leq q_{n}$. Then $\mathcal{T}_{d}\left(Q_{n-1, k+1}\right)>q_{n}$ and also $\mathcal{T}_{d}\left(Q_{n-1, k+1}\right) \leq$ $\mathcal{T}_{d}\left(Q_{n-1, k}\right)+\delta \leq q_{n}+\delta \leq q_{n-1}$. So we let $Q_{n}=Q_{n-1, k+1}$.

In this way, we have constructed a computable, decreasing sequence Q_{n} of clopen sets with $q_{n} \leq \mathcal{T}_{d}\left(Q_{n}\right) \leq q_{n-1}$, so that, for $Q=\bigcap_{n} Q_{n}$, we have $\mathcal{T}_{d}(Q)=\lim _{n} \mathcal{T}_{d}\left(Q_{n}\right)=q$.

Theorem 14. For the uniform measure μ_{d} defined by $d\left(\sigma^{\curvearrowright} i\right)=b \cdot d(\sigma)$ for all σ, there is an effectively closed set Q with Lebesgue measure zero and positive capacity $\mathcal{T}_{d}(Q)$.
Proof. First let us compute the capacity of $X_{n}=\{x: x(n)=0\}$. For $n=0$, we have $\mathcal{T}_{d}\left(X_{0}\right)=1-b$. That is, Q meets X_{0} if and only if $Q_{0}=I(0)$ (which occurs with probability b), or $Q_{0}=2^{\mathbb{N}}$ (which occurs with probability $1-2 b$). Now the probability $\mathcal{T}_{d}\left(X_{n+1}\right)$ that an arbitrary closed set K meets X_{n+1} may be calculated in two distinct cases. As in the proof of Theorem 9, let

$$
K_{n}=\bigcup\left\{I(\sigma): \sigma \in\{0,1\}^{n} \& K \cap I(\sigma) \neq \emptyset\right\}
$$

Case I If $K_{0}=2^{\mathbb{N}}$, then $\mathcal{T}_{d}\left(X_{n+1}\right)=1-\left(1-\mathcal{T}_{d}\left(X_{n}\right)\right)^{2}$.
Case II If $K_{0}=I((i))$ for some $i<2$, then $\mathcal{T}_{d}\left(X_{n+1}\right)=\mathcal{T}_{d}\left(X_{n}\right)$.
It follows that

$$
\begin{aligned}
\mathcal{T}_{d}\left(X_{n+1}\right) & =2 b \cdot \mathcal{T}_{d}\left(X_{n}\right)+(1-2 b)\left(2 \mathcal{T}_{d}\left(X_{n}\right)-\left(\mathcal{T}_{d}\left(X_{n}\right)\right)^{2}\right) \\
& =(2-2 b) \mathcal{T}_{d}\left(X_{n}\right)-(1-2 b)\left(\mathcal{T}_{d}\left(X_{n}\right)\right)^{2}
\end{aligned}
$$

Now consider the function $f(p)=(2-2 b) p-(1-2 b) p^{2}$, where $0<b<\frac{1}{2}$. This function has the properties that $f(0)=0, f(1)=1$ and $f(p)>p$ for $0<p<1$. Since $\mathcal{T}_{d}\left(X_{n+1}\right)=f\left(\mathcal{T}_{d}\left(X_{n}\right)\right)$, it follows that $\lim _{n} \mathcal{T}_{d}\left(X_{n}\right)=1$ and is the limit of a computable sequence.

For any $\sigma=\left(n_{0}, n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{\mathbb{N}}$, with $n_{0}<n_{1}<\cdots<n_{k}$, similarly define $X_{\sigma}=\{x$: $\left.(\forall i \leq k) x\left(n_{i}\right)=0\right\}$. A similar argument to that above shows that $\lim _{n} \mathcal{T}_{d}\left(X_{\sigma \sim n}\right) / \mathcal{T}_{d}\left(X_{\sigma}\right)=$ 1.

Now consider the decreasing sequence $c_{k}=\frac{2^{k+1}+1}{2^{k+2}}$ with limit $\frac{1}{2}$. Choose $n=n_{0}$ such that $\mathcal{T}_{d}\left(X_{n}\right) \geq \frac{3}{4}=c_{0}$ and for each k, choose $n=n_{k+1}$ such that $\mathcal{T}_{d}\left(X_{\left(n_{0}, \ldots, n_{k}, n\right)}\right) \geq$ c_{k+1}. This can be done since $c_{k+1}<c_{k}$. Finally, let $Q=\bigcap_{k} X_{\left(n_{0}, \ldots, n_{k}\right)}$. Then $\mathcal{T}_{d}(Q)=$ $\lim _{k} \mathcal{T}_{d}\left(X_{\left(n_{0}, \ldots, n_{k}\right)}\right) \geq \lim _{k} c_{k}=\frac{1}{2}$.

It is clear that we can make the capacity in Theorem 14 arbitrarily large below 1.

5. Conclusions

In this paper, we have established a connection between measure and capacity for the space \mathcal{C} of closed subsets of $2^{\mathbb{N}}$. We showed that for a computable measure μ^{*}, a computable capacity may be defined by letting $\mathcal{T}(Q)$ be the measure of the family of closed sets K which have nonempty intersection with Q. We have proved an effective version of the Choquet's theorem by showing that every computable capacity may be obtained from a computable measure in this way.

We have established conditions on computable measures that characterize when the capacity of a random closed set equals zero or is >0. In particular, for symmetric measures where $d\left(\sigma^{\frown} 0\right)=d\left(\sigma^{\wedge} 1\right)=b \cdot d(\sigma)$ for all σ, where b depends on σ, we have shown the following. If $d\left(\sigma^{\frown} 2\right) \leq \frac{\sqrt{2}}{2} d(\sigma)$ for all σ, then $\mathcal{T}_{d}(R)=0$ for any μ_{d}^{*}-random closed set R. If $d\left(\sigma^{\frown} 2\right) \geq b \cdot d(\sigma)$ for all σ, where $b>\frac{\sqrt{2}}{2}$ is a constant, then $\mathcal{T}_{d}(R)>0$ for any μ_{d}^{*}-random closed set R.

We have shown that the set of capacities of an effectively closed set is exactly the set of upper semi-computable reals. We have also constructed effectively closed set with positive capacity and with Lebesgue measure zero.

References

[1] L. Axon. Algorithmically Random Closed Sets and Probability. Ph. D. Dissertation, Notre Dame University (2010).
[2] G. Barmpalias, P. Brodhead, D. Cenzer, J.B. Remmel. R. Weber, Algorithmic Randomness of Continuous Functions. Archive for Mathematical Logic 46: 533-546, 2008.
[3] P. Brodhead and D. Cenzer. Effective capacity and randomness of closed sets. Computability and Complexity in Analysis, CCA 2010, eds. X. Zheng and N. Zhong, Springer Electronic Proceedings in Theoretical Computer Science 24: 67-76, 2010.
[4] G. Barmpalias, P. Brodhead, D. Cenzer, S. Dashti and R. Weber. Algorithmic randomness of closed sets. J. Logic and Computation 17:1041-1062, 2007.
[5] D. Cenzer and J. B. Remmel. Π_{1}^{0} classes. Handbook of Recursive Mathematics, Vol. 2: Recursive Algebra, Analysis and Combinatorics, editors Y. Ersov, S. Goncharov, V. Marek, A. Nerode, J. Remmel. Elsevier Studies in Logic and the Foundations of Mathematics, Vol. 139: 623-821, 1998.
[6] G. Choquet. Theory of Capacities. Ann. Inst. Fourier 5:131-295, 1955.
[7] C. Dellacheries. Les dérivations en théorie descriptive des ensembles et le théorème de la borne. Séminaire de Probabilities XI, Université de Strasbourg, Springer Lecture Notes in Mathematics, vol. 581:34-46, 1977.
[8] R. Downey and D. Hirschfeldt. Algorithmic Randomness and Complexity. Springer-Verlag, 2010.
[9] S. Graf, R.D. Mauldin and S.C. Williams. The exact Hausdorff dimension in random recursive constructions. Memoirs Amer. Math. Soc. 381:x+121, 1988.
[10] B. Kjos-Hanssen. Infinite subsets of random sets of integers. Math. Research Letters 16:103-110, 2009.
[11] D. Diamondstone and B. Kjos-Hanssen. Members of random closed sets. Mathematical Theory and Computational Practice, CIE 2009, eds. K. Ambos-Spies, B. Loewe and W. Merkle. Springer Lecture Notes in Computer Science 5635:144-153, 2009.
[12] G. Matheron. Random Sets and Integral Geometry. John Wiley and Sons, 1975.
[13] A. McLinden and R.D. Mauldin. Random closed sets viewed as random recursions. Archive for Math. Logic 48: 257-263, 2009.
[14] H. T. Nguyen. An Introduction to Random Sets. Chapman and Hall, 2006.
[15] A. Nies. Computability and Randomness. Oxford University Press, 2009.
[16] J. Reimann and T. Slaman. Measures and their random reals. submitted for publication.
[17] H.E. Robbins. On the measure of a random set. Ann. Math. Statistics 15: 70-74, 1944.
[18] G. Shafer. A Mathematical Theory of Evidence Princeton University Press, 1976.

