
Section 2.2: Separable Equations

In Chapter 2 we will focus on developing techniques for solving first-order DE’s; sub-
sequent chapters will deal with higher-order DE’s. The simplest class of first-order DE’s
are the separable equations. They are relatively easy to deal with because solving them
only requires integration.

Definition. A first-order DE is called separable if it can be written in the form

dy

dx
= g(x)p(y).

Essentially, this means that in the function f(x, y) that represents the derivative, we
can “separate” the variables x and y (hence the terminology), writing the multivariable
function as a product of two functions of a single variable.

Example 1. The equation
dy

dx
=

2x + xy

y2 + 1
is separable since the right-hand side can be

factored as x
2 + y

y2 + 1
. However, the equation

dy

dx
= 1 + xy is not separable since there is

no factorization of the RHS that will separate the variables.

Now that we know how to recognize a separable DE, how does the method work? We
present first the informal heuristic that is actually used in computations. From the form

dy

dx
= g(x)p(y),

multiply both sides by dx and divide by p(y) to obtain

h(y)dy = g(x)dx,

where we define h(y) = 1/p(y). Then just integrate both sides:∫
h(y)dy =

∫
g(x)dx⇒ H(y) = G(x) + C,

where both constants of integration are merged into one. This produces an implicit
solution to the DE.

There are two important observations to make. First, there could be additional solutions
to the DE that we lose when dividing by p(y); namely, if c is a value such that p(c) = 0,
then y ≡ c is also a solution to the DE. Sometimes these solutions can be recovered by
allowing the constant of integration C to take the value 0, but other times they do not
appear at all in the general solution. This is not necessarily a problem unless one is
interested in finding every possible solution to the DE.

A more pressing concern is the phrase “multiply both sides by dx”. Remember that

the differential
dy

dx
is equivalent to writing y′, and is just a symbol for the derivative, and

is NOT an actual fraction. Rigorously speaking, trying to multiply by dx is akin to trying
to divide sinx by sin - it makes absolutely no sense. Why then, have I just told you to do
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it? Because it is an easier way of getting the same end result. Let us show how we would
solve a separable DE without resorting to such absurdities as multiplying by dx.

We start with
dy

dx
= g(x)p(y) =

g(x)

h(y)
and still multiply both sides by h(y) (this does

make sense) to get

h(y)
dy

dx
= g(x).

Now define H(y) and G(x) to be the antiderivatives of h and g; that is, H ′(y) =
h(y), G′(x) = g(x). Substituting this into the previous equation gives

H ′(y)
dy

dx
= G′(x).

Now observe that the LHS is the result of applying the chain rule to the composite function

H(y(x)):
d

dx
H(y(x)) = H ′(y(x))y′(x) = H ′(y(x))

dy

dx
. Therefore, integrating both sides

of the previous equation yields H(y(x)) = G(x) + C, which is the same thing we got
previously since in that case also H ′(y) = h(y), G′(x) = g(x).

Doing it the first way avoids the need to reference the composite function H(y(x)),
so even though we are abusing notation, we proceed with it, understanding that we are
abusing it, simply to make our lives easier. Let us now familiarize ourselves with this
particular abuse of notation by doing some examples.

Example 2. Solve the nonlinear equation
dy

dx
=

x− 5

y2
.

Solution. Separating the variables, we have y2dy = (x− 5)dx. Integrating, we get∫
y2dy =

∫
(x− 5)dx⇒ y3

3
=

x2

2
− 5x + C.

For this DE, we can actually solve explicitly for y:

y =

(
3

2
x2 − 15x + C1

)1/3

,

where C1 = 3C. ♦

Example 3. Solve the initial value problem
dy

dx
=

y − 1

x + 3
, y(−1) = 0.

Solution. Again by separating variables we have

dy

y − 1
=

dx

x + 3
⇒
∫

dy

y − 1
=

∫
dx

x + 3
⇒ ln |y − 1| = ln |x + 3|+ C.

Now we solve for y explicitly by exponentiating the equation:

eln |y−1| = eCeln |x+3| ⇒ |y − 1| = eC |x + 3| = C1|x + 3|,
where C1 = eC . We can remove the absolute values by introducing a plus or minus:
y − 1 = ±C1(x + 3) ⇔ y = 1 ± C1(x + 3), where the choice of sign will depend on the
values of x and y. We can even do away with the plus or minus by replacing the positive
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constant C1 with an arbitrary (nonzero) constant K, so that y = 1 + K(x + 3). Now we
apply the initial condition to obtain a particular solution:

0 = 1 + K(−1 + 3) = 2K + 1⇒ K = −1/2,

so the solution to the IVP is y = 1− 1

2
(x + 3) = −1

2
(x + 1). ♦

Remark. After reaching the equation ln |y−1| = ln |x+3|+C, one could instead immedi-
ately substitute the initial condition to solve for C, and then solve for an explicit function
of y. Also note that since the value 1 makes p(y) = y − 1 equal to zero, another solution
is given by y ≡ 1, but this can be recovered by allowing K = 0 in the general solution
y = 1 + K(x + 3).

Example 4. Solve the nonlinear equation
dy

dx
=

6x5 − 2x + 1

cos y + ey
.

Solution. Again by separation of variables, we obtain

(cos y + ey)dy = (6x5 − 2x + 1)dx⇒
∫

(cos y + ey)dy =

∫
(6x5 − 2x + 1)dx

⇒ sin y + ey = x6 − x2 + x + C.

This is an implicit solution, but it is impossible to isolate y and get an explicit solution,
so this is the best we can do. ♦

Homework: pp. 43-45 #1-25 odd, 33, 34, 35, 37.


