Instructor: Minseo Cho

1. Let C be a circle whose center is (-1,0) and radius is $\sqrt{2}$.

$$C: (x+1)^2 + y^2 = 2.$$
 (x+1)²+y²-2=0

Let ℓ_1 be a tangent line at (-2,1). Then, find a tangent line ℓ_2 to a given circle C that is perpendicular to the tangent line ℓ_1

1) Find a tangent line 1, at (-2,1)

$$(\because \frac{1}{3\pi} \int (x+1)^2 + y^2 - 2 \int = ((x+1)^2)^2 + (y^2)^2 + (-2)^2$$

$$= 2(x+1) + (y^2)^2 + (-2)^2$$

$$= 2(x+1) + 2y \cdot y^2 + 6$$

$$= 2(x+1) + 2y \cdot y^2$$

2) If L_2 is perpendicular to L_1 , when we say m_2 as a tangent slope of L_2 , we have ...

$$m_2 \cdot | = -| \Rightarrow m_2 = -|$$

Now, we need to find some points P and Q on C whose derivatives have -1.

Instructor: Minseo Cho

1. Let C be a circle whose center is (-1,0) and radius is $\sqrt{2}$.

$$C: (x+1)^2 + y^2 = 2.$$

Let ℓ_1 be a tangent line at (-2,1). Then, find a tangent line ℓ_2 to a given circle C that is perpendicular to the tangent line ℓ_1

SINCE P and Q'se on a circle C and have a tangent slope 1, they are satisfied the tollowing condition.

(i)
$$(x+1)^2 + y^2 = 2$$

$$(x+1)^{2} + y^{2} = 2$$
 (ii) $\frac{dy}{dx} = \frac{(x+1)}{y} = -1$

Which implies n = -2, or 0.

When
$$x=-2$$
, $y=x+1=-2+1=-1$ if $P=(-2,-1)$
When $x=0$, $y=x+1=0+1=1$ if $Q=(0,1)$

i. Hence, ly be ...

$$0 \quad y = -1 \cdot (x + 2) - 1 = -x - 3$$

Instructor: Minseo Cho

1. Let C be a circle whose center is (-1,0) and radius is $\sqrt{2}$.

$$C: (x+1)^2 + y^2 = 2.$$

Let ℓ_1 be a tangent line at (-2,1). Then, find a tangent line ℓ_2 to a given circle C that is perpendicular to the tangent line ℓ_1

* Or .. You can solve this by using geometry.

Instructor: Minseo Cho

1. Let C be a circle whose center is (-1,0) and radius is $\sqrt{2}$.

$$C: (x+1)^2 + y^2 = 2.$$

Let ℓ_1 be a tangent line at (-2,1). Then, find a tangent line ℓ_2 to a given circle C that is perpendicular to the tangent line ℓ_1

Since a slope of a tangent line 1, is 1, it means $\frac{y-value\ change}{x-value\ change} = \frac{1}{1} = \frac{2}{a}$ Thus, since $\overline{BC} = 2$, a length of \overline{AB} is 2 as well.

Instructor: Minseo Cho

1. Let C be a circle whose center is (-1,0) and radius is $\sqrt{2}$.

$$C: (x+1)^2 + y^2 = 2.$$

Let ℓ_1 be a tangent line at (-2,1). Then, find a tangent line ℓ_2 to a given circle C that is perpendicular to the tangent line ℓ_1

From this figure, we can verify that 1, 18e ...

$$0 \quad y = -(x+3) = -x-3$$

$$\mathfrak{D} \quad \mathfrak{I} = -(\mathfrak{x} - 1) = -\mathfrak{x} + 1.$$

2. Let y = f(x) = cos(2x). Then compute its 2025th derivative of f(x). (In other words, find what $\frac{d^{2025}f}{dx^{2025}}$ is.)

$$f'(x) = -2 \cdot Sin(2x) = -2' \cdot Sin2x$$

$$f''(x) = -2. (Sin(2x))' = -2.8.00s(2x) = -2.2.00s(2x)$$

$$f^{(n)}(\pi) = -2 \cdot 2 \cdot (\cos(2\pi))' = -2 \cdot 2 \cdot (-2 \cdot \sin(2\pi)) = 2^3 \cdot \sin(2\pi)$$

$$f^{(1)}(z) = -2 \cdot 2 \cdot (-2) \cdot (Sin(2z)) = -2 \cdot 2 \cdot (-2) \cdot 2 \cdot cos(2z) = -2f \cdot cos(2z)$$

And remind that $\frac{\int_{-\infty}^{4k+1} \cos(x)}{\int_{-\infty}^{4k+1} \cos(x)} = -\sin x$

(Review Lecture 14 homework :)!)

Since
$$2025 = 506 \times 4 + 1$$
,

$$\frac{d}{dx^{2n2s}}\left(\cos\left(2n\right)\right) = -2^{2n2s} \cdot \sin\left(2n\right).$$