## EXAM FOUR SAMPLE

1. Find the convolution $t^{2} * t^{3}$.
2. Use convolution to express a particular solution to $x^{\prime \prime}+x=\tan t$ as an integral-then evaluate.
3. Use the Taylor Series Method to find the first 4 terms of a series solution for $y^{\prime}=y^{2}-x y$ with $y(0)=2$.
4. Find the singular points of $\left(x^{2}-9\right)^{2} y^{\prime \prime}+\left(x^{2}-3 x\right) y^{\prime}+(x+3) y=0$ and classify them as regular or irregular.

Then find a minimum value for the radius of convergence of a power series solution about $x_{0}=1$.
5. Find the indicial equation of $6 x^{3} y^{\prime \prime \prime}+13 x^{2} y^{\prime \prime}+\left(x^{2}+2 x\right) y^{\prime}+x y=0$ and give the form of the general solution.
6. Find the first four terms of a power series for $\int \frac{e^{x}}{1-x} d x$.
7. Find the recurrence relation and the first 5 nonzero terms in a power series solution of $y^{\prime \prime}=2 x y$ with $y(0)=6$ and $y^{\prime}(0)=3$.
8. Solve the Cauchy-Euler differential equation $x^{2} y^{\prime \prime}-5 x y^{\prime}+8 y=2 x^{3}$ with $y(1)=3$ and $y^{\prime}(1)=5$.

