1. Find the convolution $t^{2} * t^{3}$.
$\int_{0}^{t}(t-v)^{2} v^{3} d v=\int_{0}^{t}\left(t^{2}-2 v t+v^{2}\right) v^{3} d v=t^{2} \int_{0}^{t} v^{3} d v-2 t \int_{0}^{t} v^{4} d v+\int_{0}^{t} v^{5} d v=$ $\frac{1}{4} t^{6}-\frac{2}{5} t^{6}+\frac{1}{6} t^{6}=\frac{1}{60} t^{6}$.
2. Use convolution to express a particular solution to $x^{\prime \prime}+x=\tan t$ as an integral-then evaluate.

Let $F(s)=\mathcal{L}\{$ tan $t\}$.
Then $s^{2} X+X=F(s)$, so that $X=F(s) /\left(s^{2}+1\right)=F(s) G(s)$ where $g(t)=\sin t$.
Thus $x(t)=\tan t * \sin t=\int_{0}^{t} \tan u \sin (t-u) d u=\int_{0}^{t} \tan u(\sin \operatorname{tcos} u-$ $\cos t \sin u) d u=\sin t\left(\int_{0}^{t} \sin u d u\right)-\cos t\left(\int_{0}^{t}(\sec u-\cos u) d u\right)=\sin t-\cos t \ln (\sec t+$ $\tan t$).
3. Use the Taylor Series Method to find the first 4 terms of a series solution for $y^{\prime}=y^{2}-x y$ with $y(0)=2$.
$y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$
$a_{0}=y(0)=2$
$y^{\prime}(0)=y(0)^{2}-0 y(0)=2^{2}-0 \cdot 2=4$, so $a_{1}=y^{\prime}(0)=4$.
$y^{\prime \prime}=2 y y^{\prime}-y-x y^{\prime}$, so $y^{\prime \prime}(0)=2 \cdot 2 \cdot 4-2=14$ and $a_{2}=y^{\prime \prime}(0) / 2=7$.
$y^{\prime \prime \prime}=2 y y^{\prime \prime}+2\left(y^{\prime}\right)^{2}-2 y^{\prime}-x y^{\prime \prime}$, so $y^{\prime \prime \prime}(0)=56+32-8=80$ and $a_{3}=y^{\prime \prime \prime}(0) / 6=$ 80/6.

So $y=2+4 x+7 x^{2}+\frac{40}{3} x^{3}+\cdots$.
4. Find the singular points of $\left(x^{2}-9\right)^{2} y^{\prime \prime}+\left(x^{2}-3 x\right) y^{\prime}+(x+3) y=0$ and classify them as regular or irregular.

Then find a minimum value for the radius of convergence of a power series solution about $x_{0}=1$.

$$
p(x)=\frac{x^{2}-3 x}{\left(x^{2}-9\right)^{2}}=\frac{x}{(x-3)(x+3)^{2}}
$$

and
$q(x)=\frac{x+3}{\left(x^{2}-9\right)^{2}}=\frac{1}{(x-3)^{2}(x+3)}$.
The singular points are $x=3$ and $x=-3$.
For $x=3$, we have $(x-3) p=\frac{x}{x+3)^{2}}$ and $(x-3)^{2} q=\frac{1}{x+3}$. Both are analytic at $x=3$, so this is a REGULAR singular point.

For $x=-3$, we have $(x+3) p=\frac{x}{(x-3)(x+3)}$ and $(x+3)^{2} q=\frac{x+3}{(x-3)^{2}}$. The first one is not analytic at $x=-3$, so this is an IRREGULAR singular point.

The nearest singular point to $x_{0}=1$ is $x=3$, so the radius of convergence $R>3-1=2$.
5. Find the indicial equation of $6 x^{3} y^{\prime \prime \prime}+13 x^{2} y^{\prime \prime}+\left(x^{2}+2 x\right) y^{\prime}+x y=0$ and give the form of the general solution.

$$
f(r)=6 r(r-1)(r-2)+13 r(r-1)+2 r+0=6 r^{3}-5 r^{2}+r=r(2 r-1(3 r-1) .
$$

The roots are $r=0, r=\frac{1}{2}$ and $r=\frac{1}{3}$.
The general solution is

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}+\sum_{n=0}^{\infty} c_{n} x^{n+\frac{1}{3}} .
$$

6. Find the first four terms of a power series for $\int \frac{e^{x}}{1-x} d x$.
$e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots$ and $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots$, so that by the Cauchy product

$$
\frac{e^{x}}{1-x}=1+2 x+\frac{5}{2} x^{2}+\frac{8}{3} x^{3}+\cdots
$$

Then $\int \frac{e^{x}}{1-x} d x=x+x^{2}+\frac{5}{6} x^{3}+\frac{2}{3} x^{4}+\cdots$
7. Find the recurrence relation and the first 5 nonzero terms in a power series solution of $y^{\prime \prime}=2 x y$ with $y(0)=6$ and $y^{\prime}(0)=3$.

$$
\begin{aligned}
& y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+\ldots \\
& y^{\prime \prime}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+30 a_{6} x^{4}+\ldots \\
& 2 x y=2 a_{0} x+2 a_{1} x^{2}+2 a_{2} x^{3}+2 a_{3} x^{4}+2 a_{4} x^{5}+\ldots
\end{aligned}
$$

Equating the coefficients, we have $a_{2}=0,6 a_{3}=2 a_{0}, 12 a_{4}=2 a_{1}, 20 a_{5}=2 a_{2}$, $30 a_{6}=2 a_{3}$, and so on.

In general, $(n+3)(n+2) a_{n+3}=2 a_{n}$, so the recurrence formula is

$$
a_{n+3}=2 a_{n} /(n+2)(n+3)
$$

Then $a_{0}=y(0)=6, a_{1}=y^{\prime}(0)=3, a_{2}=0, a_{3}=\frac{1}{3} a_{0}=2, a_{4}=\frac{1}{6} a_{1}$, $a_{5}=\frac{1}{10} a_{2}=0, a_{6}=\frac{1}{15} a_{3}=\frac{2}{15}$ and so on.

Thus $y=6+3 x+2 x^{3}+\frac{1}{2} x^{4}+\frac{2}{15} x^{6}+\ldots$.
8. Solve the Cauchy-Euler differential equation $x^{2} y^{\prime \prime}-5 x y^{\prime}+8 y=2 x^{3}$ with $y(1)=3$ and $y^{\prime}(1)=5$.

The indicial equation is $r(r-1)-5 r+8=r^{2}-6 r+8=(r-2)(r-4)$, so the homogeneous solution is $y_{h}=c_{1} x^{2}+c_{2} x^{4}$.

Using Variation of Parameters, $y_{p}=v_{1} x^{2}+v_{2} x^{4}$ and the Wronskian $W\left(x^{2}, x^{4}\right)=$ $x^{2}\left(4 x^{3}\right)-(2 x) x^{4}=2 x^{5}$.

Notice that $F(x)=2 x^{3} / x^{2}$ for Variation of Parameters.
$v_{1}^{\prime}=\frac{-2 x x^{4}}{2 x^{5}}=-1$, so $v_{1}=-x$.
$v_{2}^{\prime}=\frac{2 x x^{2}}{2 x^{5}}=x^{-} 2$, so $v_{2}=-x^{-1}$.
Then $y_{p}=(-x) x^{2}+\left(-x^{-1}\right) x^{4}=-2 x^{3}$.
Using Undetermined Coefficients, let $y_{p}=A x^{3}$ so that
$L[y]=x^{2}(6 A x)-5 x\left(3 A x^{2}\right)+8\left(A x^{3}\right)=-A x^{3}=2 x^{3}$, so that again $y_{p}=-2 x^{3}$.
Now $y=y_{p}+y_{h}=c_{1} x^{2}+c_{2} x^{4}-2 x^{3}$,
so $y^{\prime}=2 c_{1} x+4 c_{2} x^{3}-6 x^{2}$. Then
$3=y(1)=c_{1}+c_{2}$ and $5=y^{\prime}(1)=2 c_{1}+4 c_{2}-6$.
Solving $c_{1}=\frac{9}{2}$ and $c_{2}=\frac{1}{2}$.
$y=\frac{9}{2} x^{2}+\frac{1}{2} x^{4}-2 x^{3}$.

