Lecture 17: Series (II)

Telescoping Series

A telescoping series is a special type of series for which many terms cancel in the n^{th} partial sums.

One way to determine whether a telescoping series converges or diverges, we write out the n^{th} partial sums of the series. And if the limit of the partial sum is finite, then it converges, and we can find out the exact sum of the series.

- 1. Find Partial Fraction (if a_n is rational expression)
- 2. Compute S_n
- 3. Find $\lim_{n \to \infty} S_n$

Determine if the following series converge. If converge, find the sum:

ex. 1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

ex. 2.
$$\sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$$
.

Students in this class are expected to know the telescoping series even it is not in the text.

Theorem: If $\sum a_n$ and $\sum b_n$ are both convergent series, then so are $\sum ca_n$, (c any constant), $\sum (a_n \pm b_n)$, and

$$\sum ca_n = c \sum a_n,$$

$$\sum a_n \pm b_n = \sum a_n \pm \sum b_n$$

ex. 3.
$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+3)} + \frac{1}{2^n}\right).$$

NYTI: 1. show that the series $\sum_{n=1}^{\infty} \frac{2}{n^2 + 4n + 3}$ converges and find the sum it converges to.

2. Use partial fractions to find the sum of the series $\sum_{n=2}^{\infty} \frac{1}{n^3 - n}$. (1/4)

3. Find the sum of the series
$$\sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right)$$
.

4. Find the values of x for which the following series converges. Find the sum of the series for these values of x.

$$\sum_{n=0}^{\infty} \frac{(x+3)^n}{2^n} \qquad (-5 < x < -1, \text{converges to } \frac{2}{-1-x})$$

5. Suppose both
$$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$$
 diverge. Then $\sum_{n=1}^{\infty} (a_n - b_n)$ diverges. True or False?

6. Sum of a divergent and a convergent series must diverge. True or False?

7. Determine the convergence of the series and find the sum if it converges.

$$\sum_{n=2}^{\infty} \frac{-1 + (-3)^n}{4^n}$$