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Abstract

We investigate the computability of countable subshifts in one dimen-
sion, and their members. Subshifts of Cantor-Bendixson rank two contain
only eventually periodic elements. Any rank two subshift in 2Z is is de-
cidable. Subshifts of rank three may contain members of arbitrary Turing
degree. In contrast, effectively closed (Π0

1 ) subshifts of rank three con-
tain only computable elements, but Π0

1 subshifts of rank four may contain
members of arbitrary ∆0

2 degree. There is no subshift of rank ω + 1.
Keywords: Computability, Symbolic Dynamics, Π0

1 Classes

1 Introduction

There is a long history of interaction between computability and dynamical sys-
tems. A Turing machine may be viewed as a dynamical system which produces a
sequence of configurations or words before possibly halting. The reverse notion
of using an arbitrary dynamical system for general computation has generated
much interesting work. See for example [1, 12]. In this paper we will consider
computable aspects of certain dynamical systems over the Cantor space 2N and
the related space 2Z.

The study of computable dynamical systems is part of the Nerode program to
study the effective content of theorems and constructions in analysis. Weihrauch

?This research was partially supported by NSF grants DMS 0532644 and 0554841 and
652372.
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[23] has provided a comprehensive foundation for computability theory on vari-
ous spaces, including the space of compact sets and the space of continuous real
functions.

Computable analysis is related as well to the so-called reverse mathematics
of Friedman and Simpson [20], where one studies the proof-theoretic content of
various mathematical results. The study of reverse mathematics is related in
turn to the concept of degrees of difficulty. Here we say that P ≤M Q if there
is a Turing computable functional F which maps Q into P ; thus the problem of
finding an element of P can be uniformly reduced to that of finding an element
of Q, so that P is less difficult than Q. See Medvedev [16] and Sorbi [22] for
details. The degrees of difficulty of effectively closed sets (also known as Π0

1

classes) have been intensively investigated in several recent papers, for example
Cenzer and Hinman [9] and Simpson [19].

The computability of Julia sets in the reals has been studied by Cenzer
[3] and Ko [14]. The computability of complex dynamical systems has been
investigated by Rettinger and Weihrauch [18] and by Braverman and Yampolsky
[2]. The study of the computability of dynamical systems has received increasing
attention in recent years; see for example papers of Delvenne et al [12], Hochman
[13], Miller [17] and Simpson [21].

The connection between dynamical systems and subshifts is the following.
Certain dynamical systems may be given by a continuous function F on a sym-
bolic space X (one with a basis of clopen sets). For each X ∈ X , the se-
quence (X,F (X), F (F (X)), . . . ) is the trajectory of X. Given a fixed partition
U0, . . . , Uk−1 of X into clopen sets, the itinerary It(X) of a point X is the se-
quence (a0, a1, . . . ) ∈ kN where an = i iff Fn(X) ∈ Ui. Let It[F ] = {It(X) :
X ∈ X}. Note that It[F ] will be a closed set. We observe that, for each point
X with itinerary (a0, a1, . . . ), the point F (X) has itinerary (a1, a2, . . . ). Now
the shift operator σ on kN is defined by σ(a0, a1, . . . ) = (a1, a2, . . . ). It follows
that It[F ] is closed under the shift operator, that is, It[F ] is a subshift.

Computable subshifts and the connection with effective symbolic dynamics
were investigated by Cenzer, Dashti and King [6] in a recent paper. A total,
Turing computable functional F : 2N → 2N is always continuous and thus will
be termed computably continuous or just computable. Effectively closed sets
(also known as Π0

1 classes) are a central topic in computability theory; see [10]
and Section 2 below. It was shown for any computably continuous function
F : 2N → 2N, It[F ] is a decidable Π0

1 class and, conversely, any decidable Π0
1

subshift P is It[F ] for some computable map F . In this paper, Π0
1 subshifts

are constructed in 2N and in 2Z which have no computable elements and are
not decidable. Thus there is a Π0

1 subshift with non-trivial Medvedev degree.
J. Miller [17] showed that every Π0

1 Medvedev degree contains a Π0
1 subshift.

Simpson [21] studied Π0
1 subshifts in two dimensions and showed that every Π0

1

Medvedev degree contains a Π0
1 subshift of finite type which is a stronger result

than just containing a Π0
1 subshift.

Now every nonempty countable Π0
1 class contains a computable element, so

that all countable Π0
1 classes have Medvedev degree 0, and many uncountable

classes also have degree 0. In the present paper, we will consider more closely the
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structure of countable subshifts, using the Cantor-Bendixson (CB) derivative.
We will compare and contrast countable subshifts of finite CB rank with Π0

1

subshifts of finite CB rank as well as with arbitrary Π0
1 classes of finite rank.

This paper is an extended and significantly revised version of the conference
paper [7]. The original paper deals only with subshifts in 2N, whereas this new
paper also deals with subshifts in 2Z, where some of the results turn out to be
different. For example, Theorem 3.13 below says that there are subshifts in 2N

of rank two of arbitrary Turing degree, the new Theorems 3.14 (with Corollary
3.15) and 4.1 say that in 2Z, this fails for subshifts of rank two, but holds for
subshifts of rank three. The new results Lemmas 2.4, and 3.5 connect subshifts
of 2N with subshifts of 2Z in terms of the interesting Hessenberg sum of ordinals
and the new Corollary 4.7 relates the degrees of the members of subshifts in 2N

with those in 2Z. The entirely new Theorem 4.6 relates arbitrary closed sets
and Π0

1 classes with subshifts and Π0
1 subshifts and leads to a greatly improved

version of Theorem 8 of [7].
The outline of this paper is as follows. Section 2 contains definitions and

preliminaries. Here we define the join X−.Y ∈ 2Z of two elements of 2N and
the product P ⊗ Q = {X−.Y : X ∈ P & Y ∈ Q} ⊆ 2Z of subsets P and Q of
2N, and prove that the CB rank of X−.Y in P ⊗Q equals the Hessenberg sum
of the rank of X in P and the rank of Y in Q.

Section 3 focuses on subshifts of rank two and has some general results
about periodic and eventually periodic members of subshifts. We show that
if Q is a subshift of rank two, then every member of Q is eventually periodic
(and therefore computable) and furthermore if Q ⊆ 2Z, then the members of
rank two are periodic and Q is a decidable closed set. However, there are rank
two subshifts in 2N of arbitrary Turing degree and rank two Π0

1 subshifts of
arbitrary c. e. degree, so that rank two undecidable Π0

1 subshifts exist in 2N. We
give conditions under which a rank two subshift in 2N must be decidable. We
show that there is no subshift of rank ω + 1 and give an example of a subshift
of rank ω + 2.

In section 4, we study subshifts of rank three and four. We show that
subshifts of rank three may contain members of arbitrary Turing degree and
that subshifts of rank three in 2Z may have arbitrary Turing degree. In contrast,
we show that Π0

1 subshifts of rank three contain only computable elements, but
Π0

1 subshifts of rank four may contain members of arbitrary c. e. degree. More
generally, we show that for any given Π0

1 class P of rank two, there is a subshift
Q of rank four such that the degrees of the members of P and the degrees of the
members of Q are identical. We prove that if P is a closed subset of 2N of CB
rank α, then there is a subshiftQ ⊆ 2N of rank α+2, a computable injection from
P into Q and a countable-to-one degree-preserving mapping from Q \Dα+1(Q)
onto P ; furthermoreDα+1(Q) is the set of eventually periodic points ofQ. There
is also a subshift Q1 of 2Z with similar mappings. This implies, for α = 2, that
for any degree b such that either b ≤T 0′ or 0′ ≤T b ≤T 0′′, there is a Π0

1

subshift Q ⊆ 2N of rank four (and also a Π0
1 subshift Q1 ⊆ 2Z) such that

(i) Every element of Q (Q1) of rank 2 or 3 is eventually periodic.
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(ii) Every element of Q (Q1) of rank 1 has Turing degree b.

It is also shown that for any Π0
1 class P ⊆ 2N, there is a Π0

1 subshift Q ⊆ 2N

such that the non-computable degrees of the members of Q are identical with
the non-computable degrees of the member of P .

We thank the referees for very helpful comments which have improved the
paper.

2 Preliminaries

We begin with some basic definitions. Let N = {0, 1, 2, ...} denote the set of
natural numbers. For any set Σ and any i ∈ N, Σi denotes the strings of length
i from Σ, Σ∗ denotes the set of all finite strings from Σ. ΣN denotes the set
of countably infinite sequences from Σ, that is, the set of functions mapping N
into Σ, and ΣZ denotes the set of functions mapping Z into Σ. We write Σ<n

for
⋃
i<n Σi. For any set A, we let card(A) denote the cardinality of the set A.

For a string w = (w(0), w(1), . . . , w(n − 1)), |w| denotes the length n of w.
The reverse of a string w = (w(0), . . . , w(n − 1)) is the string w− = (w(n −
1), . . . , w(0)). The shift function on strings is defined by σ(w) = (w(1), . . . , w(|w|−
1)). For X ∈ 2N, σ(X) = (X(1), X(2), . . . )–the result of deleting the initial en-
try of X. For Z ∈ 2Z, Y = σ(Z) is defined so that Y (i) = Z(i+ 1). The empty
string has length 0 and will be denoted by λ. A length n string of k’s will be
denoted kn. For m < |w|, w � m is the string (w(0), . . . , w(m− 1)).

Given two strings v and w, the concatenation v_w is defined by

v_w = (v(0), v(1), . . . , v(m− 1), w(0), w(1), . . . , w(n− 1)),

where |v| = m and |w| = n. For a ∈ Σ, we write w_a (or just wa) for w_(a)
and we write a_w (or just aw) for (a)_w. We say w is an initial segment or
prefix of v (written w � v) if v = w_x for some x; this is equivalent to saying
that w = v � m for some m; w is a suffix of v if v = x_w for some x; w is a
factor of v if v = x_w_y for some x and y.

For anyX ∈ ΣN and any finite n, the initial segment X � n is (X(0), . . . , X(n−
1)). For Z ∈ ΣZ and i ≤ j from Z, Z[i, j] denotes the finite string (Z(i), Z(i+
1), . . . , Z(j)); Z[i, j), Z(i, j], and Z(i, j) are similarly defined. These definitions
also apply to Z ∈ ΣN as well as to finite strings. We say that a word v is a
factor of X ∈ ΣN or of X ∈ ΣZ if v = X[i, j] for some i and j.

For a string w ∈ Σ∗ and any X ∈ ΣN, we write w ≺ X if w = X � n for
some n. For any w ∈ Σn and any X ∈ ΣN, we let w_X = (w(0), . . . , w(n −
1), X(0), X(1), . . .). For X ∈ ΣN, let X− = (· · · , X(2), X(1), X(0)); that is, for
each n ∈ Z, let X−(−i − 1) = on.X(i), so that X− ∈ ΣZ

−
, where Z− = {i ∈

Z : i < 0}. For X,Y ∈ ΣN, let Z = X−.Y ∈ ΣZ be defined so that, for all
n ∈ N, Z(n) = Y (n) and Z(−n − 1) = X(n). We denote by vω the infinite
concatenation v_v_ · · · ; similarly v−ω = · · · v_v and v∞ = v−ω.vω.

The topology on 2N has a basis of intervals, which are clopen sets of the
form

[w] = {X : w ≺ X}.
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A subset of 2N is clopen if and only if it is a finite union of basic intervals. The
topology on 2Z has a basis of clopen sets of the form {Z ∈ 2Z : Z[−n, n] = w},
where w has odd length.

A tree T over Σ∗ is a set of finite strings from Σ∗ which contains the
empty string λ and which is closed under initial segments. We say that w ∈
T is an immediate successor of v ∈ T if w = va for some a ∈ Σ. We
will assume that Σ ⊆ N, so that T ⊆ N

∗. A bi-tree T is a set of finite
strings of odd length which is closed under central segments, that is, (x(−n −
1), x(−n), . . . , x(0), x(1), . . . , x(n), x(n + 1)) ∈ T implies that (x(−n), x(−n +
1), . . . , x(0), x(1), . . . , x(n− 1), x(n)) ∈ T .

For any tree T , (X(0), X(1), . . .) is said to be an infinite path through T if
X � n ∈ T for all n. We let [T ] denote the set of infinite paths through T . It is
well-known that a subset Q of 2N is closed if and only if Q = [T ] for some tree
T . A subset P of 2N is a Π0

1 class (or effectively closed set) if P = [T ] for some
computable tree T . For any closed set P , define the tree TP to be {w ∈ N∗
such that P ∩ [w] 6= ∅}. For any tree T , we say that a node w ∈ T is extendible
if there exists X ∈ [T ] such that w ≺ X. If P = [T ], then TP will equal the
set of extendible nodes of T and will not depend on T . If T is computable,
then the set of extendible nodes is a tree which is a co-c. e. subset of Σ∗ but is
not in general computable. P is said to be decidable (or computable) if TP is a
computable set.

For a bi-tree T , Z ∈ 2Z is a bi-infinite path through T if Z[−n, n] ∈ T for all
n. Here also [T ] is the set of bi-infinite paths through T and Q ⊆ 2Z is closed
if and only if Q = [T ] for some bi-tree T . The definitions of effectively closed
sets, extendible nodes, and decidable closed is analogous to those given above
for 2N.

For two closed sets P and Q in 2N, let P ⊗Q = {X−.Y : X ∈ P & Y ∈ Q},
which will be a closed set in 2Z. Note that our version of P ⊗Q is computably
homeomorphic to the usual definition (see [4]) as the set of sequences X ⊕ Y =
(X(0), Y (0), X(1), Y (1), . . . ) for X ∈ P and Y ∈ Q.

The closed set P is subsimilar (or a subshift) if TP is subsimilar. (Thus
being closed is a part of our definition of a subshift.) A tree T ⊆ 2N is said to
be subsimilar if for every v and w, vw ∈ T implies w ∈ T . A bi-tree T is said
to be subsimilar if for every v of even length and every w, vw ∈ T or wv ∈ T
implies that w ∈ T .

We say that a set Q avoids a word w if w is not a factor of any X ∈ Q. For
any subset S of {0, 1}∗, let QZS = {X ∈ 2Z : X avoids w for all w ∈ S} and let
QNS = {X ∈ 2N : X avoids w for all w ∈ S}.

The following well-known result is useful in showing that a given set Q is in
fact a subshift. See Proposition 2 of [6] for a proof.

Proposition 2.1. For any S ⊆ {0, 1}∗, QZS is a subshift in 2Z and QNS is a
subshift in 2N. Furthermore, if S is a c. e. set, then the sets QZS and QNS are Π0

1

classes.

This proposition has a partial converse.
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Proposition 2.2. If the set Q in 2N (or 2Z) is a subshift, then there is a set S
of words such that Q = QNS (or Q = QZS). Furthermore, if Q is a Π0

1 class, then
S may be taken to be a c. e. set.

Proof. For Q in 2N define S to be the complement of TQ. For the 2Z case, let
S =

⋃
n∈N{0, 1}2n+1 \ TQ.

An element X of a set P in either 2N or in 2Z is said to be isolated in P
if there is a clopen set U such that P ∩ U = {X}, equivalently, if there exists
i ≤ j such that P ∩ {Y : Y [i, j] = X[i, j]} = {X}. For any compact P ⊆ NN,
define the the Cantor-Bendixson derivative D(P ), to be the set of non-isolated
elements of P . This derivative can be applied iteratively to define Dα(P ) for
any ordinal α.

1. D0(P ) = P

2. Dα+1(P ) = D(Dα(P ))

3. Dλ(P ) =
⋂
α<λD

α(P ) for limit ordinals λ.

For any ordinal α and any compact P , Dα(P ) is also compact. The classical
Cantor-Bendixson (CB) rank of a countable compact set P is defined to be the
least ordinal α such that Dα+1(P ) = Dα(P ); Drk(P )(P ) is the perfect kernel
K(P ) of P . For a countable set P , the kernel of P is the empty set, so that
rk(P ) is the least ordinal α such that Dα(P ) = ∅. Thus for any closed set P , P
has rank zero if and only if P is empty and P has rank one if and only if P is
finite. The Cantor-Bendixson (CB) rank rkP (X) of an element X in any class
P is defined, for X /∈ K(P ), as the least ordinal α such that X /∈ Dα+1(P ).
Thus in particular rkP (X) = 0 if and only if X is isolated in P . Under these
definitions, rk(P ) is the supremum of {rkP (X) + 1 : X ∈ P} for countable P .
Note that if α is a limit ordinal, then rkP (X) cannot equal α and that if P is
compact, then rk(P ) cannot equal α.

We note that in several previous articles on effectively closed sets [5, 8, 7, 10]
(including the conference version of the present paper), a different definition is
given for the CB rank of a countable closed set, namely the the least ordinal
α such that Dα+1(P ) = ∅. This will always be one less than rk(P ) as defined
above. This alternative definition allows the rk(P ) for P ⊆ 2N to be any count-
able ordinal and makes rk(P ) the supremum of {rkP (X) : X ∈ P}. Since some
of the results of the present paper apply to subshifts which are not necessarily
effectively closed, we will use the classical definition.

For more background on computability and on the Cantor-Bendixson deriva-
tive, see [10], which includes the following (Lemma 4.2).

Lemma 2.3. Let F be a continous map from 2N into 2N and let P and Q be
closed sets such that F [P ] = Q. Then for any Y ∈ Q, rkQ(Y ) ≤ max{rkP (X) :
X ∈ P & F (X) = Y }.

Note that the lemma also holds for the continuous functions from 2Z into 2Z

since 2Z is homeomorphic to 2N.
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We will also need the following (essentially Theorem 4.1 of [4]). Let α ⊕ β
denote the Hessenberg sum of ordinals α and β. For our purposes, it suffices to
note that for natural numbers m and n, m⊕ n = m+ n for finite ordinals and
ω ⊕ n = n⊕ ω = ω + n.

Lemma 2.4. For any closed sets P and Q in 2N, any X ∈ P and any Y ∈ Q,
the Cantor-Bendixson rank of X−.Y in P ⊗Q equals rkP (X)⊕ rkQ(Y ). Hence
if rk(P ) and rk(Q) are finite, rk(P ⊗Q) = rk(P ) + rk(Q)− 1.

An element X of 2N is said to be periodic if X = vω for some finite string
v; the period of X is the minimal length of v such that X = vω. X is said to
be eventually periodic if for some strings u and v, X = u_vω An element Z
of 2Z is periodic if Z = v∞ for some finite v; the period of Z is the minimal
|v| such that Z = v∞. Z is eventually periodic if for some finite u, v and w,
Z = w−ω.u_vω.

The following facts about periodic sequences will be useful.

Lemma 2.5. Let u and v be finite words and let X = vω where |v| is minimal.
If X = u_vω, then u = vm for some m.

Proof. Suppose that X = u_vω = vω. If u = λ, then u = v0. Otherwise,
uω = vω and therefore |u| ≥ |v| by the minimality of |v| and it follows that
u = vm for some m.

We will need the following simple connection between periodicity and the
shift.

Lemma 2.6. (a) X ∈ 2N is periodic if and only if σn(X) = X for some n.

(b) X ∈ 2N is eventually periodic if and only if σm+n(X) = σm(X) for some
m and n.

(c) Z ∈ 2Z is periodic if and only if σn(Z) = Z for some n.

Proof. We will just give the proof of (c). Suppose first that Z is periodic and let
Z = u∞ for some finite string u of length n. Then we have Z[kn, (k + 1)n) = u
for all k ∈ Z. So, σn(Z[kn, (k+1)n)]) = Z[(k+1)n, (k+2)n)] = u for all k ∈ Z.
Thus, σn(Z) = u∞ = Z

3 Countable Subshifts

This section contains results on the computability and decidability of subshifts
of rank two. We examine the connection between the shift operator and the
Cantor-Bendixson derivative. This leads to the surprising result that there are
no subshifts of Cantor-Bendixson rank exactly ω+1. The following lemmas will
be needed.

Lemma 3.1. (a) If Q ⊆ 2N is a finite subshift, then Q contains a periodic
element and every element of Q is eventually periodic.
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(b) If Q ⊆ 2Z is a finite subshift, then every element of Q is periodic.

Proof. (a) Let Y ∈ Q, where Q is a finite subshift. Then for each i, σi(Y ) ∈ Q.
Since Q is finite, there must exist m and n such that σm+n(Y ) = σn(Y ), so
that Y is eventually periodic. Then X = σm(Y ) is a periodic member of Q.

For (b), let Z ∈ Q. Since Q is finite, there exist m < n such that σm(Z) =
σn(Z). Thus, Z = σ−m(σn(Z)) = σn−m(Z). Hence Z is periodic.

Example 3.2. The results are different for 2N and 2Z since part (b) does not
hold in 2N, as seen by the example of {0ω, 10ω}.

Lemma 3.3. Let P ⊆ 2N (or P ⊆ 2Z) be any closed set. Then Dασ(P ) =
σ(Dα(P )) for any ordinal α. Hence, if P ⊆ 2N is a subshift, then, for all
X ∈ P , rkP (X) ≤ rkP (σ(X)). Furthermore, if P ⊆ 2Z is a subshift, then, for
all X ∈ P , rkP (X) = rkP (σ(X)).

Proof. The key to the proof is the case when α = 1. Let P ⊆ 2N be a subshift.
Suppose first that X ∈ D(σ(P )). Then there is a sequence {Yn}n∈N ⊆ P of

distinct members of P such that limn σ(Yn) = X. For each n, either Yn(0) = 0
or Yn(0) = 1. Thus there exists i ∈ {0, 1} and an infinite subsequence n0, n1, . . .
such that Ynk(0) = i for all k. It follows that limk Ynk = i_X and belongs to
D(P ). But then we have σ(i_X) = X and hence X ∈ σ(D(P )).

Conversely, suppose that X ∈ σ(D(P )) and choose Y ∈ D(P ) such that
σ(Y ) = X. Then there is a sequence {Yn}n∈N ⊆ P of distinct members of P
such that limn Yn = Y . It follows from the continuity of the shift operator that
σ limn σ(Yn) = σ(Y ) = X and hence X ∈ D(σ(P )).

For the space 2Z, the converse argument is the same, but the first direction is
simpler, since limn σ(Yn) = X implies that limn Yn = σ−1(X), so that σ−1(X) ∈
D(P ) and hence X ∈ σ(D(P )).

The proof proceeds by induction on α. For the successor case, we have

Dα+1(σ(P )) = D(Dα(σ(P ))) = D(σ(Dα(P ))) = σ(D(Dα(P ))) = σ(Dα+1(P )).

For the limit case, we have

Dα(σ(P )) =
⋂
β<α

Dβ(σ(P )) =
⋂
β<α

σ(Dβ(P )) = σ(
⋂
β<α

Dβ(P )) = σ(Dα(P )).

For the third equality, observe that if Y = σ(Xβ) with Xβ ∈ Dβ(P ) for each β <
α, then in 2N, there exists i < 2 and a set B ⊆ α cofinal in α such that Xβ(0) = i
for all β ∈ B and hence i_Y ∈ Dβ(P ) for all β ∈ B. Thus i_Y ∈

⋂
β<αD

β(P )
(since this is a decreasing intersection) and hence Y ∈ σ(

⋂
β<αD

β(P )).
For the final conclusion, suppose that rkP (X) = α. Then X ∈ Dα(P ) and

hence σ(X) ∈ σ(Dα(P )) = Dα(σ(P )) ⊆ Dα(P ). For P ⊆ 2Z, we note that
the proof above can be modified to show that Dα(σ−1(P )) = σ−1(Dα(P )) and
rkP (X) ≤ rkP (σ−1(X)).

Proposition 3.4. For any subshift Q ⊆ 2N (or Q ⊆ 2Z) and any ordinal α,
Dα(Q) is a subshift.
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Proof. Let Q ⊆ 2N (2Z). For any X ∈ Dα(Q), it follows from Lemma 3.3 that
σ(X) ∈ Dα(σ(Q)) and hence σ(X) ∈ Dα(Q).

We will need the following lemmas relating subshifts of 2Z to the correspond-
ing subshifts of 2N. Let π0 and π1 be the two projection maps from 2Z onto
2N so that if Z = X−.Y , then π1(Z) = Y and π0(Z) = X; that is, for all n,
Y (n) = Z(n) and X(n) = Z(−n− 1).

Lemma 3.5. Let Q ⊆ 2Z be a subshift.

(a) Let S be the set of finite strings u such that no element of Q has u as
factor and let S− = {u− : u ∈ S}. Then Q = QZS, π1[Q] = QNS and
π0[Q] = QNS− .

(b) π0[Q] and π1[Q] are subshifts of 2N and are effectively closed if Q is effec-
tively closed.

(c) Q ⊆ π0[Q]⊗ π1[Q].

Proof. Let S be as defined. It is clear that Q ⊆ QZS . On the other hand, we
know by Proposition 2.2 that Q = QZR for some R and we must have R ⊆ S, so
that QZS ⊆ QZR = Q.

Observe next that π1[Q] is a closed set as the continuous image of the closed
set Q and is effectively closed if Q is effectively closed, since π1 is a computable
mapping. Furthermore, π1[Q] is a subshift. That is, if Y = π1(Z), then σ(Y ) =
π1(σ(Z)). Thus by Proposition 2.2, we have π1[Q] = QNR for some R and we
may assume that S ⊆ R, since certainly π1[Q] ⊆ QNS . On the other hand, if
u /∈ S then for some Z ∈ Q, u is a factor of Z and by shifting Z if necessary we
can obtain u as a factor of π1(Z), so that u /∈ R. It follows that π1[Q] = QNS . A
similar argument holds for π0[Q].

For part (c), let Z = X−.Y ∈ Q. Then Z avoids S, so that X avoids S−

and Y avoids S.

Proposition 3.6. (a) For any subshift Q ⊆ 2N of rank α + 1, Dα(Q) has a
periodic element and any element of Q having rank α is eventually peri-
odic.

(b) If Q ⊆ 2Z has rank α+ 1, then all elements of rank α are periodic.

Proof. (a) Let Q have rank α+ 1, so that Dα+1(Q) = ∅ and Dα(Q) is finite.
Then Dα(Q) is a subshift by Proposition 3.4 and the result follows by
Lemma 3.1 (a).

(b) The same argument works as in (a).

Next we consider some results on the decidability of subshifts.

Lemma 3.7. For any Z ∈ 2N (or in 2Z) which is eventually periodic, the set
of factors of Z is decidable.



3 COUNTABLE SUBSHIFTS 10

Proof. We will give the proof for 2N and leave the slightly more complicated
proof for 2Z to the reader. Suppose that X = vwω and let W be the set of
factors of X. Then x ∈W if and only if it has one of the following forms:

(i) v[s, t) where 0 ≤ s ≤ t ≤ |v|

(ii) v[s, |v|)wnw[0, t) where s < |v|, n ≥ 0 and t ≤ |w|

(iii) w[s, |w|)wnw[0, t] where s < |w|, t < |w|, and n ≥ 0.

The possible choices of n here are bounded by |x|, so that there is a finite
algorithm for checking whether x ∈ W . This shows that W is decidable, as
required.

Note that if X is computable, then in general the set of factors of X is not
decidable.

Example 3.8. Let E ⊆ N be any set which is c. e. but not computable and let
E = {n0, n1, . . . } be a computable enumeration without repetition. Let X =
10n010n11 . . . . Then X is computable but the set of factors of X is not since
10n1 is a factor of X if and only if n ∈ E.

Proposition 3.9. Given any natural number m, there is an at most countable
decidable subshift P ⊆ 2N (2Z) such that its rank is equal to m and all of its
elements are eventually periodic.

Proof. Let P0 = ∅ and for each n, let Pn+1 be the set of elements of 2N containing
at most n ones. Then each Pn+1 is clearly a subshift and is decidable since
v ∈ TPn+1 if and only if v contains at most n ones.

Certainly P0 = ∅ has rank 0 and P1 = {0ω} has rank one. For each n, we
claim that Pn ⊂ Pn+1 and D(Pn+1) = Pn.

Suppose first that X ∈ Pn and let X = v_0ω where v has at most n − 1
ones. Then X = limiXi where Xi = v_0i1_0ω ∈ Pn+1. Hence X ∈ D(Pn+1).
This shows that D(Pn+1) = Pn and it follows by induction that Pn+1 has rank
n.

Next suppose that X /∈ Pn. If X /∈ Pn+1, then certainly X /∈ D(Pn+1), so
we may assume that X ∈ Pn+1. Then X must have exactly n ones, so that
X = v_0∞ where v has exactly n ones. Then clearly Pn+1 ∩ [v] = {X}, so that
X /∈ D(Pn+1).

The same construction also works for 2Z.

Note that for the sequence of sets Pn defined above,
⋃
n Pn is not closed and

in fact is dense in 2N.
The following lemma is well-known in the area of combinatorics on words.

For example, it follows easily from Theorem 1.3.13 of [15, p. 22]. A proof for 2N

is given in [7].

Lemma 3.10. Suppose X ∈ 2N or X ∈ 2Z is not eventually periodic. Then
for any k ∈ N, there are at least k + 1 distinct factors of length k that occur
infinitely often in X.
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Proof. We only indicate how to prove the result for 2Z from the corresponding
result for 2N. Let Z ∈ 2Z and let Z = X−.Y where X and Y are in 2N. If Z
is not eventually periodic, then at least one of the two elements X and Y of 2N

are not eventually periodic. The result now follows from the 2N case above.

Theorem 3.11. For any subshift Q ⊆ 2N (2Z) of rank two, every member of Q
is eventually periodic.

Proof. Suppose Q ⊆ 2N is a subshift, and suppose, by way of contradiction,
that X ∈ Q and that X is not eventually periodic. Let k be arbitrary and let
w0, . . . , wk be distinct factors of X of length k which occur infinitely often in
X. Then for each i ≤ k, there are infinitely many n such that σn(X) ∈ [wi]∩Q.
Since X is not eventually periodic, m 6= n implies that σm(X) 6= σn(X). Thus
[wi] ∩ Q has a limit point for each i ≤ k. It follows that Q has at least k + 1
limit points. Since k was arbitrary, Q has infinitely many limit points and thus
rk(Q) > 2, a contradiction.

For the 2Z case, the argument is similar. Again, for a given k, we have k+1-
many distinct factors of Z of length k which occur infinitely often in Z, say
w0, w1, ..., wk. For each i ≤ k, this implies that there are an infinite number of
distinct members of Q which have wi as a central block. Then by compactness Q
must have a limit point having wi as a central block. Since each wi for 0 ≤ i ≤ k
is distinct, we obtain k + 1 distinct limit points. Since k was arbitrary, Q has
infinitely many limit points and thus rk(Q) > 2.

We note here that there are Π0
1 classes of rank two with noncomputable

elements [10]. (Note that due to a different defintion of rank in [10], these
classes are said there to have rank one). Hence we have the following.

Corollary 3.12. There is a Π0
1 class of rank two which is not degree-isomorphic

to any subshift of rank two.

Next we will discuss the decidability of rank two subshifts.

Theorem 3.13. (a) For any Turing degree d, there is a subshift Q ⊆ 2N of
rank two such that TQ has degree d.

(b) For any c. e. degree d, there is a Π0
1 subshift Q ⊆ 2N of rank two such that

TQ has degree d.

Proof. Let A be any set of natural numbers of degree d and let Q contain
limit points 0ω and 1_0ω, along with isolated points 0n1_0ω, for n > 0 and
1_0n1_0ω for n ∈ A. Then Q is a rank two subshift and we have 1_0n1 ∈ TQ
if and only if n ∈ A. Thus A ≤T TQ. For the other direction, just observe that
no string with more than two 1’s belongs to TQ and every string with one or no
1’s belongs to TQ.

For (b), just take a c. e. set B of degree d, let A = N − B and construct Q
as in (a).
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Our next theorem will show that we cannot achieve the result of the Theorem
3.13 for subshifts of 2Z. However, in the next section we will present a similar
result for rank three subshifts of 2Z.

Theorem 3.14. Let Q ⊆ 2Z be a subshift of rank two. Then Q can be decom-
posed as a finite number of periodic elements together with a finite number of
elements of type u−ω.v_wω and their orbits under the shift map.

Proof. Since Q is of rank two, D(Q) has finitely many points and they are
periodic by Lemma 3.1. Next, consider the isolated points. By Theorem 3.11
they are eventually periodic. Thus every element of Q is eventually periodic
and hence is computable.

It should be noted that although every limit point is periodic, there may
also be periodic points which are isolated. Nevertheless we will argue that Q
has only finitely many periodic points. Assume for a contradiction that the set
A of periodic points of Q is infinite. Then, by compactness, there exist a limit
point of A, say X. Moreover, X must be periodic, since it belongs to the finite
shift D(Q); let X = v∞.

Our goal is to construct a sequence {Zk : k ∈ ω} of elements of A, which
converges to a nonperiodic limit.

We begin with a X = v∞ = limk u
∞
k , for a sequence {uk : k ∈ ω} of

distinct uk, all different from v. We may assume without loss of generality that
|uk| ≥ k|v|. Since limk u

∞
k = v∞, we may assume furthermore that vk � uk.

Now for each k, let nk ≥ k be the largest such that vnk � uk and let
uk = vnkwk where v � wk. Now let Zk = σnk|v|(u∞k ) ∈ A so that

Zk = (wkvnk)∞ = (wkvnk)−ω.wk_(vnkwk)ω.

It is important to recall here that when we write, in general Z = U−.v_W , this
means that Z(i) = v(i) for i < |v|, that Z(|v| + j) = W (j) for all j, and that
Z(−j − 1) = U(j) for all j.

Since Zk has period ≥ k, it follows that {Zk : k ∈ ω} is infinite and hence
has a limit point Z. We may assume without loss of generality that the for
each i < j, Zi 6= Zj . Since the sequence 〈nk〉k<ω tends to infinity, it follows
that Z = v−ω.Y for some Y . Since Z is a limit point of Q and hence must be
periodic, it follows that Y = vω.

We will show that this leads to a contradiction, in two cases.

Case I: Suppose that |wk| ≥ |v| for infinitely many k. Since limk Zk = v∞,
there is some K such that for k ≥ K, Zk begins with v−ω.v and hence there is
some k such that v � wk, a contradiction.

Case II: Suppose that |wk| < |v| for all but finitely many k. Then there is a
fixed w with |w| < |v| such that Zk = (wvnk)−ω.w_(vnkw)ω for infinitely many
k. It follows that v∞ = limk Zk = v−ω.w_vω. Then by Lemma 2.5, w = λ and
therefore infinitely many of the Zk = v∞, again a contradiction.

Thus Q has in fact only a finite number of periodic points.
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Next, we will analyze the set of nonperiodic (hence isolated) elements of Q.
These are all of the form u−ω.v_wω. Note that for every element of Q of this
form, both u∞ and w∞ are limit points of Q. Since D(Q) is finite, there are
only finitely many such u∞ and w∞. Now let S be the set of strings v such that
there exist u and w with u−ω.v_wω ∈ Q and such that u is not a prefix of v
and w is not a suffix of v.

We claim that S is finite. Otherwise, by the above, there are fixed u and w
such that {v ∈ S : u−ω.v_wω ∈ Q} is infinite. We may assume that |u| and |w|
is minimal here, that is, there is no proper prefix u0 of u such that uω0 = uω and
similarly for w.

Then there will be an infinite sequence {(vk) : k ∈ N} such that, for each k, u
is not a prefix of vk, w is not a suffix of vk, |vk| < |vk+1| and Yk = u−ω.vk

_wω ∈
Q. It is easy to see that if j 6= k, then Yj 6= Yk.

That is, suppose that j < k but Yj = Yk. Then vj
_wω = vk

_wω. Now by
deleting the first |vj | terms of vk, we obtain wω = v_wω, where v is a nonempty
suffix of vk. It now follows from Lemma 2.5 that v = wm for some m > 0. But
this implies that w is a suffix of vk, which is a contradiction.

It now follows that this infinite set {Yi : i ∈ N} has a limit point Z ∈ Q
of the form u−ω.X with u ⊀ X. But this means that Z is a nonperiodic limit
point of Q, a contradiction. Hence S must be finite.

It follows that Q consists of finitely many periodic points together with the
shifts of a finite set C = {Xi = u−ωi .vi

_wωi : i < n}.

Corollary 3.15. Let Q ⊆ 2Z be a subshift of rank two. Then, Q is decidable
and every element of Q is computable.

Proof. It follows from Theorem 3.14 that Q consists of finitely many periodic
points together with the shifts of a finite set C = {Xi = u−ωi .vi

_wωi : i < n}.
Then a finite string x belongs to the bi-tree TQ if and only if it is a factor of one
of the elements of C. This now implies that TQ is decidable. That is, for each
i, the set of factors of Xi is decidable by Lemma 3.7 and there are only finitely
many Xi, so that TQ is a finite union of decidable sets.

We will next consider a special case in which rank two subshifts of 2N are
decidable. The following lemma is needed.

Lemma 3.16. Let Q ⊆ 2N be a subshift, let X = vω be a periodic element
of Q with period k and, for each i < k and each n, let Qi,n = {Z : vn_(v �
i)_(1− v(i))_Z ∈ Q}. Then Qi,n+1 ⊆ Qi,n for each n.

Proof. If Z ∈ Qi,n+1, then vn+1(v � i)(1 − v(i))_Z ∈ Q, so that, since Q is a
subshift, vn(v � i)(1− v(i))_Z ∈ Q and therefore Z ∈ Qi,n.

Theorem 3.17. Let Q ⊆ 2N be a subshift of rank two such that every element
of D(Q) is periodic. Then Q is decidable and every element of Q is computable.

Proof. Let X = vω be a periodic element of D(Q) with period k. Let Qi,n ⊆ 2N

be defined as in Lemma 3.16. Since X has rank one, there exists, for each i < k,
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some n such that Qi,m is finite for all m ≥ n. To see this, suppose by way of
contradiction that Qi,n is infinite for all n, let Zn be a limit point in Qi,n and let
Xn = vn_(v � i)_(1−v(i))_Zn be the corresponding member of Q. Then each
Xn is a limit point of Q and for m < n, Xm 6= Xn, since Xm(m|v|+ i) = 1−v(i)
but Xn(m|v|+ i) = v(i). Observe that X = limnXn which implies that X has
rank greater than one, a contradiction.

SinceQi,n+1 ⊆ Qi,n for all i and n, it follows that the sequence {Qi,n : n ∈ N}
of finite sets is eventually constant and equal to some fixed finite subset Pi of 2N.
Let Di be the decidable set TPi . Now let S(v) = {(i, n) : i < k & Qi,n is finite}
and let A(v) be the set of strings of the form vn(v � i)_w for some (i, n) ∈ S(v)
and some w. Then S(v) is computable since it is a cofinite set. It follows
that A(v) is computable, since it is the union of finitely many computable sets
together with {vn(v � i)(1− v(i))_w : (i, n) ∈ S(v) & w ∈ Pi}.

For each of the finitely many limit points vωt ∈ Q, we may similarly define
the set A(vt) of strings in TQ which branch off from vωt where the appropriately
defined set Qi,n is finite. We claim that TQ is the union of the finitely many
computable sets A(vt) together with the words of the form vnt (vt � i) for some
i and n and is therefore decidable. Certainly each such string is in TQ. Now
suppose that u is some string in TQ which is not an initial segment of any of
the limit points. Choose vt so that u has the longest agreement with vωt of
the limit points and choose i and n so that vnt

_(vt � i)(1 − vt(i)) � u. Then
vnt (vt � i)(1 − vt(i)) disagrees with every limit point so that Qi,n is finite and
hence u ∈ A(vt).

Corollary 3.18. For any subshift Q ⊆ 2N of rank two, there is some finite n
such that σn(Q) is decidable.

Proof. By Theorem 3.11, D(Q) is a finite set of eventually periodic points. For
each X ∈ D(Q), σm(X) is periodic for some m; just let n be the maximum m
over X ∈ D(Q). Then by Lemma 3.3, D(σn(Q)) = σn(D(Q)) and thus contains
only periodic points, so that Theorem 3.17 applies.

In the next section, we will show that a rank three subshift of 2N can have
members which are not eventually periodic and indeed not even computable.

There is another interesting consequence of Lemma 3.16. Recall that by
compactness no subshift in 2N can have rank ω.

Theorem 3.19. There is no subshift of rank ω + 1 in 2N (or in 2Z).

Proof. Let Q ⊆ 2N be a subshift and suppose by way of contradiction that Q has
rank ω + 1. Then Dω+1(Q) = ∅ and Dω(Q) is finite. Then there is a periodic
element X of rank ω by Proposition 3.6. Let X have period k and let the sets
Qi,n be defined as in Lemma 3.16. Since X has rank ω, there is some n such
that for all i and all m ≥ n, Qi,m has rank < ω. To see this, suppose by way of
contradiction that Qi,m has rank ≥ ω (and hence rank = ω + 1) for all m and
let Zm be an element of Qi,m with rank ≥ ω. Then as in the proof of Theorem
3.17, let Xm = vm_(v � i)(1 − v(i))_Zm and observe that each Xm has rank
≥ ω and that X = limmXm therefore has rank of rank ≥ ω+1, a contradiction.
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Now suppose that Qi,n has rank ri < ω and let r = max{ri : i ≤ k}. Then by
Lemma 3.16, rk(Qi,m) ≤ r for all m > n. But this implies that rk(X) ≤ r + 1,
which is the desired contradiction.

Next assume by way of contradiction that Q ⊆ 2Z is a subshift of rank ω+1.
Let S be the set of finite strings u such that no element of Q has u as factor,
and let Q0 = QNS− and Q1 = QNS . Then by Lemma 3.5, Q = QZS , π0[Q] = Q0,
and π1[Q] = Q1. It follows from [the note after] Lemma 2.3 that Q0 and Q1

have rank ≤ ω. Then by the previous paragraph, Q0 and Q1 must have finite
rank, so that, by Lemma 2.4, Q0 ⊗Q1 has finite rank. But Q ⊆ Q0 ⊗Q1, and
hence Q must also have finite rank.

It follows from the proof that there is no subshift of rank α+ 1 in 2N or 2Z,
for any limit ordinal α.

Example 3.20. There is a Π0
1 subshift Q ⊆ 2Z of rank ω+ 2. For any Z ∈ 2Z,

let m(Z) be the minimum such that 10m1 is a factor of Z and let n(Z) be
the number of 1’s in Z. Now define Q so that Z ∈ Q iff n(Z) ≤ m(Z) or if
n(Z) ≤ 1. Thus every member of Q has only finitely many 1’s. It is easy to
see that, for any k, Dk(Q) = {Z : n(Z) ≤ m(Z)− k}. This means that Z ∈ Q
is isolated if n(Z) = m(Z) and in general has rank k if n(Z) = m(Z) − k. It
follows that Dω(Q) = {Z : n(Z) ≤ 1} and that Dω+1(Q) = {0∞}. This same
example also works in 2N.

4 Subshifts of Rank Three and Four

In this section, we examine the complexity of subshifts of rank three and four
and the complexity of their elements. We also give a general result showing that
for any closed set P ⊆ 2N of arbitrary rank α+ 1, there is a subshift Q of rank
α+3 and a computable injection from P into Q. We begin with the counterpart
of the Theorem 3.13 for subshifts of 2Z.

Theorem 4.1. (a) For any Turing degree d, there is a subshift Q ⊆ 2Z of
rank three such that TQ has degree d

(b) For any c. e. degree d, there is a Π0
1 subshift Q ⊆ 2Z of rank three such

that TQ has degree d.

Proof. (a) Let A ⊆ N be an infinite set of degree d. Q ⊆ 2Z is defined as follows.
For any w ∈ {0, 1}∗, w ∈ TQ if and only if

(i) w has at most two 1’s.

(ii) For i > j, if w(i) = w(j) = 1, then i− j ∈ A.

Then Q has the following elements.

(0) For any i ∈ Z and n ∈ A, Q has the isolated element Xi,n with Xi,n(j) =
1 ⇐⇒ j = i ∨ j = i+ n.
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(1) For any i, Q has the element Xi of rank one, where Xi(j) = 1 ⇐⇒ j = i.

(2) Q has a unique element of rank two, namely 0∞.

(b) If d is a c. e. degree, let A be a co-c. e. set of degree d in the argument
above. Then TQ is a Π0

1 set and hence Q is a Π0
1 class.

We observe that for the subshift Q constructed in Theorem 4.1 corresponding
to the set A, Q will be decidable if and only if the set A is computable, since
TQ has the same Turing degree as A.

Proposition 4.2. For any increasing sequence n0 < n1 < . . . ,

(a) There is a subshift Q ⊆ 2N of rank three which has a unique element,
0n01_0n11 . . . , of rank two.

(b) There is a subshift Q ⊆ 2Z of rank three which has a unique element,
0−ω.1_0n01_0n11 . . . , of rank two.

Proof. (a) The subshift Q ⊆ 2N will have the following elements:

(0) For each k ≥ 0 and each n ≤ nk, the isolated element 0n1_0nk+11_0nk+21 . . .

(1) For every n, the element 0n1_0ω which will have rank one in Q.

(2) 0ω, which is the unique element of rank 2 in Q.

Note that the elements of type (0) are all iterated shifts of X = 0n01_0n11 . . . .
Here we see that Q avoids the set S consisting of

(i) all words 10n1 such that n /∈ {n1, n2, . . . };

(ii) all words 0n1_0ni1 such that n ≥ ni;

(iii) all words 10ni1_0nj1 such that j 6= i+ 1;

(iv) all words 10ni1_0ni+1+1.

Items (iii) and (iv) ensure that each block 10ni1 must be followed by the block
0ni+11 and can only be preceded by the block 10ni−1 (if i > 1).

(b) The subshift Q ⊆ 2Z will have the following elements:

(0) σz(X) for each z ∈ Z is an isolated element

(1) {Yi : Yi(k) = 1 ⇐⇒ k = i, i ∈ Z} is the set of rank one elements.

(2) 0∞ is the unique rank 2 element of Q.

Here we see that Q avoids the set S as above except for 1_0n01.

Theorem 4.3. For any Turing degree d, there is a rank three subshift Q ⊆ 2N

(2Z) which contains a member of Turing degree d and such that TQ has Turing
degree d.
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Proof. Let A = {a0, a1, . . . } be any infinite set of degree d and let ni = a0 +
a1 + · · ·+ ai for each i. Now apply Proposition 4.2.

This result can be improved as follows.

Theorem 4.4. For any countable set D = {di : i ∈ N} of Turing degrees
(including 0), there is a rank three subshift Q ⊆ 2N (or ⊆ 2Z) such that
Deg(Q) = D.

Proof. Let p0 = 2, p1 = 3, . . . enumerate the prime numbers in increasing order.
For each i, choose a set Ai = {ni,0 < ni,1 < . . . } of degree di, let mi,j = p

ni,j+1
i

and let Xi = 0mi,010mi,11 . . . . Then the closed subshift of 2N generated by the
set {Xi : i ∈ N} will again contain a unique element 0ω of rank two, will again
contain elements 0n10ω of rank one, and will contain, for each i, each k > 0 and
each n ≤ mi,k,the isolated element 0n1_0mi,k+11_0mi,k+21 . . . . The argument
for Q ⊆ 2Z follows as in the proof of Proposition 4.2.

For effectively closed subshifts, the result is quite different.

Theorem 4.5. If Q ⊆ 2N is a Π0
1 subshift of rank three, then all of its members

are computable.

Proof. D(Q) is a subshift of rank two and hence all of its members are eventually
periodic and therefore computable. The remaining members of Q are isolated
and therefore computable by Theorem 3.12 of [10].

Results for Π0
1 subshifts of rank four or higher with noncomputable elements

can be obtained from the following general result.

Theorem 4.6. Let α be a countable ordinal and let P ⊆ 2N be any closed set
(Π0

1 class) of Cantor-Bendixson rank α+ 1. Then there exists a closed subshift
(Π0

1 class) Q ⊆ 2N (and also Q1 ⊆ 2Z) of rank α+3, a computable injection from
P into Q, and furthermore, a countable-to-one degree-preserving mapping from
Q −Dα+1(Q) onto P . Furthermore, Dα+1(Q) is the set of eventually periodic
points of Q.

Proof. We will uniformize the method of Proposition 4.2. For the first step,
transform P into a closed set in which every element has the form 0n01_0n11 . . . ,
by mapping an arbitrary X ∈ 2N to Φ(X) = (0X(0)1_0X(0)+X(1)+11 . . . ). Note
that, for each i, ni + 1 ≤ ni+1 ≤ ni + 2 and hence i ≤ ni ≤ 2i+ 1. This map is
a (truth-table) computable injection and therefore preserves computability and
rank. Now define Q ⊆ 2N to contain the following elements.

(0) For each X ∈ P and each i ∈ N, Q contains all of the shifts σi(X). For
any such Y = σi(X), the rank of Y in Q will be

rkQ(Y ) = max{rkP (X) : Y = σj(X) for some j ∈ N and some X ∈ P}

(1) For each n, Q contains the element 0n1_0ω, which will have rank α + 1
in Q.
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(2) Q contains the element 0ω of rank α+ 2.

A crucial observation is that for any Y = 0n01_0n11 · · · ∈ Q, {w : w_Y ∈
P} is finite. This is because if w = 0m, then m < n1 − n0 and if w =
0m01 . . ._0mk1_0m, then m0 < m1 < · · · < mk < m+ n0 < n1.

It is clear that Q is closed under the shift operator, but we need to check
that Q is topologically closed. Suppose therefore that Y is a limit of point of
Q. If Y contains at most one 1, then Y ∈ Q, so without loss of generality Y
has a prefix of type 0n01_0n11. Now let Y = limi Yi where each Yi ∈ Q. It
follows from the initial assumptions about P that Y has infinitely many 1’s,
say Y = 0n01_0n11_0n21 . . . for some infinite sequence {ni : i ∈ N}; this is
because any element of Q which extends 0n01_0n11 can have at most n1 + 2
zeroes before having a 1. Now we may assume that 0n01 . . . 0ni1 ≺ Yi for each
i and that Yi = σei(Xi) for some Xi ∈ P and ei ∈ N. That is, for each i, Xi

begins with an initial segment of the form

0m01_0m11 . . . 0mk1_0n01 . . . 0ni1.

Since m0 < m1 < · · · < mk < n0 in every case, there are only finitely many
possible segments 0m01 . . . 0mk1 before Yi begins. So, without loss of generality,
we may assume that each Xi has the same fixed initial segment and hence there
is also a fixed e such that Yi = σe(Xi) for all i. It follows that the sequence
{Xi : i ∈ N} converges to a limit

X = limiXi = 0m01 . . . 0mk1_Y

with Y = σe(X). But P is closed and hence X ∈ P so that Y ∈ Q.
We can now conclude from Proposition 2.2 that Q = QS , where S = {w :

w is not a factor of any Y ∈ Q}. If P is a Π0
1 class, then we need to show that

Q is also a Π0
1 class. Let R = {w : w is not a factor of any X ∈ P}. We claim

that S = R. Since P ⊆ Q, it follows that S ⊆ R. Now suppose that w /∈ S.
Then w is a factor of some Y ∈ Q. If Y has at most one occurrence of 1, then w
is a factor of every X ∈ P by the initial assumption, so that w /∈ R. Otherwise
Y = σe(X) for some X ∈ P , e ∈ N and hence w is a factor of X so that w /∈ R.

If P is a Π0
1 class, then TP is a Π0

1 set and we will show that R is a c. e. set.
That is, given w = 0m01_0m11 . . . 0mk1_0m, we observe that if w is a factor of
some X = 0n01 · · · ∈ P , then mk = ni for some i ≤ mk and therefore

|0n01 . . . 0ni1_0m| ≤ 2 + 4 + · · ·+ 2mk + 2 +m+ 1 = m2
k + 3mk +m+ 3

Note that the function f , defined on finite strings by f(w) = m2
k + 3mk +m+

3 whenever w is of the form 0n01 . . . 0ni1_0m and f(w) = |w| otherwise, is
computable. Now, w ∈ R if and only if for all v of length ≤ f(w), if w is a
factor of v, then v /∈ TP . Hence R is a c. e. set, as desired.

It remains to examine the rank of the elements of Q. First note that since
P ⊆ Q, rkP (X) ≤ rkQ(X) for all X ∈ P and furthermore rkQ(σe(X)) ≥
rkQ(X) by Lemma 3.3, so that rkQ(σe(X)) ≥ rkP (X) for all X ∈ P , e ∈ N. It
follows that rkQ(0n1_0ω) ≥ α+ 1 and hence rkQ(0ω) ≥ α+ 2.
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For the other direction, we first observe that for any Y = 0n01_0n1 · · · ∈ Q,
{X ∈ P : σe(X) = Y for some e} is finite. This is because each such X has
the form w_Y for some w and by the crucial observation above there are only
finitely many possible such w. Thus {rkP (X) : Y = σe(X) for some e} is finite
and has a maximum. We now show by induction on β = max{rkP (X) : X ∈
P & σe(X) = Y for some e} that rkQ(Y ) = β.

Suppose first that β = 0, that is whenever Y = σe(X), then X is isolated
in P . Suppose by way of contradiction that Y is not isolated in Q. Then once
again we have Y = limi σ

ei(Xi), for some ei ∈ N, so that as above (without loss
of generality), there will be a fixed e and a limit X = limiXi ∈ P such that
Y = σe(X). But X is isolated in P , which gives the desired contradiction.

Now suppose the claim holds for all ordinals < β and let Y = σe(X) where
e ∈ N and X has the maximum rank β. Suppose by way of contradiction that
Y has rank ≥ β + 1 in Q. Then Y = limi Yi where, for each i, Yi = σe(Xi)
and rkQ(Yi) ≥ β. It follows that rkP (Xi) ≥ β since if rkP (Xi) < β then by
the induction rk(Yi) < β. It now follows as above (without loss of generality)
that X = limiXi which would imply that rkP (X) ≥ β + 1. This is the desired
contradiction.

We may now conclude that every element of the form Y = σe(X) for X ∈ P ,
e ∈ N has rank rkQ(Y ) ≤ α. It follows that each 0n1_0ω has rank ≤ α+ 1 and
that rkQ(0ω) ≤ α+ 2.

The computable embedding of P into Q was given by the mapping Φ where
Φ(X) = (0X(0)1_0X(0)+X(1)+11 . . . ) which then led us to construct P ⊆ Q.
Certainly Dα+1(Q) = {0ω, 0n1_0ω : n ∈ N} is the set of eventually periodic
points of Q. Finally, for any Y = σe(X) in Q where e ∈ N, X ∈ P , Y has the
same truth-table degree as X ∈ P .

To obtain Q1 ⊆ 2Z, let Φ1(X) = 0−ω.1_Φ(X). Then in part (0), we have
again the shifts σk(Φ1(X)), now with k ∈ Z. In part (1), we have all Z with
exactly one occurence of 1, and part (2), we have 0∞.

Note that if P is perfect (that is, if D(P ) = P ), then Q is also perfect but
we can still say that Φ maps the set of non-eventually-periodic points of Q onto
P .

We obtain the following corollary to the proof of Theorem 4.6.

Corollary 4.7. For any Π0
1 class P ⊆ 2N, there is a Π0

1 subshift Q ⊆ 2N such
that Deg(Q) = Deg(P ) ∪ {0}.

Note that in fact the mapping Φ in the proof of Theorem 4.6 is truth-table
computable, so that Corollary 4.7 also applies to truth-table degrees.

The next corollary may now be obtained from standard results on Π0
1 classes.

Corollary 4.8. For any degree b such that either b ≤T 0′ or 0′ ≤T b ≤T 0′′,
there is a Π0

1 subshift Q ⊆ 2N of rank four (and also a Π0
1 subshift Q1 ⊆ 2Z)

such that

(i) Every element of Q (Q1) of rank 2 or 3 is eventually periodic.
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(ii) Every element of Q (Q1) of rank 1 has Turing degree b.

Proof. This corollary follows from Theorem 4.6 together with Corollary 3.2 of
[5] and Theorem 2.1 of [11]. Given degree b as postulated, there exists (by
the cited results) a Π0

1 class P of rank two and a real X of degree b such that
D(P ) = {X} and furthermore every other element of Y of P is eventually 0,that
is, Y = u_0ω for some u. Applying Theorem 4.6, we obtain a Π0

1 subshift Q of
rank four such that every element of rank ≥ 2 is eventually periodic. If Y has
rank one in Q, then Y = σe(X) for some e and hence Y has the same Turing
degree as X. (Note that due to a different definition of rank in [5, 11], P is said
to have rank one.)

Note that those theorems do not apply to truth-table degrees and likewise
this corollary does not hold for truth-table degrees.

We have now seen that many ∆0
3 reals can belong to Π0

1 subshifts of rank
four. On the other hand, it is easy to see that every member of a Π0

1 subshift
of rank four is ∆0

3.

Proposition 4.9. For any Π0
1 subshift Q of rank four, every element of Q is

∆0
3.

Proof. Let Q be a Π0
1 subshift of rank four. Then D2(Q) has rank two, so that

its members are all eventually periodic. Thus any element of rank two or three
in Q is computable. The isolated members of Q are also computable. Finally,
suppose that X has rank one in Q. Then X is isolated in the Π0

3 class D(Q)
and is therefore ∆0

3.

On the other hand, an arbitrary Π0
1 class of rank four may contain members

which are not Σ0
6 and even a Π0

1 class of rank three may contain members which
are not Σ0

4.
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