(7) 1. Find the integrating factor μ and solve explicitly the linear differential equation

$$
d y / d x-\frac{2 y}{x}=x^{2} \cos x
$$

(8) 2. Use the Test for Exactness to check the differential equation

$$
\left(2 x+y^{3} \sec ^{2} x\right) d x+\left(1+3 y^{2} \tan x\right) d y=0
$$

Then integrate to find the general (implicit) solution.
Finally, solve the initial value problem when $x_{0}=\pi$ and $y_{0}=2$.
(8) 3 . Find the steady-state solution y_{p} of a spring-mass system subject to the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+20 y=\sin 2 t
$$

(Hint: Use Undetermined Coefficients.)
(7) 4. Use Variation of Parameters to find a particular solution to

$$
y^{\prime \prime}+y=\sec t
$$

(8) 5. Use Laplace Transforms and Partial Fractions to solve

$$
y^{\prime \prime}+4 y=8 t ; \quad y(0)=3 ; \quad y^{\prime}(0)=0
$$

(7) 6. Use Laplace transforms to solve the differential equation

$$
y^{\prime}+5 y=10 \delta(t-3) ; \quad y(0)=100
$$

Express the solution using step functions.
(8) 7. Use any method to find the first four nonzero terms in the Taylor polynomial approximation for the initial value problem

$$
x^{\prime}+(\sin t) x=0 ; \quad x(0)=1
$$

(7) 8.Find the indicial equation and solve the Cauchy-Euler differential equation

$$
x^{2} y^{\prime \prime}+7 x y^{\prime}+8 y=0 ; \quad y(1)=3 \quad y^{\prime}(1)=5
$$

with initial values

