1. State and prove the formulas for
(a) $\mathcal{L}\left\{e^{a t} f(t)\right\}$
(b) $\mathcal{L}\left\{f^{\prime}(t)\right\}$
(c) $\mathcal{L}\{t f(t)\}$
(d) $\mathcal{L}\{u(t-a) f(t-a)\}$
2. Define the Gamma function $\Gamma(p+1)$ and show that $\mathcal{L}\left\{t^{p}\right\}=\Gamma(p+1) / s^{p+1}$.
3. Find the Laplace transform $F(s)$ of $f(t)=$
(a) $e^{2 t} \sin t$
(b) $t \cos 3 t$
(c) $t^{5 / 2}$
(c) $\left\{\begin{array}{ll}t, & \text { if } 0 \leq t<1 \\ t^{2}, & \text { if } t>1\end{array}\right.$.
4. Find the Laplace transform $F(s)$ of the square wave $f(t)$ with period 2, where

$$
f(t)= \begin{cases}1, & \text { if } 0 \leq t<1 \\ -1, & \text { if } 1<t<2\end{cases}
$$

5. Find the inverse transforms $f(\mathrm{t})$ of $\mathrm{F}(\mathrm{s})=$
(a) $(3 s+8) /\left(s^{2}-8 s+25\right)$
(b) $e^{-3 s} / s^{4}$
(c) $(s+3) /(s-1)^{2}\left(s^{2}+4\right)$
6. Solve using Laplace transforms
(a) $y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{2 t} ; y(0)=0, y^{\prime}(0)=1$
(b) $y^{\prime \prime}+25 y=10 \delta(t-2) ; y(0)=y^{\prime}(0)=0$
(c) $y^{\prime \prime}-4 y^{\prime}=\left\{\begin{array}{ll}3, & \text { if } 0<t<2 \\ 0 & \text { if } 2 \leq t\end{array} ;\right.$ with initial values $y(0)=1, y^{\prime}(0)=0$.
7. A mass of 4 grams on a spring with constant $\mathrm{k}=100$ is released from rest at time $t=02 \mathrm{~cm}$ above equilibrium. Then at time $\mathrm{t}=3$, the mass is given an upward impulse of power 120. Write the differential equation for the position $x(t)$ of the mass at time t and use Laplace transforms to solve for $\mathrm{x}(\mathrm{t})$.
8. A rocket is launched with acceleration $68-t^{2}$ for time $0 \leq t \leq 10$ and acceleration -32 for $t \geq 10$. Write the differential equation for the position $\mathrm{x}(\mathrm{t})$ of the rocket at time t and use Laplace transforms to solve for $\mathrm{x}(\mathrm{t})$.
