
Section 4.2: Homogeneous Linear Equations: The General Solution

The Auxiliary Equation

Recall that linear second-order DE’s with constant coefficients have the form

ay′′ + by′ + cy = f(t);

we shall begin by considering the case where f(t) = 0 (this corresponds to a mass-spring
oscillator vibrating without being influenced by external forces). Our DE now has the
form

(1) ay′′ + by′ + cy = 0,

which is called homogeneous. (Frustratingly, this terminology does not imply any simi-
larity or tie with the homogeneous equations studied in Section 2.6.)

A preliminary observation about this DE is that a solution must have the property that
its second derivative can be written as a linear combination of its first derivative and the
function itself. Since the exponential function behaves in this way, we find a solution of
the form y = ert:

ar2ert + brert + cert = ert(ar2 + br + c) = 0⇒

(2) ar2 + br + c = 0,

since the exponential function is never zero. This calculation shows that y = ert is a
solution to our DE (1) exactly when r is a root of equation (2), which is called the
auxiliary equation (or the characteristic equation) associated with the homogeneous equa-
tion (1).

Of course, r can be found simply by using the quadratic formula. Recall from precalcu-
lus algebra that if the discriminant b2 − 4ac is positive, the equation (2) has two distinct
real roots; if b2 − 4ac = 0, there is a repeated real root; and if b2 − 4ac < 0, the roots are
complex conjugates. We focus on the real case in this section, and handle the complex
case in Section 4.3.

Example 1. Find a pair of solutions to y′′ + 5y′ − 6y = 0.

Solution. The auxiliary equation for this DE is

r2 + 5r − 6 = 0⇒ (r − 1)(r + 6) = 0,

which has roots r1 = 1, r2 = −6. Therefore, two solutions are y1 = et and y2 = e−6t. ♦

The General Solution

One very nice property of the homogeneous equation (1) is that if we find two solutions
y1(t) and y2(t), any linear combination y(t) = c1y1(t) + c2y2(t) of these will also be a
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solution to (1). Indeed,

ay′′ + by′ + c = a(c1y
′′
1 + c2y

′′
2) + b(c1y

′
1 + c2y

′
2) + c(c1y1 + c2y2)

= c1(ay
′′
1 + by′1 + cy1) + c2(ay

′′
2 + by′2 + cy2)

= 0 + 0 = 0

Since there are two constants now (because we are solving a second -order DE), if we
want a particular solution we will need to be given two initial conditions, rather than just
one.

Example 2. Solve the IVP y′′ + 2y′ − y = 0; y(0) = 0, y′(0) = −1.

Solution. First we find two solutions as in Example 1. The auxiliary equation is

r2 + 2r − 1 = 0⇒ r =
−2±

√
4 + 4

2
= −1±

√
2.

Therefore, solutions of the DE have the form

y(t) = c1e
(−1+

√
2)t + c2e

(−1−
√
2)t.

To find the particular solution, we take the derivative and obtain a system of equations
from the initial conditions:

y(0) = c1 + c2 = 0,(3)

y′(0) = (−1 +
√

2)c1 + (−1−
√

2)c2 = −1.(4)

Therefore, c2 = −c1 from equation (3), and substituting this into equation (4) gives

(−1 +
√

2)c1 − (−1−
√

2)c1 = 2
√

2c1 = −1⇒ c1 = − 1

2
√

2
= −
√

2

4
,

and thus c2 =

√
2

4
. So the solution to the IVP is

y(t) = −
√

2

4
e(−1+

√
2)t +

√
2

4
e(−1−

√
2)t. ♦

We have seen that linear combinations of two solutions are also solutions to (1), but
are there any solutions that do not come about in this way? It turns out that the answer
is no, but before making that statement, we introduce a needed definition.

Definition. A pair of functions y1(t) and y2(t) is said to be linearly independent on the
interval I if neither of them is a constant multiple of the other on the whole interval I. If
one of them is a constant multiple of the other on the whole interval I, we say they are
linearly dependent on I.

Theorem 1. If y1(t) and y2(t) are linearly independent solutions to the DE (1) on
(−∞,∞), then any solution of (1) has the form

y(t) = c1y1(t) + c2y2(t).
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The proof of this is somewhat technical; interested students can consult the text (pp.
161-162). However, it tells us that once we find two linearly independent solutions, we
have really found them all. This is great in the case that the auxiliary equation has two
distinct real roots, because y1(t) = er1t and y2(t) = er2t are linearly independent when
r1 6= r2 (because they are not constant multiples of each other). However, if the auxiliary
equation has a single repeated root, we only get one solution, and to apply Theorem 1 we
need to find another linearly independent solution.

It turns out that y2(t) = tert is what we want. To see why, we find the derivatives

y′2(t) = ert + rtert, y′′2(t) = rert + rert + r2tert = 2rert + r2tert.

Then substituting into the DE (1) gives

ay′′2 + by′2 + cy2 = 2arert + ar2tert + bert + brtert + ctert = [2ar + b]ert + [ar2 + br + c]tert.

Since r is a root of the auxiliary equation, the second term is zero. Moreover, since r is

a double root, we have r =
−b
2a
⇒ 2ar + b = 0, so in this case the first term is also zero.

This proves that it is a solution to (1), and it is also linearly independent of ert since they
are not constant multiples.

Example 3. Solve the IVP y′′ + 4y′ + 4y = 0; y(0) = 1, y′(0) = 3.

Solution. The auxiliary equation is r2 + 4r + 4 = 0⇒ (r + 2)2 = 0, so it has the single
root r = −2. Therefore, a general solution to the DE is given by

y(t) = c1e
−2t + c2te

−2t.

To find the particular solution, use the initial conditions:

y(0) = c1 = 1,(5)

y′(0) = −2c1 + c2 = 3.(6)

Substituting c1 = 1 into equation (6) gives c2 = 5, so the solution to the IVP is y(t) =
e−2t + 5te−2t. ♦

The method can be extended to higher-order DE’s by taking linear combinations of n
linearly independent solutions to an order n DE. This will be explored in greater detail
in Chapter 6.

Homework: p. 165 #1-21 odd, 27-31 odd.


