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Abstract

We investigate the �-randomness of unions and intersections of ran-

dom sets under various notions of randomness corresponding to di�erent

probability measures. For example, the union of two relatively Martin-

L�of random sets is not Martin-L�of random but is random with respect

to the Bernoulli measure � 3
4
under which any number belongs to the set

with probability 3

4
. Conversely, any � 3

4
random set is the union of two

Martin-L�of random sets. Unions and intersections of random closed sets

are also studied.

1 Introduction

The study of algorithmic randomness has been of great interest in recent years.
The basic problem is to quantify the randomness of a single real number. Early
in the last century, von Mises [11] suggested that a random real should have
reasonable statistical properties, such as the proportion of ones on the �rst n
bits limiting to 1

2 . Thus a random real would be stochastic in modern parlance.
Martin-L�of [7] observed that stochastic properties could be viewed as spe-

cial kinds of measure zero sets and de�ned a random real as one which avoids
certain e�ectively presented measure 0 sets. That is, a real X 2 2N is Martin-
L�of random with respect to probability measure � if for any e�ective sequence
S1; S2; : : : of c.e. open sets with �(Sn) � 2�n, X =2 \nSn.
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In this paper we want to consider the interaction of notions of algorithmic
randomness corresponding to di�erent probability measures, both for in�nite
binary sequences and for closed subsets of the Cantor space. Martin-L�of ran-
domness for closed sets was de�ned in a recent paper [1] and is described below.
We are particularly interested in the Bernoulli measure �p (with 0 < p < 1)
where the probability of a \1 "is p and the probability of a \0 "is 1 � p. The
real X is �-random relative to A (or A � � random) if it meets all Martin-L�of
�-tests which are uniformly c.e. relative to A.

Van Lambalgen's Theorem is a fundamental result of algorithmic randomness
which shows that the join A � B of two subsets of N is Martin-L�of random if
and only if A is Martin-L�of random relative to B and B is Martin-L�of random
relative to A. This theorem has many applications; in particular, it was used
in [2] to show that every Martin-L�of random closed set contains a Martin-L�of
random element.

We now consider versions of Van Lambalgen's Theorem for unions and in-
tersections of random sets. It is easy to see that the union of two relatively
Martin-L�of random sets is not Martin-L�of random under the standard Lebesgue
measure; however, the union is random with respect to the Bernoulli measure
� 3
4
under which any number belongs to the set with probability 3

4 . Conversely,
any � 3

4
random set is the union of two Martin-L�of random sets. Unions and

intersections of random closed sets are also studied.
Some de�nitions are needed. For a �nite string � 2 f0; 1gn, let j�j = n.

For two strings �; � , say that � extends � and write � � � if j�j � j� j and
�(i) = �(i) for i < j�j. Similarly � � x for x 2 2N means that �(i) = x(i) for
i < j�j. Let �_� denote the concatenation of � and � and let �_i denote �_(i)
for i = 0; 1. For any � 2 f0; 1g� and any x 2 2N, let �_x = (�(0); : : : ; �(j�j �
1); x(0); x(1); : : : ). Let xdn = (x(0); : : : ; x(n � 1)). Two reals x and y may be
coded together into the join z = x�y, where z(2n) = x(n) and z(2n+1) = y(n)
for all n. We normally identify a set A � N with its characteristic function in
2N.

For a �nite string �, let I[�] denote fx 2 2N : � � xg. We shall call I[�]
the interval determined by �. The clopen sets are exactly the �nite unions of
intervals. A nonempty closed set P may be identi�ed with a tree TP � f0; 1g�

where TP = f� : P \ I(�) 6= ;g. Note that TP has no dead ends. That is, if
� 2 TP , then either �_0 2 TP or �_1 2 TP .

For an arbitrary tree T � f0; 1g�, let [T ] denote the set of in�nite paths
through T , that is,

x 2 [T ] () (8n)xdn 2 T:

It is well-known that P � 2N is a closed set if and only if P = [T ] for some
tree T . The set P is a �0

1 class, or e�ectively closed set, if P = [T ] for some
computable tree T . The set P is a strong �0

2 class if P = [T ] for some �0
2 tree.

The complement of a �0
1 class is sometimes called a c.e. open set. We remark

that if P is a �0
1 class, then TP is a �0

1 set, but it is not, in general, computable.
There is a natural e�ective enumeration P0; P1; : : : of the �

0
1 classes and thus an

enumeration of the c.e. open sets. Thus we can say that a sequence S0; S1; : : :
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of c.e. open sets is e�ective if there is a computable function, f , such that
Sn = 2N � Pf(n) for all n. For a detailed development of �0

1 classes, see [4, 5].
The disjoint union P � Q of two closed sets is f0_X : X 2 Pg [ f1_Y :

Y 2 Qg. The product P 
Q is fX � Y : X 2 P & Y 2 Qg.
A tree T with no dead ends may be represented (or coded) as an element

x = xT of 3N, where the nodes of T are addressed in lexicographic order as
�0; �1; : : : and the value of the bit corresponding to � is interpreted as follows:

(0) If x(n) = 0, then �n
_0 2 T and �n

_1 =2 T .

(1) If x(n) = 1, then �n
_0 =2 T and �n

_1 2 T .

(2) If x(n) = 2, then �n
_0 2 T and �n

_1 2 T .

Thus the tree T may be produced from x = xT 2 3N by the following process.
Begin by using x(0) to determine whether one or both of the extensions (0) and
(1) of the root �0 are in T ; this will de�ne �1 and possibly �2. Then use x(1)
to determine the extensions of �1 and continue in this fashion. For example, if
x starts with (1210), then we will have �0 = ;, �1 = (1), �2 = (10), �3 = (11),
�4 = (101), and �5 = (110). In particular, x(0) = 1 means that T will have the
node (1) but will not have the node (0).

It is clear that this process de�nes a map taking x = xT to T which is a
computable, one-to-one function from 3N onto the set of trees with no dead
ends. We use the standard notion of computable functions on NN as given for
example in Chapter 3 of Soare [9].

If Q is a closed set with corresponding tree TQ = T , having no dead ends,
and x = xT , then we also write x = xQ and say that x is the canonical code for
Q. It is clear that this de�nes an e�ective one-to-one mapping from the space
3N onto the space C of closed subsets of 2N.

The standard (hit-or-miss) topology on the space C of closed sets is given
by a sub-basis of sets of two types, where U is any open set in 2N.

V (U) = fK : K \ U 6= ;g; W (U) = fK : K � Ug

Note that W (;) = f;g and that V (2N) = C n f;g, so that ; is an isolated
element of C under this topology. Thus we may omit ; from C without compli-
cations. See [3] for details.

For our space C, there is a simpler basis of clopen sets of the form

UA = fK : (8� 2 f0; 1gn) : � 2 A () K \ I[�] 6= ;g;

where A � f0; 1gn. It is easy to see that there is a simple sub-basis of sets,
obtained by taking, for each string � 2 f0; 1g�, the set V (I[�]). In particular,
because we assume that the choices of branching from each node are mutually
independent, this means that any measure on the space is determined by its
values on these sub-basic sets.

The de�nition of a random (nonempty) closed set P = [T ] by Brodhead,
Cenzer and Dashti [1] comes from a probability measure where, for every node
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� 2 T , each of the scenarios above has equal probability 1
3 . The closed set

P = [T ] is random if its code xT is Martin-L�of random in 3N with respect to the
standard Lebesgue measure � on 3N, which assigns probability 1

3 to each choice
of 0, 1, or 2. There is a strong �0

2 closed set which is Martin-L�of random but no
�0
1 class is Martin-L�of random. It was shown that a random closed set is perfect

and contains no computable elements (in fact, it contains no n-c.e. elements).
Every random closed set has measure 0 and has box dimension log2

4
3 .

For any positive reals p; q such that p + q � 1, we can de�ne a Bernoulli
probability measure �hp;qi on 3N by having x(n) = 0 with probability p, x(n) = 1
with probability q and x(n) = 2 with probability 1�p�q. The induced measure
on the space C of closed subsets of 2N is denoted by ��, where

��(X ) = �(fxQ : Q 2 Xg): (1)

In the case that q0 = q1, we say that �� is symmetric.
For our purposes, we will sometimes use the equivalent formulation of ran-

domness for closed sets via ghost codes [2]. Here we simply enumerate all strings
from f0; 1g� as �0; �1; : : : and, if �n 2 TP , we use x(n) 2 f0; 1; 2g to determine
the branching below �n. Thus if �n =2 T , then the value x(n) is not used in the
de�nition of T . Thus it may be thought of as a ghost code.

In general, x is used to determine whether a given string � is in the corre-
sponding tree T as follows. For each i � j� j, let ni be the unique n such that
�di = �n. Then � 2 T if and only if, for each i � j� j, we have the following. If
�(i) = 0, then either x(i) = 0 or x(i) = 2 and if �(i) = 1, then either x(i) = 1
or x(i) = 2.

For example, consider x which begins with (1210) as above but now as a ghost
code representation for a closed set. Then we have the standard enumeration
�0 = ;, �1 = (0), �2 = (1) and �3 = (00). Once again, the value x(0) = 1 means
that (1) 2 T but (0) =2 T . However, the value x(1) = 2 applies to �1 = (0)
and thus has no e�ect on the de�ntion of T . The value x(2) = 1 now applies
to �2 = (1) and thus puts (11) 2 T and (10) =2 T . Finally, the value x(3) = 0
applies to �3 = (00) which is not in T and hence x(3) has no e�ect on the
de�nition of T .

The de�nition of ghost codes means that any tree T has in�nitely many
di�erent representations via ghost codes. The connection between the original
representation and the ghost code representation is given by Theorem 2.4 of [2],
which states that a closed set Q � 2N is Martin-L�of random if and only if there
is some ghost code representation x 2 3N which is Martin-L�of random

We will want to consider more general measures on both �N and on C. A
measure � on �N is determined by its values on the intervals I[�] and is said
to be computable if there is an algorithm which computes the measure �(I[�])
from input �. For any sequence � = (a0; a1; : : : ) where 0 � ai � 1 for all i,
we may de�ne the measure �� on 2N by setting ��(I[�]) =

Q
i<j�j bi, where

bi = ai if �(i) = 1 and bi = 1 � ai if �(i) = 0. Note that the probability of n
belonging to an arbitrary set A 2 2N is independent of the probabilities of any
other numbers being in A. We will say that a probability measure with this

4



property is generalized Bernoulli. If � is computable, then we say that �� is a
computable measure. Any computable generalized Bernoulli measure � on 2N

may be determined by some computable sequence � as above. An even more
general notion of a computable measure could de�ne the probability that n 2 A
as a function of n as well as Adn.

If � and � are two measures on 2N, the product measure �
� on 2N� 2N is
de�ned by setting (�
�)(U�V ) = �(U)��(V ). When � = �� and � = �� , then
�
 � may be identi�ed with ���� in the following sense. Let  : 2N � 2N ! 2N

be the natural homeomorphism with  (A;B) = A�B. Then for any subset U
of 2N � 2N, (�� 
 ��)(U) = ����( (U)).

We will also consider the product � �� = (a0 �b0; a1 �b1; : : : ) of two sequences
and the corresponding measure ���� .

We will use the following lemma to transform Martin-L�of tests on one space
to Martin-L�of tests on another space. Here we say that (X ; �) is a computable
probability space if X = �N for some �nite set � and � is a computable measure
on X such that �(X ) = 1.

Lemma 1.1. Let (X ; �) be a computable probability space and let F : X ! Y
be a computable function and let Y be a space of the form �N for some �nite �.
De�ne the measure � on Y by �(U) = �(F�1(U)).

1. � is a computable probability measure on Y.

2. If fVe : e 2 Ng is a � - Martin-L�of test on X , then the sequence fF�1(Ve) :
e 2 Ng is a � - Martin-L�of test on Y.

3. If A is � - Martin-L�of random, then F (A) is � - Martin-L�of random.

Proof. It is easy to see that � is a probability measure on Y. Since � is com-
putable, there is an algorithm to compute �(I[�]) from � for � 2 ��. Since F is
computable, there is an algorithm which computes the inverse image F�1(I[� ])
as a �nite union of intervals in X . Combining these, we see that �(I[� ]) may be
computed from � , so that � is computable.

Since F is computable and the sequence fVe : e 2 Ng is uniformly c.e., it
follows that fF�1(Ve) : e 2 Ng is also uniformly c.e.. For each e, �(F�1(Ve)) =
�(Ve) � 2�e, so that fF�1(Ve) : e 2 Ng is a Martin-L�of test.

Finally, suppose that A is � - Martin-L�of random and let B = F (A). Let
U1; U2; : : : be a � - Martin-L�of test for B so that �(Ue) � 2�e for all e and let
Ve = F�1(Ue). Since F is computable and fUe : e 2 Ng is uniformly c.e., it
follows that fVe : e 2 Ng is also uniformly c.e.. For all e, �(Ve) = �(Ue) � 2�e,
so that fVe : e 2 Ng is a � -Martin-L�of test for A. Since A is � - Martin-L�of
random, there is some e such that A =2 Ve and hence B =2 Ue. Thus B passes
the arbitrary � - Martin-L�of test and is therefore � - Martin-L�of random.

Here is an application of this lemma, a part of van Lambalgen's Theorem
[10]. (The full result will be proved below).
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Proposition 1.2. Let �1 and �2 be two computable probability measures on 2N

and let � be the product measure. If A � B is � - Martin-L�of random, then B
is �2 - Martin-L�of random.

Proof. Let F : 2N ! 2N be de�ned by F (X�Y ) = Y . Since X�Y is � -Martin-
L�of random, the result will follow if we can show that �2(U) = �(F�1(U)) for
each open set U .

We shall make frequent use of the following version of van Lambalgen's
Theorem [10].

Theorem 1.3. Let �1 and �2 be two computable measures on 2N and let � =
�1 
 �2 be the product measure. If A is �1-random relative to B and B is
�2-random, then A�B is �-random.

Proof. Suppose that A � B is not �1 
 �2-random and let A � B 2
T
n Vn for

some Martin-L�of test with �(Vn) � 2�2n for each n.
For each n, let

Fn(Y ) = �1(fX : X � Y 2 Vng)

and de�ne a Solovay Martin-L�of �2-test by

Wn = fY : Fn(Y ) > 2�ng:

Then we have the following calculation.

�(Vn) =

ZZ
Vn

dY dX =

Z
Y

Fn(Y )dY �

Z
Wn

Fn(Y )dY � �2(Wn) � 2
�n

Since �(Vn) � 2�2n, it follows that �2(Wn) � 2�n. Since Wn+1 � Wn for
each n, this is a Solovay test.

Since B is �2-random, it follows that B =2 Wn for almost all n. By renum-
bering we may assume that B =2Wn for any n.

Now let Un = fX : X �B 2 Vng. It follows that �1(Un) � 2�n for all n and
this is a �1 - Martin-L�of test relative to B.

Since A is �1 - Martin-L�of random relative to B, it follows that A =2 Un for
some n. But this means that A�B =2 Vn, contradicting the initial assumption.

Here is the converse theorem.

Theorem 1.4. Let �1 and �2 be two computable probability measures on 2N

and let � = �1 
 �2 be the product measure. If A � B is �-random, then A is
�1-random relative to B and B is �2-random relative to A.

Proof. By symmetry, it su�ces to show that A is �1-random relative to B. We
proceed by the contrapositive.

We �rst construct a universal oracle �1 Martin-L�of test UY
b . We begin by

constructing a uniformly c.e. sequence V Y
e;k of all possible �1 Martin-L�of tests
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as follows. As usual, let WY
e = fi : �Ye (i) #g where we assume that for each

s and Y , there is at most one i such that i 2 WY
e;s+1 nW

Y
e;s. Then de�ne the

uniformly c.e. sequence of sets GY
e;k in stages GY

e;k;s where i 2 GY
e;k;s+1 if and

only if hi; ki 2 GY
e;k;s or hi; ki 2 WY

e;s+1 n W
Y
e;s and �1(I[�i] [

S
fI[�j ] : j 2

GY
e;k;sg) � 2�k. Now let V Y

e;k =
S
fI[�j ] : j 2 GY

e;kg. Then �1(V
Y
e;k) � 2�k for

all e; k.
It follows that each fV Y

e;k : k 2 Ng is a �1 - Martin-L�of test. Now suppose
that fGk : k 2 Ng is some �1 - Martin-L�of test. Then it is uniformly c.e., so
there is some e such that, for all k, Gk =

S
fI[�i] : hi; ki 2 Weg and it follows

from the construction that GY
k = V Y

e;k.

Finally, let UY
e =

S
n V

Y
n+e+1. Then

�1(U
Y
e ) �

X
n

�1(V
Y
n+e+1) �

X
e

2�n�e�1 = 2�e:

Now suppose that A is not �1 random relative to B. Then A 2
T
e U

B
e . Let

Se = fX � Y : X 2 UY
e g. Then fSe : e 2 Ng is uniformly c.e. and we will show

that �(Se) � 2�e for all e. Let Fe : 2N� 2N be the characteristic function of Se.
Then, for each e,

�(Se) =

ZZ
2N�2N

Fe(X;Y ) =

Z
Y

Z
X

Fe(X;Y ) =

Z
Y

�1(U
Y
e ) �

Z
Y

2�e � 2�e:

Since A 2
T
e U

B
e , for each e, it follows that A�B 2 Se and hence A�B is not

� - Martin-L�of random.

2 Unions and Intersections of Random Sets

Suppose that A and B are relatively Martin-L�of random. By van Lambalgen's
Theorem, A� B is Martin-L�of random. However, A [ B is not random, since
it has asymptotic density 3

4 . Likewise, A\B is not random, since it has density
1
4 . We will show that A \B is � 1

4
-random and A [B is � 3

4
-random.

This is a consequence of the following more general result. For an in�nite
sequence � = (a0; a1; : : : ) of reals with 0 � ai � 1 for all i, let 1 � � =
(1� a0; 1� a1; : : : )

Theorem 2.1. Let � = (a0; a1; : : : ) and � = (b0; b1; : : : ) be two in�nite se-
quences with 0 � ai � 1 and 0 � bi � 1 for each i. If A is ��-random relative
to B and B is ��-random relative to A, then A \B is ����-random and A [B
is �1�(1��)�(1��)-random.

Proof. Let A and B be relatively random, so A � B is random. De�ne the
computable function F : 2N ! 2N by F (C) = C0\C1, where we may recall that
Ci = fX : i_X 2 Cg.) Then F (A�B) = A \B.

Lemma 2.2. For any open G � 2N, ����(G) = ����(F�1(G)).
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Proof. It su�ces to prove this for sets of the form G = fY : Y (i) = 1g, so �x i
and let G = fY : Y (i) = 1g. For this G, ����(G) = ai � bi. Now F�1(G) = fC :
i 2 C0 \ C1g = fC : 2i 2 Cg \ f2i+ 1 2 Cg. Since � � � = (a0; b0; a1; b1; : : : ),
it follows that ����(F�1(G)) = ai � bi.

It now follows from Lemma 1.1 that A \B is ����-random.
To see that A[B is �1�(1��)�(1��) random, observe �rst that N�A is �1��

random and N�B is �1�� random. Then N� (A [B) = (N�A) \ (N�B) is
�(1��)(1��) random and the result follows.

Next we consider a converse result.

Theorem 2.3. Let � = (a0; a1; : : : ) and � = (b0; b1; : : : ) be two in�nite se-
quences with 0 � ai � 1 and 0 � bi � 1 for each i.

(i) If C is ����-random, then there exist A and B such that C = A\B, A is
��-random relative to B and B is ��-random relative to A.

(ii) If C is �1�(1��)�(1��)-random, then there exist A and B such that C =
A [B, A is ��-random and B is ��-random.

Proof. Suppose that C is ����-random. For each i, let pi = ai(1�bi)
1�aibi , qi =

bi(1�ai)
1�aibi , and ri = 1�pi�qi =

(1�ai)(1�bi)
1�aibi and let i = (pi; qi; ri) be a probability

sequence on f0; 1; 2gN. Now let g 2 f0; 1; 2gN be -random. De�ne A and B as
follows.

i 2 A () i 2 C _ g(i) = 0;

i 2 B () i 2 C _ g(i) = 1;

It is clear that C = A\B. It remains to show that A is �� random and that B
is �� random. It follows as in Theorem 1.3 that C � g is random with respect
to the product measure �(���)� .

De�ne the computable map F : 2N 
 f0; 1; 2gN ! 2N by

F (X � f) = (X [ fi : f(i) = 0g)� (X [ fi : f(i) = 1g):

Note that F (C�g) = A�B. We will show that A�B is ���� random and hence
A is �� random relative to B and B is �� random relative to A by Theorem
1.4. To show this, we may apply Lemma 1.1 to conclude that A�B is random
with respect to the measure � de�ned by �(U) = �(���)�(F�1(U)). Thus it
remains to prove the following lemma.

Lemma 2.4. For any open set U , �(���)�(F�1(U)) = ����(U).

Proof. It su�ces to show the result for sub-basic open sets of the form U =
fY : Y (i) = 0g. Fix n 2 N and let U = fY : Y (n) = 0g. There are two cases to
consider, depending on whether n is even or odd.

Suppose �rst that n = 2i is even. Then the probability ����(U) = 1� ai.
Now X � f 2 F�1(U) if and only if F (X � f) 2 U , that is, i� n =2 (X [

fi : f(i) = 0g) � (X [ fi : f(i) = 1g). Since n = 2i, this is equivalent to
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i =2 X [ fi : f(i) = 0g, which is equivalent to i =2 X and f(i) 6= 0. By the
de�nition of � � �, i =2 X with probability 1 � aibi. By the de�nition of ,
f(i) 6= 0 with probability 1� pi. Thus

�(F�1(U)) = (1� aibi)(1� pi) = (1� aibi)(1�
ai(1� bi)

1� aibi
)

= 1� aibi � ai + aibi = 1� ai = ����(U):

The second case, when n = 2i+ 1 is even, has a similar proof.

This completes the proof of part (i) of the theorem, as outlined above.
Part (ii) follows as in the proof of Theorem 2.1.

We want to consider how e�ective this proof is. Observe that in the proof,
we may take f to be �0

2 in C, so that both A and B can be �0
2 in C.

Problem 2.5. Given, say, a �3=4 random set C, must there exist Martin-L�of
random sets A;B with C = A[B such that A;B are in fact computable in C, or
c.e. in C? or �LR C? (Here A �LR C means that any real which is Martin-L�of
random relative to C is also Martin-L�of random relative to A.)

3 Unions and Intersections of Random Closed

Sets

In this section, we consider the randomness of unions and intersections of closed
sets. These are two independent problems here since the complement of a closed
set is not closed.

As described in the introduction, we may de�ne a probability sequence � =
(hp0; q0i; hp1; q1i; : : : ) on C where the branching below the string �n is dictated by
the probability (pn; qn); that is, �n has unique extension �n

_0 with probability
pn, �n has unique extension �n

_1 with probability qn and �n has both extensions
with probability 1� pn � qn.

There is a version of van Lambalgen's Theorem for disjoint unions of closed
sets in [2]. Here we give a more general version.

Theorem 3.1. Let � = (hp0; q0i; hp1; q1i; : : : ) and � = (hr0; s0i; hr1; s1i; : : : ) be
two in�nite sequences with pi; qi; ri; si � 0, 0 � pi + qi � 1 and 0 � ri + si � 1
for each i. If P is ���-random relative to Q and Q is ���-random relative to P ,
then P �Q is (�� � ��)

�-random, where (�� � ��)
� is de�ned so that x(0) = 2

with probability 1, so that the branching at 0_�i is determined by hpi; qii and the
branching at 1_�i is determined by hri; sii. Conversely, if P �Q is (�� � ��)

�-
random, then P is ���-random relative to Q and Q is ���-random relative to
P .
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Proof. Let P have ghost code X = (x0; x1; : : : ) and Q have ghost code Y =
(y0; y1; : : : ) which are random as described. Then P �Q has ghost code

Z = F (X;Y ) = (z0; z1; : : : ) = (2; x0; y0; x1; x2; y1; y2; x3; x4; x5; x6; x7; y4; : : : ):

That is, in general, the codes x2n�1; x2n ; : : : ; x2n+1�2 which determined the
branching in P of the (ghost) nodes of length n will determine in P � Q the
branching of the nodes of length n + 1 which begin with 0 and similarly the
codes y2n�1; y2n ; : : : ; y2n+1�2 which determined the branching inQ of the (ghost)
nodes of length n will determine in P �Q the branching of the nodes of length
n+1 which begin with 1. Observe that the function F : f0; 1; 2gN
f0; 1; 2gN !
f0; 1; 2gN is computable and one-to-one.

Lemma 3.2. Let the measure � on 3N be de�ned by setting �(U) = (�� �
��)(F

�1(U)). Then for any X and any Y such that X is ��-random relative
to Y and Y is ��-random relative to X, Z = F (X;Y ) is (�� � ��)-random.

Proof. This follows immediately from the computability of F .

Now P � Q has ghost code Z = F (X;Y ) and Z is (�� � ��) - random, so
that P �Q is (�� � ��)

� random.
For the converse, the (�� � ��)-randomness of Z implies that the code X

of P is ��-random relative to the code Y of Q and similarly Y is ��-random
relative to X.

Next we consider the randomness of the product P 
 Q of two closed sets.
Given � = (hp0; q0i; hp1; q1i; : : : ) and � = (hr0; s0i; hr1; s1i; : : : ) such that
pi; qi; r1; si � 0, 0 � pi+qi � 1 and 0 � ri+si � 1 for each i with corresponding
measures �� and �� , de�ne the measure (�� 
 ��)

� in two cases as follows.
First let � = (i0; j0; : : : ; in�1; jn�1) be a string of even length. Then the

branching at � is determined by the branching of (i0; : : : ; in�1) under the prob-
ability measure ��.

Second, let � = (i0; j0; : : : ; in�1; jn�1; in) be a string of odd length. Then
the branching at � is determined by the branching of (j0; : : : ; jn�1) under the
probability measure �� .

We also need the notion of a projection for closed sets. For any A 2 2N,
de�ne the projections �0(A) = A0 = A(0); A(2); : : : ) and �1(A) = A1 =
(A(1); A(3); : : : ); then A = �0(A)��1(A). For a set R � 2N and for i = 0; 1, let
�i(R) = f�i(A) : A 2 Rg be the projections of the set R. These set mappings
are computable. If R = P 
 Q for some sets P and Q, then P = �0(R) and
Q = �1(R).

Theorem 3.3. Let � = (hp0; q0i; hp1; q1i; : : : ) and � = (hr0; s0i; hr1; s1i; : : : ) be
two in�nite sequences with pi; qi; ri; si � 0, 0 � pi+qi � 1 and 0 � ri+si � 1 for
each i. Then P is ���- Martin-L�of random relative to Q and Q is ���- Martin-L�of
random relative to P if and only if P 
Q is (�� 
 ��)

�- Martin-L�of random.
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Proof. Suppose that P is ���-random relative to Q and Q is ���-random relative
to P , so that P �Q is (�� � ��)

� - random.
De�ne the function F so that F (R) = R0 
R1, so that F (P �Q) = P 
Q.

Then by Lemma 1.1, P �Q is random with respect to the measure �� given by
��(V ) = �����(F

�1(V )).

Lemma 3.4. For any Borel set V � C, (�� 
 ��)
�(V ) = (�� � ��)

�(F�1(V )).

Proof. This is easy to check. For example, let V = V (I[(01])) = fR : R \
I[(01)] 6= ;g. Then (�� 
 ��)

�(V ) = (1� q0)(1� r0).
R 2 F�1(V ) if and only if R0 
 R1 meets I[(01)] which is if and only if R0

meets I[(0)]) and R1 meets I[(1)], which is if and only if (01) 2 TR. So under
the measure (�� 
 ��)

�(F�1(V )) = (1� q0)(1� r0) as well.

We have to work a little harder for the converse, since F is not a surjection,
although it is an injection. We proceed by the contrapositive. Suppose that
P � Q is not Martin-L�of random with respect to the measure (�� � ��)

� and
let fV0; V1; : : : g be a (�� � ��)

� Martin-L�of test such that, for every n, (�� �
��)

�(Vn) � 2�n and P �Q 2 Vn.
Let Wn = F [Vn] = fF (R) : R 2 Vng; since F is a computable injection,

then this will be a uniformly c.e. sequence of open sets. Certainly F (P �Q) =
P 
Q 2 Wn for every n. Since F is one-to-one, it follows that Vn = F�1(Wn)
and hence by Lemma 3.4, we have

(�� 
 ��)
�(Wn) = (�� � ��)

�(Vn) � 2�n:

But this implies that P
Q is not (��
��)
� - Martin-L�of random, as desired.

We note here that under the measures ��hp;qi, where p + q > 0, the class of
closed sets which are products has measure zero. To see this, just observe that
in a product R = P
Q, it can never be the case that TR\f0; 1g

2 = f(00); (11)g
nor may it equal f(01); (10)g. For the measure ��p, this immediately shows that
the class of products has measure � 7

9 . Consideration of TR\f0; 1g
2n will show

that the measure is � ( 79 )
n and thus the set of products has measure zero. This

restriction contrasts with the fact that any closed set may be expressed as a
union and also as an intersection.

Determining the appropriate randomness for unions and intersections is
rather complicated, so that we will only consider only Bernoulli measures here,
where the branching probabilities are the same for all nodes. Suppose that p
and q are non-negative real numbers such that p + q � 1. Then we de�ne the
measure �hp;qi so that, for any n 2 N and any X 2 3N, the probability that
X(n) = 0 is p, the probability that X(n) = 1 is q, and therefore the probability
that X(n) = 2 is 1� p� q. Thus for the corresponding measure ��hp;qi on C, we
for any Q 2 C and any � 2 TQ, � will have the unique extension �_0 in TQ
with probability p, will have the unique extension �_1 in TQ with probability
q, and will have both extensions with probability 1� p� q. (Recall that � 2 TQ
if and only if Q \ I[�] 6= ;.) In the case that p = q, we will abbreviate �hp;pi as
�p.
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We �rst consider the algorithmic randomness of unions of closed sets.

Theorem 3.5. Suppose that p; q; r; s � 0, 0 � p + q � 1 and 0 � r + s � 1.
Suppose that the closed set P is ��hp;qi-random relative to Q and that Q is ��hr;si-
random relative to P . Then P [Q is ��-random for a certain measure �. For
the special case when p = q = r = s, the probability ��(I[�]) that P [ Q meets
an interval I[�] when j�j = n equals (1� p)n(2� (1� p)n).

Proof. Let � = �hp;qi � �hr;si, so that if P is ��hp;qi Martin-L�of random and Q is

��hr;si Martin-L�of random, then P �Q will be (�hp;qi � �hr;si)� random. De�ne
the function F : C ! C by F (C) = C0 [ C1, where Ci = fx : i_x 2 Cg. This
means that F (P � Q) = P [ Q. Then by Lemma 1.1, P [ Q is random with
respect to the induced measure �� de�ned by ��(V ) = (�hp;qi��hr;si)�(F�1(V )).

Now we will show how to compute the measure �. First let f0(�) be the
probability that an arbitrary closed set P meets I[�] under the measure ��hp;qi.
Then f0(�) =

Q
i<j�jmi, where mi = 1 � q if �(i) = 0 and mi = 1 � p if

�(i) = 1. Similarly let f1(�) be the probability that Q meets I[�] under the
measure ��hr;si. Finally, de�ne g(�) = ��(I[�]).

Consider �rst the probability that, for arbitrary closed sets P and Q, (0) 2
TP[Q, that is ��(fR : (R0[R1)\I[(0)] 6= ;g. This event occurs when xP (0) 6= 1
and xQ(0) 6= 1 and thus has probability g((0)) = 1�qs. Similarly g((1)) = 1�pr.

Now let � = 0_�. Then g(�) may be calculated in three cases.
First, with probability (1 � q)(1 � s), we may have P \ I[((0))] 6= ; and

Q \ I[((0))] 6= ;, and then � 2 TP[Q with relative probability g(�).
Second, with probability (1 � q)s, we may have P \ I[((0))] 6= ; and Q \

I[((0))] = ;, and then � 2 xP[Q with relative probability f0(�).
Third, with probability q(1 � s), we may have P \ I[((0))] = ; and Q \

I[((0))] 6= ;, and then � 2 xP[Q with relative probability f1(�).
It follows that

g(0_�) = (1� q)(1� s)g(�) + (1� q)sf0(�) + q(1� s)f1(�):

Similarly, we will have

g(1_�) = (1� p)(1� r)g(�) + (1� p)rf0(�) + p(1� r)f1(�):

The desired measure � is now determined by the values ��(I[�]) = g(�).
This demonstrates the following.

Lemma 3.6. For any Borel set V � C, ��(V ) = (� � �)�(F�1(V )).

It follows that P [Q is ��-random, as desired.
For the special case when p = q = r = s, we have f0(�) = f1(�) = (1� p)j�j

for all � and we have g((i)) = 1 � p2 for i = 0; 1. Letting G(n) = g(�), where
� is any string of length n, we have G(1) = 1 � p2 and obtain the recursive
formula

G(n+ 1) = (1� p)2G(n) + 2p(1� p)n+1:

It may be seen by induction that G(n) = (1� p)n(2� (1� p)n). In particular,
for p = 1

3 , we have G(n) = (23 )
n(2� ( 23 )

n).
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In particular, for p = 1
3 , this implies that for the original measure � from [2],

if P is random relative to Q and Q is random relative to P , then P [Q is �� -
random, where in general the probability ��(I[�]) that P [Q meets an interval
I[�] when j�j = n equals ( 23 )

n(2� ( 23 )
n).

We pose the question of whether this result can be inverted as with the
results for random sets of natural numbers.

Problem 3.7. Suppose that 0 � p � 1
2 . If R is �� Martin-L�of random, where

the measure � is determined by having the probability ��(I[�]) of meeting an
interval I[�], when j�j = n, equal to (1 � p)n(2 � (1 � p)n), do there exist P
and Q such that R = P [Q, P is ��p-random relative to Q and Q is ��p-random
relative to P?

We next consider intersections of random closed sets. This becomes rather
interesting because the intersection of two random closed sets may of course be
empty. That is, for any Bernoulli measure � and any �� Martin-L�of random
closed set P , it follows from the coding that the closed set 0_P is also ��

Martin-L�of random, where 0_P = f0_x : x 2 Pg. Then if P and Q are
relatively random, the closed sets 0_P and 1_Q will be relatively random and
will be disjoint.

Theorem 3.8. Suppose that p; q; r; s � 0, 0 � p + q � 1 and 0 � r + s � 1.
Suppose that the closed set P is ��hp;qi - Martin-L�of random relative to Q and
that Q is ��hr;si - Martin-L�of random relative to P . Then we have the following

1. If p+ q + r + s � 1 + pr + qs, then P \Q is always empty.

2. If p + q + r + s < 1 + pr + qs, then P \ Q is empty with probability
e = ps+qr

(1�p�q)(1�r�s)

3. If p + q + r + s < 1 + pr + qs and P \ Q is nonempty, then P \ Q is
Martin-L�of random with respect to the measure ��hp+r�pr;q+s�qsi.

Proof. Let e be the probability that P \ Q = ;. It follows that for any node
� 2 TP \ TQ, the probability that � has an in�nite extension in P \Q is also e.
Considering the nine possible cases for the initial branching of P and of Q, we
obtain the equation

e = (ps+ qr) + (1� p� q)(1� r� s)e2 + (p+ q+ r+ s� pr� qs� 2ps� 2qr)e:

There are two cases where P1 \Q1 = ; where one branches only to the left
and the other branches only to the right. This has probability ps+ qr.

There is one case where both P and Q have both branches. This has prob-
ability (1� p� q)(1� r � s).

There are six cases where P \Q has exactly one branch with a total proba-
bility of (p+ q + r + s� pr � qs� 2ps� 2qr).

This equation has two possible solutions, e = 1 and e = ps+qr
(1�p�q)(1�r�s) .

Now we can prove the three parts of our theorem.
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(1) If p + q + r + s � 1 + pr + qs, then ps+qr
(1�p�q)(1�r�s) � 1 and hence we

must have e = 1, so that P \Q is empty with probability one.
Now fP : P0\P1 = ;g is a c.e. open set. It follows that the complement is a

�0
1 closed subset of C with measure zero, so that no Martin-L�of random closed

set can belong to it. Hence for any random closed set P , P0 \ P1 = ;.
(2) If p+ q + r + s < 1 + pr + qs, then ps+qr

(1�p�q)(1�r�s) < 1 and this will be

the probability e that P \Q is empty. To see this, consider the trees TP and TQ
and let en be the probability that TP and TQ have no common nodes of length
n. The reasoning above tells us that

en+1 = (ps+qr)+(1�p�q)(1�r�s)e2n+(p+q+r+s�pr�qs�2ps�2qr)en:

Then e is the limit of the increasing sequence henin and it can be seen that
en �

ps+qr
(1�p�q)(1�r�s) for all n, so that e = limn en = ps+qr

(1�p�q)(1�r�s) .
(3) Finally, suppose that P \ Q is nonempty. It remains to calculate the

branching probabilities relative to this assumption.
Assuming that � 2 TP\Q, there are seven possible cases for whether �_0

and/or �_1 are in either of TP or TQ.
There is one possible case where both �_0 and �_1 are in TP\Q. Both of

them must be in TP \ TQ and also each branch must be nonempty. This occurs
with probability (1� p� q)(1� r � s)(1� e)2.

There are four cases where TP\Q has only the left branch.
First, both branches are in TP\TQ, with only the left branch being nonempty.

This has probability (1� p� q)(1� r � s)e(1� e) = (ps+ qr)(1� e).
Second, only the left branch is in TP \ TQ and it is nonempty. This has

probability pr(1� e).
Third, TP has only the left branch, TQ has both branches, and the left branch

is nonempty. This has probability p(1� r � s)(1� e).
Fourth, TP has both branches, TQ has only the left branch, and the left

branch is nonempty. This has probability (1�p�q)r(1�e). The total probability
from these four cases is (p+ r � pr)(1� e).

Similarly, there are four cases where P \ Q has only the right branch and
this has an extension in P \Q, with a total probability of (q + s� qs)(1� e).

The remaining probability that neither branch has an extension in P \Q is
of course e but this can be disregarded since we have assumed that � has an
extension in P \Q.

It follows that the relative probability of having only the left branch �_0 2
TP\Q is p+r�pr, the probability of having only a right branch is q+s�qs and
the remaining probability of having both branches is 1� p� q� r� s+ pr+ qs.

Now de�ne the function F : C ! C by F (K) = K0 \ K1. Then we have
proved the following.

Lemma 3.9. For any Borel set V � C, ��(V ) = (� � �)�(F�1(V )).

Now given a ��-Martin-L�of test fUn : n 2 Ng for P \Q, de�ne K = P �Q,
so that K0 = P and K1 = Q and thus F (K) = P \Q. It follows from Theorem
3.1 that K is (� � �)�-Martin-L�of random.
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By Lemma 3.9, ��(Un) = (� � �)�(F�1(Un)). However, the map F is not
computable, so that we must work a bit harder.

For eachK, F (K) = K0\K1 2 F
�1(U(I[�])) if and only ifK0\K1\I[�] 6= ;,

which is a �0
1 condition. Thus the sequence fF

�1(Un) : n 2 Ng is not necessarily
a Martin-L�of test.

Following the idea of Kjos-Hanssen and Diamondstone [6], we observe that
with probability 1, if K0 \K1 \ I[�] 6= ;, then K0 \K1 \ I[�] is in�nite. Since
the probability e such that an intersection is empty is < 1, we can compute, for
each n and `, a value mn;` large enough such that em � 2�n�2`. Let � be a
partial computable functional such that �(n; `;K) is the least L such that, for
all strings � of length `, either � has no extension in K0 \K1 of length L, or
� has � mn;` extensions of length L, each of which has extensions in both K0

and in K1.
We claim that for each n and `, �(n; `;K) is de�ned for almost all K.

Fix n and ` and let j�j = `. There are two possibilities. First, suppose that
K0\K1\I[�] = ;. Then for some L�, � has no extension inK0\K1 of length L,
so that �(n; k; `) is certainly de�ned. Second, suppose that K0 \K1 \ I[�] 6= ;.
Then by the remarks above, we may assume that K0 \ K1 \ I[�] is in�nite.
Thus for some L�, � has � L extensions in K0 \K1 of length L and therefore
�(n; `;K) exists and is � maxfL� : j�j = `g. Since fK : �(n; `;K) #g is a c.e.
open set of measure 1, �(n; `;K) exists for every Martin-L�of random K.

Let K(`) =
S
fI[�] : j�j = ` & K0 \K1 \ I[�] 6= ;g and de�ne the approxi-

mation K(`; L) to be the union of the intervals I[�] such that j�j = ` and � has
an extension � of length L such that both K0 \ I[� ] 6= ; and K1 \ I[�] 6= ;. Let

Vn = fK : (9`)K(`;�(n; `;K)) 2 Ung; and

Wn = fK : (9`)K(`;�(n; `;K)) 6= K(`)g:

Each of these sets is c.e. open. It follows from Lemma 3.9 that Vn has
measure < 2�n, since if K 2 Vn then K0 \K1 2 Un.

Lemma 3.10. (� � �)�(Wn) � 2�n.

Proof. Suppose K 2 Wn, so that �(n; `;K) = L and K(`; L) 6= K(`)g. Let
m = mn;`. Then there is some � of length ` such that � has at leastm extensions
� of length L such that I[� ] meets both K0 andK1, but K0 \ K1 \ I[� ] = ;.
For each such � , the probability that K0 \ K1 \ I[� ] = ; is e and hence the
combined probability is em that all are empty. By the choice ofm, em � 2�n�2`.
Summing over the 2` possible choices of � 2 f0; 1g`, we obtain bound 2�n�` for
each `. Finally, summing over `, we obtain the desired upper bound 2�n.

Now fVn [Wn : n 2 Ng is a Martin-L�of test. Since K is (� � �)� Martin-
L�of random by assumption, there exists n such that K =2 Vn [ Wn. Since
K =2 Wn, K(`;�(n; `;K)) = K(`) for every `. Since K =2 Vn, it follows that
K0 \K1 =2 Un. Thus K0 \K1 passes the Martin-L�of test and is �� Martin-L�of
random, as desired.
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This can be applied to the special case of a symmetric measure (p = q and
r = s) and to the intersection of two �p;q random closed sets.

First consider the symmetric case.

Corollary 3.11. Let p and r be real numbers with 0 � p � 1
2 and 0 � r � 1

2 .
Let P be ��p-random relative to Q and let Q be ��r-random relative to P . Then
we have the following.

1. If 2p+ 2r � 1 + 2pr, then P \Q is always empty.

2. If 2p+2r < 1+2pr, then P \Q is empty with probability e = 2pr
(1�2p)(1�2r) .

3. If 2p + 2r < 1 + 2pr and P \ Q is nonempty, then P \ Q is Martin-L�of
random with respect to the measure given by hp+ r � pr; p+ r � pri.

Second consider the case where hp; qi = hr; si.

Corollary 3.12. Let p and q be real numbers with 0 � p + q � 1. Let P be
��hp;qi-random relative to Q and let Q be ��hp;qi-random relative to P . Then we
have the following

1. If 2p+ 2q � 1 + p2 + q2, then P \Q is always empty.

2. If 2p+2q < 1+p2+q2, then P \Q is empty with probability e = 2pq
(1�p�q)2 .

3. If 2p+2q < 1+ p2+ q2 and P \Q is nonempty, then P \Q is Martin-L�of
random with respect to the measure given by h2p� p2; 2q � q2i.

Finally, put the two together. For p = q, the equation 2p+ 2q = 1+ p2 + q2

becomes 4p = 1 + 2p2, which has solution p = 1 �
p
2
2 . Thus we have the

following.

Corollary 3.13. Let p be a real number with 0 � p � 1
2 . Let P be ��p-random

relative to Q and let Q be ��p-random relative to P . Then we have the following

1. If 1�
p
2
2 < p � 1, then P \Q is always empty.

2. If 0 � p < 1�
p
2
2 , then P \Q is empty with probability e = 2p2

(1�2p)2

3. If p = 1�
p
2
2 , and P \Q is nonempty, then P \Q is Martin-L�of random

with respect to the measure given by h2p� p2; 2p� p2i.

Thus for p = 1
3 and the measure ��1

3

as in [2], the intersection of any two

relatively ��1
3

-Martin-L�of random closed sets is empty, since 1
3 > 1�

p
2
2 . When

p = 1
4 , the intersection of two relatively ��1

4

-Martin-L�of random closed sets is

empty with probability 1
2 and, if nonempty, the intersection is ��7

16
; 7
16

- Martin-

L�of random
This leads to the following natural question. If R is a ��7

16

Martin-L�of random

closed set, do there exist ��1
4

Martin-L�of random closed sets P and Q such that

P \Q = R?
More generally, we have the following.
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Problem 3.14. If p; q; r; s are all between 0 and 1, p+q+r+s < 1+pr+qs and
R is Martin-L�of random with respect to the measure given by ��hp+r�pr;q+s�qsi,
do there exist P and Q such that R = P \Q, P is �hp;qi - Martin-L�of random
and Q is ��hr;si -Martin-L�of random?
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