Instructor: Minseo Cho

- 1. Let y = f(x) = |x| be a function on a closed interval [-1, 1]
 - (a) Can we apply the mean value theorem for this function on the closed interval [0,1]? If so, provide your reasoning.

Proof. Remind the mean value theorem.

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on the closed interval [a, b] and differentiable on the open interval (a, b), where a < b. Then there exists some c in (a, b) such that \cdots

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

This means that if the given function is continuous on [0, 1] and differentiable on (0, 1), we can apply the above theorem.

In general, we cannot use the mean value theorem for a function y = f(x) = |x|since this function is not always differentiable on every open interval. For example, if we see an open interval I = (-1, 1), since it cannot be differentiable at x = 0, we cannot apply theorem. **But**, since y = f(x) is differentiable on an **open interval** (0, 1), so we can.

 \therefore Therefore, in this case, we can use the mean value theorem. \Box

- (b) From (a), how many points c satisfy the mean value theorem?
 - A. One
 - B. Infinitely many
 - C. None

Proof. If we apply the mean value theorem, it implies that there exists some $c \in (0, 1)$ such that $f'(c) = \frac{f(1)-f(0)}{1-0} = \frac{1-0}{1-0} = 1$. Recall that y = f(x) = x when x is nonnegative. Thus, it means that f'(x) = 1 for all $x \in [0, \infty)$. Therefore, we can find that f'(x) = 1 for all $x \in [0, 1]$. Since the number of elements in [0, 1] is infinity, so the answer is **B**.