1. State and prove the formulas for
(a) $\mathcal{L}\left\{e^{a t} f(t)\right\}$
(b) $\mathcal{L}\left\{f^{\prime}(t)\right\}$
(c) $\mathcal{L}\{t f(t)\}$
(d) $\mathcal{L}\{u(t-a) f(t-a)\}$

Let $F(s)=\mathcal{L}\{f(t)\}$ and $G(s)=\mathcal{L}\{g(t)\}$
(a) Let $g(t)=e^{a t} f(t)$.

Then $G(s)=F(s-a)$.
Proof: $G(s)=\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t=\int_{0}^{\infty} e^{-(s-a) t} f(t) d t=F(s-a)$.
(b) Let $g(t)=f^{\prime}(t)$.

Then $G(s)=s F(s)-f(0)$.
Proof: $G(s)=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t=\left[e^{-s t} f(t)\right]_{0}^{\infty}-\int_{0}^{\infty}\left(-s e^{-s t} f(t) d t\right.$
(using integration by parts with $u=e^{-s t}$ and $d v=f^{\prime}(t) d t$)
This becomes $(0-f(0))+s \int_{0}^{\infty} e^{-s t} f(t) d t=-f(0)+s F(s)$.
(c) Let $g(t)=t f(t)$. Then $G(s)=-F^{\prime}(s)$.

Proof: $F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$,
so $F^{\prime}(s)=\int_{0}^{\infty} \partial\left(e^{-s t} f(t)\right) / \partial s d t=\int_{0}^{\infty}-t e^{-s t} f(t) d t=-G(s)$.
(d) Let $g(t)=u(t-a) f(t-a)$.

Then $G(s)=e^{-a s} F(s)$.
Proof: $G(s)=\int_{0}^{\infty} e^{-s t} u(t-a) f(t-a) d t=\int_{a}^{\infty} e^{-s t} f(t-a) d t=\int_{0}^{\infty} e^{-s(u+a)} f(u) d u$
(substituting $u=t-a$)
This now gives $e^{-a s} \int_{0}^{\infty} e^{-s u} f(u) d u=e^{-a s} F(s)$.
2. Define the Gamma function $\Gamma(p+1)$ and show that $\mathcal{L}\left\{t^{p}\right\}=\Gamma(p+1) / s^{p+1}$.
$\Gamma(p+1)=\int_{0}^{\infty} x^{p} e^{-x} d x$.
Substituting $x=s t$, so that $d x=s d t$, we get
$\Gamma(p+1)=\int_{0}^{\infty}(s t)^{p} e^{-s t} s d t=s^{p+1} \int_{0}^{\infty} e^{-s t} t^{p} d t=s^{p+1} \mathcal{L} t^{p}$, so that $\mathcal{L}\left\{t^{p}\right\}=$ $\Gamma(p+1) / s^{p+1}$.
3. Find the Laplace transform $F(s)$ of $f(t)=$
(a) $e^{2 t} \sin t$
(b) $t \cos 3 t$
(c) $t^{5 / 2}$
(c) t, if $0 \leq t<1$ and t^{2}, if $t>1$.
(a) Let $g(t)=\sin t$, so that $f(t)=e^{2 t} g(t)$ and $F(s)=G(s-2)$.

By the table, $G(s)=\frac{1}{s^{2}+1}$, so that $F(s)=\frac{1}{(s-2)^{2}+1}=\frac{1}{s^{2}-4 s+5}$.
(b) Let $g(t)=\cos 3 t$, so that $f(t)=t g(t)$ and $F(s)=-G^{\prime}(s)$.

By the table, $G(s)=\frac{s}{s^{2}+9}$, so that $F(s)=-\frac{(1)\left(s^{2}+9\right)-(s)(2 s)}{\left(s^{2}+9\right)^{2}}=\frac{s^{2}-9}{\left(s^{2}+9\right)^{2}}$.
(c) $F(s)=\Gamma(7 / 2) / s^{7 / 2}$.
$\Gamma(1 / 2)=\sqrt{\pi}$ and $\Gamma(p+1)=p \Gamma(p)$, so
$\Gamma(7 / 2)=\frac{5}{2} \frac{3}{2} \frac{1}{2} \sqrt{\pi}=\frac{15 \sqrt{\pi}}{8}$ and
$F(s)=\frac{15 \sqrt{\pi}}{8 s^{7 / 2}}$.
(d) $f(t)=t+\left(t^{2}-t\right) u(t-1)=t+u(t-1) g(t-1)$, so that $F(s)=1 / s^{2}+e^{-s} G(s)$.

Now $g(t-1)=t^{2}-t$, so $g(t)=(t+1)^{2}-(t+1)=t^{2}+t$ and $G(s)=2 / s^{3}+1 / s^{2}$.
Thus $F(s)=1 / s^{2}+e^{-s}\left(2 / s^{3}+1 / s^{2}\right)$.
4. Find the Laplace transform $F(s)$ of the square wave $f(t)$ with period 2, where

$$
f(t)= \begin{cases}1, & \text { if } 0 \leq t<1 \\ -1, & \text { if } 1<t<2\end{cases}
$$

$f_{T}(t)=1-2 u(t-1)+u(t-2)$, so
$F_{T}(s)=\frac{1-2 e^{-s}+e^{-2 s}}{s}$, and then
$F(s)=\frac{F_{T}(s)}{1-e^{-2 s}}=\frac{\left(1-e^{-s}\right)^{2}}{\left(1-e^{-s}\right)\left(1+e^{-s}\right) s}=\frac{1-e^{-s}}{s\left(1+e^{-s}\right)}$
5. Find the inverse Laplace transforms $\mathrm{f}(\mathrm{t})$ of $\mathrm{F}(\mathrm{s})=$
(a) $(3 s+8) /\left(s^{2}-8 s+25\right)$
(b) $e^{-3 s} / s^{4}$
(c) $(s+3) /(s-1)^{2}\left(s^{2}+4\right)$
(a) Completing the square, we have $s^{s}-8 s+25=(s-4)^{2}+9$.

Then $F(s)=G(s-4)$, so that $f(t)=e^{4 t} g(t)$, where
$G(s)=F(s+4)=\frac{3(s+4)+8}{s^{2}+9}=\frac{3 s+20}{s^{2}+9}$
so $g(t)=3 \cos 3 t+\frac{20}{3} \sin 3 t$ and $f(t)=e^{4 t}\left(3 \cos 3 t+\frac{20}{3} \sin 3 t\right)$.
(b) Let $G(s)=1 / s^{4}$ so that $F(s)=e^{-3 s} G(s)$ and $f(t)=u(t-3) g(t-3)$. $g(t)=t^{3} / 6$ so that $f(t)=u(t-3)(t-3)^{3} / 6$.

That is, $f(t)=0$ for $t<3$ and $f(t)=(t-3)^{3} / 6$ for $t>3$.
(c) Using the method of Partial Fractions,
$\frac{s+3}{(s-1)^{2}\left(s^{2}+4\right)}=\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C s+D}{s^{2}+4}$.
Solving $s+3=A(s-1)\left(s^{2}+4\right)+B\left(s^{2}+4\right)+C s(s-1)^{2}+D(s-1)^{2}$.
For $s=1$, we get $4=5 B$ so $B=4 / 5$.
Equating coefficients:
$s^{3}: 0=A+C$ so $C=-A$
$s^{2}: 0=-A+B-2 C+D=A+4 / 5+D$, so $D=-A-4 / 5$.
$s: 1=4 A+C-2 D=3 A-2 D=5 A+8 / 5$, so $A=-3 / 25$ and therefore $C=3 / 25$ and $D=3 / 25-4 / 5=-17 / 25$.
$1: 3=-4 A+16 / 5+D$, checking: $3=12 / 25+16 / 5-17 / 25$.
Thus $f(t)=-\frac{3}{25} e^{t}+\frac{4}{5} t e^{t}+\frac{3}{25} \cos 2 t-\frac{17}{50} \sin 2 t$.
6. Solve using Laplace transforms
(a) $y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{2 t} ; y(0)=0, y^{\prime}(0)=1$
(b) $y^{\prime \prime}+25 y=10 \delta(t-2) ; y(0)=y^{\prime}(0)=0$
(c) $y^{\prime \prime}-4 y^{\prime}=3$, if $0<t<2$, and $=0$ if $2 \leq t$, with $y(0)=1, y^{\prime}(0)=0$.
(a) $s^{2} Y-1-3 s Y+2 Y=4 /(s-2)$, so $\left(s^{2}-3 s+2\right) Y=1+4 /(s-2)=(s+2) /(s-2)$ and
$Y=(s+2) /(s-1)(s-2)^{2}=\frac{A}{s-1}+\frac{B}{s-2}+\frac{C}{(s-2)^{2}}$.
$s+2=A(s-2)^{2}+B(s-1)(s-2)+C(s-1)$.
$s=1: 3=A \quad s=2: 4=C$.
$s^{2}: 0=A+B$, so $B=-3$.
$y(t)=3 e^{t}-3 e^{2 t}+4 t e^{2 t}$.
(b) $s^{2} Y+25 Y=10 e^{-2 s}$, so $Y=10 e^{-2 s} /\left(s^{2}+25\right)=e^{-2 s} F(s)$.

Then $f(t)=2 \sin 5 t$ and $y(t)=u(t-2) f(t-2)=2 u(t-2) \sin 5(t-2)$.
That is, $f(t)=0$ for $t<2$ and $f(t)=2 \sin 5(t-2)$ for $t>2$.
(c) The forcing function is $3-3 u(t-2)$, which means that

$$
s^{2} Y-s-4(s Y-1)=3 / s-3 e^{-2 s} / s, \text { so }\left(s^{2}-4 s\right) Y=s-4+3 / s-3 e^{-2 s} / s
$$

Then $Y(s)=\frac{1}{s}+\frac{3}{s^{2}(s-4)}\left(1-e^{-2 s}\right)$.
Let $F(s)=\frac{3}{s^{2}(s-4)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s-4}$.
By partial fractions $A=-\frac{3}{16}, B=-\frac{3}{4}$ and $C=\frac{3}{16}$.
So $f(t)=-\frac{3}{16}-\frac{3}{4} t+\frac{3}{16} e^{4 t}$.
Finally $y=t+f(t)-u(t-2) f(t-2)=t-f r a c 316-\frac{3}{4} t+\frac{3}{16} e^{4 t}-u(t-2)\left(-\frac{3}{16}-\right.$ $\left.\frac{3}{4} t+\frac{3}{16} e^{4 t-8}\right)$

For $t<2, y(t)=\frac{1}{4} t-\frac{3}{16}+\frac{3}{16} e^{4 t}$ and for $t>2, y(t)=t+\frac{3}{16} e^{4 t}-\frac{3}{16} e^{4 t-8}$
7. A mass of 4 grams on a spring with constant $k=100$ is released from rest at time $t=0,2 \mathrm{~cm}$ above equilibrium. Then at time $t=3$, the mass is given an upward impulse of power 120. Write the differential equation for the position $x(t)$ of the mass at time t and use Laplace transforms to solve for $x(t)$.

$$
\begin{aligned}
& 4 x^{\prime \prime}+100 x=120 \delta(t-3), \text { with } x(0)=-2 \text { and } x^{\prime}(0)=0 . \\
& 4 s^{2} X+8 s+100 X=120 e^{-3 s} . \\
& X=\frac{-2 s}{s^{2}+25}+e^{-3 s} \frac{30}{s^{2}+25} \\
& x=-2 \cos 5 t+u(t-3) 6 \sin 5(t-3) .
\end{aligned}
$$

8. A rocket is launched with acceleration $68-t^{2}$ for time $0 \leq t \leq 10$ and acceleration -32 for $t \geq 10$. Write the differential equation for the position $\mathrm{x}(\mathrm{t})$ of the rocket at time t and use Laplace transforms to solve for $\mathrm{x}(\mathrm{t})$.

$$
\begin{aligned}
& X^{\prime \prime}=68-t^{2}+u(t-10)\left(t^{2}-100\right)=\left(68-t^{2}\right)+u(t-10) f(t-10) \text {, } \\
& \text { where } f(t-10)=t^{2}-100 \text { so } f(t)=(t+10)^{2}-100=t^{2}+20 t \text {. } \\
& \text { Then } s^{2} X(s)=68 / s-2 / s^{3}+e^{-10 s}\left(2 / s^{3}+20 / s^{2}\right) \\
& \text { so } X(s)=68 / s^{3}-2 / s^{5}+e^{-10 s}\left(2 / s^{5}+20 / s^{4}\right) \text {. } \\
& \text { Then } x(t)=34 t^{2}-t^{4} / 12+u(t-10) g(t-10) \text {, where } \\
& G(s)=2 / s^{5}+20 / s^{4} \text { so that } g(t)=t^{4} / 12+20 t^{3} / 6 \text {. } \\
& \text { So } x(t)=34 t^{2}-t^{4} / 12+u(t-10)\left[(t-10)^{4} / 12+20(t-10)^{3} / 6\right] \text {. }
\end{aligned}
$$

