Sample Problems for Exam Three

1. State and prove the formulas for
 (a) \(\mathcal{L}\{e^{at}f(t)\} \)
 (b) \(\mathcal{L}\{f'(t)\} \)
 (c) \(\mathcal{L}\{tf(t)\} \)
 (d) \(\mathcal{L}\{u(t-a)f(t-a)\} \)

2. Define the Gamma function \(\Gamma(p+1) \) and show that \(\mathcal{L}\{t^p\} = \Gamma(p+1)/s^{p+1} \).

3. Find the Laplace transform \(F(s) \) of \(f(t) = \)
 (a) \(e^{2t}\sin(t) \)
 (b) \(t\cos(3t) \)
 (c) \(t^{5/2} \)
 (d) \(f(t) = \begin{cases} t, & \text{if } 0 \leq t < 1 \\ t^2, & \text{if } t > 1 \end{cases} \)

4. Find the Laplace transform \(F(s) \) of the square wave \(f(t) \) with period 2, where
 \[f(t) = \begin{cases} 1, & \text{if } 0 \leq t < 1 \\ -1, & \text{if } 1 < t < 2 \end{cases} \]

5. Find the inverse transforms \(f(t) \) of \(F(s) = \)
 (a) \((3s+8)/(s^2 - 8s + 25) \)
 (b) \(e^{-3s}/s^4 \)
 (c) \((s+3)/(s-1)^2(s^2+4) \)

6. Solve using Laplace transforms
 (a) \(y'' - 3y' + 2y = 4e^{2t}; \ y(0) = 0, \ y'(0) = 1 \)
 (b) \(y'' + 25y = 105(t-2); \ y(0) = y'(0) = 0 \)
 (c) \(y'' - 4y' = \begin{cases} 3, & \text{if } 0 < t < 2 \\ 0, & \text{if } 2 \leq t \end{cases} \); with initial values \(y(0) = 1, \ y'(0) = 0 \).

7. A mass of 4 grams on a spring with constant \(k=100 \) is released from rest at time \(t=0 \) 2 cm above equilibrium. Then at time \(t=3 \), the mass is given an upward impulse of power 120. Write the differential equation for the position \(x(t) \) of the mass at time \(t \) and use Laplace transforms to solve for \(x(t) \).

8. A rocket is launched with acceleration \(68 - t^2 \) for time \(0 \leq t \leq 10 \) and acceleration \(-32 \) for \(t \geq 10 \). Write the differential equation for the position \(x(t) \) of the rocket at time \(t \) and use Laplace transforms to solve for \(x(t) \).