
Section 2.6: Substitutions and Transformations

Homogeneous Equations

In the previous section, we examined how to convert an equation that we had no method
of solving into an exact equation, which we can solve. There are several other types of
equations that can be transformed into separable or linear equations through a suitable
substitution.

Definition. If the right-hand side of the DE

(1)
dy

dx
= f(x, y)

can be expressed as a function solely of the ratio y/x, then we say the equation is
homogeneous.

To solve a homogeneous equation, we make the natural substitution v =
y

x
. This

implies that y = xv and thus
dy

dx
= v + x

dv

dx
. Therefore, the equation (1) can be written

as

v + x
dv

dx
= G(v),

which is separable.

Example 1. Solve (xy + y2 + x2)dx− x2dy = 0.

Solution. It can be checked that the equation is not separable, linear, or exact. Rewrite
the DE as

dy

dx
=
xy + y2 + x2

x2
=
y

x
+
(y
x

)2
+ 1.

Since the RHS is a function of y/x, the DE is homogeneous. Therefore, let v = y/x to
get

v + x
dv

dx
= v2 + v + 1.

Separating variables and integrating yields∫
dv

v2 + 1
=

∫
dx

x
⇒ arctan v = ln |x|+ C,

and therefore v = tan(ln |x| + C). Going back to y gives y = x tan(ln |x| + C) as an
explicit solution; an additional solution is x ≡ 0. ♦

Example 2. Solve (x2 + y2)dx+ 2xydy = 0.

Solution. We rewrite the DE as
dy

dx
= −x

2 + y2

2xy
= −1

2

(
x

y
+
y

x

)
. Since the RHS is a

function of y/x, the DE is homogeneous, so let v = y/x. Then

v + x
dv

dx
= −1

2
(v−1 + v)⇒ x

dv

dx
= −1

2
v−1 − 3

2
v =
−1− 3v2

2v
.

1



2

Separating variables and integrating gives∫
−2vdv

1 + 3v2
=

∫
dx

x

−1

3
ln(1 + 3v2) = ln |x|+ C ⇒ −1

3
ln

(
1 +

3y2

x2

)
= ln |x|+ C,

in addition to the solution x ≡ 0. ♦

Bernoulli Equations

Definition. A first-order equation that can be written in the form

(2)
dy

dx
+ P (x)y = Q(x)yn,

where P (x), Q(x) are continuous on an interval (a, b) and n ∈ R, is called a Bernoulli equation.

If n = 0 or 1, then a Bernoulli equation is also linear, and can be solved by using
an integrating factor as in Section 2.3. For other values of n, we make the substitution
v = y1−n which transforms the Bernoulli equation into a linear equation. Indeed, dividing
equation (2) by yn gives

y−n dy

dx
+ P (x)y1−n = Q(x).

Since v = y1−n implies
dv

dx
= (1− n)y−n dy

dx
, we have

1

1− n
dv

dx
+ P (x)v = Q(x),

which is linear in v.

Example 3. Solve
dy

dx
− 5y = −5

2
xy3.

Solution. This is a Bernoulli equation with P (x) = −5, Q(x) = −5

2
x, and n = 3. First

divide by y3 to get

y−3 dy

dx
− 5y−2 = −5

2
x.

Next substitute v = y1−3 = y−2 ⇒ dv

dx
= −2y−3 dy

dx
to obtain

−1

2

dv

dx
− 5v = −5

2
x⇒ dv

dx
+ 10v = 5x.

Now we find the integrating factor µ(x) = e
∫
10dx = e10x, and multiplying on both sides

gives
d

dx
[e10xv] = 5xe10x.
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Integrating, we have

e10xv =
1

2
xe10x − 1

20
e10x + C ⇒ v =

1

2
x− 1

20
+ Ce−10x.

Going back to the original variable y gives us

y−2 =
x

2
− 1

20
+ Ce−10x.

This equation does not include the additional solution y ≡ 0, which we lost when dividing
by y3 at the very beginning. ♦

Example 4. Solve
dy

dx
− y = e2xy3.

Solution. This is a Bernoulli equation with n = 3, so divide the equation by y−3:

y−3 dy

dx
− y−2 = e2x.

Next, let v = y−2,
dv

dx
= −2y−3 dy

dx
; substituting these gives

−1

2

dv

dx
− v = e2x ⇒ dv

dx
+ 2v = −2e2x.

Now the integrating factor is µ(x) = e
∫
2dx = e2x, so multiplying through we get

d

dx
[e2xv] = −2e4x.

Now integrate and solve:

e2xv = −1

2
e4x + C ⇒ v = −1

2
e2x + Ce−2x.

Finally, replace v with y−2:

y−2 = −1

2
e2x + Ce−2x ⇒ y2 =

−2

e2x + Ce−2x
.

This equation does not include the additional solution y ≡ 0, which we lost when dividing
by y3 at the very beginning. ♦

Homework: p. 74 #9-13 odd, 21-27 odd, 42


