
Section 1.2: Solutions and Initial Value Problems

Explicit Solutions

When solving a DE, the best possible result is that we are able to obtain an explicit
solution.

Definition. If a function φ(x) is substituted for y in a DE and satisfies the equation for
all x in some interval I, we say it is an explicit solution to the equation on I.

Example 1. Show that φ(x) = x2 − x−1 is an explicit solution to the linear equation
d2y

dx2
− 2

x2
y = 0, but ψ(x) = x3 is not.

Solution. We calculate φ′(x) = 2x + x−2, φ′′(x) = 2 − 2x−3 and observe these functions
are defined for all x 6= 0. Substitution into the DE yields

(2− 2x−3)− 2

x2
(x2 − x−1) = (2− 2x−3)− (2− 2x−3) = 0.

Therefore, φ(x) is an explicit solution to the DE on (−∞, 0) and on (0,∞).
For ψ(x) = x3, we have ψ′(x) = 3x2, ψ′′(x) = 6x which are defined everywhere; substi-

tution into the DE yields

6x− 2

x2
x3 = 4x = 0,

but this is valid only at the point x = 0 and not on an interval. Therefore, ψ(x) is not a
solution. ♦

Example 2. Show that for any constants c1 and c2, the function φ(x) = c1e
−x + c2e

2x is
an explicit solution to the linear equation y′′ − y′ − 2y = 0.

Solution. We have φ′(x) = −c1e−x + 2c2e
2x, φ′′(x) = c1e

−x + 4c2e
2x. Substitution into

the DE yields

(c1e
−x + 4c2e

2x)− (−c1e−x + 2c2e
2x)− 2(c1e

−x + c2e
2x)

= (c1 + c1 − 2c1)e
−x + (4c2 − 2c2 − 2c2)e

2x = 0.

Since the functions are all defined everywhere, φ(x) is an explicit solution to the DE on
(−∞,∞) for any choice of the constants c1, c2. ♦

Implicit Solutions

In many cases, we will not be able to find an explicit function which satisfies a DE, but
we will instead find an implicit function, which is a relation between the dependent and
independent variables that cannot be solved for the dependent variable.

Definition. We say that a relation G(x, y) = 0 is an implicit solution to a DE on the
interval I if it defines at least one explicit solution on I.
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Technically, when given a relation G(x, y) = 0 we need something called the implicit
function theorem in order to determine that the relation actually defines a function y(x) -
this conclusion is not automatic. However, in this section we will assume that the implicit
function theorem applies, and use implicit differentiation to verify solutions of DE’s.

Example 3. Show that x+ y + exy = 0 is an implicit solution to the nonlinear equation

(1 + xexy)
dy

dx
+ 1 + yexy = 0.

Solution. By implicit differentiation of the relation, we have

d

dx
(x+ y + exy) = 1 +

dy

dx
+ exy

(
y + x

dy

dx

)
= 0.

Rearranging terms gives

(1 + xexy)
dy

dx
+ 1 + yexy = 0,

which is exactly the DE we wanted to satisfy. ♦

Example 4. Verify that for every constant C, the relation 4x2 − y2 = C is an implicit

solution to y
dy

dx
− 4x = 0. Graph the solution curves for C = 0,±1,±4.

Solution. Again, we implicitly differentiate the relation to get

8x− 2y
dy

dx
= 0⇔ −2(y

dy

dx
− 4x) = 0⇔ y

dy

dx
− 4x = 0,

as desired. The solution curve for C = 0 is y2 = 4x2 ⇒ y = ±2x, a pair of lines passing
through the origin. If C = ±1,±4, or any other nonzero value, the solution curve is a
hyperbola with y = ±2x as asymptotes. ♦

Remark. If as in this example we get a solution which involves a single constant C, we
call the collection of solution curves for all possible values of C a one-parameter family of
solutions. More generally, if the solution involves n constants, the collection of solution
curves is an n-parameter family of solutions.

Initial Value Problems

Recall in Section 1.1 that the solution of the first-order radioactive decay DE involved
a single constant (A(t) = Ce−kt), while the second-order free fall DE had two constants of

integration (h(t) =
−gt2

2
+ c1t+ c2). One might intuitively guess that the solution to an

order n DE will involve n arbitrary constants, and we will show later in the course that
this is correct. These constants can be determined if we are given initial values for each of
the lower-order derivatives: y(x0), y

′(x0), ..., y
(n−1)(x0). When these values are specified,

we can find a particular solution rather than a general solution, and problems of this type
are called initial value problems (often abbreviated IVP).



3

Example 5. Show that φ(x) = sinx− cosx is a solution to the IVP

d2y

dx2
+ y = 0; y(0) = −1, y′(0) = 1.

Solution. We find φ′(x) = cosx + sinx, φ′′(x) = − sinx + cosx, which are both defined
everywhere. Substituting into the DE gives

(− sinx+ cosx) + (sin x− cosx) = 0,

so the DE is satisfied on the interval (−∞,∞). Checking the initial conditions, we have

φ(0) = sin 0− cos 0 = −1, φ′(0) = cos 0 + sin 0 = 1,

as desired. Therefore, φ(x) is a solution to the IVP. ♦

Example 6. For the DE in Example 2, determine the constants c1, c2 so that the initial
conditions y(0) = 2 and y′(0) = −3 are satisfied.

Solution. Recall that the DE had solution φ(x) = c1e
−x + c2e

2x ⇒ φ′(x) = −c1e−x +
2c2e

2x. Substituting the initial conditions gives a system of equations:

c1 + c2 = 2
−c1 + 2c2 = −3

Adding the equations gives 3c2 = −1 ⇒ c2 = −1/3. Substituting this into the first

equation, we have c1 = 2− c2 =
6

3
− (−1

3
) =

7

3
. So a solution to the IVP is

φ(x) =
7

3
e−x − 1

3
e2x. ♦

Homework: pp. 13-15 #1-11 odd, 16, 17, 22


