A Connection between the Cantor-Bendixson Derivative and the Well-Founded Semantics of Finite Logic Programs

Douglas Cenzer • Jeffrey B. Remmel

Abstract

Results of Schlipf [S95] and Fitting [F01] show that the well-founded semantics of a finite predicate logic program can be quite complex. In this paper, we show that there is a close connection between the construction of the perfect kernel of a Π_{1}^{0} class via the iteration of the Cantor-Bendixson derivative through the ordinals and the construction of the well-founded semantics for finite predicate logic programs via Van Gelder's alternating fixpoint construction. This connection allows us to transfer known complexity results for the perfect kernel of Π_{1}^{0} classes to give new complexity results for various questions about the well-founded semantics $w f s(P)$ of a finite predicate logic program P.

Keywords logic program • well-founded semantics • Cantor-Bendixson derivative

Mathematics Subject Classification (2000) 68T27•03B70 68 N 17

1 Introduction

The main goal of this paper is to show that there is a close connection between the alternating fixed point construction of the well-founded semantics of a finite predicate logic program due to Van Gelder [V89, V93] and the classical topological construction of the perfect kernal from point set topology

[^0]via the iteration of the Cantor-Bendixson derivative through the ordinals. In particular, we shall show that there is a simple coding which will allows us to transfer complexity results about the perfect kernal of effectively closed sets in 2^{ω} to complexity results about the well-founded semantics for finite predicate logic programs. Here $\omega=\{0,1, \ldots\}$ is the natural numbers and 2^{ω} is the set of all infinite sequences of 0 s and 1 s . The complexity of the construction of the perfect kernal of effectively closed sets in 2^{ω} has been extensively studied by recursion theorists. Our coding will then allow us derive new complexity results about the well-founded semantics of finite predicate logic programs by transferring known complexity results about the construction of the perfect kernal of effectively closed sets in 2^{ω}.

The well-founded semantics was introduced by Van Gelder, Ross, and Schlipf [VRS91]. It provides a 3 -valued interpretation to logic programs with negation and it can be viewed as an approximation to the stable semantics as defined by Gelfond-Lifschitz [GL88], see [VRS91] and [F01]. The stable model semantics is defined by means of a fixpoint of anti-monotone operator often denoted by $G L_{P}(\cdot)$. Van Gelder [V89, V93] showed that the well-founded semantics can be defined as the alternating fixpoint of $G L_{P}$. The relationship between the well-founded semantics and inductive definitions was studied by Denecker and his collaborators [Den98, DBM01].

The basic results for the complexity of the well-founded semantics of predicate logic programs can be found in Schlipf [S95] and Fitting [F01]. Complexity results for the stable model semantics of logic programs can be found in [MNR94]. Basically, both the well-founded semantics and the stable logic semantics for recursive logic programs can capture any Π_{1}^{1} set. For example, there are recursive programs for which the well-founded semantics is Π_{1-}^{1-} complete set [S95] and the problem of deciding whether a recursive program has a stable model is Σ_{1}^{1}-complete [MNR94].

The main reason for the extremely high complexity of the well-founded semantics for finite predicate logic programs is that Van Gelder's alternating fixed point algorithm to compute the well-founded semantics [V89, V93] must be transfinitely iterated through the recursive ordinals to obtain a fixed point. This type of construction reminded us of a classical construction from topology which has a similar flavor, namely, the problem of finding the CantorBendixson rank of an effectively closed set in 2^{ω}.

The Cantor-Bendixson derivative first appeared in a paper in 1883 by Bendixson [B1883] in which he proved what is now called the Cantor-Bendixson Theorem based on ideas from Cantor. Rather than state that theorem in its full generality, we shall focus on the space of interest to us which is 2^{ω}. One puts a topology on 2^{ω} by defining the basic open sets of the topology to be any set of the form O_{τ} where τ is a finite sequence of 0 s and 1 s and O_{τ} is the set all infinite strings in 2^{ω} that extend τ. Here a closed set $Q \subseteq 2^{\omega}$ is effectively closed or is a Π_{1}^{0} class if the complement of Q is a recursively enumerable union of basic open sets in 2^{ω}. Such a Q can always be thought of as the set of infinite paths through a primitive recursive binary tree. An element $x \in Q$ is said to be isolated if there is an open set U such that $Q \cap U=\{x\} . Q$ is said to be
perfect if it has no isolated elements. The Cantor-Bendixson derivative $D(Q)$ is defined to be the set of nonisolated members of Q. The perfect kernel $K(Q)$ is defined to be the (possibly empty) largest perfect subset of Q. Thus $K(Q)$ is empty if and only if Q is countable. $K(Q)$ may be obtained by iterating the derivative through the recursive ordinals, where $D^{\alpha+1}(Q)=D\left(D^{\alpha}(Q)\right)$ and $D^{\lambda}(Q)=\bigcap_{\alpha<\lambda} D^{\alpha}(Q)$ for limit ordinals Q. Then $K(Q)=\bigcap_{\alpha} D^{\alpha}(Q)$, where the intersection ranges over all ordinals. The Cantor-Bendixson rank $r k(Q)$ is the least ordinal α such that $D^{\alpha}(Q)=K(Q)$. For a Π_{1}^{0} class Q, it is known that $r k(Q) \leq \omega_{1}^{C-K}$, the least nonrecursive ordinal.

In this paper, we shall use the recursion theoretic technique of classifying index sets relative to the arithmetic hierarchy to measure complexity. This approach is important since it provides for a finer classification of the complexity of various decision problems. For example, let $\phi_{e}: \omega \rightarrow \omega$ be the partial recursive function computed by the e-th Turing machine and let W_{e} be the domain of ϕ_{e}. Thus $\phi_{0}, \phi_{1}, \ldots$ is a list of all partial recursive functions and W_{0}, W_{1}, \ldots is a list of all recursively enumerable (r.e.) sets. We say I is an index set if whenever $\phi_{e}=\phi_{f}$, then $e \in I \Longleftrightarrow f \in I$. We say that a set $B \subseteq \omega$ is
(i) Σ_{0}^{0} and Π_{0}^{0} if B is recursive,
(ii) Σ_{n}^{0} if there is a recursive predicate $R\left(x, y_{1}, \ldots, y_{n}\right)$ such that

$$
x \in B \Longleftrightarrow\left(\exists y_{1}\right)\left(\forall y_{2}\right)\left(\exists y_{3}\right) \cdots\left(Q y_{n}\right) R\left(x, y_{1}, \ldots, y_{n}\right)
$$

where Q is \exists if n is odd and \forall if n is even,
(iii) Π_{n}^{0} if there is a recursive predicate $R\left(x, y_{1}, \ldots, y_{n}\right)$ such that

$$
x \in B \Longleftrightarrow\left(\forall y_{1}\right)\left(\exists y_{2}\right)\left(\forall y_{3}\right) \cdots\left(Q y_{n}\right) R\left(x, y_{1}, \ldots, y_{n}\right)
$$

where Q is \forall if n is odd and \exists if n is even, and
(iv) B is Δ_{n}^{0} if it is both Σ_{n}^{0} and Π_{n}^{0}.

We say that a set A is Σ_{n}^{0}-complete (Π_{n}^{0}-complete) if A is $\Sigma_{n}^{0}\left(\Pi_{n}^{0}\right)$ and every $\Sigma_{n}^{0}\left(\Pi_{n}^{0}\right)$ is many-one reducible to A. Then, for example, it is well known that there is no uniform effective procedure which given e will decide whether W_{e} is non-empty, finite, or recursive. However, the complexities of deciding whether a given r.e. set W_{e} is non-empty, finite, or recursive are not the same. That is, consider the index sets Non $=\left\{e: W_{e}\right.$ is non-empty $\}$, Fin $=\{e:$ W_{e} is finite $\}$, and Rec $=\left\{e: W_{e}\right.$ is recursive $\}$. It is well-known that Non is Σ_{1}^{0}-complete, Fin is Σ_{2}^{0}-complete, and Rec is Σ_{3}^{0}-complete; see [Soa87]. From a practical point of view, if a predicate is Σ_{n}^{0} complete or Π_{n}^{0} complete for $n>1$, then we have no way to produce any kind of effective algorithm to determine whether the predicate holds (fails) or even to effectively enumerate all instances for which the predicate holds (fails).

To help us define the index sets of interest to us in this paper, we shall assume that we are given an effective enumeration of all primitive recursive trees T_{0}, T_{1}, \ldots and an effective enumeration of all finite predicate logic programs $L P_{0}, L P_{1}, \ldots$ over a recursive predicate logic language \mathcal{L} which contains infinitely many constant symbols, infinitely many propositional letters, and for each $n \geq 1$, infinitely many function n-ary function symbols and n-relation
symbols. In particular, we shall assume that \mathcal{L} has a constant symbol $\overline{0}$ and a unary function symbol s and we let $\bar{n}=s^{n}(\overline{0})$ for all $n \in \omega$. For any property \mathcal{R} of finite predicate logic programs, we let $I_{L P}(\mathcal{R})=\left\{e: L P_{e}\right.$ has property $\left.\mathcal{R}\right\}$. The set $I_{L P}(\mathcal{R})$ is called index set for property \mathcal{R} relative to finite predicate logic programs. For any tree $T \subseteq\{0,1\}^{*}$, we let $[T]$ denote the set of all infinite paths through T. Then it is known that $\left[T_{0}\right],\left[T_{1}\right], \ldots$ is an effective list of all Π_{1}^{0} classes. Then for any property \mathcal{R} of Π_{1}^{0} classes, we let $I_{P C}(\mathcal{R})=\left\{e:\left[T_{e}\right]\right.$ has property $\left.\mathcal{R}\right\}$. The set $I_{P C}(\mathcal{R})$ is called index set for property \mathcal{R} relative to Π_{1}^{0} classes.

There has been considerable research on classifying the complexity of index sets of the form $I_{P C}(\mathcal{R})$ for various properties \mathcal{R} concerning the CantorBendixson derivative. One of the main results of this paper will be to show that there is a recursive function f such that for each primitive recursive binary tree T_{e}, the finite predicate logic program $L P_{f(e)}$ has the property that if λ is either a limit ordinal or zero and α is finite, then the complexity of the $\lambda+2 \alpha$-th level of the Van Gelder alternating fixed point construction of the well-founded semantics of $L P_{f(e)}$ is equivalent to the complexity of the $\lambda+\alpha$ th derivative of the Π_{1}^{0} class $\left[T_{e}\right]$. Moreover, it will be case that if $\lambda+n$ is the ordinal at which the iteration of the Cantor-Bendixson derivative applied to [$\left.T_{e}\right]$ reaches the perfect kernel $K\left(\left[T_{e}\right]\right)$, then the Van Gelder alternating fixed point of construction applied to $L P_{f(e)}$ will give the well-founded semantics of $L P_{e}$ at level $\lambda+2 n$. Our correspondence $T_{e} \rightarrow L P_{f(e)}$ will allows us to transfer results about index sets for Π_{1}^{0} classes to produce new complexity results for index sets associated with the well-founded semantics of finite predicate logic programs. For example, we can show that the set of all e such that the true sentences under the well-founded semantics of $L P_{e}$ is recursive is a Π_{1}^{1}-complete set. Thus the problem of deciding whether the well-founded semantics of a finite predicate logic program is recursive is a Π_{1}^{1} complete problem. We also prove some index set results for properties that imply the well-founded semantics is relatively simple. For example, we show that the set of e such that the true sentences under the well-founded semantics of $L P_{e}$ is empty is recursive, the set of e such that the false sentences under the well-founded semantics of $L P_{e}$ is empty is Π_{3}^{0} complete, and the set of e such the true sentences under the well-founded semantics of $L P_{e}$ is just the least model of the Horn part of the program is Π_{2}^{0} complete.

The outline of this paper is as follows. In section 2, we shall provide the basic definitions from logic programming and recursion theory that we will need to state our results. In section 3, we shall give our correspondence between the well-founded semantics of finite predicate logic programs and the CantorBendixson derivative of Π_{1}^{0} classes. In section 4 , we shall derive index set results for logic programs for which the well-founded semantics is especially simple.

2 Basic Definitions

In this section, we shall provide the basic definitions of the stable and wellfounded semantics as well as give precise definitions of recursive and recursively enumerable (r.e.) programs. We shall also give some basic definitions from recursion theory and state some key complexity results due to Cenzer and Remmel [CR98] which will be used to prove our main results.

2.1 Definitions of Stable and Well-founded Semantics

A logic programming clause is a construct of the form

$$
\begin{equation*}
C=p \leftarrow q_{1}, \ldots, q_{m}, \neg r_{1}, \ldots, \neg r_{n} \tag{1}
\end{equation*}
$$

where $p, q_{1}, \ldots, q_{m}, r_{1}, \ldots, r_{n}$ are atomic formulas in \mathcal{L}. Then p is called the head of C and will be denoted by head $(C),\left\{q_{1}, \ldots, q_{n}\right\}$ is called the positive body of C and will be denoted by $\operatorname{Pos} \operatorname{Body}(C)$, and $\left\{r_{1}, \ldots, r_{n}\right\}$ is called the negative body of C and will be denoted by $\operatorname{Neg} \operatorname{Body}(C) . C$ is called a Horn clause if $N e g \operatorname{Body}(C)=\emptyset$. A ground atom is an atomic formula without variables and a ground instance of C is a substitution instance of C which has no free variables.

A finite predicate logic program is a finite set of clauses of the form (1). We let $\operatorname{ground}(P)$ denote the set of all ground instances of clauses in P. The Herbrand base of $P, H(P)$, is the set of all ground instances of atoms that appear in P. We say that a set of atoms $M \subseteq H(P)$ is a model of a clause $C \in \operatorname{ground}(P)$ if either M does not satisfy the body of C or M satisfies the head of C (or both). M is said to be a model of a logic program P if M is a model of each of the clauses of $\operatorname{ground}(P) . P$ is said to a Horn program if all its clauses are Horn clauses. A Horn program P always has a least model $L M(P)$. It is constructed by iterating the one-step provability operator T_{P} for $\operatorname{ground}(P)$. That is, given a set I of atoms, we let $T_{P}(I)=\{p: \exists C=p \leftarrow$ $\left.a_{1}, \ldots, a_{n} \in \operatorname{ground}(P): a_{1}, \ldots, a_{n} \in I\right\}$. Then the least model of $P, L M(P)$, equals $T_{P} \uparrow_{\omega}(\emptyset)=\bigcup_{n>1} T_{P}^{n}(\emptyset)$.

Next assume P is a logic program with negated atoms in the body of some of its clauses. Then following [GL88], we define the stable models of P as follows. Assume $M \subseteq H(P)$. The Gelfond-Lifschitz reduct of $\operatorname{ground}(P)$ by M is a Horn program arising from P by first eliminating those clauses in $\operatorname{ground}(P)$ which contain $\neg r$ with $r \in M$. In the remaining clauses, we drop all negative literals from the body. The resulting program $G L_{M}(P)$ is a propositional logic Horn program. We call M a stable model of P if M is the least model of $G L_{M}(P)$. For a Horn program P, there is a unique stable model, namely, the least model of P.

Assume that we are given a finite predicate logic program P. We let $2^{H(p)}$ denote the set of all subsets of $H(P)$ and for any set $M \subseteq H(P)$, let $\bar{M}=$ $H(P)-M$. Then we define the operator $A_{P}: 2^{H(P)} \rightarrow 2^{H(\bar{P})}$ by

$$
\begin{equation*}
A_{P}(M)=L M\left(G L_{M}(P)\right) . \tag{2}
\end{equation*}
$$

It is well known that A_{P} is anti-monotone, i.e., $S \subseteq T$ implies $A_{P}(T) \subseteq A_{P}(S)$. Thus the operator $U_{P}=A_{P}^{2}$ is monotone. Also the operator V_{P} defined by

$$
\begin{equation*}
V_{P}(M)=\overline{U_{P}(\bar{M})} \tag{3}
\end{equation*}
$$

is monotone. Next we define U_{P}^{α} and V_{P}^{α} for any ordinal α by

$$
\begin{aligned}
& U_{p}^{0}(M)=M, V_{p}^{0}(M)=M \\
& U_{p}^{\alpha+1}(M)=U_{P}\left(U_{P}^{\alpha}(M)\right), V_{p}^{\alpha+1}(M)=V_{P}\left(V_{P}^{\alpha}(M)\right) \\
& \left.\left.U_{p}^{\lambda}(M)=\bigcup_{\alpha<\lambda} U_{P}^{\alpha}(M)\right), \operatorname{and} V_{p}^{\lambda}(M)=\bigcup_{\alpha<\lambda} V_{P}^{\alpha}(M)\right) \text { for } \lambda \text { a limit ordinal. }
\end{aligned}
$$

It follows from the Knaster-Tarski Theorem [T55] that both U_{P} and V_{P} must have least fixed points. Then we can define the set of atoms that are true under the well-founded semantics to be $\mathbb{T}_{w f_{s}}(P)=\operatorname{lp} f\left(U_{P}\right)$ and the set of atoms which are false under the well-founded semantics to be $\mathbb{F}_{w f_{s}}(P)=l f p\left(V_{P}\right)$. It is also not difficult to see that $\mathbb{F}_{w f_{s}}(P)=\overline{A_{P}\left(\mathbb{T}_{w f s}(P)\right)}$.

Van Gelder [V89, V93] gave the following alternating fixed point algorithm to compute the well-founded semantics which inductively defines sets $\mathbb{F}_{\alpha}(P)$ and $\mathbb{T}_{\alpha}(P)$ for all ordinals α. We say that an ordinal α is an even ordinal if $\alpha=\lambda+2 n$ where λ is either 0 or a limit ordinal and $n \in \omega$ and α is an odd ordinal if $\alpha=\lambda+2 n+1$ where λ is either 0 or a limit ordinal and $n \in \omega$.

Algorithm

$\mathbb{F}_{0}(P):=\emptyset$ and $\mathbb{T}_{0}(P):=A_{P}\left(\overline{\mathbb{F}_{0}}\right)=L M\left(G L_{H(P)}(P)\right)$.
$\mathbb{F}_{\alpha+1}(P)=\overline{\mathbb{T}_{\alpha}}$ and $\mathbb{T}_{\alpha+1}(P)=A_{P}\left(\overline{\mathbb{F}_{\alpha+1}(P)}\right)=L M\left(G L_{\overline{\mathbb{F}_{\alpha+1}(P)}}(P)\right)$.
For λ a limit ordinal,
$\mathbb{F}_{\lambda}(P)=\bigcup_{\alpha<\lambda, \alpha}$ even $\mathbb{F}_{\alpha}(P)$ and $\mathbb{T}_{\lambda}(P)=A_{P}\left(\overline{\mathbb{F}_{\lambda}(P)}\right)=L M\left(G L_{\overline{\mathbb{F}_{\lambda}(P)}}(P)\right)$.
Then $\mathbb{F}_{w f s}(P)=\mathbb{F}_{\alpha}(P)$ and $\mathbb{T}_{w f s}=\mathbb{T}_{\alpha}(P)$ where α is the least ordinal such that $\mathbb{F}_{\alpha}(P)=\mathbb{F}_{\alpha+1}(P)$.

Here is an example of the algorithm which was given by Van Gelder [V93].
Example 1 Let the Herbrand base $H=\{a, b, c, d, e, f, g, h, i\}$ and let the program P be given by the following clauses.

$$
\begin{array}{lcc}
a \leftarrow c, \neg b ; & b \leftarrow \neg a ; \quad c ; \quad d \leftarrow h ; \\
d \leftarrow e, \neg f ; & d \leftarrow f, \neg g ; & e \leftarrow d ; \\
f \leftarrow e ; & f \leftarrow \neg c \quad i \leftarrow c, \neg d
\end{array}
$$

Then removing all clauses with negations, $G L_{H}(P)$ has the clauses $c ; \quad d \leftarrow h ; \quad e \leftarrow d ; \quad f \leftarrow e$
Thus $\mathbb{T}_{1}(P)=\{c\}$. Then $G L_{\mathbb{T}_{1}(P)}$ has the additional clauses
$a \leftarrow c ; \quad b ; \quad d \leftarrow e ; \quad d \leftarrow f ; \quad i \leftarrow c$

Thus $\mathbb{T}_{2}(P)=\{a, b, c, i\}$. Now we lose the first two clauses above, so that $\mathbb{T}_{3}(P)=\{c, i\}$.

But this means that $G L_{\mathbb{T}_{3}(P)}=G L_{\mathbb{T}_{1}(P)}$, so that $\mathbb{T}_{4}(P)=\mathbb{T}_{2}(P), \mathbb{T}_{5}(P)=$ $\mathbb{T}_{3}(P)$ and so on.

Hence the alternating fixed point has positive facts $\mathbb{T}_{w f s}(P)=\{c, i\}$ and negative facts $\mathbb{F}_{w f s}(P)=\{d, e, f, g, h\}$.

We will be most interested in the "even" stages of the alternating fixed point construction. Note that it is easy to see that for all α,

$$
\begin{aligned}
\mathbb{F}_{\alpha+2}(P) & =\overline{\mathbb{T}_{\alpha+1}(P)}=\overline{A_{P}\left(\overline{\mathbb{F}_{\alpha+1}(P)}\right)} \\
& =\overline{A_{P}\left(\mathbb{T}_{\alpha}(P)\right)}=\overline{A_{P}\left(A_{P}\left(\left(\overline{\mathbb{F}_{\alpha}}(P)\right)\right)\right.}=V_{P}\left(\mathbb{F}_{\alpha}(P)\right) \text { and } \\
\mathbb{T}_{\alpha+2}(P) & =A_{P}\left(\overline{\mathbb{F}_{\alpha+2}(P)}\right)=A_{P}\left(\mathbb{T}_{\alpha+1}(P)\right) \\
& =A_{P}\left(A_{P}\left(\overline{\mathbb{F}_{\alpha+1}(P)}\right)\right)=A_{P}\left(A_{P}\left(\mathbb{T}_{\alpha}(P)\right)=U_{P}\left(\mathbb{T}_{\alpha}(P)\right) .\right.
\end{aligned}
$$

Thus for n finite and λ a limit ordinal, $\mathbb{F}_{2 n}(P)=V_{P}^{n}(\emptyset), \mathbb{F}_{\lambda}(P)=V_{P}^{\lambda}(\emptyset)$, and $\mathbb{F}_{\lambda+2 n}(P)=V_{P}^{\lambda+n}(\emptyset)$. Similarly, $\mathbb{T}_{2 n}(P)=U_{P}^{n}\left(\mathbb{T}_{0}(P)\right), \mathbb{T}_{\lambda}(P)=U_{P}^{\lambda}\left(\mathbb{T}_{0}(P)\right)$, and $\mathbb{T}_{\lambda+2 n}(P)=U_{P}^{\lambda+n}\left(\mathbb{T}_{0}(P)\right)$.

Remark: For any finite predicate logic program P, let $\operatorname{Horn}(P)$ denote the set of Horn clauses in $\operatorname{ground}(P)$. It follows that $G L_{H(P)}(P)=\operatorname{Horn}(P)$. Thus $\mathbb{T}_{0}(P)=L M(\operatorname{Horn}(P))$. It is easy to see that $T_{0}(P)$ is contained in $L M\left(G L_{S}(P)\right)$ for any $S \subseteq H(P)$ and hence $T_{0}(P)$ must be a subset of $U_{P}(S)$ for any S. Thus the least fixed point of U_{P} can be found by iterating U_{P} through the ordinals starting at $T_{0}(P)$ rather than starting with the empty set.

Then we have the following.
Proposition 1 Let P be any finite logic program.
(a) For any even ordinals α and β, if $\alpha<\beta$, then $\mathbb{T}_{\alpha}(P) \subseteq \mathbb{T}_{\beta}(P)$ and $\mathbb{F}_{\alpha}(P) \subseteq \mathbb{F}_{\beta}(P)$.
(b) For any odd ordinals α and β, if $\alpha<\beta$, then $\mathbb{T}_{\beta}(P) \subseteq \mathbb{T}_{\alpha}(P)$ and $\mathbb{F}_{\beta}(P) \subseteq \mathbb{F}_{\alpha}(P)$.
(c) For any even ordinal α and any odd ordinal $\beta, \mathbb{T}_{\alpha}(P) \subseteq \mathbb{T}_{\beta}(P)$ and $\mathbb{F}_{\alpha}(P) \subseteq \mathbb{F}_{\beta}(P)$.
(d) For any stable model M of P, any even ordinal α and any odd ordinal β, $\mathbb{T}_{\alpha}(P) \subseteq M \subseteq \mathbb{T}_{\beta}(M)$ and $\mathbb{F}_{\alpha}(P) \subseteq \bar{M} \subseteq \mathbb{F}_{\beta}(M)$.

Proof Part (a) follows from the monotonicity of the operators U_{P} and V_{P} and the fact that $\mathbb{F}_{0}=\emptyset$. Part (b) follows from part (a) since A_{P} is anti-monotone.

For part(c), note that $\mathbb{F}_{0}(P)=\emptyset \subseteq \mathbb{F}_{\beta}(P)$ for any odd β. Moreover, by our remark preceding the Proposition, $\mathbb{T}_{0}(P) \subseteq \mathbb{T}_{\alpha}(P)$ for all α so that $\mathbb{F}_{\alpha+1}(P)=$ $\overline{\mathbb{T}_{\alpha}(P)} \subseteq \overline{\mathbb{T}_{0}(P)}=\mathbb{F}_{1}(P)$ for all α. Since A_{P} is antimontone, $A_{P}\left(\mathbb{T}_{\alpha}(P)\right)=$ $\mathbb{T}_{\alpha+1}(P) \subseteq A_{P}\left(\mathbb{T}_{0}(P)\right)=\mathbb{T}_{1}(P)$. Thus for all even ordinals β which are not limit ordinals, $\mathbb{T}_{\beta}(P) \subseteq T_{1}(P)$. Now suppose that λ is a limit ordinal and for
all even $\beta<\lambda, \mathbb{T}_{\beta}(P) \subseteq \mathbb{T}_{1}(P)$. Then $\mathbb{T}_{\lambda}(P)=\bigcup_{\beta<\lambda, \beta}$ even $\mathbb{T}_{\beta}(P) \subseteq \mathbb{T}_{1}(P)$. Thus we can establish by induction that for all even $\beta, \mathbb{T}_{\beta}(P) \subseteq \mathbb{T}_{1}(P)$.

We now proceed by induction. That is, assume that for α even, $\mathbb{F}_{\alpha}(P) \subseteq$ $\mathbb{F}_{\beta}(P)$ and $\mathbb{T}_{\alpha}(P) \subseteq \mathbb{T}_{\beta}(P)$ for all odd β. Then since U_{P} and V_{P} are monotone,

$$
\mathbb{F}_{\alpha+2}(P)=V_{P}\left(\mathbb{F}_{\alpha}(P)\right) \subseteq V_{P}\left(\mathbb{F}_{\beta}(P)\right)=\mathbb{F}_{\beta+2}(P)
$$

and

$$
\mathbb{T}_{\alpha+2}(P)=U_{P}\left(\mathbb{T}_{\alpha}(P)\right) \subseteq U_{P}\left(\mathbb{T}_{\beta}(P)\right)=\mathbb{T}_{\beta+2}(P)
$$

for all odd β. But since $\mathbb{F}_{\alpha+2}(P) \subseteq \mathbb{F}_{1}(P)$ and $\mathbb{T}_{\alpha+2}(P) \subseteq \mathbb{T}_{1}(P)$, we have that $\mathbb{F}_{\alpha+2}(P) \subseteq \mathbb{F}_{\beta}(P)$ and $\mathbb{T}_{\alpha+2}(P) \subseteq \mathbb{T}_{\beta}(P)$ for all odd β. Now suppose λ is a limit ordinal and for all even ordinals α which are less than $\lambda, \mathbb{F}_{\alpha}(P) \subseteq \mathbb{F}_{\beta}(P)$ and $\mathbb{T}_{\alpha}(P) \subseteq \mathbb{T}_{\beta}(P)$ for all odd β. Then clearly, $\mathbb{F}_{\lambda}(P)=\bigcup_{\alpha<\lambda, \alpha}$ even $\mathbb{F}_{\alpha}(P)$ is a subset of $\mathbb{F}_{\beta}(P)$ for all odd β and $\mathbb{T}_{\lambda}(P)=\bigcup_{\alpha<\lambda, \alpha}$ even $\mathbb{T}_{\alpha}(P)$ is a subset of $\mathbb{T}_{\beta}(P)$ for all odd β.

For part (d), let M be a stable model of P, that is, $M=A_{P}(M)$. Now by our remark preceding the proposition, $\mathbb{T}_{0}(P) \subseteq M$. Since A_{P} is antimontone, we have that $M=A_{P}(M) \subseteq A_{P}\left(\mathbb{T}_{0}(P)\right)=\mathbb{T}_{1}(P)$. Thus we have that $\mathbb{T}_{0}(P) \subseteq$ $M \subseteq \mathbb{T}_{1}(P)$. Similarly, we have $\mathbb{F}_{0}(P)=\emptyset \subseteq \bar{M} \subseteq \overline{\mathbb{T}_{0}(P)}=\mathbb{F}_{1}(P)$. We now proceed by induction. That is, suppose α is even and $\mathbb{T}_{\alpha}(P) \subseteq M \subseteq \mathbb{T}_{\alpha+1}(P)$ and $\mathbb{F}_{\alpha}(P) \subseteq \bar{M} \subseteq \mathbb{F}_{\alpha+1}(P)$. Then since U_{P} is monotone and $U_{P}(M)=M$, we have that $\mathbb{T}_{\alpha+2}(P) \subseteq M \subseteq \mathbb{T}_{\alpha+3}(P)$. Similarly, since V_{P} is monotone and $V_{P}(\bar{M})=\bar{M}$, then $\mathbb{F}_{\alpha+2}(P) \subseteq \bar{M} \subseteq \mathbb{F}_{\alpha+3}(P)$. Next suppose that λ is a limit ordinal and $\mathbb{F}_{\alpha}(P) \subseteq \bar{M}$ and $\mathbb{T}_{\alpha}(P) \subseteq M$ for all even ordinals α which are less than λ. Then $\mathbb{F}_{\lambda}(P)=\bigcup_{\alpha<\lambda, \alpha}$ even $\mathbb{F}_{\alpha}(P)$ is contained in \bar{M} and $\mathbb{T}_{\lambda}(P)=\bigcup_{\alpha<\lambda, \alpha}$ even $\mathbb{T}_{\alpha}(P)$ is contained in M.

But then $\bar{M} \subseteq \overline{\mathbb{T}_{\lambda}(P)}=\mathbb{F}_{\lambda+1}(P)$ and $M=A_{P}(M) \subseteq A_{P}\left(\mathbb{T}_{\lambda}(P)\right)=$ $\mathbb{T}_{\lambda+1}(P)$. Thus $\mathbb{F}_{\lambda}(P) \subseteq \bar{M} \subseteq \mathbb{F}_{\lambda+1}(P)$ and $\mathbb{T}_{\lambda}(P) \subseteq M \subseteq \mathbb{T}_{\lambda+1}(P)$.

With this in mind, we let

$$
\widehat{\mathbb{T}}_{w f s}(P)=\bigcap_{o d d \alpha} \mathbb{T}_{\alpha}(P)
$$

and

$$
\widehat{\mathbb{F}}_{w f s}(P)=\bigcap_{o d d \alpha} \mathbb{F}_{\alpha}(P)
$$

It follows that, for any stable model M of P,

$$
\mathbb{T}_{w f s}(P) \subseteq M \subseteq \widehat{\mathbb{T}}_{w f s}(P)
$$

and

$$
\mathbb{F}_{w f s}(P) \subseteq \bar{M} \subseteq \widehat{\mathbb{F}}_{w f s}(P)
$$

2.2 Basic Definitions from Recursion Theory

Let $\omega=\{0,1,2, \ldots\}$ denote the set of natural numbers, let ω^{*} denote the set of all finite sequences from ω and let $\{0,1\}^{*}$ denote the set of all finite sequences of 0 s and 1 s . Strings may be coded by natural numbers in the usual fashion. Let $[x, y]$ denote the standard pairing function $\frac{1}{2}\left(x^{2}+2 x y+y^{2}+3 x+y\right)$ and in general $\left[x_{0}, \ldots, x_{n}\right]=\left[\left[x_{0}, \ldots, x_{n-1}\right], x_{n}\right]$ for all $n \geq 2$. Then a string σ of length n may be coded by $c(\sigma)=[n,[\sigma(0), \sigma(1), \ldots, \sigma(n-1)]]$ and we define the code of the empty sequence \emptyset to be 0 . We define the canonical index of any finite set $X=\left\{x_{1}<\cdots<x_{n}\right\} \subseteq \omega$ by $\operatorname{can}(X)=2^{x_{1}}+2^{x_{2}}+\cdots+2^{x_{n}}$. We define $\operatorname{can}(\emptyset)=0$.

Since we are considering finite programs over our fixed recursive language \mathcal{L}, we can use standard Gödel number techniques to assign code numbers to atomic formulas and clauses. That is, we can effectively assign a number to each symbol in \mathcal{L}. Then we can think of formulas of \mathcal{L} as sequences of natural numbers so that the code of a formula is just the code of the sequence of numbers associated with the symbols in the formula. Then a clause C as in (1) can be assigned the code of the triple (x, y, z) where x is the code of the conclusion of C, y is the canonical index of the set of codes of $\operatorname{PosBody}(C)$, and z is the canonical index of the sets of codes of $\operatorname{NegBody}(C)$. It is then not difficult to verify that for any give finite predicate logic program P, the question of whether a given n is the code of a ground atom or a ground instance of a clause in P is a primitive recursive predicate. The key observation to make is that since P is finite and the usual unification algorithm is effective, we can explicitly test whether a given number m is the code of a ground atom or a ground instance of a clause in P without doing any unbounded searches. We say that a set X of ground atoms is recursive, r.e., etc., if the corresponding set of codes of elements of X is recursive, r.e., etc..

Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ in ω^{*}, we write $\alpha \sqsubseteq \beta$ if α is initial segment of β, that is, if $n \leq k$ and $\alpha_{i}=\beta_{i}$ for $i \leq n$. For any finite sequence $\sigma \in\{0,1\}^{*}$, let $I[\sigma]=\left\{x \in 2^{\omega}: \sigma \sqsubseteq x\right\}$. For the rest of this paper, we identify a finite sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with its code $c(\alpha)$. We let 0 be the code of the empty sequence \emptyset. Thus, when we say a set $S \subseteq \omega^{*}$ is recursive, r.e., etc., we mean the set $\{c(\alpha): \alpha \in S\}$ is recursive, r.e., etc. A tree T is a nonempty subset of $\{0,1\}^{*}$ such that T is closed under initial segments. A tree T is said to be recursively bounded if there is a recursive function g such that, for all $\sigma \in T$ and all $i \in \omega$, if $\sigma \in T$, then $\sigma(i) \leq g(i)$. A function $f: \omega \rightarrow \omega$ is an infinite path through T if for all $n,(f(0), \ldots, f(n)) \in T$. We let [T] denote the set of all infinite paths through T. A set A of functions is a Π_{1}^{0}-class if there is a recursive predicate R such that $A=\{f: \omega \rightarrow \omega: \forall n(R((f(0), \ldots, f(n)))\}$. It is well known that if A is a Π_{1}^{0}-class, then $A=[T]$ for some primitive recursive tree $T \subseteq \omega^{*}$.

To define the index sets of interest to us in this paper, we shall also use Σ_{α}^{0} and Π_{α}^{0} sets for recursive ordinals α and Σ_{1}^{1} or Π_{1}^{1} sets. These are defined as follows. (See Hinman [Hin78], p. 163ff for details.) The set H of indices of hyperarithmetic sets is first defined. Here the indices of recursive functions all
have the form $[n, a]$ where $n \leq 6$; we may assume that ϕ_{b} is the empty function for any other b. Thus in the definition of the hyperarithmetic sets, we reserve the indices of the form $[7, a]$ to code the r.e. sets.

Definition $1 H$ is the smallest subset of ω such that, for all a,
(i) $[7, a] \in H$;
(ii) if $\phi_{a}(n) \in H$ for all n, then $a \in H$.

This is an inductive definition and thus $H=\bigcup_{\alpha} H^{\alpha}$ where α ranges over the recursive ordinals. H is a Π_{1}^{1} set and each $a \in H$ is assigned a hyperarithmetic set by the following. Recall that for any $e \in \omega, \phi_{e}$ is the e 'th partial recursive function mapping $\omega \rightarrow \omega$ and W_{e} is the domain of ϕ_{e} and is the e 'th recursively enumerable. This is extended to the hyperarithmetic sets as follows. If $a \notin H$, let $H_{a}=\emptyset$.

Definition 2 Let $a \in H$. Then
(i) If $a=\langle 7, b\rangle$, then $H_{a}=W_{b}$
(ii) If ϕ_{a} is total, then $H_{a}=\bigcup_{n} \omega \backslash H_{\phi_{a}(n)}$.

The hyperarithmetical hierarchy is defined as follows.
Definition 3 For all ordinals α and all $A \subseteq \omega$,
(i) A is Σ_{α}^{0} if $A=H_{a}$ for some $a \in H^{\alpha}$;
(ii) A is Π_{α}^{0} if $\omega \backslash A$ is Σ_{α}^{0};
(iii) $\Delta_{\alpha}^{0}=\Sigma_{\alpha}^{0} \cap \Pi_{\alpha}^{0}$.

It follows that for limit ordinals λ, A is Σ_{λ}^{0} if and only if A is Σ_{α}^{0} for some $\alpha<\lambda$.

A set A is said to be Σ_{1}^{1} if there is an arithmetic relation B, i.e. B is either Σ_{n}^{0} or Π_{n}^{0} for some n, such that, for all $x, x \in A \Longleftrightarrow\left(\exists f \in \omega^{\omega}\right)(\forall n) B(x, f 1$ n) where $f \upharpoonleft n$ is the code of the n-tuple $(f(0), f(1), \ldots, f(n-1))$. A set A is Π_{1}^{1} if its complement is Σ_{1}^{1}. A set $A \subseteq \omega$ is said to be Σ_{α}^{0} complete if it is Σ_{α}^{0} and for any Σ_{α}^{0} set B, there is a computable function φ such that, for any n, $n \in B \Longleftrightarrow \phi(n) \in A . \Pi_{\alpha}^{0}$ complete, Σ_{1}^{1} complete, and Π_{1}^{1} complete sets are defined similarly. A subset A of ω is said to be D_{n}^{m} if it is the difference of two Σ_{n}^{m} sets and A is said to be D_{n}^{m} complete if A is D_{n}^{m} and for any D_{n}^{m} set B, there is a computable function φ such that, for any $n, n \in B \Longleftrightarrow \phi(n) \in A$.

Since finite strings σ may be coded by natural numbers $c(\sigma)$, this also gives us definitions for Σ_{α}^{0} sets of strings and for trees, and similarly for the other notions of definability.

To establish our connection between the well-founded semantics and the Cantor-Bendixson derivative, we consider index sets for recursively bounded strong $\Pi_{\alpha+1}^{0}$ binary classes and also index sets for the cardinality of the CantorBendixson derivatives. For any recursive ordinal α, a recursively bounded strong $\Pi_{\alpha+1}^{0}$ class is a set of infinite paths through a Σ_{α}^{0} binary tree. These problems were first studied in the context of Polish spaces by Kuratowski, see
[Kur70], where the Cantor-Bendixson derivative is viewed as a mapping from the space of compact subsets of $\{0,1\}^{\omega}$ to itself. Kuratowski showed that the derivative is a Borel map of class exactly two. In particular, he showed that the family $D^{-1}(\{\emptyset\})$ of finite closed sets is a universal $\boldsymbol{\Sigma}_{2}^{0}$ class and posed the problem of determining the exact Borel class of the iterated operator D^{α}. Cenzer and Mauldin showed in [C82] that the iterated operator D^{n} is of Borel class exactly $2 n$ for finite n and that for any limit ordinal λ and any finite n, $D^{\lambda+n}$ is of Borel class exactly $\lambda+2 n+1$. In particular it is shown that for any α, the family T_{α} of closed sets K such that $D^{\alpha}(K)=\emptyset$ is a universal $\boldsymbol{\Sigma}_{\mathbf{2} \alpha}^{\mathbf{0}}$ set. Lempp gave effective versions of this result in [L87].

Here is an example of a non-trivial effectively closed set of rank one.
Example 2 Let B be any infinite subset of ω and let $Q=\left\{0^{\omega}\right\} \cup\left\{0^{n} 1^{\omega}\right.$: $n \in B\}$. This is a closed set and $D(Q)=\left\{0^{\omega}\right\}$. If $B=\omega \backslash A$, where A is a recursively enumerable set, then Q will be a Π_{1}^{0} class. To see this, let A_{s} be the elements enumerated into A by stage s and define the computable tree $T=\left\{0^{n}: n \in \omega\right\} \cup\left\{0^{n} 1^{s} n \notin A_{s}\right\}$. We observe that, for each $n, Q \cap I\left[0^{n} 1\right] \neq \emptyset$ if and only if $n \notin A$. It follows that Q is a decidable Π_{1}^{0} class if and only if A is recursive.

Example 3 One can modify the example above by letting $Q_{1}=\left\{0^{n}: n \in\right.$ $\omega\} \cup\left\{0^{n} 1^{\omega}: n \in \omega\right\} \cup\left\{0^{n} 1^{k+1} 0^{\omega}: n \in B\right\}$, so that $D\left(Q_{1}\right)=Q$. Then we can say that $0^{n} 1^{\omega} \in D\left(Q_{1}\right)$ if and only if $n \in B$, so that this problem is Σ_{1}^{0} but not recursive.

More complicated examples may be found in [CR99, CRta] to show that in general for a Π_{1}^{0} class $Q, D(Q)$ is a Π_{3}^{0} class and need not be Δ_{3}^{0}. In general the set of isolated points will be Σ_{3}^{0}. That is, x is isolated in a Π_{1}^{0} class $Q=[T]$ if and only if there exists n such that x is the only element of $Q \cap I[x \upharpoonleft n]$, which is to say that for any extension σ of $x \upharpoonleft n$ other than $x \upharpoonleft|\sigma|, \sigma$ has only finitely many extensions in the tree T, which is to say that there exists m such that σ has no extensions of length m.

Recall that T_{0}, T_{1}, \ldots is an effective list of all primitive recursive trees contained in $\{0,1\}^{*}$ so that $\left[T_{0}\right],\left[T_{1}\right], \ldots$ is an effective list of all Π_{1}^{0} classes.

We can relativize the notions of Σ_{α}^{0} and Π_{α}^{0} sets and our enumeration of trees for any oracle X. For example, we let π_{e}^{X} be the e-th function primitive recursive relative to the oracle X and $T_{e}^{X}=\{\emptyset\} \cup\left\{\sigma:(\forall \tau \prec \sigma)\left(\pi_{e}^{X}(\langle\tau\rangle)=1\right)\right\}$. Then for any fixed set X, we let $\left[T_{0}^{X}\right],\left[T_{1}^{X}\right], \ldots$ enumerate the binary classes which are Π_{1}^{0} in X. For any property \mathcal{R}, let $I_{P}^{X}(\mathcal{R})=\left\{e:\left[T_{e}^{X}\right]\right.$ has property $\left.\mathcal{R}\right\}$. Similarly if a set is Σ_{α}^{0} relative to the oracle X, we shall say that it is a $\Sigma_{\alpha}^{0, X}$ set. The following result was proved by Cenzer and Remmel [CR98].

Theorem 1 For any set X,

1. $\left\{e:\left[T_{e}^{X}\right]\right.$ is empty $\}$ is $\Sigma_{1}^{0, X}$ complete,
2. $\left\{e:\left[T_{e}^{X}\right]\right.$ has cardinality 1$\}$ is $\Pi_{2}^{0, X}$ complete.
3. For any integer $c>0,\left\{e:\left[T_{e}^{X}\right]\right.$ has cardinality $\left.>c\right\}$ is $\Sigma_{2}^{0, X}$ complete and $\left\{e:\left[T_{e}^{X}\right]\right.$ has cardinality $\left.c+1\right\}$ is $D_{2}^{0, X}$ complete.
4. $\left\{e:\left[T_{e}^{X}\right]\right.$ finite $\}$ is $\Sigma_{3}^{0, X}$ complete.

To classify index sets connected with the transfinite Cantor-Bendixson derivatives of Π_{1}^{0} classes, Cenzer and Remmel [CR98] established a correspondence between the $\Pi_{2 \alpha+1}^{0}$ classes and the α-th Cantor-Bendixson derivatives of Π_{1}^{0} classes. When $\alpha=\lambda+n$ for a limit ordinal λ and finite n, define $2 \alpha=\lambda+2 n$, $2 \alpha+1=\lambda+2 n+1$, and $2 \lambda-1=\lambda$. Note that for limit ordinals λ, we follow the convention that a set is Σ_{λ}^{0} if and only if it is Σ_{α}^{0} for some $\alpha<\lambda$ and is $\Sigma_{\alpha+1}^{0}$ if it is an effective union of sets which are all Σ_{α}^{0}.

Cenzer and Remmel [CR98] proved the following.
Theorem 2 For any computable ordinal α

1. $\left\{e: D^{\alpha}\left(\left[T_{e}\right]\right)\right.$ is empty $\}$ is $\Sigma_{2 \alpha+1}^{0}$ complete and $\left\{e: D^{\alpha}\left(\left[T_{e}\right]\right)\right.$ is nonempty $\}$ is $\Pi_{2 \alpha+1}^{0}$ complete.
2. $\left\{e: \operatorname{card}\left(D^{\alpha}\left(\left[T_{e}\right]\right)\right)=1\right\}$ is $\Pi_{2 \alpha+1}^{0}$ complete.
3. For any positive integer $c,\left\{e: \operatorname{card}\left(D^{\alpha}\left(\left[T_{e}\right]\right)\right) \leq c\right\}$ is $\Pi_{2 \alpha+2}^{0}$ complete and $\left\{e: \operatorname{card}\left(D^{\alpha}\left(\left[T_{e}\right]\right)\right)>c\right\}$ is $\Sigma_{2 \alpha+2}^{0}$ complete.
4. $\left\{e: D^{\alpha}\left(\left[T_{e}\right]\right)\right.$ is infinite $\}$ is $\Pi_{2 \alpha+3}^{0}$ complete and $\left\{e: D^{\alpha}\left(\left[T_{e}\right]\right)\right.$ is finite $\}$ is $\Sigma_{2 \alpha+3}^{0}$ complete.

Theorem 3 The following index sets are all Π_{1}^{1} complete:

1. $\left\{e: K\left[T_{e}\right]\right.$ is countable $\}=\left\{e: K\left(\left[T_{e}\right]\right)\right.$ is empty $\}$.
2. $\left\{e: K\left(\left[T_{e}\right]\right)\right.$ is $\left.\Delta_{1}^{1}\right\}=\left\{e: K\left(\left[T_{e}\right]\right)\right.$ is $\left.\Pi_{1}^{1}\right\}$.
3. $\left\{e: K\left(\left[T_{e}\right]\right)\right.$ is recursive $\}$.

Theorem 4 There is a Π_{1}^{0} class Q such that

1. $\operatorname{rk}(Q)=\omega_{1}^{C-K}$
2. $\{\sigma: I[\sigma] \cap K(Q)=\emptyset\}$ is Π_{1}^{1} complete.

3 The Cantor-Bendixson Derivative and the Well-Founded Semantics

In this section, we shall define a simple finite predicate logic program P_{e} for each primitive recursive tree T_{e} such that for all $n \geq 0$ and λ which is either a recursive limit ordinal or 0 ,

$$
\mathbb{T}_{\lambda+2 n}\left(P_{e}\right)=\left\{\sigma \in\{0,1\}^{*}: I[\sigma] \cap D^{\lambda+n}\left(\left[T_{e}\right]\right)=\emptyset\right\}
$$

This shows that there is a simple connection between the construction of a perfect kernel of Π_{1}^{0} classes and Van Gelder's alternating fixed point construction of the well-founded semantics of finite predicate logic programs. We shall then use the correspondence $T_{e} \rightarrow P_{e}$ to derive some new index set results for the well-founded semantics by transferring the index set results given in section 2.

We shall define a function $f: \omega \rightarrow \omega$ by uniformly constructing a finite predicate logic program $P_{e}=L P_{f(e)}$ depending on T_{e}. The underlying language of P_{e} will contain constant symbols \emptyset and $\bar{\emptyset}$ and function symbols L, R, \bar{L} and \bar{R}. Here we think of \emptyset as the empty sequence and L and R are two successor functions which may be interpreted as adding 0 or 1 to the end of a sequence. Thus the ground term involving \emptyset, L and R can be identified the set of $\sigma \in\{0,1\}^{*}$. We think of $\bar{\emptyset}, \bar{R}$, and \bar{L} as giving us as second copy of $\{0,1\}^{*}$ so that we shall identify those terms with the set of $\bar{\sigma}$ such $\sigma \in\{0,1\}^{*}$. In addition, we shall use unary relation symbols seq and $\overline{s e q}$, where $\operatorname{seq}(x)$ indicates that x is a sequence built up from \emptyset by some applications of L and R, that is, x represents a member of $\{0,1\}^{*}$. Similarly $\overline{\operatorname{seq}}(x)$ indicates that x is a term in the language generated by $\bar{\emptyset}, \bar{L}, \bar{R}$. We shall also have a binary relation $\operatorname{Bar}(x, y)$ which is intended to hold if and only x is a term representing some $\sigma \in\{0,1\}^{*}$ and y is the term representing some $\bar{\sigma}$. This is accomplished by including the following clauses in P_{e}.
$(A) \operatorname{seq}(\emptyset) \leftarrow$
(B) $\overline{\operatorname{seq}}(\bar{\emptyset}) \leftarrow$
$(C) \operatorname{seq}(L(x)) \leftarrow \operatorname{seq}(x)$
$(D) \operatorname{seq}(R(x)) \leftarrow \operatorname{seq}(x)$
(E) $\overline{\operatorname{seq}}(\bar{L}(x)) \leftarrow \overline{\operatorname{seq}}(x)$
$(F) \overline{\operatorname{seq}}(\bar{R}(x)) \leftarrow \overline{\operatorname{seq}}(x)$
(G) $\operatorname{Bar}(\emptyset, \bar{\emptyset})$
$(H) \operatorname{Bar}(L(x), \bar{L}(y)) \leftarrow \operatorname{Bar}(x, y)$
$(I) \operatorname{Bar}(R(x), \bar{R}(y)) \leftarrow \operatorname{Bar}(x, y)$

We shall also need a ternary relation $\operatorname{Con}(x, y, z)$ which indicates that z represents the concatenation of x with y. This is only needed for elements of seq and is defined by the following clauses as follows.

$$
\begin{aligned}
& (J) \operatorname{Con}(x, \emptyset, x) \\
& (K) \operatorname{Con}(x, L(y), L(z)) \leftarrow \operatorname{Con}(x, y, z)(L) \operatorname{Con}(x, R(y), R(z)) \leftarrow \operatorname{Con}(x, y, z)
\end{aligned}
$$

A classical result, first explicit in [Sm68] and [AN78] but known a long time earlier in equational form, is that every r.e. relation can be computed by a suitably chosen predicate over the least model of a finite Horn program. Thus we let P_{e}^{-}be a finite predicate Horn program such that the least fixed point of P_{e} consists of the set of $N T(x)$ such that $\operatorname{seq}(x)$ and $x \notin T_{e}$. Finally, we introduce a new predicate In which is designed to capture the perfect kernel of T_{e} and define the finite predicate logic program $P_{e}=L P_{f(e)}$ to consist of P_{e}^{-}plus clauses (A)-(L) plus the following set of clauses.
(1) $\operatorname{In}(x) \leftarrow N T(x)$
(2) $\operatorname{In}(x) \leftarrow \operatorname{seq}(x), \operatorname{In}(L(x)), \operatorname{In}(R(x))$
(3) $\operatorname{In}(w) \leftarrow \overline{\operatorname{seq}}(w), \operatorname{Bar}(x, w), \operatorname{seq}(x), \operatorname{seq}(y), \operatorname{Con}(x, y, z), \neg \operatorname{In}(L(z))$, $\neg \operatorname{In}(R(z))$
(4) $\operatorname{In}(x) \leftarrow \operatorname{seq}(x), \overline{\operatorname{seq}}(y), \operatorname{Bar}(x, y), \neg \operatorname{In}(y)$

Let $U=H\left(P_{e}\right)$ denote the Herbrand base of P_{e}. The intended stable model M of P_{e} consists of

$$
\operatorname{In}=\left\{\operatorname{In}(\sigma): I(\sigma) \cap K\left(\left[T_{e}\right]\right)=\emptyset\right\} \cup\left\{\operatorname{In}(\bar{\sigma}): I[\sigma] \cap K\left(\left[T_{e}\right]\right) \neq \emptyset\right\}
$$

together with the predicates seq, $\overline{s e q}, B a r, C o n$, and $N T$ as defined above. Note that these latter predicates are all defined by a Horn program. It follows that for any $S \subseteq U, G L_{S}\left(P_{e}\right)$ always contains all the Horn clauses defining the predicates $\operatorname{seq}(x), \overline{\operatorname{seq}}(x), \operatorname{Bar}(x, y), \operatorname{Con}(x, y, z)$ and $N T(x)$. Thus these predicates will always behave as expected in $L M\left(G L_{S}\left(P_{e}\right)\right)$. Thus the key clauses are the ones that involve the predicate $I n$ which can always be reduced to the following set of clauses when computing $\operatorname{LM}\left(G L_{M}\left(P_{e}\right)\right)$.
(a) $\operatorname{In}(\sigma) \leftarrow \quad$ for $\sigma \notin T_{e}$,
(b) $\operatorname{In}(\sigma) \leftarrow \operatorname{In}\left(\sigma^{\frown} 0\right), \operatorname{In}\left(\sigma^{\frown} 1\right) \quad$ for all $\sigma, \tau \in\{0,1\}^{*}$,
(c) $\operatorname{In}(\bar{\sigma}) \leftarrow \quad$ for all $\sigma \in\{0,1\}^{*}$ such that there exists a $\tau \in\{0,1\}^{*}$ such that $\operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 0\right)$ and $\operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 1\right)$ are both not in M, and
(d) $\operatorname{In}(\sigma) \leftarrow \quad$ for all σ such that $\operatorname{In}(\bar{\sigma}) \notin M$.

If $\operatorname{In}(\sigma) \in M$, then by our definition of $M, \operatorname{In}(\bar{\sigma}) \notin M$ so that $\operatorname{In}(\sigma) \in$ $L M\left(G L_{M}\left(P_{e}\right)\right)$ by rule (d). If $\operatorname{In}(\bar{\sigma}) \in M$, then σ has an infinite extension $x \in K\left(\left[T_{e}\right]\right)$. Thus since $K\left(\left[T_{e}\right]\right)$ is perfect, there exists τ such that both $\sigma^{\frown} \tau^{\frown} 0$ and $\sigma^{\frown} \tau^{\frown} 1$ both have infinite extensions in $K\left(\left[T_{e}\right]\right)$. It follows that both $\operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 0\right)$ and $\operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 1\right)$ are not in M, so that $\bar{\sigma} \in L M\left(G L_{M}\left(P_{e}\right)\right)$ by clause (c). Thus $M \subseteq L M\left(G L_{M}\left(P_{e}\right)\right)$.

On the other hand, if $\operatorname{In}(\sigma) \in L M\left(G L_{M}\left(P_{e}\right)\right)$, then we can argue by induction on the length of the derivation of $\operatorname{In}(\sigma)$ from the one-step provability operator associated with $G L_{M}\left(P_{e}\right)$ that $\operatorname{In}(\sigma) \in M$. That is, if $\operatorname{In}(\sigma)$ is derived via a clause of type (a), then $\sigma \notin T_{e}$, so certainly $\operatorname{In}(\sigma) \in M$. If $\operatorname{In}(\sigma)$ is derived by a clause (b), then by induction both $\operatorname{In}\left(\sigma^{\wedge} 0\right)$ and $\operatorname{In}\left(\sigma^{\frown} 1\right)$ are in M, so that

$$
I[\sigma] \cap K\left(\left[T_{e}\right]\right)=\left(I\left[\sigma^{\frown} 0\right] \cap K\left(\left[T_{e}\right]\right)\right) \cup\left(I\left[\sigma^{\frown} 1\right] \cap K\left(\left[T_{e}\right]\right)=\emptyset\right.
$$

and therefore $\operatorname{In}(\sigma) \in M$. If $\operatorname{In}(\sigma)$ comes in by clause (d), then $\operatorname{In}(\bar{\sigma}) \notin M$, so that $\operatorname{In}(\sigma) \in M$. Finally, if $\operatorname{In}(\bar{\sigma}) \in \operatorname{LM}\left(G L_{M}\left(P_{e}\right)\right)$, then, for some $\tau \in$ $\{0,1\}^{*}, \operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 0\right), \operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 1\right) \notin M$. But then $I[\sigma] \cap K\left(\left[T_{e}\right]\right) \supseteq I\left[\sigma^{\frown} \tau^{\frown} 0\right] \cap$ $K\left(\left[T_{e}\right]\right) \neq \emptyset$ so that $\operatorname{In}(\bar{\sigma}) \in M$. Thus $L M\left(G L_{M}\left(P_{e}\right)\right) \subseteq M$ and hence M is a stable model.

For the program P given by the tree from Example 2, we see that $\mathbb{T}_{0}(P) \cap I n$ contains all σ which are not in $\left\{0^{n}: n \in \omega\right\} \cup\left\{0^{n} 1^{k}: n \in B\right\}$ and does not contain any $\bar{\sigma}$. That is, $\mathbb{T}_{0}(P) \cap I n=\{\sigma: I[\sigma] \cap P \neq \emptyset\}$.

It follows from clause (d) above that $\mathbb{T}_{1}=G L_{M}(P)$, where $M=\mathbb{T}_{0}(P)$, will contain $\operatorname{In}(\sigma)$ for all σ together with $\operatorname{In}(\bar{\sigma})$ for all σ of the form 0^{n}. The latter is true since for each n, there is some m such that both $0^{n+m} 1$ and $0^{n+m} 0$ are in our tree T.

Since $D(Q)=\left\{0^{\omega}\right\}$, the strings of the form 0^{n} are exactly those which more than one extension in $D(Q)$. Thus $\mathbb{F}_{2}(P) \cap \operatorname{In}=\{\bar{\sigma}: \operatorname{card}(I[\sigma] \cap P) \leq 1\}$.

Computing $G L_{M}(P)$ for $M=\mathbb{T}_{1}(P)$, we see that $\mathbb{T}_{2}(P)$ contains $\operatorname{In}(\sigma)$ for all σ not of the form 0^{n} (by clause (d)) and contains no $\operatorname{In}(\bar{\sigma})$.

It then follows that $\mathbb{T}_{3}(P)=\left\{\operatorname{In}(\sigma): \sigma \in\{0,1\}^{*}\right\}$. Every $\operatorname{In}(\sigma)$ is in $\mathbb{T}_{3}(P)$ since no $\operatorname{In}(\bar{\sigma})$ is in $\mathbb{T}_{2}(P)$ and no $\operatorname{In}(\bar{\sigma})$ is in $\mathbb{T}_{3}(P)$ since $\mathbb{T}_{2}(P)$ contains $\operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 1\right)$ for every σ and τ.

It is then easy to see that $\mathbb{T}_{4}(P)=\mathbb{T}_{3}(P)$ and this is the fixed point $\mathbb{T}_{w f s}(P)$ of the alternating semantics. Since $D^{2}(P)=\emptyset$, we have $\operatorname{In} \cap \mathbb{T}_{4}(P)=$ $\left\{\operatorname{In}(\sigma): I[\sigma] \cap D^{2}(P)=\emptyset\right\}$.

The main result of this paper is the following.
Theorem 5 For all e, all finite n, and λ either a recursive limit ordinal or 0 ,

$$
\begin{gather*}
\operatorname{In} \cap \mathbb{T}_{\lambda+2 n}\left(P_{e}\right)=\left\{\operatorname{In}(\sigma): I[\sigma] \cap D^{\lambda+n}\left(\left[T_{e}\right]\right)=\emptyset\right\}, \tag{4}\\
\operatorname{In} \cap \mathbb{F}_{\lambda+2 n+2}\left(P_{e}\right)=\left\{\operatorname{In}(\bar{\sigma}): \operatorname{card}\left(I[\sigma] \cap D^{\lambda+n}\left(\left[T_{e}\right]\right)\right) \leq 1\right\} \text { and } \tag{5}\\
\operatorname{In} \cap \mathbb{F}_{\lambda}\left(P_{e}\right)=\left\{\operatorname{In}(\bar{\sigma}): I[\sigma] \cap D^{\lambda}\left(\left[T_{e}\right]\right)=\emptyset\right\} \text { if } \lambda>0 . \tag{6}
\end{gather*}
$$

Proof We observed above that for any $S \subseteq U=H\left(P_{e}\right), G L_{S}\left(P_{e}\right)$ always contains all the Horn clauses defining the predicates $\operatorname{seq}(x), \overline{\operatorname{seq}}(x), \operatorname{Bar}(x, y), \operatorname{Con}(x, y, z)$ and $N T(x)$. Thus these predicates will always behave as expected in $L M\left(G L_{S}\left(P_{e}\right)\right)$. It follows that in computing $L M\left(G L_{S}\left(P_{e}\right)\right)$, the clauses (1)-(4) concerning the predicate $\operatorname{In}(\cdot)$ are equivalent to the following clauses:
(i) $\operatorname{In}(\sigma) \leftarrow \quad$ for $\sigma \notin T_{e}$,
(ii) $\operatorname{In}(\sigma) \leftarrow \operatorname{In}\left(\sigma^{\frown} 0\right)$, $\operatorname{In}\left(\sigma^{\frown} 1\right) \quad$ for all $\sigma, \tau \in\{0,1\}^{*}$,
(iii) $\operatorname{In}(\bar{\sigma}) \leftarrow \neg \operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 0\right), \neg \operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 1\right) \quad$ for all $\sigma, \tau \in\{0,1\} *$, and
(iv) $\operatorname{In}(\sigma) \leftarrow \neg \operatorname{In}(\bar{\sigma}) \quad$ for all $\sigma \in\{0,1\}^{*}$.

Fix e and consider the levels of $\mathbb{F}_{\alpha}\left(P_{e}\right)$ and $\mathbb{T}_{\alpha}\left(P_{e}\right)$. Note that among the clauses $(i)-(i v), G L_{U}\left(P_{e}\right)$ has only the Horn clauses (i) and (ii). Now if $I[\sigma] \cap\left[T_{e}\right]=\emptyset$, then by König's Lemma, the set of $\tau \in T_{e}$ which extend σ is finite so that we will be able to derive σ by repeated use of the clauses in (i) and (ii). It is easy to see that if $I[\sigma] \cap\left[T_{e}\right] \neq \emptyset$, then one can not use clauses (i) and (ii) to derive $\operatorname{In}(\sigma)$. Thus for $\mathbb{T}_{0}\left(P_{e}\right)=L M\left(G L_{U}\left(P_{e}\right)\right)$, we have

$$
\operatorname{In} \cap \mathbb{T}_{0}\left(P_{e}\right)=\left\{\operatorname{In}(\sigma): I[\sigma] \cap\left[T_{e}\right]=\emptyset\right\}
$$

which establishes the base case for (4).
Next consider $\mathbb{T}_{1}\left(P_{e}\right)$. Among the clauses $(i)-(i v), G L_{\mathbb{T}_{0}\left(P_{e}\right)}\left(P_{e}\right)$ consists of the Horn clauses (i) and (ii) together with the following two families of clauses. First there are clauses $\operatorname{In}(\bar{\sigma}) \leftarrow$ for all σ such that for some τ both $I\left[\sigma^{\frown} \tau^{\frown} 0\right]$ and $I\left[\sigma^{\frown} \tau^{\frown} 1\right]$ meet $\left[T_{e}\right]$, that is, if $\operatorname{card}\left(I[\sigma] \cap\left[T_{e}\right]\right) \geq 2$. Second, there are clauses $\operatorname{In}(\sigma) \leftarrow$ for all σ such that $\operatorname{In}(\bar{\sigma}) \notin \mathbb{T}_{0}\left(P_{e}\right)$, which is to say for all $\sigma \in\{0,1\}^{*}$. Thus

$$
\begin{aligned}
& \operatorname{In} \cap \mathbb{T}_{1}\left(P_{e}\right)=\operatorname{In} \cap L M\left(G L_{\mathbb{T}_{0}\left(P_{e}\right)}\left(P_{e}\right)\right)= \\
& \left\{\operatorname{In}(\sigma): \sigma \in\{0,1\}^{*}\right\} \cup\left\{\operatorname{In}(\bar{\sigma}): \operatorname{card}\left(I[\sigma] \cap\left[T_{e}\right]\right) \geq 2\right\} .
\end{aligned}
$$

This means that

$$
\begin{aligned}
\operatorname{In} \cap \mathbb{F}_{2}\left(P_{e}\right) & =\left\{\operatorname{In}(\sigma), \operatorname{In}(\bar{\sigma}): \sigma \in\{0,1\}^{*}\right\}-\left(\operatorname{In} \cap \operatorname{LM}\left(G L_{\mathbb{T}_{0}\left(P_{e}\right)}\left(P_{e}\right)\right)\right) \\
& =\left\{\operatorname{In}(\bar{\sigma}): \operatorname{card}\left(I[\sigma] \cap\left[T_{e}\right]\right) \leq 1\right\} .
\end{aligned}
$$

This establishes the base case for (5).
Next we observe that (6) follows by induction and compactness. That is, suppose that λ is a limit ordinal. Then since $D_{\lambda}(Q)=\bigcap_{\alpha<\lambda} D_{\alpha}(Q)$ and 2^{ω} is compact, it follows that for any closed set $Q \subseteq 2^{\omega}$ and any $\sigma \in 2^{\omega}$, $I[\sigma] \cap\left(D_{\lambda}(Q)\right)=\emptyset$ if and only if there is some $\alpha<\bar{\lambda}$ such that $\operatorname{card}(I[\sigma] \cap$ $\left.D_{\alpha}(Q)\right) \leq 1$ if and only if there is some ordinal $\beta<\lambda$, which is either a limit ordinal or 0 , and some $n \in \omega, \operatorname{card}\left(I[\sigma] \cap D_{\beta+2 n+2}(Q)\right) \leq 1$. But then

$$
\begin{aligned}
\operatorname{In} \cap \mathbb{F}_{\lambda}\left(P_{e}\right) & =\operatorname{In} \cap\left(\bigcup_{\beta<\lambda, \beta \text { a limit or } 0, n \geq 0} \mathbb{F}_{\beta+2 n}\left(P_{e}\right)\right) \\
& =\operatorname{In} \cap\left(\bigcup_{\beta<\lambda, \beta \text { a limit or } 0, n \geq 0} \mathbb{F}_{\beta+2 n+2}\left(P_{e}\right)\right) \\
& =\bigcup_{\beta<\lambda, \beta \text { a limit or } 0, n \geq 0}\left(\operatorname{In} \cap \mathbb{F}_{\beta+2 n+2}\left(P_{e}\right)\right) \\
& =\bigcup_{\beta<\lambda, \beta \text { a limit or } 0, n \geq 0}\left\{\operatorname{In}[\bar{\sigma}]: \operatorname{card}\left(I[\sigma] \cap D_{\beta+n}\left(\left[T_{e}\right]\right)\right) \leq 1\right\} \\
& =\left\{\operatorname{In}[\bar{\sigma}]: I[\sigma] \cap D_{\lambda}\left(\left[T_{e}\right]\right)=\emptyset\right\}
\end{aligned}
$$

Here the second equality holds because $\mathbb{F}_{\beta+2 n}\left(P_{e}\right) \subseteq \mathbb{F}_{\beta+2 n+2}\left(P_{e}\right)$ by part (a) of Proposition 1.

Similarly, we can use induction to prove the special case of (4) when λ is a limit ordinal and $n=0$. That is,

$$
\begin{aligned}
\operatorname{In} \cap \mathbb{T}_{\lambda}\left(P_{e}\right) & =\operatorname{In} \cap\left(\bigcup_{\beta<\lambda, \beta \text { a limit or } 0, n \geq 0} \mathbb{T}_{\beta+2 n}\left(P_{e}\right)\right) \\
& =\bigcup_{\beta<\lambda, \beta \text { a limit or } 0, n \geq 0}\left(\operatorname{In} \cap \mathbb{T}_{\beta+2 n}\left(P_{e}\right)\right) \\
& \left.=\bigcup_{\beta<\lambda, \beta \text { a limit or } 0, n \geq 0}\left\{\operatorname{In}(\sigma): I[\sigma] \cap D_{\beta+n}\left(\left[T_{e}\right]\right)\right)=\emptyset\right\} \\
& =\left\{\operatorname{In}(\sigma): I[\sigma] \cap D_{\lambda}\left(\left[T_{e}\right]\right)=\emptyset\right\} .
\end{aligned}
$$

Next assume that λ is a limit ordinal and that for all $\sigma \in\{0,1\}^{*}, \operatorname{In}(\sigma) \notin$ $\mathbb{F}_{\lambda}\left(P_{e}\right)$ and $\operatorname{In}(\bar{\sigma}) \in \mathbb{F}_{\lambda}\left(P_{e}\right) \Longleftrightarrow I[\sigma] \cap D^{\lambda}\left(\left[T_{e}\right]\right)=\emptyset$. Then for all $\sigma \in\{0,1\}^{*}$, $\operatorname{In}(\sigma) \in \overline{\mathbb{F}_{\lambda}\left(P_{e}\right)}$ and $\operatorname{In}(\bar{\sigma}) \in \overline{\mathbb{F}_{\lambda}\left(P_{e}\right)} \Longleftrightarrow I[\sigma] \cap D^{\lambda}\left(\left[T_{e}\right]\right) \neq \emptyset$. Hence among the clauses (i)-(iv), $G L_{\overline{\mathbb{F}_{\lambda}\left(P_{e}\right)}}\left(P_{e}\right)$ contains the clauses (i) and (ii) plus the set clauses $\operatorname{In}(\sigma) \leftarrow$ such that $I[\sigma] \cap D^{\lambda}\left(\left[T_{e}\right]\right)=\emptyset$. But it is easy to see that if both
$I\left[\sigma^{\frown} 0\right] \cap D^{\lambda}\left(\left[T_{e}\right]\right)=\emptyset$ and $I\left[\sigma^{\curvearrowright} 1\right] \cap D^{\lambda}\left(\left[T_{e}\right]\right)=\emptyset$, then $I[\sigma] \cap D^{\lambda}\left(\left[T_{e}\right]\right)=\emptyset$ so
that

$$
\operatorname{In} \cap \mathbb{T}_{\lambda}\left(P_{e}\right)=\operatorname{In} \cap L M\left(G L_{\overline{\mathbb{F}_{\lambda}\left(P_{e}\right)}}\left(P_{e}\right)\right)=\left\{\operatorname{In}(\sigma): I[\sigma] \cap D^{\lambda}\left(\left[T_{e}\right]\right)=\emptyset\right\} .
$$

Then among the clauses (i)-(iv), $G L_{\mathbb{T}_{\lambda}\left(P_{e}\right)}\left(P_{e}\right)$ contains the clauses (i) and (ii) plus all clauses of the from $\operatorname{In}(\sigma) \leftarrow$ for $\sigma \in\{0,1\}^{*}$ plus all clauses of the form $\operatorname{In}(\bar{\sigma}) \leftarrow$ such that there exists a τ such that $\operatorname{In}\left(\sigma^{\frown} \tau^{\wedge} 0\right)$ and $I N\left(\sigma^{\frown} \tau^{\frown} 1\right)$ are not in $\mathbb{T}_{\lambda}\left(P_{e}\right)$. But if $\operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 0\right)$ and $\operatorname{In}\left(\sigma^{\frown} \tau^{\frown} 1\right)$ are not in $\mathbb{T}_{\lambda}\left(P_{e}\right)$, then $I\left[\sigma^{\frown} \tau^{\frown} 0\right] \cap D^{\lambda}\left(\left[T_{e}\right]\right) \neq \emptyset$ and $I\left[\sigma^{\curvearrowright} \tau^{\frown} 1\right] \cap D^{\lambda}\left(\left[T_{e}\right]\right) \neq \emptyset$ which is equivalent to saying that $\operatorname{card}\left(I[\sigma] \cap D^{\lambda}\left(\left[T_{e}\right]\right)\right) \geq 2$. Thus
$\operatorname{In} \cap \mathbb{T}_{\lambda+1}\left(P_{e}\right)=\left\{\operatorname{In}(\sigma): \sigma \in\{0,1\}^{*}\right\} \cup\left\{\operatorname{In}(\bar{\sigma}): \operatorname{card}\left(I[\sigma] \cap D^{\lambda}\left(\left[T_{e}\right]\right)\right) \geq 2\right\}$.
Hence In $\cap \mathbb{F}_{\lambda+2}\left(P_{e}\right)=\left\{\operatorname{In}(\bar{\sigma}): \operatorname{card}\left(I[\sigma] \cap D^{\lambda}\left(\left[T_{e}\right]\right) \leq 1\right\}\right.$.
Finally suppose that for $n \geq 1$,

$$
\operatorname{In} \cap \mathbb{F}_{\lambda+2 n}\left(P_{e}\right)=\left\{\operatorname{In}(\bar{\sigma}): \operatorname{card}\left(I[\sigma] \cap D^{\lambda+n-1}\left(\left[T_{e}\right]\right)\right) \leq 1\right\}
$$

Then among the clauses (i)-(iv), $G L_{\overline{\mathbb{F}_{\lambda+2 n}\left(P_{e}\right)}}\left(P_{e}\right)$ consists of the clauses (i) and (ii) for all $\sigma \in\{0,1\}^{*}$ and the clause $\operatorname{In}(\sigma) \leftarrow \quad$ for all $\sigma \in\{0,1\}^{*}$ such that $\left.I[\sigma] \cap D^{\lambda+n-1}\left(\left[T_{e}\right]\right) \leq 1\right\}$. It follows that
$\operatorname{In} \cap \mathbb{T}_{\lambda+2 n}\left(P_{e}\right)=\operatorname{In} \cap L M\left(G L_{\overline{\mathbb{F}_{\lambda+2 n}\left(P_{e}\right)}}\right)=\left\{\operatorname{In}(\sigma): I[\sigma] \cap D^{\lambda+n-1}\left(\left[T_{e}\right]\right)\right.$ is finite $\}$,
which equals $\left\{\operatorname{In}(\sigma): I[\sigma] \cap D^{\lambda+n}\left(\left[T_{e}\right]\right)\right.$ is empty $\}$ as desired. But then among the clauses (i)-(iv), $G L_{\mathbb{T}_{\lambda+2 n}\left(P_{e}\right)}\left(P_{e}\right)$ consists of clauses (i) and (ii) for all $\sigma \in$ $\{0,1\}^{*}$ plus the clauses $\operatorname{In}(\sigma) \leftarrow \quad$ for all $\sigma \in\{0,1\}^{*}$ plus the clauses $\operatorname{In}(\bar{\sigma}) \leftarrow$ for all $\sigma \in\{0,1\}^{*}$ such that there exists a τ such that both $I\left[\sigma^{\wedge} \tau^{\wedge} 0\right]$ and $I\left[\sigma^{\frown} \tau^{\frown} 1\right]$ meet $D^{\lambda+n}\left(\left[T_{e}\right]\right)$, which is to say that $\operatorname{card}\left(I[\sigma] \cap D^{\lambda+n}\left(\left[T_{e}\right]\right) \geq 2\right.$. Thus for all $\sigma \in\{0,1\}^{*}, \operatorname{In}(\sigma) \in \operatorname{LM}\left(G L_{\mathbb{T}_{\lambda+2 n}\left(P_{e}\right)}\right)$ and

$$
\left.\operatorname{In}(\bar{\sigma}) \in L M\left(G L_{\mathbb{T}_{\lambda+2 n}\left(P_{e}\right)}\left(P_{e}\right)\right) \Longleftrightarrow \operatorname{card}\left(I[\sigma] \cap D^{\lambda+n}\left(\left[T_{e}\right]\right)\right) \geq 2\right\}
$$

Since $\mathbb{F}_{\lambda+2 n+2}=U-L M\left(G L_{\mathbb{T}_{\alpha}\left(P_{e}\right)}\left(P_{e}\right)\right)$, it follows that

$$
\operatorname{In} \cap \mathbb{F}_{\lambda+2 n+2}=\left\{\operatorname{In}(\bar{\sigma}): \operatorname{card}\left(I[\sigma] \cap D^{\lambda+n}\left(\left[T_{e}\right]\right)\right) \leq 1\right\},
$$

as desired. This completes the inductive proof of (4) and (5).
We then have the following corollary.
Corollary 1 For all e,

$$
\begin{align*}
& \operatorname{In} \cap T_{w f s}\left(P_{e}\right)=\left\{\operatorname{In}(\sigma): I[\sigma] \cap K\left(\left[T_{e}\right]\right)=\emptyset\right\} \text { and } \tag{7}\\
& \operatorname{In} \cap F_{w f_{s}}\left(P_{e}\right)=\left\{\operatorname{In}(\bar{\sigma}): I[\sigma] \cap K\left(\left[T_{e}\right]\right)=\emptyset\right\} . \tag{8}
\end{align*}
$$

Proof First by Theorem 5, we have that

$$
\begin{aligned}
\operatorname{In} \cap T_{w f_{s}}\left(P_{e}\right) & =\bigcup_{\lambda \text { a limit }, n \geq 0} \operatorname{In} \cap \mathbb{T}_{\lambda+2 n}\left(P_{e}\right) \\
& =\bigcup_{\lambda \text { a limit }, n \geq 0}\left\{\operatorname{In}(\sigma): I[\sigma] \cap D^{\lambda+n}\left(\left[T_{e}\right]\right)=\emptyset\right\} \\
& =\left\{\operatorname{In}(\sigma): I[\sigma] \cap K\left(\left[T_{e}\right]\right)=\emptyset\right\} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\operatorname{In} \cap F_{w f s}\left(P_{e}\right) & =\bigcup_{\lambda \operatorname{a~limit,n\geq 0}} \operatorname{In} \cap \mathbb{F}_{\lambda+2 n}\left(P_{e}\right) \\
= & \bigcup_{\lambda \operatorname{a~limit}, n \geq 0} \operatorname{In} \cap \mathbb{F}_{\lambda+2 n+2}\left(P_{e}\right) \\
= & \bigcup \quad\left\{\operatorname{In}(\bar{\sigma}): \operatorname{card}\left(I[\sigma] \cap D^{\lambda+n}\left(\left[T_{e}\right]\right) \leq 1\right\}\right. \\
= & \left\{\operatorname{In}(\bar{\sigma}): I[\sigma] \cap K\left(\left[T_{e}\right]\right)=\emptyset\right\}
\end{aligned}
$$

In the following theorem, we consider the arithmetical complexity of subsets of $\omega \times \omega$. Here we identify each ground atom over the recursive language \mathcal{L} with its code. Thus an $M \subseteq H(P)$ can be thought of as a set of natural numbers.

Theorem 6 Let $\mathbb{T}_{e, \alpha}=\mathbb{T}_{\alpha}\left(P_{e}\right)$ and $\mathbb{F}_{e, \alpha}=\mathbb{F}_{\alpha}\left(P_{e}\right)$ be the sequence of sets defined in the alternating fixpoint algorithm to compute the well-founded semantics for the finite predicate logic program P_{e} constructed from the primitive recursive tree T_{e}. Then for any finite n and any λ which is either 0 or a recursive limit ordinal,

1. $\left\{\langle e, p\rangle: p \in \mathbb{T}_{e, \lambda+2 n}\right\}$ is a $\Sigma_{\lambda+2 n+1}^{0}$ complete set,
2. $\left\{\langle e, p\rangle: p \in \mathbb{F}_{e, \lambda+2 n+1}\right\}$ is a $\Pi_{\lambda+2 n+1}^{0}$ complete set,
3. $\left\{\langle e, p\rangle: p \in \mathbb{F}_{e, \lambda+2 n+2}\right\}$ is $\Pi_{\lambda+2 n+2}^{0}$ a complete set, and
4. $\left\{\langle e, p\rangle: p \in \mathbb{T}_{e, \lambda+2 n+1}\right\}$ is $\Sigma_{\lambda+2 n+2}^{0}$ a complete set.

Proof Note that (2) follows from (1) since $\mathbb{F}_{\lambda+2 n+1}\left(P_{e}\right)=U-\mathbb{T}_{\lambda+2 n}\left(P_{e}\right)$ and (4) follows from (3) since $\mathbb{F}_{\lambda+2 n+2}\left(P_{e}\right)=U-\mathbb{T}_{\lambda+2 n+1}\left(P_{e}\right)$.

Note that $\mathbb{T}_{0}\left(P_{e}\right)=\operatorname{LM}\left(\operatorname{Horn}\left(P_{e}\right)\right)$ is Σ_{1}^{0}. In general, the operator $A_{P_{e}}(M)=$ $L M\left(G L_{M}\left(P_{e}\right)\right)$ is Σ_{1}^{0} in M so that $U_{P_{e}}(M)=A_{P_{e}}\left(A_{P_{e}}(M)\right)$ is Σ_{2}^{0} in M. Similarly, the operator $V_{P}(M)$ is Π_{2}^{0} in M.

This allows us to prove that for all $n \geq 0 \mathbb{T}_{2 n}$ is $\Sigma_{2 n+1}^{0}$ and $\mathbb{F}_{2 n+2}$ is $\Pi_{2 n+2}^{0}$ and that for all recursive limit ordinals $\lambda, \mathbb{T}_{\lambda+2 n}\left(P_{e}\right)$ is $\Sigma_{\lambda+2 n+1}$ and $\mathbb{F}_{\lambda+2 n+2}\left(P_{e}\right)$ is $\Pi_{\lambda+2 n+2}$ uniformly in e.

That is, if λ is a recursive limit ordinal, then

$$
\mathbb{T}_{\lambda}\left(P_{e}\right)=\bigcup_{\alpha<\lambda, \alpha} \text { even } \mathbb{T}_{\alpha}\left(P_{e}\right)
$$

and

$$
\mathbb{F}_{\lambda}\left(P_{e}\right)=\bigcup_{\alpha<\lambda, \alpha \text { even }} \mathbb{F}_{\alpha}\left(P_{e}\right)
$$

are $\Sigma_{\lambda+1}^{0}$ by standard inductive definability results in [Hin78]. But then $\mathbb{T}_{\lambda+1}\left(P_{e}\right)$ is $\Sigma_{\lambda+2}^{0}$ and $\mathbb{F}_{\lambda+2}\left(P_{e}\right)$ is $\Pi_{\lambda+2}^{0}$. Finally if $\mathbb{T}_{\lambda+2 n}\left(P_{e}\right)$ is $\Sigma_{\lambda+2 n+1}^{0}$, then $\mathbb{T}_{\lambda+2 n+2}\left(P_{e}\right)=$ $U_{P_{e}}\left(\mathbb{T}_{\lambda+2 n}\right)$ is $\Sigma_{\lambda+2 n+3}^{0}$. Similarly, if $\mathbb{F}_{\lambda+2 n}\left(P_{e}\right)$ is $\Pi_{\lambda+2 n+1}^{0}$, then $\mathbb{F}_{\lambda+2 n+2}\left(P_{e}\right)=$ $V_{P_{e}}\left(\mathbb{F}_{\lambda+2 n}\right)$ is $\Pi_{\lambda+2 n+3}^{0}$.

The completeness results follows from Theorems 2 and 5 . We will illustrate the proof for infinite ordinals. By the proof of Theorem 5, there is a recursive function f such that the program P_{e} corresponding to tree T_{e} in Theorem 5 is $L P_{f(e)}$. Then for any recursive limit ordinal λ and any finite n,

$$
I[\emptyset] \cap D^{\lambda+n}\left(\left[T_{e}\right]\right)=\emptyset \quad \Longleftrightarrow \quad D^{\lambda+n}\left(\left[T_{e}\right]\right)=\emptyset
$$

By Theorem 2, this is a $\Sigma_{\lambda+2 n+1}^{0}$ complete relation on e. But then by Theorem 5,

$$
D^{\lambda+n}\left(\left[T_{e}\right]\right)=\emptyset \quad \Longleftrightarrow \quad \operatorname{In}(\emptyset) \in T_{\lambda+2 n}\left(L P_{f(e)}\right) .
$$

This reduction demonstrates that $\left\{(e, p): p \in \mathbb{T}_{\lambda+2 n}\left(P_{e}\right)\right\}$ is $\Sigma_{\lambda+2 n+1}$ complete. Similarly we have

$$
\operatorname{card}\left(D^{\lambda+n}\left(\left[T_{e}\right]\right)\right) \leq 1 \Longleftrightarrow \operatorname{In}(\bar{\emptyset}) \in \mathbb{F}_{\lambda+2 n+2}\left(L P_{f(e)}\right)
$$

which shows that $\left\{(e, p): p \in \mathbb{F}_{\lambda+2 n+1}\left(P_{e}\right)\right\}$ is $\Pi_{\lambda+2 n+2}$ complete.
We next apply Theorem 3 and Theorem 5 to derive the following index set results for the well-founded semantics.

Theorem 7 Let R be any infinite and coinfinite recursive subset of U. Then the following index sets are all Π_{1}^{1} complete:
(i) $\left\{e: \mathbb{T}_{w f s}\left(L P_{e}\right)\right.$ is recursive $\}$
(ii) $\left\{e: R \subseteq \mathbb{T}_{w f s}\left(L P_{e}\right)\right\}$, and
(iii) $\left\{e: \mathbb{T}_{w f s}\left(L P_{e}\right)\right.$ is $\left.\Delta_{1}^{1}\right\}$.

Proof The upper bound on the complexity follows from the fact that $\mathbb{T}_{\text {wfs }}\left(L P_{e}\right)$ can be obtained from the closure of a Σ_{2}^{0} monotone inductive operator. Therefore $\mathbb{T}_{w f s}\left(L P_{e}\right)$ is Δ_{1}^{1} if and only if there exists a countable α such that the inductive operator closes at stage α and, hence, $\mathbb{T}_{\alpha}\left(L P_{e}\right)=\mathbb{T}_{\alpha+2}\left(L P_{e}\right)$ and $\mathbb{F}_{\alpha}\left(L P_{e}\right)=F_{\alpha+2}\left(L P_{e}\right)$. This is a Π_{1}^{1} condition by the Stage Comparison Theorem [Hin78], p. 105.

It follows from the proof of Theorem 5 that there is a $1: 1$ recursive function f such that the program P_{e} corresponding to the primitive recursive tree T_{e} is $L P_{f(e)}$. Since

$$
\mathbb{T}_{w f s}\left(L P_{f(e)}\right)=\left\{I n(\sigma): I[\sigma] \cap K\left(\left[T_{e}\right]\right)=\emptyset\right\}
$$

it is easy to see that $K\left(\left[T_{e}\right]\right)$ is recursive $\left(\Delta_{1}^{1}\right)$ if and only if $\mathbb{T}_{w f s}\left(L P_{f(e)}\right)$ is recursive $\left(\Delta_{1}^{1}\right)$. Hence f shows that $\left\{e: K\left(\left[T_{e}\right]\right)\right.$ is recursive $\}$ is $1: 1$ reducible
to $\left\{e: \mathbb{T}_{w f s}\left(L P_{e}\right)\right.$ is recursive $\}$ and $\left\{e: K\left(\left[T_{e}\right]\right)\right.$ is $\left.\Delta_{1}^{1}\right\}$ is $1: 1$ reducible to $\left\{e: \mathbb{T}_{w f s}\left(L P_{e}\right)\right.$ is $\left.\Delta_{1}^{1}\right\}$. Thus the Π_{1}^{1}-completeness for parts (i) and (iii) follow from Theorem 3. For the Π_{1}^{1}-completeness of part (ii), note that $K\left(\left[T_{e}\right]\right)=\emptyset$ if and only if $\operatorname{In}(\sigma) \in \mathbb{T}_{w f s}\left(L P_{f(e)}\right)$ for all $\sigma \in\{0,1\}^{*}$. Thus again we can use the fact that $\left\{e: K\left(\left[T_{e}\right]\right)=\emptyset\right\}$ is Π_{1}^{1} complete to establish the Π_{1}^{1} completeness of part (ii) in the case where R is the recursive set of codes of all $\operatorname{In}(\sigma)$ such that $\sigma \in\{0,1\}^{*}$. But given, any recursive set R which is infinite and coinfinite, we can construct a coding scheme such that R equals the set of codes of all $\operatorname{In}(\sigma)$ such that $\sigma \in\{0,1\}^{*}$.

By combining Theorem with Theorem 5, we obtain the following result which is essentially due to Schlipf [S95].

Theorem 8 There is a finite predicate logic program P such that the least ordinal α such that $U_{P}^{\alpha}(\emptyset)=U_{P}^{\alpha+1}(\emptyset)$ is ω_{1}^{C-K} and $\mathbb{T}_{w f s}(P)$ is a Π_{1}^{1} complete set.

4 Index sets for logic programs with simple well-founded semantics

In this section, we will derive a number of index sets results for finite predicate logic programs whose well-founded semantics is extremely simple. First we consider the problem of classifying the index sets for the properties of having $\mathbb{T}_{w f s}\left(L P_{e}\right)$ and/or $\widehat{\mathbb{T}}_{w f s}\left(L P_{e}\right)$ be empty.
Theorem 9 \{e: $\left.\mathbb{T}_{0}\left(L P_{e}\right)=\mathbb{T}_{1}\left(L P_{e}\right)=\emptyset\right\}=\left\{e: \widehat{\mathbb{T}}_{w f s}\left(L P_{e}\right)=\emptyset\right\}$ is recursive.

Proof Observe that for any finite predicate logic program P,

$$
\mathbb{T}_{0}(P) \subseteq \mathbb{T}_{w f s}(P) \subseteq \widehat{\mathbb{T}}_{w f s}(P) \subseteq \mathbb{T}_{1}(P)
$$

so that if $\mathbb{T}_{1}(P)=\emptyset$, then $\mathbb{T}_{0}(P)=\mathbb{T}_{w f s}(P)=\widehat{\mathbb{T}}_{w f s}(P)=\emptyset$.
First assume that $\mathbb{T}_{0}\left(L P_{e}\right)=\mathbb{T}_{1}\left(L P_{e}\right)=\emptyset$. Now $\mathbb{T}_{0}\left(L P_{e}\right)=L M\left(G L_{H\left(L P_{e}\right)}\left(L P_{e}\right)\right)=$ \emptyset if and only if there are no Horn clauses in $L P_{e}$, that is, the finite program $L P_{e}$ has no clauses whose negative body is empty. This is clearly a recursive condition. But if $\mathbb{T}_{0}\left(L P_{e}\right)=\emptyset$, then $\mathbb{T}_{1}\left(L P_{e}\right)=L M\left(G L_{\emptyset}\left(L P_{e}\right)\right)$. Thus $\mathbb{T}_{1}\left(L P_{e}\right)=\emptyset$ if and only if $L P_{e}$ has no clauses whose positive body is empty which is also a recursive condition. Thus $\left\{e: \mathbb{T}_{1}\left(L P_{e}\right)=\mathbb{T}_{1}\left(L P_{e}\right)=\emptyset\right\}$ is recursive. Clearly, if $\mathbb{T}_{0}(P)=\mathbb{T}_{1}(P)=\emptyset$, then $\widehat{\mathbb{T}}_{w f s}(P)=\emptyset$.

Next suppose that $\widehat{\mathbb{T}}_{w f s}(P)=\emptyset$. Then we know that $\mathbb{T}_{w f s}(P)=\emptyset$ so that $\mathbb{T}_{\alpha}(P)=\emptyset$ for all even α. We claim that this condition forces $\mathbb{T}_{1}(P)=$ \emptyset. That is, suppose for a contradiction, $\mathbb{T}_{1}(P)=L M\left(G L_{\emptyset}(P)\right)=A \neq \emptyset$. Then $\mathbb{F}_{2}(P)=\bar{A}$ and $\mathbb{T}_{2}(P)=L M\left(G L_{A}(P)\right)=\emptyset$. But then $\mathbb{F}_{3}(P)=H(P)$, and $\mathbb{T}_{3}(P)=L M\left(G L_{\emptyset}(P)\right)=A$. It is then easy to prove by induction that $\mathbb{T}_{\alpha}(P)=\emptyset$ if α is even and $\mathbb{T}_{\alpha}(P)=A$ is α is odd which would imply that $\widehat{\mathbb{T}}_{w f s}(P)=A$ contradicting our assumption that $\widehat{\mathbb{T}}_{w f s}(P)=\emptyset$. Thus we have shown that $\widehat{\mathbb{T}}_{w f s}(P)=\emptyset$ if and only if $\mathbb{T}_{0}(P)=\mathbb{T}_{1}(P)=\emptyset$.

Theorem $10\left\{e: \mathbb{T}_{w f s}\left(L P_{e}\right)=\emptyset\right\}$ is Π_{2}^{0} complete.
Proof It is clear that $\mathbb{T}_{w f s}\left(L P_{e}\right)=\emptyset$ if and only if $\mathbb{T}_{\alpha}\left(L P_{e}\right)=\emptyset$ for all even α. THen we must have that $\mathbb{T}_{0}\left(L P_{e}\right)=\emptyset$. As above, $\mathbb{T}_{0}\left(L P_{e}\right)=\emptyset$ if and only if there are no Horn clauses in $L P_{e}$ which is a recursive condition. But then $G L_{\emptyset}\left(L P_{e}\right)$ is a recursive program so $\mathbb{T}_{1}\left(L P_{e}\right)=L M\left(G L_{\emptyset}\left(L P_{e}\right)\right)$ is an r.e. set and, therefore, $\mathbb{T}_{2}\left(L P_{e}\right)=L M\left(G L_{\mathbb{T}_{1}\left(L P_{e}\right)}\left(L P_{e}\right)\right)$ is a Σ_{2}^{0} set. It follows that the condition $\mathbb{T}_{2}\left(L P_{e}\right)=\emptyset$ is now Π_{2}^{0}.

For the completeness, we give a reduction to the Π_{2}^{0} complete set $\{e$: $\left.W_{e}=\omega\right\}$. Let H_{e} be a finite Horn program which contains the constant symbol $\overline{0}$, the unary function symbol s, and a predicate symbol R such that $R(\bar{n}) \in l f p\left(H_{e}\right) \Longleftrightarrow n \in W_{e}$. Let $L P_{g(e)}$ consist of the following clauses, where b is an atom that does not occur in H_{e} :
(i) $p \leftarrow q_{1}, \ldots, q_{m}, \neg b$ for each clause $C=p \leftarrow q_{1}, \ldots, q_{m}$ of H_{e} and
(ii) $b \leftarrow \neg R(x)$.

Note $G L_{U}\left(L P_{g(e)}\right)$ is the empty program so that $\mathbb{T}_{0}\left(L P_{g(e)}\right)=\emptyset$. It then follows that $G L_{\mathbb{T}_{0}\left(L P_{g(e)}\right)}\left(L P_{g(e)}\right)=G L_{\emptyset}\left(L P_{g(e)}\right)$ has all clauses of H_{e}, plus the clause $b \leftarrow$. Thus $\mathbb{T}_{1}\left(L P_{g(e)}\right)$ will contain b and it will contain $R(\bar{n})$ if and only $n \in W_{e}$. There are two cases in the determination of $\mathbb{T}_{2}\left(L P_{g(e)}\right)$. If $W_{e}=\omega$, then $G L_{\mathbb{T}_{1}\left(L P_{g(e)}\right)}\left(L P_{g(e)}\right)$ will be the empty program so that $\mathbb{T}_{2}\left(L P_{g(e)}\right)=\emptyset$. If $W_{e} \neq \omega$, then for some $n_{0}, n_{0} \notin W_{e}$ in which case $R\left(\overline{n_{0}}\right) \notin \mathbb{T}_{1}\left(L P_{g(e)}\right)$. Thus the clause $b \leftarrow$ is in $G L_{\mathbb{T}_{1}\left(L P_{g(e))}\right.}\left(L P_{g(e)}\right)$. But then $b \in \mathbb{T}_{2}\left(L P_{g(e)}\right)$ so that $\mathbb{T}_{2}\left(L P_{g(e)}\right) \neq \emptyset$. It follows that $a \in\left\{e: W_{e}=\omega\right\}$ if and only if $\mathbb{T}_{0}\left(L P_{g(a)}\right)=\mathbb{T}_{2}\left(L P_{g(a)}\right)=\emptyset$ if and only if $\mathbb{T}_{w f s}\left(L P_{g(a)}\right)=\emptyset$. Hence the set $\left\{e: \mathbb{T}_{w f s}\left(L P_{e}\right)=\emptyset\right\}$ is Π_{2}^{0}-complete.

We can ask a similar questions the properties of having $\mathbb{F}_{w f s}\left(L P_{e}\right)$ or $\widehat{\mathbb{F}}_{w f s}\left(L P_{e}\right)$ be empty. Here the results are a bit different.

Theorem $11\left\{e: \mathbb{F}_{1}\left(L P_{e}\right)=\emptyset\right\}=\left\{e: \widehat{\mathbb{F}}_{w f s}\left(L P_{e}\right)=\emptyset\right\}$ is Π_{2}^{0} complete.
Proof For any finite predicate logic program $P, \mathbb{F}_{1}(P)=\emptyset$ if and only if $\mathbb{T}_{0}(P)=L M\left(G L_{H(P)}(P)\right)=H(P)$, where $H(P)$ is the Herbrand base of P. Note that $G L_{H(P)}(P)$ is a recursive program so that $\mathbb{T}_{0}(P)$ is r.e. and, hence, the predicate that $\mathbb{T}_{0}(P)=H(P)$ is Π_{2}^{0}. Thus the predicate that $\mathbb{F}_{1}\left(L P_{e}\right)=\emptyset$ is a Π_{2}^{0} predicate. Now it is easy to see by induction, that if $\mathbb{F}_{1}\left(L P_{e}\right)=\emptyset$, then $\mathbb{F}_{\alpha}\left(L P_{e}\right)=\emptyset$ for all α. Thus if $\mathbb{F}_{1}\left(L P_{e}\right)=\emptyset$, then $\widehat{\mathbb{F}}_{w f s}\left(L P_{e}\right)=\emptyset$.

Now suppose that $\widehat{\mathbb{F}}_{w f s}\left(L P_{e}\right)=\emptyset$. Then we claim that $\mathbb{F}_{1}\left(L P_{e}\right)=\emptyset$. For a contradiction, suppose that $\mathbb{F}_{1}\left(L P_{e}\right)=A \neq \emptyset$. Then

$$
\mathbb{T}_{0}\left(L P_{e}\right)=L M\left(G L_{H\left(L P_{e}\right)}\left(L P_{e}\right)\right)=H\left(L P_{e}\right)-A
$$

But $\mathbb{F}_{\alpha}\left(L P_{e}\right) \subseteq \mathbb{F}_{w f s}\left(L P_{e}\right) \subseteq \widehat{\mathbb{F}}_{w f s}\left(L P_{e}\right)$ for all even α so that we must have that $\mathbb{F}_{2}\left(L P_{e}\right)=\emptyset$. This means that $\mathbb{T}_{1}\left(L P_{e}\right)=L M\left(G L_{H\left(L P_{e}\right)-A}\left(L P_{e}\right)\right)=$
$H\left(L P_{e}\right)$. It is then easy to prove by induction that $\mathbb{T}_{\beta}\left(L P_{e}\right)=L M\left(G L_{H\left(L P_{e}\right)-A}\left(L P_{e}\right)\right)=$ $H\left(L P_{e}\right)$ for all odd β and $\mathbb{T}_{\alpha}\left(L P_{e}\right)=L M\left(G L_{H\left(L P_{e}\right)}\left(L P_{e}\right)\right)=H\left(L P_{e}\right)-A$ for all even α. This implies that $F_{\beta}\left(L P_{e}\right)=A$ for all odd β and hence $\widehat{\mathbb{F}}_{w f s}\left(L P_{e}\right)=A$. Thus if $\widehat{\mathbb{F}}_{w f s}\left(L P_{e}\right)=\emptyset$, then $\mathbb{F}_{1}\left(L P_{e}\right)=\emptyset$.

For the completeness, we again give a reduction to the Π_{2}^{0} complete set $\left\{e: W_{e}=\omega\right\}$. Let K_{e} be a Horn program with constant symbol $\overline{0}$, unary predicate s, and predicate R such that, for all $n, R(\bar{n}) \in l f p\left(K_{e}\right) \Longleftrightarrow n \in W_{e}$. Note that K_{e} may have other predicates, but one can construct K_{e} so that only ground terms are $\overline{0}$ and $s^{n}(\overline{0})=\bar{n}$.

Let h be the recursive function such that $L P_{h(e)}$ consists of K_{e} together with the clauses
(a) $Q\left(x_{1}, \ldots, x_{k}\right) \leftarrow R\left(x_{1}\right), R\left(x_{2}\right), \ldots, R\left(x_{k}\right) \quad$ for all predicates Q of K_{e} which are different from R.

Since $L P_{h(e)}$ is a Horn program, it is easy to prove by induction that $\mathbb{T}_{\alpha}\left(L P_{h(e)}\right)=$ $l f p\left(L P_{h(e)}\right)$ for all α. Now suppose that $W_{e}=\omega$. Then $R(\bar{n}) \in l f p\left(L P_{h(e)}\right)$ for every $n \in \omega$. Hence the clauses in (a) will allow us to show that $\mathbb{T}_{0}\left(L P_{h(e)}\right)=$ $l f p\left(L P_{h(e)}\right)=H\left(\left(L P_{h(e)}\right)\right.$ and $\mathbb{F}_{1}\left(L P_{h(e)}\right)=\emptyset$.

Next suppose that $W_{e} \neq \omega$. Then some $n_{0}, R\left(\overline{n_{0}}\right) \notin l f p\left(L P_{h(e)}\right)$ and hence $R\left(\overline{n_{0}}\right) \notin l p f\left(L P_{h(e)}\right)$ so that $R\left(\overline{n_{0}}\right) \in \mathbb{F}_{1}\left(L P_{h(e)}\right)$. Thus $a \in\left\{e: W_{e}=\omega\right\} \Longleftrightarrow$ $h(a) \in\left\{e: \mathbb{F}_{1}\left(L P_{e}\right)=\emptyset\right\}$. Hence $\left\{e: \mathbb{F}_{1}\left(L P_{e}\right)=\emptyset\right\}$ is Π_{2}^{0} complete.

Theorem $12\left\{e: \mathbb{F}_{w f s}\left(L P_{e}\right)=\emptyset\right\}$ is Π_{3}^{0} complete.
Proof It is easy to see that $\mathbb{F}_{w f s}\left(L P_{e}\right)=\emptyset$ if and only if $\mathbb{F}_{2}\left(L P_{e}\right)=\emptyset$. Note that $\mathbb{T}_{0}\left(L P_{e}\right)=L M\left(G L_{H\left(L P_{e}\right)}\left(L P_{e}\right)\right)$ is r.e. so that $\mathbb{T}_{1}\left(L P_{e}\right)=L M\left(G L_{\mathbb{T}_{0}\left(L P_{e}\right)}\left(L P_{e}\right)\right)$ is Σ_{2}^{0}. Thus $\mathbb{F}_{2}\left(L P_{e}\right)$ is a Π_{2}^{0} set. It follows that the predicate $\mathbb{F}_{2}\left(L P_{e}\right)=\emptyset$ is Π_{3}^{0}.

For the completeness, we will reduce an arbitrary Π_{3}^{0} set C to $\left\{e: \mathbb{F}_{w f s}\left(L P_{e}\right)=\emptyset\right\}$. Let R be a recursive predicate such that

$$
e \in C \Longleftrightarrow(\forall m)(\exists n)(\forall p) \neg R(e, m, n, p) .
$$

Let $R_{e}(m, n, p)$ be the predicate $R(e, m, n, p)$ and let H_{e} be a Horn program with predicate $R_{e}(\cdot, \cdot, \cdot)$ such that the least model of H_{e} defines the predicate R_{e}. That is, H_{e} has a constant term $\overline{0}$ and a unary function symbol s, and ternary predicate R_{e} such that in the least model of $H_{e}, R_{e}(\bar{m}, \bar{n}, \bar{p})$ holds if and only if $R_{e}(m, n, p)$ holds. Note that H_{e} may have other predicates, but one can construct H_{e} so that only ground terms are $\overline{0}$ and $s^{n}(\overline{0})=\bar{n}$. Define the program $T_{e}=L P_{q(e)}$ to consist of H_{e} together with the following rules where A, and B are new predicates:
(i) $B(x, y) \leftarrow R_{e}(x, y, z)$
(ii) $A(x) \leftarrow \neg B(x, y)$
(iii) $Q\left(x_{1}, \ldots, x_{k}\right) \leftarrow A\left(x_{1}\right), A\left(x_{2}\right), \ldots, A\left(x_{k}\right) \quad$ for all predicates Q of H_{e}.
(iv) $B(x, y) \leftarrow A(x), A(y)$.

Then it is easy to see that, for any m and n,

$$
B(\bar{m}, \bar{n}) \in \mathbb{T}_{0}\left(L P_{q(e)}\right) \Longleftrightarrow(\exists p) R_{e}(m, n, p) .
$$

It follows that $G L_{\mathbb{T}_{0}\left(L P_{q(e)}\right)}\left(L P_{q(e)}\right)$ will have rules (i), (iii), and (iv) together with rules $A(\bar{m}) \leftarrow$ for all m such that $(\exists n)(\forall p) \neg R(e, m, n, p)$.

We claim that $\mathbb{F}_{2}\left(L P_{q(e)}\right)=\emptyset$ if and only if $e \in C$. That is, suppose that $e \in$ C. Then for all m, there exists an n such that for all $p, \neg R_{e}(m, n, p)$. Thus for all m, there is an n such that $B(\bar{m}, \bar{n})$ is not in $\mathbb{T}_{0}\left(L P_{q(e)}\right)$ so that $A(\bar{m}) \leftarrow$ will be in $G L_{T_{0}\left(L P_{q(e)}\right)}\left(L P_{q(e)}\right)$. But then $T_{1}\left(L P_{q(e)}\right)=L M\left(G L_{T_{0}\left(L P_{q(e)}\right)}\left(L P_{q(e)}\right)\right)$ will contain every $A(\bar{m})$ for every m. One can then show that the clauses (iii) and (iv) will ensure that $T_{1}\left(L P_{q(e)}\right)=H\left(L P_{q(e)}\right)$ so that $\mathbb{F}_{2}\left(\left(L P_{q(e)}\right)=\emptyset\right.$.

Suppose that $e \notin C$. Then there is an m such that $(\forall n)(\exists p) R(e, m, n, p)$. But then $B(\bar{m}, \bar{n}) \in T_{0}\left(\left(L P_{q(e)}\right)\right.$ for all n so that $G L_{T_{0}\left(P_{e}\right)}\left(P_{e}\right)$ will not contain the rule $A(\bar{m}) \leftarrow$. It follows that $A(\bar{m}) \notin T_{1}\left(\left(L P_{q(e)}\right)\right.$ and therefore $\mathbb{F}_{2}\left(\left(L P_{q(e)}\right) \neq \emptyset\right.$.

It follows that $a \in C \Longleftrightarrow q(a) \in\left\{e: \mathbb{F}_{2}\left(L P_{e}\right)=\emptyset\right\}$. Hence every Π_{3}^{0} predicate is many-one reducible to $\left\{e: \mathbb{F}_{2}\left(L P_{e}\right)=\emptyset\right\}$ so that $\left\{e: \mathbb{F}_{2}\left(L P_{e}\right)=\emptyset\right\}$ is Π_{3}^{0} complete.

Our next result is to consider the property of the well-founded semantics being trivial. That is, it is always the case that $T_{w f s}(P)$ contains the least model of the Horn part of P, i.e., $L M(\operatorname{Horn}(P)) \subseteq T_{w f s}(P)$. We say that the well-founded semantics of P is trivial if $T_{w f_{s}}(P)=\widehat{\mathbb{T}}_{w f s}(P)=L M(\operatorname{Horn}(P))$. Thus we are interested in the complexity of the set

$$
\begin{equation*}
I_{L P}(\operatorname{triv}-w f s)=\left\{e: T_{w f s}\left(L P_{e}\right)=\widehat{\mathbb{T}}_{w f s}\left(L P_{e}\right)=L M\left(\operatorname{Horn}\left(L P_{e}\right)\right)\right\} \tag{9}
\end{equation*}
$$

Theorem $13 I_{L P}($ triv-wfs $)$ is Π_{2}^{0}-complete.
Proof Let $M_{e}=L M\left(\operatorname{Horn}\left(L P_{e}\right)\right)$. Clearly, $M_{e} \subseteq L M\left(G L_{S}\left(L P_{e}\right)\right)$ for all $S \subseteq$ $H\left(L P_{e}\right)$. Thus it follows that $T_{w f s}\left(L P_{e}\right)=M_{e}$ if and only if $\mathbb{T}_{\alpha}\left(L P_{e}\right)=M_{e}$ for all even α. We claim that the condition that $\widehat{\mathbb{T}}_{w f s}\left(L P_{e}\right)=M_{e}$ forces that $L M\left(G L_{M_{e}}\left(L P_{e}\right)\right)=M_{e}$. That is, suppose $L M\left(G L_{M_{e}}\left(L P_{e}\right)\right)=A_{e} \neq M_{e}$. Then

$$
\mathbb{T}_{1}\left(L P_{e}\right)=L M\left(G L_{\mathbb{T}_{0}\left(L P_{e}\right)}\left(L P_{e}\right)\right)=L M\left(G L_{M_{e}}\left(L P_{e}\right)\right)=A_{e}
$$

and

$$
\mathbb{T}_{2}\left(L P_{e}\right)=L M\left(G L_{\mathbb{T}_{1}\left(L P_{e}\right)}\left(L P_{e}\right)\right)=L M\left(G L_{A_{e}}\left(L P_{e}\right)\right)=M_{e}
$$

Then one can prove by induction that $\mathbb{T}_{\alpha}\left(L P_{e}\right)=M_{e}$ for all even α and $\mathbb{T}_{\beta}\left(L P_{e}\right)=A_{e}$ for all odd β which would imply that $\widehat{\mathbb{T}}_{w f s}\left(L P_{e}\right)=A_{e}$. It thus follows that $T_{w f s}\left(L P_{e}\right)=\widehat{\mathbb{T}}_{w f s}\left(L P_{e}\right)=M_{e}$ if and only if $\mathbb{T}_{0}\left(L P_{e}\right)=$ $L M\left(G L_{H\left(L P_{e}\right)}\left(L P_{e}\right)\right)=M_{e}$ and $L M\left(G L_{M_{e}}\left(L P_{e}\right)\right)=M_{e}$. However, $T_{0}\left(L P_{e}\right)=$ $L M\left(G L_{H\left(L P_{e}\right)}\left(L P_{e}\right)\right)$ is r.e. and $L M\left(G L_{M_{e}}\left(L P_{e}\right)\right)$ is Σ_{2}^{0}. Now suppose that A is Σ_{2}^{0} set and B is a Σ_{1}^{0} and $B \subseteq A$. Then $A=B$ if and only if $\forall x(x \notin$ $B \Rightarrow x \notin A$) which is a Π_{2}^{0} predicate. It follows that the condition that
$\mathbb{T}_{0}\left(L P_{e}\right)=L M\left(G L_{H\left(L P_{e}\right)}\left(L P_{e}\right)\right)=M_{e}$ and $L M\left(G L_{M_{e}}\left(L P_{e}\right)\right)=M_{e}$ are Π_{2}^{0} predicates. Thus $I_{L P}($ triv-wfs $)$ is Π_{2}^{0}.

To show that $I_{L P}($ triv-wfs $)$ is Π_{2}^{0}-complete, we will use that fact that Inf $=\left\{e: W_{e}\right.$ is infinite $\}$ is a Π_{2}^{0} complete set. For any e, let

$$
W_{g(e)}=\left\{i:\left|W_{e}\right| \geq i\right\} .
$$

Let K_{e} be a finite predicate Horn logic program with constant symbol $\overline{0}$, unary predicate s, and unary predicate symbol C such that $C(\bar{n})$ is in the least model of K_{e} if and only if $n \in W_{g(e)}$. Note that K_{e} may have other predicates, but one can construct K_{e} so that only ground terms are $\overline{0}$ and $s^{n}(\overline{0})=\bar{n}$.

Then there is a recursive function h such that program $L P_{h(e)}$ consists of K_{e} together with the following clauses:
(i) $\operatorname{In}(x) \leftarrow C(x)$
(ii) $\operatorname{In}(s(x)) \leftarrow \neg \operatorname{In}(x)$
(iii) $Q\left(x_{1}, \ldots, x_{k}\right) \leftarrow \operatorname{In}\left(x_{1}\right), \operatorname{In}\left(x_{2}\right), \ldots, \operatorname{In}\left(x_{k}\right) \quad$ for all predicates Q of K_{e} which are different from C and $I n$.

Now if W_{e} is infinite, then $L M\left(\operatorname{Horn}\left(L P_{h(e)}\right)\right)$ equals $H\left(L P_{h(e)}\right)$ since we will be able to derive $\operatorname{In}(\bar{n})$ and $C(\bar{n})$ for all $n \in \omega$ so that the clauses in (iii) will ensure that $L M\left(\operatorname{Horn}\left(L P_{h(e)}\right)\right)=H\left(L P_{e}\right)$. In that case, we can prove by induction that $\mathbb{T}_{\alpha}\left(L P_{h(e)}\right)=H\left(\left(L P_{h(e)}\right)\right.$ for all $\alpha>0$ so that $T_{w f s}\left(L P_{h(e)}\right)=$ $\widehat{\mathbb{T}}_{w f s}\left(L P_{h(e)}\right)=L M\left(\operatorname{Hor} n\left(L P_{h(e)}\right)\right.$. Now suppose that W_{e} is finite, say $\left|W_{e}\right|=$ n. Then it will be the case that $\mathbb{T}_{0}\left(L P_{h(e)}\right)=L M\left(\operatorname{Horn}\left(L P_{h(e)}\right)\right)$ restricted to the predicates $C(\cdot)$ and $\operatorname{In}(\cdot)$ will equal $\{C(\overline{0}), I(\overline{0}), \ldots, C(\bar{n}), I(\bar{n})\}$. But then $T_{1}\left(L P_{h(e)}\right)=L M\left(G L_{\mathbb{T}_{0}\left(L P_{h(e)}\right)}\left(L P_{h(e)}\right)\right)$ will contain $\operatorname{In}(\bar{m})$ for all $m>n+1$ since the clauses in (ii) will ensure that $\operatorname{In}(\bar{m}) \leftarrow$ is in $G L_{T_{0}\left(L P_{h(e)}\right)}\left(L P_{h(e)}\right)$ for all $m>n+1$. But then $G L_{T_{1}\left(L P_{h(e)}\right)}\left(L P_{h(e)}\right)$ will contain the clause $\operatorname{In}(\overline{n+2}) \leftarrow$ which means that $\operatorname{In}(\overline{n+2}) \in T_{2}\left(L P_{h(e)}\right) \subseteq \mathbb{T}_{w f s}\left(L P_{h(e)}\right)$. Thus if W_{e} is finite, then
$\mathbb{T}_{w f s}\left(L P_{h(e)}\right) \neq L M\left(\operatorname{Horn}\left(L P_{h(e)}\right)\right.$. Thus h shows that $a \in\left\{e: W_{e}\right.$ is infinite $\}$ if and only if $h(a) \in I_{L P}($ triv-wfs $)$ so that $I_{L P}($ triv- $w f s)$ is Π_{2}^{0} complete.

5 Conclusions

In this paper, we have shown that there is a very close connection between Van Gelder's alternating fixed point algorithm to compute the well-founded semantics of a finite predicate logic program and the classical construction of the perfect kernel $K(Q)$ of a Π_{1}^{0} class $Q \subseteq 2^{\omega}$ via the transfinite iteration of the Cantor-Bendixson derivative, see Theorem 5. Theorem 5 allows to transfer many complexity results concerned with index sets associated with the problem of constructing the perfect kernel $K(Q)$ of a Π_{1}^{0} class $Q \subseteq 2^{\omega}$ to complexity results of index sets associated with the problem of finding the well-founded semantics of a finite predicate logic program. This allows us to
not only recover the complexity results of Schlipf [S95] and Fitting [F01], but to refine their results and to prove a number of new results. In fact, many more such complexity results for index sets associated with the problems of finding the well-founded semantics of a finite predicate logic program can be proved using the same methods.

Finally, we examined the complexity of the index sets
$A=\left\{e: \mathbb{T}_{w f s}\left(L P_{e}\right)=\emptyset\right\}$,
$B=\left\{e: \widehat{\mathbb{F}}_{w f s}\left(L P_{e}\right)=\emptyset\right\}$,
$C=\left\{e: \mathbb{T}_{w f s}\left(L P_{e}\right)=\emptyset\right\}$,
$D=\left\{e: \mathbb{T}_{w f s}\left(L P_{e}\right)=\widehat{\mathbb{T}}_{w f s}\left(L P_{e}\right)=L M\left(\operatorname{Horn}\left(L P_{e}\right)\right\}\right.$, and
$E=\left\{e: \mathbb{F}_{w f s}\left(L P_{e}\right)=\emptyset\right\}$.
We showed that A is recursive, B, C, and D are Π_{2}^{0} complete, and D is Π_{3}^{0} complete.

Acknowledgments

The first author was partially supported by National Science Foundation awards NSF grants DMS 0532644,0554841 and 00062393 and the second author was partially supported by NSF grants DMS 0400507 and 0654060.

References

[AN78] H. Andreka and I. Nemeti, The Generalized Completeness of Horn Predicate Logic as a Programming Language. Acta Cybernetica, 4:3-10, 1978.
[B1883] L. Bendixson, Quelques theéorèms de la th'eorie des ensumble de points, Acta Math. 2 (1883), 415-429.
[C82] D. Cenzer and R. Mauldin, On the Borel class of the derived set operator, Bull. Soc. Math. France 110 (1982) 357-380, II, 111, 367-372, (1983).
[C86] D. Cenzer, P. Clote, R. Smith, R. Soare and S. Wainer, Members of countable Π_{1}^{0} classes, Ann. Pure and Appl. Logic 31, 145-163, (1986).
[CR98] D. Cenzer and J.B. Remmel. Index sets for Π_{1}^{0} classes, Annals of Pure and Applied Logic 93, 3-61 (1998).
[CR99] D. Cenzer and J.B. Remmel, Π_{1}^{0} Classes in Mathematics. Handbook of Recursive Mathematics, 623-821, Elsevier (1999).
[CR08] D. Cenzer and J.B. Remmel, A connection between Cantor-Bendixson derivatives and the well-founded semantics of logic programs, ISAIM 2008, The Tenth International Symposium on Artificial Intelligence and Mathematics (Fort Lauderdale, 2008).
[CRta] D. Cenzer and J.B. Remmel, Effectively Closed Sets, ASL Lecture Notes in Logic, to appear.
[Den98] M. Denecker, The Well-founded Semantics Is the Principle of Inductive Definition, Proceedings of the 6th European Workshop on Logics in Artificial Intelligence, Springer LNAI 1489, pages 1-16, 1998.
[DBM01] M. Denecker and M. Bruynooghe and V.W. Marek, Logic Programming Revisited: Logic Programs as Inductive Definitions, ACM Transactions on Computational Logic, 2:623-654, 2001.
[F01] M.C. Fitting, Fixpoint semantics for logic programming-a survey, Theoretical Computer Science 278 2001, 25-51.
[GL88] M. Gelfond and V. Lifschitz, The stable semantics for logic programs, in R. Kowalski and K. Bowen, editors, ICLP88, 1070-1080 (1988)
[Hin78] P. G. Hinman, Recursion-Theoretic Hierarchies (Springer-Verlag, 1978).
[Kur70] K. Kuratowski, Some problems concerning semi-continuous set-valued mappings, in: Set-Valued Mappings, Selections and Topological Properties of 2^{X}, (Lecture Notes in Math., Vol. 171, Springer-Verlag, 45-48, (1970).
[L87] S. Lempp, Hyperarithmetical index sets in recursion theory, Trans. Amer. Math. Soc. 303, 559-583, (1987).
[MNR94] W. Marek, A. Nerode, and J. B. Remmel, The stable models of predicate logic programs. Journal of Logic Programming, 21(3), 129-154 (1994).
[S95] J.S. Schlipf, The expressive power of the logic programming semantics, J. Comp. and System Sciences, 51, 64-86, (1995).
[Soa87] R. Soare, Recursively Enumerable Sets and Degrees (Springer-Verlag, 1987).
[Sm68] R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.
[T55] A. Tarski, A lattice-theoretical theorem and its applications, Pacific J. Math., 5, 285-309, (1955).
[V89] A. Van Gelder, The alternating fixpoints of logic programs with negation, $A C M$ Symposium on Principles of Database Systems, 1-10, (1989).
[V93] A. Van Gelder, The alternating fixpoints of logic programs with negation, Journal of Computer and System Sciences, 185-221, (1993).
[VRS91] A. Van Gelder, K.A. Ross and J.S. Schlipf, The well-founded semantics for general logic programs, J. ACM 38(3), 620-650 (1991).

[^0]: Cenzer was partially supported by the NSF grant DMS-652372 and Remmel by the NSF grant DMS-0654060.

