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1 Introduction

The main goal of this paper is to show that there is a close connection be-
tween the alternating �xed point construction of the well-founded semantics
of a �nite predicate logic program due to Van Gelder [V89,V93] and the clas-
sical topological construction of the perfect kernal from point set topology
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via the iteration of the Cantor-Bendixson derivative through the ordinals. In
particular, we shall show that there is a simple coding which will allows us to
transfer complexity results about the perfect kernal of e�ectively closed sets in
2! to complexity results about the well-founded semantics for �nite predicate
logic programs. Here ! = f0; 1; : : :g is the natural numbers and 2! is the set
of all in�nite sequences of 0s and 1s. The complexity of the construction of
the perfect kernal of e�ectively closed sets in 2! has been extensively studied
by recursion theorists. Our coding will then allow us derive new complexity
results about the well-founded semantics of �nite predicate logic programs by
transferring known complexity results about the construction of the perfect
kernal of e�ectively closed sets in 2!.

The well-founded semantics was introduced by Van Gelder, Ross, and
Schlipf [VRS91]. It provides a 3-valued interpretation to logic programs with
negation and it can be viewed as an approximation to the stable semantics as
de�ned by Gelfond-Lifschitz [GL88], see [VRS91] and [F01]. The stable model
semantics is de�ned by means of a �xpoint of anti-monotone operator often
denoted by GLP (�). Van Gelder [V89,V93] showed that the well-founded se-
mantics can be de�ned as the alternating �xpoint of GLP . The relationship
between the well-founded semantics and inductive de�nitions was studied by
Denecker and his collaborators [Den98,DBM01].

The basic results for the complexity of the well-founded semantics of pred-
icate logic programs can be found in Schlipf [S95] and Fitting [F01]. Com-
plexity results for the stable model semantics of logic programs can be found
in [MNR94]. Basically, both the well-founded semantics and the stable logic
semantics for recursive logic programs can capture any �1

1 set. For exam-
ple, there are recursive programs for which the well-founded semantics is �1

1 -
complete set [S95] and the problem of deciding whether a recursive program
has a stable model is �1

1 -complete [MNR94].

The main reason for the extremely high complexity of the well-founded
semantics for �nite predicate logic programs is that Van Gelder's alternat-
ing �xed point algorithm to compute the well-founded semantics [V89,V93]
must be trans�nitely iterated through the recursive ordinals to obtain a �xed
point. This type of construction reminded us of a classical construction from
topology which has a similar avor, namely, the problem of �nding the Cantor-
Bendixson rank of an e�ectively closed set in 2!.

The Cantor-Bendixson derivative �rst appeared in a paper in 1883 by
Bendixson [B1883] in which he proved what is now called the Cantor-Bendixson
Theorem based on ideas from Cantor. Rather than state that theorem in its
full generality, we shall focus on the space of interest to us which is 2!. One
puts a topology on 2! by de�ning the basic open sets of the topology to be any
set of the form O� where � is a �nite sequence of 0s and 1s and O� is the set
all in�nite strings in 2! that extend � . Here a closed set Q � 2! is e�ectively
closed or is a�0

1 class if the complement of Q is a recursively enumerable union
of basic open sets in 2!. Such a Q can always be thought of as the set of in�nite
paths through a primitive recursive binary tree. An element x 2 Q is said to
be isolated if there is an open set U such that Q \ U = fxg. Q is said to be
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perfect if it has no isolated elements. The Cantor-Bendixson derivative D(Q)
is de�ned to be the set of nonisolated members of Q. The perfect kernel K(Q)
is de�ned to be the (possibly empty) largest perfect subset of Q. Thus K(Q)
is empty if and only if Q is countable. K(Q) may be obtained by iterating the
derivative through the recursive ordinals, where D�+1(Q) = D(D�(Q)) and
D�(Q) =

T
�<�D

�(Q) for limit ordinals Q. Then K(Q) =
T
�D

�(Q), where
the intersection ranges over all ordinals. The Cantor-Bendixson rank rk(Q) is
the least ordinal � such that D�(Q) = K(Q). For a �0

1 class Q, it is known
that rk(Q) � !C-K1 , the least nonrecursive ordinal.

In this paper, we shall use the recursion theoretic technique of classifying
index sets relative to the arithmetic hierarchy to measure complexity. This ap-
proach is important since it provides for a �ner classi�cation of the complexity
of various decision problems. For example, let �e : ! ! ! be the partial recur-
sive function computed by the e-th Turing machine and let We be the domain
of �e. Thus �0; �1; : : : is a list of all partial recursive functions and W0;W1; : : :
is a list of all recursively enumerable (r.e.) sets. We say I is an index set if
whenever �e = �f , then e 2 I () f 2 I. We say that a set B � ! is
(i) �0

0 and �0
0 if B is recursive,

(ii) �0
n if there is a recursive predicate R(x; y1; : : : ; yn) such that

x 2 B () (9y1)(8y2)(9y3) � � � (Qyn)R(x; y1; : : : ; yn)

where Q is 9 if n is odd and 8 if n is even,
(iii) �0

n if there is a recursive predicate R(x; y1; : : : ; yn) such that

x 2 B () (8y1)(9y2)(8y3) � � � (Qyn)R(x; y1; : : : ; yn)

where Q is 8 if n is odd and 9 if n is even, and
(iv) B is �0

n if it is both �0
n and �0

n.
We say that a set A is �0

n-complete (�0
n-complete) if A is �0

n (�0
n) and every

�0
n (�0

n) is many-one reducible to A. Then, for example, it is well known
that there is no uniform e�ective procedure which given e will decide whether
We is non-empty, �nite, or recursive. However, the complexities of deciding
whether a given r.e. set We is non-empty, �nite, or recursive are not the same.
That is, consider the index sets Non = fe : We is non-emptyg, Fin = fe :
We is �niteg, and Rec = fe : We is recursiveg. It is well-known that Non is
�0
1 -complete, Fin is �0

2 -complete, and Rec is �0
3 -complete; see [Soa87]. From

a practical point of view, if a predicate is �0
n complete or �0

n complete for
n > 1, then we have no way to produce any kind of e�ective algorithm to
determine whether the predicate holds (fails) or even to e�ectively enumerate
all instances for which the predicate holds (fails).

To help us de�ne the index sets of interest to us in this paper, we shall
assume that we are given an e�ective enumeration of all primitive recursive
trees T0; T1; : : : and an e�ective enumeration of all �nite predicate logic pro-
grams LP0; LP1; : : : over a recursive predicate logic language L which contains
in�nitely many constant symbols, in�nitely many propositional letters, and
for each n � 1, in�nitely many function n-ary function symbols and n-relation
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symbols. In particular, we shall assume that L has a constant symbol 0 and a
unary function symbol s and we let n = sn(0) for all n 2 !. For any propertyR
of �nite predicate logic programs, we let ILP (R) = fe : LPe has property Rg.
The set ILP (R) is called index set for property R relative to �nite predi-
cate logic programs. For any tree T � f0; 1g�, we let [T ] denote the set of
all in�nite paths through T . Then it is known that [T0]; [T1]; : : : is an e�ec-
tive list of all �0

1 classes. Then for any property R of �0
1 classes, we let

IPC(R) = fe : [Te] has property Rg. The set IPC(R) is called index set for
property R relative to �0

1 classes.

There has been considerable research on classifying the complexity of in-
dex sets of the form IPC(R) for various properties R concerning the Cantor-
Bendixson derivative. One of the main results of this paper will be to show
that there is a recursive function f such that for each primitive recursive bi-
nary tree Te, the �nite predicate logic program LPf(e) has the property that
if � is either a limit ordinal or zero and � is �nite, then the complexity of the
� + 2�-th level of the Van Gelder alternating �xed point construction of the
well-founded semantics of LPf(e) is equivalent to the complexity of the �+�-
th derivative of the �0

1 class [Te]. Moreover, it will be case that if �+ n is the
ordinal at which the iteration of the Cantor-Bendixson derivative applied to
[Te] reaches the perfect kernel K([Te]), then the Van Gelder alternating �xed
point of construction applied to LPf(e) will give the well-founded semantics of
LPe at level �+2n. Our correspondence Te ! LPf(e) will allows us to transfer
results about index sets for �0

1 classes to produce new complexity results for
index sets associated with the well-founded semantics of �nite predicate logic
programs. For example, we can show that the set of all e such that the true sen-
tences under the well-founded semantics of LPe is recursive is a �

1
1 -complete

set. Thus the problem of deciding whether the well-founded semantics of a
�nite predicate logic program is recursive is a �1

1 complete problem. We also
prove some index set results for properties that imply the well-founded seman-
tics is relatively simple. For example, we show that the set of e such that the
true sentences under the well-founded semantics of LPe is empty is recursive,
the set of e such that the false sentences under the well-founded semantics of
LPe is empty is �0

3 complete, and the set of e such the true sentences under
the well-founded semantics of LPe is just the least model of the Horn part of
the program is �0

2 complete.

The outline of this paper is as follows. In section 2, we shall provide the
basic de�nitions from logic programming and recursion theory that we will
need to state our results. In section 3, we shall give our correspondence between
the well-founded semantics of �nite predicate logic programs and the Cantor-
Bendixson derivative of �0

1 classes. In section 4, we shall derive index set
results for logic programs for which the well-founded semantics is especially
simple.
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2 Basic De�nitions

In this section, we shall provide the basic de�nitions of the stable and well-
founded semantics as well as give precise de�nitions of recursive and recursively
enumerable (r.e.) programs. We shall also give some basic de�nitions from
recursion theory and state some key complexity results due to Cenzer and
Remmel [CR98] which will be used to prove our main results.

2.1 De�nitions of Stable and Well-founded Semantics

A logic programming clause is a construct of the form

C = p q1; : : : ; qm;: r1; : : : ;: rn (1)

where p; q1; : : : ; qm; r1; : : : ; rn are atomic formulas in L. Then p is called the
head of C and will be denoted by head(C), fq1; : : : ; qng is called the positive
body of C and will be denoted by PosBody(C), and fr1; : : : ; rng is called
the negative body of C and will be denoted by NegBody(C). C is called a
Horn clause if NegBody(C) = ;. A ground atom is an atomic formula without
variables and a ground instance of C is a substitution instance of C which has
no free variables.

A �nite predicate logic program is a �nite set of clauses of the form (1).
We let ground(P ) denote the set of all ground instances of clauses in P . The
Herbrand base of P , H(P ), is the set of all ground instances of atoms that
appear in P . We say that a set of atoms M � H(P ) is a model of a clause
C 2 ground(P ) if either M does not satisfy the body of C or M satis�es the
head of C (or both). M is said to be a model of a logic program P if M is
a model of each of the clauses of ground(P ). P is said to a Horn program if
all its clauses are Horn clauses. A Horn program P always has a least model
LM(P ). It is constructed by iterating the one-step provability operator TP for
ground(P ). That is, given a set I of atoms, we let TP (I) = fp : 9C = p  
a1; : : : ; an 2 ground(P ) : a1; : : : ; an 2 Ig. Then the least model of P , LM(P ),
equals TP "! (;) =

S
n�1 T

n
P (;).

Next assume P is a logic program with negated atoms in the body of
some of its clauses. Then following [GL88], we de�ne the stable models of P
as follows. Assume M � H(P ). The Gelfond-Lifschitz reduct of ground(P )
by M is a Horn program arising from P by �rst eliminating those clauses
in ground(P ) which contain : r with r 2 M . In the remaining clauses, we
drop all negative literals from the body. The resulting program GLM (P ) is
a propositional logic Horn program. We call M a stable model of P if M is
the least model of GLM (P ). For a Horn program P , there is a unique stable
model, namely, the least model of P .

Assume that we are given a �nite predicate logic program P . We let 2H(p)

denote the set of all subsets of H(P ) and for any set M � H(P ), let M =
H(P )�M . Then we de�ne the operator AP : 2H(P ) ! 2H(P ) by

AP (M) = LM(GLM (P )): (2)
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It is well known that AP is anti-monotone, i.e., S � T implies AP (T ) � AP (S).
Thus the operator UP = A2

P is monotone. Also the operator VP de�ned by

VP (M) = UP (M) (3)

is monotone. Next we de�ne U�
P and V �

P for any ordinal � by

U0
p (M) =M; V 0

p (M) =M;

U�+1
p (M) = UP (U

�
P (M)); V �+1

p (M) = VP (V
�
P (M));

U�
p (M) =

[
�<�

U�
P (M)); andV �

p (M) =
[
�<�

V �
P (M)) for � a limit ordinal.

It follows from the Knaster-Tarski Theorem [T55] that both UP and VP must
have least �xed points. Then we can de�ne the set of atoms that are true under
the well-founded semantics to be Twfs(P ) = lpf(UP ) and the set of atoms
which are false under the well-founded semantics to be Fwfs(P ) = lfp(VP ). It

is also not di�cult to see that Fwfs(P ) = AP (Twfs(P )):
Van Gelder [V89,V93] gave the following alternating �xed point algorithm

to compute the well-founded semantics which inductively de�nes sets F�(P )
and T�(P ) for all ordinals �. We say that an ordinal � is an even ordinal if
� = � + 2n where � is either 0 or a limit ordinal and n 2 ! and � is an odd
ordinal if � = �+ 2n+ 1 where � is either 0 or a limit ordinal and n 2 !.

Algorithm
F0(P ) := ; and T0(P ) := AP (F0) = LM(GLH(P )(P )).

F�+1(P ) = T� and T�+1(P ) = AP (F�+1(P )) = LM(GL
F�+1(P )

(P )).

For � a limit ordinal,
F�(P ) =

S
�<�;� even F�(P ) and T�(P ) = AP (F�(P )) = LM(GL

F�(P )
(P )).

Then Fwfs(P ) = F�(P ) and Twfs = T�(P ) where � is the least ordinal such
that F�(P ) = F�+1(P ).

Here is an example of the algorithm which was given by Van Gelder [V93].

Example 1 Let the Herbrand base H = fa; b; c; d; e; f; g; h; ig and let the pro-
gram P be given by the following clauses.

a c;:b; b :a; c; d h;
d e;:f ; d f;:g; e d;
f  e; f  :c i c;:d
Then removing all clauses with negations, GLH(P ) has the clauses
c; d h; e d; f  e
Thus T1(P ) = fcg. Then GLT1(P ) has the additional clauses
a c; b; d e; d f ; i c
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Thus T2(P ) = fa; b; c; ig. Now we lose the �rst two clauses above, so that
T3(P ) = fc; ig.

But this means that GLT3(P ) = GLT1(P ), so that T4(P ) = T2(P ), T5(P ) =
T3(P ) and so on.

Hence the alternating �xed point has positive facts Twfs(P ) = fc; ig and
negative facts Fwfs(P ) = fd; e; f; g; hg.

We will be most interested in the \even" stages of the alternating �xed
point construction. Note that it is easy to see that for all �,

F�+2(P ) = T�+1(P ) = AP (F�+1(P ))

= AP (T�(P )) = AP (AP ((F�(P ))) = VP (F�(P )) and

T�+2(P ) = AP (F�+2(P )) = AP (T�+1(P ))

= AP (AP (F�+1(P ))) = AP (AP (T�(P )) = UP (T�(P )):

Thus for n �nite and � a limit ordinal, F2n(P ) = V n
P (;), F�(P ) = V �

P (;),
and F�+2n(P ) = V �+n

P (;). Similarly, T2n(P ) = Un
P (T0(P )), T�(P ) = U�

P (T0(P )),

and T�+2n(P ) = U�+n
P (T0(P )).

Remark: For any �nite predicate logic program P , let Horn(P ) denote the
set of Horn clauses in ground(P ). It follows that GLH(P )(P ) = Horn(P ).
Thus T0(P ) = LM(Horn(P )). It is easy to see that T0(P ) is contained in
LM(GLS(P )) for any S � H(P ) and hence T0(P ) must be a subset of UP (S)
for any S. Thus the least �xed point of UP can be found by iterating UP
through the ordinals starting at T0(P ) rather than starting with the empty
set.

Then we have the following.

Proposition 1 Let P be any �nite logic program.

(a) For any even ordinals � and �, if � < �, then T�(P ) � T�(P ) and
F�(P ) � F�(P ).

(b) For any odd ordinals � and �, if � < �, then T�(P ) � T�(P ) and
F�(P ) � F�(P ).

(c) For any even ordinal � and any odd ordinal �, T�(P ) � T�(P ) and
F�(P ) � F�(P ).

(d) For any stable model M of P , any even ordinal � and any odd ordinal �,
T�(P ) �M � T�(M) and F�(P ) �M � F�(M).

Proof Part (a) follows from the monotonicity of the operators UP and VP and
the fact that F0 = ;. Part (b) follows from part (a) since AP is anti-monotone.

For part(c), note that F0(P ) = ; � F�(P ) for any odd �. Moreover, by our
remark preceding the Proposition, T0(P ) � T�(P ) for all � so that F�+1(P ) =
T�(P ) � T0(P ) = F1(P ) for all �. Since AP is antimontone, AP (T�(P )) =
T�+1(P ) � AP (T0(P )) = T1(P ). Thus for all even ordinals � which are not
limit ordinals, T�(P ) � T1(P ). Now suppose that � is a limit ordinal and for
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all even � < �, T�(P ) � T1(P ). Then T�(P ) =
S
�<�;� even T�(P ) � T1(P ).

Thus we can establish by induction that for all even �, T�(P ) � T1(P ).

We now proceed by induction. That is, assume that for � even, F�(P ) �
F�(P ) and T�(P ) � T�(P ) for all odd �. Then since UP and VP are monotone,

F�+2(P ) = VP (F�(P )) � VP (F�(P )) = F�+2(P )

and

T�+2(P ) = UP (T�(P )) � UP (T�(P )) = T�+2(P )

for all odd �. But since F�+2(P ) � F1(P ) and T�+2(P ) � T1(P ), we have that
F�+2(P ) � F�(P ) and T�+2(P ) � T�(P ) for all odd �. Now suppose � is a
limit ordinal and for all even ordinals � which are less than �, F�(P ) � F�(P )
and T�(P ) � T�(P ) for all odd �. Then clearly, F�(P ) =

S
�<�;� even F�(P )

is a subset of F�(P ) for all odd � and T�(P ) =
S
�<�;� even T�(P ) is a subset

of T�(P ) for all odd �.

For part (d), let M be a stable model of P , that is, M = AP (M). Now by
our remark preceding the proposition, T0(P ) �M . Since AP is antimontone,
we have thatM = AP (M) � AP (T0(P )) = T1(P ). Thus we have that T0(P ) �
M � T1(P ). Similarly, we have F0(P ) = ; � M � T0(P ) = F1(P ). We now
proceed by induction. That is, suppose � is even and T�(P ) �M � T�+1(P )
and F�(P ) � M � F�+1(P ). Then since UP is monotone and UP (M) = M ,
we have that T�+2(P ) � M � T�+3(P ). Similarly, since VP is monotone
and VP (M) = M , then F�+2(P ) � M � F�+3(P ). Next suppose that � is a
limit ordinal and F�(P ) � M and T�(P ) � M for all even ordinals � which
are less than �. Then F�(P ) =

S
�<�;� even F�(P ) is contained in M and

T�(P ) =
S
�<�;� even T�(P ) is contained in M .

But then M � T�(P ) = F�+1(P ) and M = AP (M) � AP (T�(P )) =
T�+1(P ). Thus F�(P ) �M � F�+1(P ) and T�(P ) �M � T�+1(P ).

With this in mind, we let

bTwfs(P ) = \
odd�

T�(P )

and

bFwfs(P ) = \
odd�

F�(P ):

It follows that, for any stable model M of P ,

Twfs(P ) �M � bTwfs(P )
and

Fwfs(P ) �M � bFwfs(P ):
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2.2 Basic De�nitions from Recursion Theory

Let ! = f0; 1; 2; : : :g denote the set of natural numbers, let !� denote the set of
all �nite sequences from ! and let f0; 1g� denote the set of all �nite sequences
of 0s and 1s. Strings may be coded by natural numbers in the usual fashion.
Let [x; y] denote the standard pairing function 1

2 (x
2 + 2xy + y2 + 3x+ y) and

in general [x0; : : : ; xn] = [[x0; : : : ; xn�1]; xn] for all n � 2. Then a string � of
length n may be coded by c(�) = [n; [�(0); �(1); : : : ; �(n � 1)]] and we de�ne
the code of the empty sequence ; to be 0. We de�ne the canonical index of
any �nite set X = fx1 < � � � < xng � ! by can(X) = 2x1 + 2x2 + � � � + 2xn .
We de�ne can(;) = 0.

Since we are considering �nite programs over our �xed recursive language
L, we can use standard G�odel number techniques to assign code numbers to
atomic formulas and clauses. That is, we can e�ectively assign a number to
each symbol in L. Then we can think of formulas of L as sequences of natural
numbers so that the code of a formula is just the code of the sequence of
numbers associated with the symbols in the formula. Then a clause C as in
(1) can be assigned the code of the triple (x; y; z) where x is the code of the
conclusion of C, y is the canonical index of the set of codes of PosBody(C),
and z is the canonical index of the sets of codes of NegBody(C). It is then
not di�cult to verify that for any give �nite predicate logic program P , the
question of whether a given n is the code of a ground atom or a ground instance
of a clause in P is a primitive recursive predicate. The key observation to make
is that since P is �nite and the usual uni�cation algorithm is e�ective, we can
explicitly test whether a given number m is the code of a ground atom or a
ground instance of a clause in P without doing any unbounded searches. We
say that a set X of ground atoms is recursive, r.e., etc., if the corresponding
set of codes of elements of X is recursive, r.e., etc..

Given � = (�1; : : : ; �n) and � = (�1; : : : ; �k) in !�, we write � v � if �
is initial segment of �, that is, if n � k and �i = �i for i � n. For any �nite
sequence � 2 f0; 1g�, let I[�] = fx 2 2! : � v xg. For the rest of this paper,
we identify a �nite sequence � = (�1; : : : ; �n) with its code c(�). We let 0 be
the code of the empty sequence ;. Thus, when we say a set S � !� is recursive,
r.e., etc., we mean the set fc(�) : � 2 Sg is recursive, r.e., etc. A tree T is a
nonempty subset of f0; 1g� such that T is closed under initial segments. A tree
T is said to be recursively bounded if there is a recursive function g such that,
for all � 2 T and all i 2 !, if � 2 T , then �(i) � g(i). A function f : ! ! ! is an
in�nite path through T if for all n, (f(0); : : : ; f(n)) 2 T . We let [T ] denote the
set of all in�nite paths through T . A set A of functions is a �0

1 -class if there is
a recursive predicate R such that A = ff : ! ! ! : 8n(R((f(0); : : : ; f(n)))g.
It is well known that if A is a �0

1 -class, then A = [T ] for some primitive
recursive tree T � !�.

To de�ne the index sets of interest to us in this paper, we shall also use
�0
� and �0

� sets for recursive ordinals � and �1
1 or �1

1 sets. These are de�ned
as follows. (See Hinman [Hin78], p. 163� for details.) The set H of indices of
hyperarithmetic sets is �rst de�ned. Here the indices of recursive functions all
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have the form [n; a] where n � 6; we may assume that �b is the empty function
for any other b. Thus in the de�nition of the hyperarithmetic sets, we reserve
the indices of the form [7; a] to code the r.e. sets.

De�nition 1 H is the smallest subset of ! such that, for all a,

(i) [7; a] 2 H;
(ii) if �a(n) 2 H for all n, then a 2 H.

This is an inductive de�nition and thus H =
S
�H

� where � ranges over
the recursive ordinals. H is a �1

1 set and each a 2 H is assigned a hyperarith-
metic set by the following. Recall that for any e 2 !, �e is the e'th partial
recursive function mapping ! ! ! and We is the domain of �e and is the
e'th recursively enumerable. This is extended to the hyperarithmetic sets as
follows. If a =2 H, let Ha = ;.

De�nition 2 Let a 2 H. Then

(i) If a = h7; bi, then Ha =Wb

(ii) If �a is total, then Ha =
S
n ! nH�a(n).

The hyperarithmetical hierarchy is de�ned as follows.

De�nition 3 For all ordinals � and all A � !,

(i) A is �0
� if A = Ha for some a 2 H�;

(ii) A is �0
� if ! nA is �0

�;
(iii) �0

� = �0
� \�

0
�.

It follows that for limit ordinals �, A is �0
� if and only if A is �0

� for some
� < �.

A set A is said to be �1
1 if there is an arithmetic relation B, i.e. B is either

�0
n or �0

n for some n, such that, for all x, x 2 A () (9f 2 !!)(8n)B(x; f �

n) where f � n is the code of the n-tuple (f(0); f(1); : : : ; f(n� 1)). A set A is
�1

1 if its complement is �1
1 . A set A � ! is said to be �0

� complete if it is �0
�

and for any �0
� set B, there is a computable function ' such that, for any n,

n 2 B () �(n) 2 A. �0
� complete, �1

1 complete, and �1
1 complete sets are

de�ned similarly. A subset A of ! is said to be Dm
n if it is the di�erence of two

�m
n sets and A is said to be Dm

n complete if A is Dm
n and for any Dm

n set B,
there is a computable function ' such that, for any n, n 2 B () �(n) 2 A.

Since �nite strings � may be coded by natural numbers c(�), this also gives
us de�nitions for �0

� sets of strings and for trees, and similarly for the other
notions of de�nability.

To establish our connection between the well-founded semantics and the
Cantor-Bendixson derivative, we consider index sets for recursively bounded
strong�0

�+1 binary classes and also index sets for the cardinality of the Cantor-
Bendixson derivatives. For any recursive ordinal �, a recursively bounded
strong �0

�+1 class is a set of in�nite paths through a �0
� binary tree. These

problems were �rst studied in the context of Polish spaces by Kuratowski, see
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[Kur70], where the Cantor-Bendixson derivative is viewed as a mapping from
the space of compact subsets of f0; 1g! to itself. Kuratowski showed that the
derivative is a Borel map of class exactly two. In particular, he showed that
the family D�1(f;g) of �nite closed sets is a universal �0

2
class and posed

the problem of determining the exact Borel class of the iterated operator D�.
Cenzer and Mauldin showed in [C82] that the iterated operator Dn is of Borel
class exactly 2n for �nite n and that for any limit ordinal � and any �nite n,
D�+n is of Borel class exactly � + 2n + 1. In particular it is shown that for
any �, the family T� of closed sets K such that D�(K) = ; is a universal �0

2�

set. Lempp gave e�ective versions of this result in [L87].
Here is an example of a non-trivial e�ectively closed set of rank one.

Example 2 Let B be any in�nite subset of ! and let Q = f0!g [ f0n1! :
n 2 Bg. This is a closed set and D(Q) = f0!g. If B = ! n A, where A is a
recursively enumerable set, then Q will be a �0

1 class. To see this, let As be
the elements enumerated into A by stage s and de�ne the computable tree
T = f0n : n 2 !g[ f0n1sn =2 Asg. We observe that, for each n, Q\ I[0n1] 6= ;
if and only if n =2 A. It follows that Q is a decidable �0

1 class if and only if A
is recursive.

Example 3 One can modify the example above by letting Q1 = f0n : n 2
!g [ f0n1! : n 2 !g [ f0n1k+10! : n 2 Bg, so that D(Q1) = Q. Then we can
say that 0n1! 2 D(Q1) if and only if n 2 B, so that this problem is �0

1 but
not recursive.

More complicated examples may be found in [CR99,CRta] to show that in
general for a �0

1 class Q, D(Q) is a �0
3 class and need not be �0

3. In general
the set of isolated points will be �0

3 . That is, x is isolated in a �
0
1 class Q = [T ]

if and only if there exists n such that x is the only element of Q \ I[x � n],
which is to say that for any extension � of x � n other than x � j�j, � has
only �nitely many extensions in the tree T , which is to say that there exists
m such that � has no extensions of length m.

Recall that T0; T1; : : : is an e�ective list of all primitive recursive trees
contained in f0; 1g� so that [T0]; [T1]; : : : is an e�ective list of all �0

1 classes.
We can relativize the notions of �0

� and �0
� sets and our enumeration of

trees for any oracle X. For example, we let �Xe be the e-th function primitive
recursive relative to the oracleX and TXe = f;g[f� : (8� � �)(�Xe (h�i) = 1)g.
Then for any �xed set X, we let [TX0 ]; [TX1 ]; : : : enumerate the binary classes
which are�0

1 inX. For any propertyR, let IXP (R) = fe : [TXe ] has propertyRg.
Similarly if a set is �0

� relative to the oracle X, we shall say that it is a �0;X
�

set. The following result was proved by Cenzer and Remmel [CR98].

Theorem 1 For any set X,

1. fe : [TXe ] is emptyg is �0;X
1 complete,

2. fe : [TXe ] has cardinality 1g is �0;X
2 complete.

3. For any integer c > 0, fe : [TXe ] has cardinality > cg is �0;X
2 complete

and fe : [TXe ] has cardinality c+ 1g is D0;X
2 complete.
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4. fe : [TXe ] �niteg is �0;X
3 complete. ut

To classify index sets connected with the trans�nite Cantor-Bendixson deriva-
tives of �0

1 classes, Cenzer and Remmel [CR98] established a correspondence
between the �0

2�+1 classes and the �-th Cantor-Bendixson derivatives of �0
1

classes. When � = �+n for a limit ordinal � and �nite n, de�ne 2� = �+2n,
2�+1 = �+2n+1, and 2�� 1 = �. Note that for limit ordinals �, we follow
the convention that a set is �0

� if and only if it is �0
� for some � < � and is

�0
�+1 if it is an e�ective union of sets which are all �0

�.
Cenzer and Remmel [CR98] proved the following.

Theorem 2 For any computable ordinal �

1. fe : D�([Te]) is emptyg is �0
2�+1 complete and

fe : D�([Te]) is nonemptyg is �0
2�+1 complete.

2. fe : card(D�([Te])) = 1g is �0
2�+1 complete.

3. For any positive integer c, fe : card(D�([Te])) � cg is �0
2�+2 complete and

fe : card(D�([Te])) > cg is �0
2�+2 complete.

4. fe : D�([Te]) is in�niteg is �0
2�+3 complete and

fe : D�([Te]) is �niteg is �0
2�+3 complete.

Theorem 3 The following index sets are all �1
1 complete:

1. fe : K[Te] is countableg = fe : K([Te]) is emptyg.
2. fe : K([Te]) is �

1
1g = fe : K([Te]) is �

1
1g.

3. fe : K([Te]) is recursiveg.

Theorem 4 There is a �0
1 class Q such that

1. rk(Q) = !C-K1

2. f� : I[�] \K(Q) = ;g is �1
1 complete.

3 The Cantor-Bendixson Derivative and the Well-Founded
Semantics

In this section, we shall de�ne a simple �nite predicate logic program Pe for
each primitive recursive tree Te such that for all n � 0 and � which is either
a recursive limit ordinal or 0,

T�+2n(Pe) = f� 2 f0; 1g
� : I[�] \D�+n([Te]) = ;g:

This shows that there is a simple connection between the construction of a
perfect kernel of �0

1 classes and Van Gelder's alternating �xed point construc-
tion of the well-founded semantics of �nite predicate logic programs. We shall
then use the correspondence Te ! Pe to derive some new index set results
for the well-founded semantics by transferring the index set results given in
section 2.
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We shall de�ne a function f : ! ! ! by uniformly constructing a �nite
predicate logic program Pe = LPf(e) depending on Te. The underlying lan-

guage of Pe will contain constant symbols ; and ; and function symbols L,
R, L and R. Here we think of ; as the empty sequence and L and R are two
successor functions which may be interpreted as adding 0 or 1 to the end of
a sequence. Thus the ground term involving ;, L and R can be identi�ed the
set of � 2 f0; 1g�. We think of ;, R, and L as giving us as second copy of
f0; 1g� so that we shall identify those terms with the set of � such � 2 f0; 1g�.
In addition, we shall use unary relation symbols seq and seq, where seq(x)
indicates that x is a sequence built up from ; by some applications of L and
R, that is, x represents a member of f0; 1g�. Similarly seq(x) indicates that x
is a term in the language generated by ;; L;R. We shall also have a binary re-
lation Bar(x; y) which is intended to hold if and only x is a term representing
some � 2 f0; 1g� and y is the term representing some �. This is accomplished
by including the following clauses in Pe.

(A) seq(;) (B) seq(;) 

(C) seq(L(x)) seq(x) (D) seq(R(x)) seq(x)

(E) seq(L(x)) seq(x) (F )seq(R(x)) seq(x)

(G) Bar(;; ;)

(H) Bar(L(x); L(y)) Bar(x; y) (I) Bar(R(x); R(y)) Bar(x; y)

We shall also need a ternary relation Con(x; y; z) which indicates that z rep-
resents the concatenation of x with y. This is only needed for elements of seq
and is de�ned by the following clauses as follows.

(J) Con(x; ;; x)

(K) Con(x; L(y); L(z)) Con(x; y; z) (L) Con(x;R(y); R(z)) Con(x; y; z)

A classical result, �rst explicit in [Sm68] and [AN78] but known a long
time earlier in equational form, is that every r.e. relation can be computed by
a suitably chosen predicate over the least model of a �nite Horn program. Thus
we let P�e be a �nite predicate Horn program such that the least �xed point
of Pe consists of the set of NT (x) such that seq(x) and x =2 Te. Finally, we
introduce a new predicate In which is designed to capture the perfect kernel
of Te and de�ne the �nite predicate logic program Pe = LPf(e) to consist of
P�e plus clauses (A)-(L) plus the following set of clauses.

(1) In(x) NT (x)

(2) In(x) seq(x); In(L(x)); In(R(x))

(3) In(w) seq(w); Bar(x;w); seq(x); seq(y); Con(x; y; z);:In(L(z));

:In(R(z))

(4) In(x) seq(x); seq(y); Bar(x; y);:In(y)
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Let U = H(Pe) denote the Herbrand base of Pe. The intended stable model
M of Pe consists of

In = fIn(�) : I(�) \K([Te]) = ;g [ fIn(�) : I[�] \K([Te]) 6= ;g

together with the predicates seq, seq, Bar, Con, and NT as de�ned above.
Note that these latter predicates are all de�ned by a Horn program. It follows
that for any S � U , GLS(Pe) always contains all the Horn clauses de�ning the
predicates seq(x); seq(x); Bar(x; y); Con(x; y; z) and NT (x). Thus these pred-
icates will always behave as expected in LM(GLS(Pe)). Thus the key clauses
are the ones that involve the predicate In which can always be reduced to the
following set of clauses when computing LM(GLM (Pe)).

(a) In(�) for � =2 Te,
(b) In(�) In(�_0); In(�_1) for all �; � 2 f0; 1g�,
(c) In(�)  for all � 2 f0; 1g� such that there exists a � 2 f0; 1g� such
that In(�_�_0) and In(�_�_1) are both not in M , and
(d) In(�) for all � such that In(�) =2M .

If In(�) 2 M , then by our de�nition of M , In(�) =2 M so that In(�) 2
LM(GLM (Pe)) by rule (d). If In(�) 2 M , then � has an in�nite extension
x 2 K([Te]). Thus since K([Te]) is perfect, there exists � such that both
�_�_0 and �_�_1 both have in�nite extensions in K([Te]). It follows that
both In(�_�_0) and In(�_�_1) are not in M , so that � 2 LM(GLM (Pe))
by clause (c). Thus M � LM(GLM (Pe)).

On the other hand, if In(�) 2 LM(GLM (Pe)), then we can argue by
induction on the length of the derivation of In(�) from the one-step provability
operator associated withGLM (Pe) that In(�) 2M . That is, if In(�) is derived
via a clause of type (a), then � =2 Te, so certainly In(�) 2M . If In(�) is derived
by a clause (b), then by induction both In(�_0) and In(�_1) are in M , so
that

I[�] \K([Te]) = (I[�_0] \K([Te])) [ (I[�
_1] \K([Te]) = ;;

and therefore In(�) 2 M . If In(�) comes in by clause (d), then In(�) =2 M ,
so that In(�) 2 M . Finally, if In(�) 2 LM(GLM (Pe)), then, for some � 2
f0; 1g�, In(�_�_0); In(�_�_1) =2M . But then I[�]\K([Te]) � I[�_�_0]\
K([Te]) 6= ; so that In(�) 2M . Thus LM(GLM (Pe)) �M and hence M is a
stable model.

For the program P given by the tree from Example 2, we see that T0(P )\In
contains all � which are not in f0n : n 2 !g [ f0n1k : n 2 Bg and does not
contain any �. That is, T0(P ) \ In = f� : I[�] \ P 6= ;g.

It follows from clause (d) above that T1 = GLM (P ), where M = T0(P ),
will contain In(�) for all � together with In(�) for all � of the form 0n. The
latter is true since for each n, there is some m such that both 0n+m1 and
0n+m0 are in our tree T .

SinceD(Q) = f0!g, the strings of the form 0n are exactly those which more
than one extension in D(Q). Thus F2(P ) \ In = f� : card(I[�] \ P ) � 1g.
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Computing GLM (P ) for M = T1(P ), we see that T2(P ) contains In(�)
for all � not of the form 0n (by clause (d)) and contains no In(�).

It then follows that T3(P ) = fIn(�) : � 2 f0; 1g
�g. Every In(�) is in T3(P )

since no In(�) is in T2(P ) and no In(�) is in T3(P ) since T2(P ) contains
In(�_�_1) for every � and � .

It is then easy to see that T4(P ) = T3(P ) and this is the �xed point
Twfs(P ) of the alternating semantics. Since D2(P ) = ;, we have In\T4(P ) =
fIn(�) : I[�] \D2(P ) = ;g.

The main result of this paper is the following.

Theorem 5 For all e, all �nite n, and � either a recursive limit ordinal or 0,

In \ T�+2n(Pe) = fIn(�) : I[�] \D
�+n([Te]) = ;g; (4)

In \ F�+2n+2(Pe) = fIn(�) : card(I[�] \D
�+n([Te])) � 1g and (5)

In \ F�(Pe) = fIn(�) : I[�] \D
�([Te]) = ;g if � > 0: (6)

Proof We observed above that for any S � U = H(Pe), GLS(Pe) always con-
tains all the Horn clauses de�ning the predicates seq(x); seq(x); Bar(x; y); Con(x; y; z)
andNT (x). Thus these predicates will always behave as expected in LM(GLS(Pe)).
It follows that in computing LM(GLS(Pe)), the clauses (1)-(4) concerning the
predicate In(�) are equivalent to the following clauses:

(i) In(�) for � =2 Te,
(ii) In(�) In(�_0); In(�_1) for all �; � 2 f0; 1g�,
(iii) In(�) :In(�_�_0);:In(�_�_1) for all �; � 2 f0; 1g�, and
(iv) In(�) :In(�) for all � 2 f0; 1g�.

Fix e and consider the levels of F�(Pe) and T�(Pe). Note that among the
clauses (i) � (iv), GLU (Pe) has only the Horn clauses (i) and (ii). Now if
I[�] \ [Te] = ;, then by K�onig's Lemma, the set of � 2 Te which extend � is
�nite so that we will be able to derive � by repeated use of the clauses in (i)
and (ii). It is easy to see that if I[�] \ [Te] 6= ;, then one can not use clauses
(i) and (ii) to derive In(�). Thus for T0(Pe) = LM(GLU (Pe)), we have

In \ T0(Pe) = fIn(�) : I[�] \ [Te] = ;g

which establishes the base case for (4).
Next consider T1(Pe). Among the clauses (i)� (iv), GLT0(Pe)(Pe) consists

of the Horn clauses (i) and (ii) together with the following two families of
clauses. First there are clauses In(�)  for all � such that for some � both
I[�_�_0] and I[�_�_1] meet [Te], that is, if card(I[�] \ [Te]) � 2. Second,
there are clauses In(�) for all � such that In(�) =2 T0(Pe), which is to say
for all � 2 f0; 1g�. Thus

In \ T1(Pe) = In \ LM(GLT0(Pe)(Pe)) =

fIn(�) : � 2 f0; 1g�g [ fIn(�) : card(I[�] \ [Te]) � 2g:
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This means that

In \ F2(Pe) = fIn(�); In(�) : � 2 f0; 1g
�g � (In \ LM(GLT0(Pe)(Pe)))

= fIn(�) : card(I[�] \ [Te]) � 1g:

This establishes the base case for (5).
Next we observe that (6) follows by induction and compactness. That is,

suppose that � is a limit ordinal. Then since D�(Q) =
T
�<�D�(Q) and

2! is compact, it follows that for any closed set Q � 2! and any � 2 2!,
I[�] \ (D�(Q)) = ; if and only if there is some � < � such that card(I[�] \
D�(Q)) � 1 if and only if there is some ordinal � < �, which is either a limit
ordinal or 0, and some n 2 !, card(I[�] \D�+2n+2(Q)) � 1. But then

In \ F�(Pe) = In \

0
@ [
�<�;� a limit or 0;n�0

F�+2n(Pe)

1
A

= In \

0
@ [
�<�;� a limit or 0;n�0

F�+2n+2(Pe)

1
A

=
[

�<�;� a limit or 0;n�0

(In \ F�+2n+2(Pe))

=
[

�<�;� a limit or 0;n�0

fIn[�] : card(I[�] \D�+n([Te])) � 1g

= fIn[�] : I[�] \D�([Te]) = ;g:

Here the second equality holds because F�+2n(Pe) � F�+2n+2(Pe) by part (a)
of Proposition 1.

Similarly, we can use induction to prove the special case of (4) when � is
a limit ordinal and n = 0. That is,

In \ T�(Pe) = In \

0
@ [
�<�;� a limit or 0;n�0

T�+2n(Pe)

1
A

=
[

�<�;� a limit or 0;n�0

(In \ T�+2n(Pe))

=
[

�<�;� a limit or 0;n�0

fIn(�) : I[�] \D�+n([Te])) = ;g

= fIn(�) : I[�] \D�([Te]) = ;g:

Next assume that � is a limit ordinal and that for all � 2 f0; 1g�, In(�) =2
F�(Pe) and In(�) 2 F�(Pe) () I[�]\D�([Te]) = ;. Then for all � 2 f0; 1g�,
In(�) 2 F�(Pe) and In(�) 2 F�(Pe) () I[�] \D�([Te]) 6= ;. Hence among
the clauses (i)-(iv), GL

F�(Pe)
(Pe) contains the clauses (i) and (ii) plus the set

clauses In(�) such that I[�]\D�([Te]) = ;. But it is easy to see that if both
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I[�_0]\D�([Te]) = ; and I[�
_1]\D�([Te]) = ;, then I[�]\D

�([Te]) = ; so
that

In \ T�(Pe) = In \ LM(GL
F�(Pe)

(Pe)) = fIn(�) : I[�] \D
�([Te]) = ;g:

Then among the clauses (i)-(iv), GLT�(Pe)(Pe) contains the clauses (i) and (ii)
plus all clauses of the from In(�) for � 2 f0; 1g� plus all clauses of the form
In(�)  such that there exists a � such that In(�_�_0) and IN(�_�_1)
are not in T�(Pe). But if In(�

_�_0) and In(�_�_1) are not in T�(Pe), then
I[�_�_0]\D�([Te]) 6= ; and I[�

_�_1]\D�([Te]) 6= ; which is equivalent to
saying that card(I[�] \D�([Te])) � 2. Thus

In \ T�+1(Pe) = fIn(�) : � 2 f0; 1g
�g [ fIn(�) : card(I[�] \D�([Te])) � 2g:

Hence In \ F�+2(Pe) = fIn(�) : card(I[�] \D
�([Te]) � 1g.

Finally suppose that for n � 1,

In \ F�+2n(Pe) = fIn(�) : card(I[�] \D
�+n�1([Te])) � 1g:

Then among the clauses (i)-(iv), GL
F�+2n(Pe)

(Pe) consists of the clauses (i)

and (ii) for all � 2 f0; 1g� and the clause In(�)  for all � 2 f0; 1g� such
that I[�] \D�+n�1([Te]) � 1g. It follows that

In\T�+2n(Pe) = In\LM(GL
F�+2n(Pe)

) = fIn(�) : I[�]\D�+n�1([Te]) is �niteg;

which equals fIn(�) : I[�]\D�+n([Te]) is emptyg as desired. But then among
the clauses (i)-(iv), GLT�+2n(Pe)(Pe) consists of clauses (i) and (ii) for all � 2
f0; 1g� plus the clauses In(�) for all � 2 f0; 1g� plus the clauses In(�) 
for all � 2 f0; 1g� such that there exists a � such that both I[�_�_0] and
I[�_�_1] meet D�+n([Te]), which is to say that card(I[�] \D�+n([Te]) � 2.
Thus for all � 2 f0; 1g�, In(�) 2 LM(GLT�+2n(Pe)) and

In(�) 2 LM(GLT�+2n(Pe)(Pe)) () card(I[�] \D�+n([Te])) � 2g:

Since F�+2n+2 = U � LM(GLT�(Pe)(Pe)), it follows that

In \ F�+2n+2 = fIn(�) : card(I[�] \D
�+n([Te])) � 1g;

as desired. This completes the inductive proof of (4) and (5).

We then have the following corollary.

Corollary 1 For all e,

In \ Twfs(Pe) = fIn(�) : I[�] \K([Te]) = ;g and (7)

In \ Fwfs(Pe) = fIn(�) : I[�] \K([Te]) = ;g: (8)
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Proof First by Theorem 5, we have that

In \ Twfs(Pe) =
[

� a limit;n�0

In \ T�+2n(Pe)

=
[

� a limit;n�0

fIn(�) : I[�] \D�+n([Te]) = ;g

= fIn(�) : I[�] \K([Te]) = ;g:

Similarly,

In \ Fwfs(Pe) =
[

� a limit;n�0

In \ F�+2n(Pe)

=
[

� a limit;n�0

In \ F�+2n+2(Pe)

=
[

� a limit;n�0

fIn(�) : card(I[�] \D�+n([Te]) � 1g

= fIn(�) : I[�] \K([Te]) = ;g:

In the following theorem, we consider the arithmetical complexity of sub-
sets of ! � !. Here we identify each ground atom over the recursive language
L with its code. Thus an M � H(P ) can be thought of as a set of natural
numbers.

Theorem 6 Let Te;� = T�(Pe) and Fe;� = F�(Pe) be the sequence of sets
de�ned in the alternating �xpoint algorithm to compute the well-founded se-
mantics for the �nite predicate logic program Pe constructed from the primitive
recursive tree Te. Then for any �nite n and any � which is either 0 or a re-
cursive limit ordinal,

1. fhe; pi : p 2 Te;�+2ng is a �0
�+2n+1 complete set,

2. fhe; pi : p 2 Fe;�+2n+1g is a �0
�+2n+1 complete set,

3. fhe; pi : p 2 Fe;�+2n+2g is �
0
�+2n+2 a complete set, and

4. fhe; pi : p 2 Te;�+2n+1g is �
0
�+2n+2 a complete set.

Proof Note that (2) follows from (1) since F�+2n+1(Pe) = U �T�+2n(Pe) and
(4) follows from (3) since F�+2n+2(Pe) = U � T�+2n+1(Pe).

Note that T0(Pe) = LM(Horn(Pe)) is�
0
1 . In general, the operatorAPe(M) =

LM(GLM (Pe)) is �
0
1 inM so that UPe(M) = APe(APe(M)) is �0

2 inM . Sim-
ilarly, the operator VP (M) is �0

2 in M .
This allows us to prove that for all n � 0 T2n is �0

2n+1 and F2n+2 is
�0

2n+2 and that for all recursive limit ordinals �, T�+2n(Pe) is ��+2n+1 and
F�+2n+2(Pe) is ��+2n+2 uniformly in e.

That is, if � is a recursive limit ordinal, then

T�(Pe) =
[

�<�;� even
T�(Pe)
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and
F�(Pe) =

[
�<�;� even

F�(Pe)

are�0
�+1 by standard inductive de�nability results in [Hin78]. But then T�+1(Pe)

is�0
�+2 and F�+2(Pe) is�

0
�+2. Finally if T�+2n(Pe) is�

0
�+2n+1, then T�+2n+2(Pe) =

UPe(T�+2n) is�
0
�+2n+3. Similarly, if F�+2n(Pe) is�

0
�+2n+1, then F�+2n+2(Pe) =

VPe(F�+2n) is �
0
�+2n+3.

The completeness results follows from Theorems 2 and 5. We will illustrate
the proof for in�nite ordinals. By the proof of Theorem 5, there is a recursive
function f such that the program Pe corresponding to tree Te in Theorem 5
is LPf(e). Then for any recursive limit ordinal � and any �nite n,

I[;] \D�+n([Te]) = ; () D�+n([Te]) = ;:

By Theorem 2, this is a �0
�+2n+1 complete relation on e. But then by Theorem

5,
D�+n([Te]) = ; () In(;) 2 T�+2n(LPf(e)):

This reduction demonstrates that f(e; p) : p 2 T�+2n(Pe)g is ��+2n+1 com-
plete. Similarly we have

card(D�+n([Te])) � 1 () In(;) 2 F�+2n+2(LPf(e));

which shows that f(e; p) : p 2 F�+2n+1(Pe)g is ��+2n+2 complete.

We next apply Theorem 3 and Theorem 5 to derive the following index set
results for the well-founded semantics.

Theorem 7 Let R be any in�nite and coin�nite recursive subset of U . Then
the following index sets are all �1

1 complete:

(i) fe : Twfs(LPe) is recursiveg
(ii) fe : R � Twfs(LPe)g, and
(iii) fe : Twfs(LPe) is �

1
1g.

Proof The upper bound on the complexity follows from the fact that Twfs(LPe)
can be obtained from the closure of a �0

2 monotone inductive operator. There-
fore Twfs(LPe) is �

1
1 if and only if there exists a countable � such that the

inductive operator closes at stage � and, hence, T�(LPe) = T�+2(LPe) and
F�(LPe) = F�+2(LPe). This is a �

1
1 condition by the Stage Comparison The-

orem [Hin78], p. 105.
It follows from the proof of Theorem 5 that there is a 1:1 recursive function

f such that the program Pe corresponding to the primitive recursive tree Te
is LPf(e). Since

Twfs(LPf(e)) = fIn(�) : I[�] \K([Te]) = ;g;

it is easy to see that K([Te]) is recursive (�1
1) if and only if Twfs(LPf(e)) is

recursive (�1
1). Hence f shows that fe : K([Te]) is recursiveg is 1:1 reducible
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to fe : Twfs(LPe) is recursiveg and fe : K([Te]) is �1
1g is 1:1 reducible to

fe : Twfs(LPe) is �
1
1g. Thus the �

1
1 -completeness for parts (i) and (iii) follow

from Theorem 3. For the �1
1 -completeness of part (ii), note that K([Te]) = ; if

and only if In(�) 2 Twfs(LPf(e)) for all � 2 f0; 1g
�. Thus again we can use the

fact that fe : K([Te]) = ;g is �
1
1 complete to establish the �1

1 completeness of
part (ii) in the case where R is the recursive set of codes of all In(�) such that
� 2 f0; 1g�. But given, any recursive set R which is in�nite and coin�nite, we
can construct a coding scheme such that R equals the set of codes of all In(�)
such that � 2 f0; 1g�.

By combining Theorem with Theorem 5, we obtain the following result
which is essentially due to Schlipf [S95].

Theorem 8 There is a �nite predicate logic program P such that the least
ordinal � such that U�

P (;) = U�+1
P (;) is !C-K1 and Twfs(P ) is a �1

1 complete
set.

4 Index sets for logic programs with simple well-founded semantics

In this section, we will derive a number of index sets results for �nite predicate
logic programs whose well-founded semantics is extremely simple. First we
consider the problem of classifying the index sets for the properties of having
Twfs(LPe) and/or bTwfs(LPe) be empty.

Theorem 9 fe : T0(LPe) = T1(LPe) = ;g = fe : bTwfs(LPe) = ;g is recur-
sive.

Proof Observe that for any �nite predicate logic program P ,

T0(P ) � Twfs(P ) � bTwfs(P ) � T1(P ):

so that if T1(P ) = ;, then T0(P ) = Twfs(P ) = bTwfs(P ) = ;.
First assume that T0(LPe) = T1(LPe) = ;. Now T0(LPe) = LM(GLH(LPe)(LPe)) =

; if and only if there are no Horn clauses in LPe, that is, the �nite program LPe
has no clauses whose negative body is empty. This is clearly a recursive condi-
tion. But if T0(LPe) = ;, then T1(LPe) = LM(GL;(LPe)). Thus T1(LPe) = ;
if and only if LPe has no clauses whose positive body is empty which is also a
recursive condition. Thus fe : T1(LPe) = T1(LPe) = ;g is recursive. Clearly,

if T0(P ) = T1(P ) = ;, then bTwfs(P ) = ;.
Next suppose that bTwfs(P ) = ;. Then we know that Twfs(P ) = ; so

that T�(P ) = ; for all even �. We claim that this condition forces T1(P ) =
;. That is, suppose for a contradiction, T1(P ) = LM(GL;(P )) = A 6= ;.
Then F2(P ) = A and T2(P ) = LM(GLA(P )) = ;. But then F3(P ) = H(P ),
and T3(P ) = LM(GL;(P )) = A. It is then easy to prove by induction that
T�(P ) = ; if � is even and T�(P ) = A is � is odd which would imply thatbTwfs(P ) = A contradicting our assumption that bTwfs(P ) = ;. Thus we have
shown that bTwfs(P ) = ; if and only if T0(P ) = T1(P ) = ;.
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Theorem 10 fe : Twfs(LPe) = ;g is �
0
2 complete.

Proof It is clear that Twfs(LPe) = ; if and only if T�(LPe) = ; for all even
�. THen we must have that T0(LPe) = ;. As above, T0(LPe) = ; if and only
if there are no Horn clauses in LPe which is a recursive condition. But then
GL;(LPe) is a recursive program so T1(LPe) = LM(GL;(LPe)) is an r.e. set
and, therefore, T2(LPe) = LM(GLT1(LPe)(LPe)) is a �

0
2 set. It follows that

the condition T2(LPe) = ; is now �0
2 .

For the completeness, we give a reduction to the �0
2 complete set fe :

We = !g. Let He be a �nite Horn program which contains the constant
symbol 0, the unary function symbol s, and a predicate symbol R such that
R(n) 2 lfp(He) () n 2 We. Let LPg(e) consist of the following clauses,
where b is an atom that does not occur in He:

(i) p q1; : : : ; qm;:b for each clause C = p q1; : : : ; qm of He and

(ii) b :R(x).

Note GLU (LPg(e)) is the empty program so that T0(LPg(e)) = ;. It then fol-
lows that GLT0(LPg(e))(LPg(e)) = GL;(LPg(e)) has all clauses of He, plus the
clause b . Thus T1(LPg(e)) will contain b and it will contain R(n) if and only
n 2 We. There are two cases in the determination of T2(LPg(e)). If We = !,
then GLT1(LPg(e))(LPg(e)) will be the empty program so that T2(LPg(e)) = ;.
If We 6= !, then for some n0, n0 =2 We in which case R(n0) =2 T1(LPg(e)).
Thus the clause b  is in GLT1(LPg(e))(LPg(e)). But then b 2 T2(LPg(e))
so that T2(LPg(e)) 6= ;. It follows that a 2 fe : We = !g if and only if
T0(LPg(a)) = T2(LPg(a)) = ; if and only if Twfs(LPg(a)) = ;. Hence the set
fe : Twfs(LPe) = ;g is �

0
2 -complete.

We can ask a similar questions the properties of having Fwfs(LPe) orbFwfs(LPe) be empty. Here the results are a bit di�erent.

Theorem 11 fe : F1(LPe) = ;g = fe : bFwfs(LPe) = ;g is �0
2 complete.

Proof For any �nite predicate logic program P , F1(P ) = ; if and only if
T0(P ) = LM(GLH(P )(P )) = H(P ), where H(P ) is the Herbrand base of P .
Note that GLH(P )(P ) is a recursive program so that T0(P ) is r.e. and, hence,
the predicate that T0(P ) = H(P ) is �0

2 . Thus the predicate that F1(LPe) = ;
is a �0

2 predicate. Now it is easy to see by induction, that if F1(LPe) = ;,

then F�(LPe) = ; for all �. Thus if F1(LPe) = ;, then bFwfs(LPe) = ;.
Now suppose that bFwfs(LPe) = ;. Then we claim that F1(LPe) = ;. For a

contradiction, suppose that F1(LPe) = A 6= ;. Then

T0(LPe) = LM(GLH(LPe)(LPe)) = H(LPe)�A:

But F�(LPe) � Fwfs(LPe) � bFwfs(LPe) for all even � so that we must have
that F2(LPe) = ;. This means that T1(LPe) = LM(GLH(LPe)�A(LPe)) =
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H(LPe). It is then easy to prove by induction that T�(LPe) = LM(GLH(LPe)�A(LPe)) =
H(LPe) for all odd � and T�(LPe) = LM(GLH(LPe)(LPe)) = H(LPe) � A
for all even �. This implies that F�(LPe) = A for all odd � and hencebFwfs(LPe) = A. Thus if bFwfs(LPe) = ;, then F1(LPe) = ;.

For the completeness, we again give a reduction to the �0
2 complete set

fe : We = !g. Let Ke be a Horn program with constant symbol 0, unary
predicate s, and predicateR such that, for all n,R(n) 2 lfp(Ke) () n 2We.
Note that Ke may have other predicates, but one can construct Ke so that
only ground terms are 0 and sn(0) = n.

Let h be the recursive function such that LPh(e) consists of Ke together
with the clauses

(a) Q(x1; : : : ; xk)  R(x1); R(x2); : : : ; R(xk) for all predicates Q of Ke

which are di�erent from R.

Since LPh(e) is a Horn program, it is easy to prove by induction that T�(LPh(e)) =
lfp(LPh(e)) for all �. Now suppose that We = !. Then R(n) 2 lfp(LPh(e)) for
every n 2 !. Hence the clauses in (a) will allow us to show that T0(LPh(e)) =
lfp(LPh(e)) = H((LPh(e)) and F1(LPh(e)) = ;.

Next suppose that We 6= !. Then some n0, R(n0) =2 lfp(LPh(e)) and hence
R(n0) =2 lpf(LPh(e)) so that R(n0) 2 F1(LPh(e)). Thus a 2 fe :We = !g ()
h(a) 2 fe : F1(LPe) = ;g. Hence fe : F1(LPe) = ;g is �

0
2 complete.

Theorem 12 fe : Fwfs(LPe) = ;g is �
0
3 complete.

Proof It is easy to see that Fwfs(LPe) = ; if and only if F2(LPe) = ;. Note that
T0(LPe) = LM(GLH(LPe)(LPe)) is r.e. so that T1(LPe) = LM(GLT0(LPe)(LPe))
is �0

2 . Thus F2(LPe) is a �
0
2 set. It follows that the predicate F2(LPe) = ; is

�0
3 .
For the completeness, we will reduce an arbitrary �0

3 set C to
fe : Fwfs(LPe) = ;g. Let R be a recursive predicate such that

e 2 C () (8m)(9n)(8p):R(e;m; n; p):

Let Re(m;n; p) be the predicate R(e;m; n; p) and let He be a Horn program
with predicate Re(�; �; �) such that the least model of He de�nes the predicate
Re. That is, He has a constant term 0 and a unary function symbol s, and
ternary predicate Re such that in the least model of He, Re(m;n; p) holds if
and only if Re(m;n; p) holds. Note that He may have other predicates, but
one can construct He so that only ground terms are 0 and sn(0) = n. De�ne
the program Te = LPq(e) to consist of He together with the following rules
where A, and B are new predicates:

(i) B(x; y)  Re(x; y; z)
(ii) A(x)  :B(x; y)
(iii) Q(x1; : : : ; xk)  A(x1); A(x2); : : : ; A(xk) for all predicates Q of He.
(iv) B(x; y)  A(x); A(y):



Well-Founded Semantics

Then it is easy to see that, for any m and n,

B(m;n) 2 T0(LPq(e)) () (9p)Re(m;n; p):

It follows that GLT0(LPq(e))(LPq(e)) will have rules (i), (iii), and (iv) together
with rules A(m)  for all m such that (9n)(8p):R(e;m; n; p).

We claim that F2(LPq(e)) = ; if and only if e 2 C. That is, suppose that e 2
C. Then for all m, there exists an n such that for all p, :Re(m;n; p). Thus for
allm, there is an n such that B(m;n) is not in T0(LPq(e)) so that A(m) will
be in GLT0(LPq(e))(LPq(e)). But then T1(LPq(e)) = LM(GLT0(LPq(e))(LPq(e)))
will contain every A(m) for every m. One can then show that the clauses (iii)
and (iv) will ensure that T1(LPq(e)) = H(LPq(e)) so that F2((LPq(e)) = ;.

Suppose that e =2 C. Then there is an m such that (8n)(9p)R(e;m; n; p).
But then B(m;n) 2 T0((LPq(e)) for all n so that GLT0(Pe)(Pe) will not con-
tain the rule A(m)  . It follows that A(m) =2 T1((LPq(e)) and therefore
F2((LPq(e)) 6= ;.

It follows that a 2 C () q(a) 2 fe : F2(LPe) = ;g. Hence every �0
3

predicate is many-one reducible to fe : F2(LPe) = ;g so that fe : F2(LPe) = ;g
is �0

3 complete.

Our next result is to consider the property of the well-founded semantics
being trivial. That is, it is always the case that Twfs(P ) contains the least
model of the Horn part of P , i.e., LM(Horn(P )) � Twfs(P ). We say that the

well-founded semantics of P is trivial if Twfs(P ) = bTwfs(P ) = LM(Horn(P )).
Thus we are interested in the complexity of the set

ILP (triv-wfs) = fe : Twfs(LPe) = bTwfs(LPe) = LM(Horn(LPe))g: (9)

Theorem 13 ILP (triv-wfs) is �
0
2 -complete.

Proof Let Me = LM(Horn(LPe)). Clearly, Me � LM(GLS(LPe)) for all S �
H(LPe). Thus it follows that Twfs(LPe) = Me if and only if T�(LPe) = Me

for all even �. We claim that the condition that bTwfs(LPe) =Me forces that
LM(GLMe

(LPe)) = Me. That is, suppose LM(GLMe
(LPe)) = Ae 6= Me.

Then

T1(LPe) = LM(GLT0(LPe)(LPe)) = LM(GLMe
(LPe)) = Ae

and
T2(LPe) = LM(GLT1(LPe)(LPe)) = LM(GLAe(LPe)) =Me:

Then one can prove by induction that T�(LPe) = Me for all even � and

T�(LPe) = Ae for all odd � which would imply that bTwfs(LPe) = Ae. It

thus follows that Twfs(LPe) = bTwfs(LPe) = Me if and only if T0(LPe) =
LM(GLH(LPe)(LPe)) =Me and LM(GLMe

(LPe)) =Me. However, T0(LPe) =
LM(GLH(LPe)(LPe)) is r.e. and LM(GLMe

(LPe)) is �
0
2 . Now suppose that

A is �0
2 set and B is a �0

1 and B � A. Then A = B if and only if 8x(x =2
B ) x =2 A) which is a �0

2 predicate. It follows that the condition that
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T0(LPe) = LM(GLH(LPe)(LPe)) = Me and LM(GLMe
(LPe)) = Me are �0

2

predicates. Thus ILP (triv-wfs) is �
0
2 .

To show that ILP (triv-wfs) is �
0
2 -complete, we will use that fact that

Inf = fe :We is in�niteg is a �
0
2 complete set. For any e, let

Wg(e) = fi : jWej � ig:

Let Ke be a �nite predicate Horn logic program with constant symbol 0, unary
predicate s, and unary predicate symbol C such that C(n) is in the least model
of Ke if and only if n 2 Wg(e). Note that Ke may have other predicates, but
one can construct Ke so that only ground terms are 0 and sn(0) = n.

Then there is a recursive function h such that program LPh(e) consists of
Ke together with the following clauses:

(i) In(x)  C(x)
(ii) In(s(x))  :In(x)
(iii) Q(x1; : : : ; xk)  In(x1); In(x2); : : : ; In(xk) for all predicates Q of Ke

which are di�erent from C and In.

Now if We is in�nite, then LM(Horn(LPh(e))) equals H(LPh(e)) since we will
be able to derive In(n) and C(n) for all n 2 ! so that the clauses in (iii)
will ensure that LM(Horn(LPh(e))) = H(LPe). In that case, we can prove by
induction that T�(LPh(e)) = H((LPh(e)) for all � > 0 so that Twfs(LPh(e)) =bTwfs(LPh(e)) = LM(Horn(LPh(e)). Now suppose thatWe is �nite, say jWej =
n. Then it will be the case that T0(LPh(e)) = LM(Horn(LPh(e))) restricted to
the predicates C(�) and In(�) will equal fC(0); I(0); : : : ; C(n); I(n)g. But then
T1(LPh(e)) = LM(GLT0(LPh(e))(LPh(e))) will contain In(m) for all m > n+ 1
since the clauses in (ii) will ensure that In(m)  is in GLT0(LPh(e))(LPh(e))
for all m > n + 1. But then GLT1(LPh(e))(LPh(e)) will contain the clause

In(n+ 2) which means that In(n+ 2) 2 T2(LPh(e)) � Twfs(LPh(e)). Thus
if We is �nite, then
Twfs(LPh(e)) 6= LM(Horn(LPh(e)). Thus h shows that a 2 fe :We is in�niteg
if and only if h(a) 2 ILP (triv-wfs) so that ILP (triv-wfs) is �

0
2 complete.

5 Conclusions

In this paper, we have shown that there is a very close connection between
Van Gelder's alternating �xed point algorithm to compute the well-founded
semantics of a �nite predicate logic program and the classical construction
of the perfect kernel K(Q) of a �0

1 class Q � 2! via the trans�nite itera-
tion of the Cantor-Bendixson derivative, see Theorem 5. Theorem 5 allows to
transfer many complexity results concerned with index sets associated with
the problem of constructing the perfect kernel K(Q) of a �0

1 class Q � 2!

to complexity results of index sets associated with the problem of �nding the
well-founded semantics of a �nite predicate logic program. This allows us to
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not only recover the complexity results of Schlipf [S95] and Fitting [F01], but
to re�ne their results and to prove a number of new results. In fact, many
more such complexity results for index sets associated with the problems of
�nding the well-founded semantics of a �nite predicate logic program can be
proved using the same methods.

Finally, we examined the complexity of the index sets
A = fe : bTwfs(LPe) = ;g,
B = fe : bFwfs(LPe) = ;g,
C = fe : Twfs(LPe) = ;g,

D = fe : Twfs(LPe) = bTwfs(LPe) = LM(Horn(LPe)g, and
E = fe : Fwfs(LPe) = ;g.
We showed that A is recursive, B, C, and D are �0

2 complete, and D is �0
3

complete.
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