Section 2.3: Linear Equations

Introduction: Easy Special Cases

In this section we introduce a technique for solving first-order DE’s which are linear.
Recall that such equations have the form

al(x)% + ap(z)y = b(x).

d
The distinguishing characteristic of such equations is that y, d_y are only raised to the
x

first power, and their coefficient functions depend only on x, not on y.
There are two special situations in which the solution to a linear DE is very easy. The
first occurs when ag(x) = 0; that is, when the DE has the form

dy
ai(z)~— = b(z),
or equivalently,
dy _ b(z)
de  ay(z)’

b(x)
ai(x)
general a given linear DE cannot be reduced to such a simple form.
The second situation occurs when ag(z) = @} (z). In this case, we can use the product
rule to simplify the left-hand side:
dy d

ai(z) 7 + ao(z)y = b(z) = ar(x)y' + a)(x)y = Tl (@)y] = b(z).

Again, we can solve by just integrating:

an(2)y = /b(a:)da: +C = y(a) = L) Ub(x)dx + c} |

ar(x

At first glance, it would seem that this scenario is equally unlikely: most often the

Here we obtain the solution simply by integrating: y(z) = / dz + C. However, in

coefficient of y will not be the derivative of the coefficient of %Y But it turns out that

x
we can convert a general linear DE to one having this form if we multiply the equation
by a function u(x) called the integrating factor. We now proceed to construct this
integrating factor.

Derivation of Integrating Factor

d
Given a linear DE al(a:')d—i + ag(x)y = b(x), write it in standard form

d
=+ Py = Q)
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where P(z) = ao(z)/a1(z) and Q(z) = b(x)/ai(z). Our goal is to find a function pu(z)
so that after multiplying through by this function, this left-hand side follows the product
rule. That is, we want

p(e) S+ ) Pla)y = ()] = pla) T+

Matching coefficients on both sides of this equation tells us that p(z) should satisfy the
d
DE //(z) = d—'u = pu(z)P(z). Fortunately, this DE is separable (since currently this is the
x

only type of DE we know how to solve), and we have

d
1
d
Therefore, the initial DE reduces to d—[,u(:c)y] = u(2)Q(x), so the solution is
€T
1

— U 1(2)Q(x)dz + c} .

This equation gives the general solution for a linear first-order DE, and since it involves
a single constant C it gives a one-parameter family of solutions.
Let us now practice using the integrating factor to solve linear DE’s.

Applying the Integrating Factor to Solve Linear DE’s

1d 2
Example 1. Find the general solution to e AL rcosz, x>0.
rdr 22

Solution. First convert to standard form by multiplying by z:
dy 2

— — —y:l'QCOSl’.
dr «=x

Next, calculate the integrating factor:

,u(m) _ 6fP(:z)dx _ ef—(Q/x)dm _ 6—21nx _ 5(7_2.
Multiplying through by the IF gives
d
d—(mfzy):cos:z::>a:’2y:sinm+C:>y:m2sinx+Cx2. O
x

d
Example 2. Find the general solution to d_y + 4y = 227",
x
Solution. This DE is already in standard form, so we find the integrating factor:

_ ef4dx _ 64:10

()
Multiplying through the original equation yields
d
%(64@) =%,



so integrating and dividing gives us

1 1
ety = gx?’ +C=y= gx?’e*“ + Ce ™, O
Example 3. A rock contains two radioactive isotopes: RA; which decays into RA,, which
then decays into stable atoms. The rate at which RA; decays into RA, is 50e 1% kg/sec.
Since the rate of decay of RA, is proportional to the mass y(t) of RAy present, the rate

of change in RA; is

dy —10t
—Z = 50e™ 1 — k
dt 6 y’

where k& = 2/sec is the decay constant. If the initial mass y(0) = 40 kg, find the mass
y(t) for t > 0.

d
Solution. Again, we write in standard form: d_i + 2y = 50e 1%, The integrating factor

is p(t) = e/ 2% = ¢ so multiplying through by p(t) gives

d 25 25
E(eﬂy) = 50e % = ey = —Ze*& +C=y= —Ze*wt + Ce 2.

To get the particular solution, we input the initial condition:

25 25 185
40 = —— =404 — = —.
0 4+C:>C O+4 1

Therefore, the mass of RAs present at time ¢ is given by

18 5, 25
y(t) = 1€ ¢
Remark. In real-world applications, sometimes the integral involved in calculating the
integrating factor, or the integral of the expression u(x)@(x), cannot be expressed with
elementary functions (polynomials, trig functions, exponentials, etc.). In these cases, one
must resort to a numerical method such as Euler’s method or Simpson’s rule in order to
approximate values of a solution curve.

Homework: pp. 51-52, #1-21 odd.
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