1. Compute the Wronskian of $y_{1}=x^{2}, y_{2}=x^{2} \ln (x)$; are y_{1}, y_{2} independent?
$W\left[y_{1}, y_{2}\right]=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=x^{2}(2 x \ln x+x)-2 x\left(x^{2} \ln x\right)=x^{3}$.
y_{1} and y_{2} are independent since the Wronskian is not identically zero.
2. Solve $y^{\prime \prime}-4 y^{\prime}+5 y=0$ with $\mathrm{y}(0)=3$ and $y^{\prime}(0)=9$.
$r^{2}-4 r+5$ has roots $r=2 \pm i$, so that
$y=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)$
Then $3=y(0)=c_{1}$ and $9=y^{\prime}(0)=2 c_{1}+c_{2}$ so
$c_{1}=3$ and $c_{2}=3$ and $y=3 e^{2 x}(\cos x+\sin x)$.
3. Use Undetermined Coefficients to solve $y^{\prime \prime}+4 y=6 x+4 \cos 2 x$.
$y_{h}=c_{1} \cos 2 x+c_{2} \sin 2 x$ and
$y_{p}=A x+B+C x \cos 2 x+D x \sin 2 x$.
$y_{p}^{\prime \prime}=C(-4 \sin 2 x-4 x \cos 2 x)+D(4 \cos 2 x-4 x \sin 2 x)$,
$y_{p}^{\prime \prime}+4 y_{p}=4 A x+4 B-4 C \sin 2 x+4 D \cos 2 x=6 x+4 \cos 2 x$,
so
$4 A=6,4 B=0,-4 C=0,4 D=4$ and $A=1.5, B=C=0, D=1$.
$y_{p}=1.5 x+x \sin 2 x$ and $y=y_{h}+y_{p}=c_{1} \cos 2 x+c_{2} \sin 2 x+1.5 x+x \sin 2 x$
4. Use Variation of Parameters to solve $y^{\prime \prime}-4 y^{\prime}=e^{3 x}$.
$r^{2}-4 r=0$ has roots $r=0$ and $r=4$, so $y_{1}=1$ and $y_{2}=e^{4 x}$ and $W\left[y_{1}, y_{2}\right]=$ $4 e^{4 x}$.
$y_{p}=u_{1} y_{1}+u_{2} y_{2}=u_{1}+u_{2} e^{4 x}$, where
$u_{1}^{\prime}=-f(x) y_{2} / W=-e^{3 x} e^{4 x} / 4 e^{4 x}=-e^{3 x} / 4$, so $u_{1}=-e^{3 x} / 12$.
$u_{2}^{\prime}=f(x) y_{1} / W=e^{3 x} / 4 e^{4 x}=e^{-x} / 4$, so $u_{2}=-e^{-x} / 4$.
Then $\left.y_{p}=-e^{3 x} / 12+\left(-e^{-x} / 4\right) e^{4 x}\right)=-e^{3 x} / 3$.
5. Find the general solution of the Euler equation $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=x^{2}+1$, given that $y_{h}=c_{1} x^{-2}+c_{2} x^{2}$.
$W=x^{-2}(2 x)-\left(2 x^{-3}\left(x^{2}\right)=4 x^{-1}\right.$.
$F(x)=1+x^{-2}$ (dividing by x^{2}).
$y_{p}=v_{1} x^{-2}+v_{2} x^{2}$, where
$v_{1}^{\prime}=-x^{2}\left(1+x^{-2}\right) / 4 x^{-1}=-x^{3} / 4-x / 4$, so $v_{1}=-x^{4} / 16-x^{2} / 8$.
$v_{2}^{\prime}=x^{-2}\left(1+x^{-2}\right) / 4 x^{-1}=x^{-1} / 4+x^{-3} / 4$, so $v_{2}=\frac{1}{4} \ln x-x^{-2} / 8$.
Then $y_{p}=\left(-x^{4} / 16-x^{2} / 8\right) x^{-2}+\left(\frac{1}{4} \ln x-x^{-2} / 8\left(x^{2}\right)=-\frac{1}{16} x^{2}+\frac{1}{4} x^{2} \ln x-\frac{1}{4}\right.$, or just $y_{p}=\frac{1}{4} x^{2} \ln x-\frac{1}{4}$.
$y=y_{h}+y_{p}=c_{1} x^{2}+c_{2} x^{-2}+\left(x^{2} \ln x-1\right) / 4$.
FOR THE HINT: $\left(r^{2}-r\right)+r-4=r^{2}-4$, so $y_{h}=c_{1} x^{2}+c_{2} x^{-2}$.
Solving by Undetermined Coefficients:
$y_{p}=A+B x^{2} \ln x, y_{p}^{\prime}=B(2 x \ln x+x)$ and $y_{p}^{\prime \prime}=B(2 \ln x+3)$. Then $x^{2} y^{\prime \prime}+$ $x y^{\prime}-4 y=4 B x^{2}-4 A=x^{2}+1$, so $4 B=1$ and $-4 A=1$. Thus $A=-1 / 4$ and $B=1 / 4$ so $y_{p}=\left(x^{2} \ln x-1\right) / 4$ and
6. A 16 pound weight is suspended from a spring with $k=18$ pounds per foot.
(a) The weight is pulled down 3 inches from equilibrium and then struck upwards with initial speed 2 feet per second. Find the equation of motion and give the amplitude, period and phase shift. Sketch the solution.
(b) An outside force of $12 \sin (6 t)$ is applied to the spring at equilibrium. Write the differential equation and solve for $x(t)$. Find the equation of motion. What phenomenon does this represent?
(a) $m=16 / 32=.5$ so the differential equation is $.5 x^{\prime \prime}+18 x=0$ with solution $x=c_{1} \cos 6 t+c_{2} \sin 6 t$.

Then $.25=x(0)=c_{1}$ and $-2=x^{\prime}(0)=6 c_{2}$, so
$x=\frac{1}{4} \cos 6 t-\frac{1}{3} \sin 6 t$.
The period is $2 \pi / 6$ and the amplitude is $\sqrt{1 / 16+1 / 9}=5 / 12$.
$x=\frac{5}{12}\left[\frac{3}{5} \cos 6 t-\frac{4}{5} \sin 6 t\right]=\frac{5}{12}[\sin \theta \cos 6 t+\cos \theta \sin 6 t]=\frac{5}{12} \sin (6 t+\theta)$,
where $\sin \theta=\frac{3}{5}$ and $\cos \theta=-\frac{4}{5}$, so $\tan \theta=-\frac{3}{4}$.
The phase angle θ is approximately 2.5
(b) $.5 x^{\prime \prime}+18 x=12 \sin 6 t$ has particular solution of the form $x_{p}=t(A \cos 6 t+B \sin 6 t)$.
Then $x_{p}^{\prime \prime}=-36 t(A \cos 6 t+B \sin 6 t)+12(B \cos 6 t-A \sin 6 t)$,
so $.5 x^{\prime \prime}+18 x=6(B \cos 6 t-A \sin 6 t)=12 \sin 6 t$,
making $B=0$ and $A=-2$. Thus
$x_{p}=-2 t \cos 6 t$ and
$x=-2 t \cos 6 t+c_{1} \cos 6 t+c_{2} \sin 6 t$.
Equilibrium means $x(0)=x^{\prime}(0)=0$, so
$0=x(0)=c_{1}$ and $0=x^{\prime}(0)=-2+6 c_{2}$,
making $c_{1}=0$ and $c_{2}=1 / 3$. Thus
$x=\frac{1}{3} \sin 6 t-2 t \cos 6 t$.
This represents undamped resonance.
7. A mass of 4 grams is suspended from a spring with constant 16 dynes per centimeter. The mass is pulled down .5 cm and an external force of $12 \sin (t)$ is applied. Assuming a damping factor of $8 v$ (dynes), write the differential equation and solve for $x(t)$. What is the steady state solution.
$4 x^{\prime \prime}+8 x^{\prime}+16 x=12 \sin t$ is the differential equation.
The corresponding polynomial is $r^{2}+2 r+4$ with roots $r=-1 \pm i \sqrt{3}$ so we have
$x_{h}=e^{-t}\left(c_{1} \cos \sqrt{3} t+c_{2} \sin \sqrt{3} t\right)$ and $x_{p}=A \cos t+B \sin t$
Then $x^{\prime \prime}+2 x^{\prime}+4 x=(3 A+2 B) \cos t+(3 B-2 A) \sin t=3 \sin t$,
so $3 A+2 B=0$ and $3 B-2 A=3$ giving $A=-6 / 13$ and $B=9 / 13$.
The steady state solution is
$x_{p}=\frac{9}{13} \sin t-\frac{6}{13} \cos t$.
Now $x=\frac{9}{13} \sin t-\frac{6}{13} \cos t+e^{-t}\left(c_{1} \cos \sqrt{3} t+c_{2} \sin \sqrt{3} t\right)$,
with $.5=x(0)=-6 / 13+c_{1}$ and $0=x^{\prime}(0)=\frac{9}{13}-c_{1}+\sqrt{3} c_{2}$, so $c_{1}=25 / 26$ and $c_{2}=7 / 26 \sqrt{3}$.
8. Solve the system $x^{\prime}=x-4 y ; \quad y^{\prime}=x+y$

By the second equation, $x=y^{\prime}-y$, so $x^{\prime}=y^{\prime \prime}-y^{\prime}$.
Putting $x=y^{\prime}-y$ into equation one, we get $x^{\prime}=y^{\prime}-y-4 y=y^{\prime}-5 y$.
Then $y^{\prime \prime}-y^{\prime}=y^{\prime}-5 y$, so $y^{\prime \prime}-2 y^{\prime}+5 y=0$.
This means $y=e^{t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right.$.
Then $y^{\prime}=e^{t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t\right)$,
so $x=y^{\prime}-y=e^{t}\left(-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t\right)$.
9. Factor the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=x$ into two first order equations and solve.

$$
\begin{aligned}
& (D-1)(D-2) y=(D-1) z=x, \text { where } z=(D-2) y . \text { Then } \\
& z=e^{x} \int x e^{-x}=e^{x}(-x-1) e^{-x}=-x-1, \text { so } \\
& y=e^{2 x} \int(-x-1) e^{-2 x}=e^{2 x}\left(\frac{1}{2} x+\frac{3}{4}\right) e^{-2 x}=\frac{1}{2} x+\frac{3}{4} x .
\end{aligned}
$$

10. Use reduction of order (by the Wronskian and Abel's identity) to find a second solution to $x y^{\prime \prime}+(1-2 x) y^{\prime}+(x-1) y=0$ given that $y=e^{x}$ is one solution. $p=x^{-1}-2$, so $W=e^{2 x-\ln x}=x^{-1} e^{2 x}$ and then

$$
y_{2}=e^{x} \int x^{-1} e^{2 x} /\left(e^{x}\right)^{2}=e^{x} \int x^{-1}=e^{x} \ln x
$$

11. Find the general solution of $y^{\prime \prime \prime}-3 y^{\prime}+2 y=0$.
$r^{3}-3 r+2=(r-1)(r-1)(r+2)$, so
$y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} e^{-2 x}$.
12. What does it mean to say that y_{1}, y_{2} and y_{3} are independent? Show that x, $x^{2}-1$ and $x^{2}-4$ are independent using the definition.

This means that there is no non-trivial linear combination
$c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}$ which is identically 0 .
Suppose $c_{1} x+c_{2}\left(x^{2}-1\right)+c_{3}\left(x^{2}-4\right)=0$.
For $x=0$, this gives $-c_{2}-4 c_{3}=0$.
For $x=1, c_{1}-3 c_{3}=0$; for $x=-1,-c_{1}-3 c_{3}=0$.
Adding the last two equations, we see that $c_{3}=0$ and then that $c_{1}=0$ and by the first equation $c_{2}=0$ also. Thus $x, x^{2}-1$ and $x^{2}-4$ are linearly independent.
13. Find the general solution of $y^{(v i i i)}-y^{(v i i)}-y^{(i v)}+y^{(i i i)}=0$, given that $r^{8}-r^{7}-r^{4}+r^{3}=r^{3}(r-1)^{2}(r+1)\left(r^{2}+1\right)$.
$y_{h}=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} e^{x}+c_{5} x e^{x}+c_{6} e^{-x}+c_{7} \cos x+c_{8} \sin x$.
14. Use Undetermined Coefficients to solve $y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=\cos x$.

The auxiliary polynomial is $r^{3}-r^{2}+4 r-4 r=(r-1)\left(r^{2}+4\right)$,
so the homogeneous solution is $y_{h}=c_{1} e^{x}+c_{2} \cos 2 x+c_{3} \sin 2 x$.
The particular solution is $y_{p}=A \cos x+B \sin x$.
Then $y_{p}^{\prime}=B \cos x-A \sin x$,
$y_{p}^{\prime \prime}=-A \cos x-B \sin x$ and
$y_{p}^{\prime \prime \prime}=-B \cos x+A \sin x$.
Thus $L\left[y_{p}\right]=(-3 A+3 B) \cos x+(-3 A-3 B) \sin x=\cos x$.
So $-3 A+3 B=1$ and $-3 A-3 B=0$, which means $A=-\frac{1}{6}$ and $B=\frac{1}{6}$.
$y=y_{p}+y_{h}=-\frac{1}{6} \cos x+\frac{1}{6} \sin x+c_{1} e^{x}+c_{2} \cos 2 x+c_{3} \sin 2 x$.

