Sample Problems for Exam Two

1. Compute the Wronskian of $y_{1}=x^{2}, y_{2}=x^{2} \ln (x)$; are y_{1}, y_{2} independent?
2. Solve $y^{\prime \prime}-4 y^{\prime}+5 y=0$ with $\mathrm{y}(0)=3$ and $y^{\prime}(0)=9$.
3. Use Undetermined Coefficients to solve $y^{\prime \prime}+4 y=6 x+4 \cos 2 x$.
4. Use Variation of Parameters to solve $y^{\prime \prime}-4 y^{\prime}=e^{3 x}$.
5. Find the general solution of the Euler equation $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=x^{2}+1$. HINT: $y_{h}=c_{1} x^{-2}+c_{2} x^{2}$.
6. A 16 pound weight is suspended from a spring with $k=18$ pounds per foot.
(a) The weight is pulled down 3 inches from equilibrium and then struck upwards with initial speed 2 feet per second. Find the equation of motion and give the amplitude, period and phase shift. Sketch the solution.
(b) An outside force of $12 \sin (6 t)$ is applied to the spring at equilibrium. Write the differential equation and solve for $x(t)$. Find the equation of motion. What phenomenon does this represent?
7. A mass of 4 grams is suspended from a spring with constant 16 dynes per centimeter. The mass is pulled down .5 cm and an external force of $12 \sin (t)$ is applied. Assuming a damping factor of $8 v$ (dynes), write the differential equation and solve for $x(t)$. What is the steady state solution.
8. Solve the system $x^{\prime}=x-4 y ; \quad y^{\prime}=x+y$
9. Factor the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=x$ into two first order equations and solve.
10. Use reduction of order (by the Wronskian and Abel's identity) to find a second solution to $x y^{\prime \prime}+(1-2 x) y^{\prime}+(x-1) y=0$ given that $y=e^{x}$ is one solution.
11. Find the general solution of $y^{\prime \prime \prime}-3 y^{\prime}+2 y=0$.
12. What does it mean to say that y_{1}, y_{2} and y_{3} are independent? Show that x, $x^{2}-1$ and $x^{2}-4$ are independent using the definition.
13. Find the general solution of $y^{(v i i i)}-y^{(v i i)}-y^{(i v)}+y^{(i i i)}=0$, given that $r^{8}-r^{7}-r^{4}+r^{3}=r^{3}(r-1)^{2}(r+1)\left(r^{2}+1\right)$.
14. Use Undetermined Coefficients to solve $y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=\cos x$.
