
Section 4.3: Auxiliary Equations with Complex Roots

Euler’s Formula

In the previous section, we saw that the homogeneous DE

(1) ay′′ + by′ + cy = 0

with auxiliary equation ar2 + br + c = 0 had the general solution y(t) = c1e
r1t + c2e

r2t,
where r1, r2 are the roots of the auxiliary equation. In this section we seek to understand
the situation when these roots are complex. When the discriminant b2 − 4ac < 0, the
roots of the auxiliary equation are the complex conjugates r1 = α + iβ and r2 = α − iβ,

where α = − b

2a
and β =

√
4ac− b2

2a
are real numbers. If we follow the same logic as

before, one solution to the DE is e(α+iβ)t, but at present we have no way of understanding
what this means. Assuming that the law of exponents applies to complex numbers (it
does), we can simplify this expression slightly to eαteiβt, but we still need to understand
the second factor.

For this purpose, let’s recall some well-known Maclaurin series from Calc 2 (they are
the same for complex numbers as they are for real numbers):
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Now we’ll apply the Maclaurin series for eiθ for θ ∈ R:
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= cos θ + i sin θ

The equation eiθ = cos θ + i sin θ is called Euler’s formula. Using this formula, we
can now write the solution to our DE in terms of familiar real functions as

e(α+iβ)t = eαt(cos(βt) + i sin(βt)).

Applying the same formula to e(α−iβ)t, a general solution to the DE when the auxiliary
equation has complex roots α± iβ is

y(t) = c1e
αt(cos(βt) + i sin(βt)) + c2e

αt(cos(βt)− i sin(βt)).
1



2

Example 1. Solve the IVP y′′ + 2y′ + 2y = 0; y(0) = 0, y′(0) = 2.

Solution. The auxiliary equation is r2 + 2r + 2 = 0, which has roots

r =
−2±

√
4− 8

2
=
−2± 2i

2
= −1± i.

Therefore, we have α = −1, β = 1, so the general solution is

y(t) = c1e
−t(cos t+ i sin t) + c2e

−t(cos t− i sin t).

Taking the derivative gives

y′(t) = −c1e−t(cos t+i sin t)+c1e
−t(− sin t+i cos t)−c2e−t(cos t−i sin t)+c2e

−t(− sin t−i cos t),

so using the initial conditions generates the system

y(0) = c1 + c2 = 0,(2)

y′(0) = (−1 + i)c1 + (−1− i)c2 = 2.(3)

Substituting c2 = −c1 into equation (3) gives

(−1 + i)c1 + (1 + i)c1 = 2⇒ 2ic1 = 2⇒ c1 =
1

i
= −i,

so c2 = i and we have the particular solution

y(t) = −ie−t(cos t+ i sin t) + ie−t(cos t− i sin t) = 2e−t sin t. ♦

Simplified General Solution

Observe that we were able to simplify the solution in Example 1 to a real-valued function
that did not involve i. One might wonder whether this is simply a coincidence, or if
this always happens. We can write any complex-valued function as z(t) = u(t) + iv(t),
where u(t) and v(t) are real-valued functions. The derivatives of this function are z′ =
u′ + iv′, z′′ = u′′ + iv′′. The following theorem tells us that the complex-valued solution
e(α+iβ)t actually yields two linearly independent real-valued solutions.

Theorem 1. Let z(t) = u(t) + iv(t) be a solution to the DE (1), where a, b, c ∈ R. Then
the real part u(t) and the imaginary part v(t) are real-valued solutions of (1).

Proof. Since z(t) is a solution, we have az′′+bz′+cz = 0. Using the derivatives calculated
above, this implies

a(u′′ + iv′′) + b(u′ + iv′) + c(u+ iv) = 0⇒
(au′′ + bu′ + cu) + i(av′′ + bv′ + cv) = 0⇒

au′′ + bu′ + cu = 0, av′′ + bv′ + cv = 0,

so that u and v are both solutions to (1). �

Applying Theorem 1 to the solution e(α+iβ)t = eαt cos(βt) + ieαt sin(βt), we get the
following.
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Corollary 2. If the auxiliary equation to DE (1) has complex conjugate roots α ± iβ,
then two linearly independent solutions are eαt cos(βt) and eαt sin(βt). Hence, a general
solution is

y(t) = c1e
αt cos(βt) + c2e

αt sin(βt).

Remark. We got these linearly independent real-valued solutions from just one complex
solution e(α+iβ)t. However, using the other complex solution e(α−iβ)t gives the same two
real-valued solutions. As an additional comment, we have assumed several properties of
complex-valued functions, such as the law of exponents and derivatives; formal justifica-
tion for these properties can be found in an introductory course in complex analysis.

Example 2. Find a general solution to y′′ + 2y′ + 4y = 0.

Solution. The auxiliary equation is r2 + 2r + 4 = 0 with roots

r =
−2±

√
4− 16

2
=
−2± i2

√
3

2
= −1± i

√
3,

so we have α = −1, β =
√

3. Therefore, a general solution is

y(t) = c1e
−t cos(t

√
3) + c2e

−t sin(t
√

3). ♦

Connection to Mass-Spring Oscillators

Recall that the position y(t) of the mass m in a mass-spring oscillator satisfies the DE

my′′(t) + by′(t) + ky(t) = 0,

where b is the damping coefficient and k is the stiffness of the spring.

Example 3. Find the equation of motion for a spring system when m = 36 kg, b = 12
kg/sec, k = 37 kg/sec2, y(0) = 0.7m, and y′(0) = 0.1m/sec. Also find the displacement
after 10 seconds.

Solution. We want to solve the IVP 36y′′ + 12y′ + 37y = 0; y(0) = 0.7, y′(0) = 0.1. The
auxiliary equation is 36r2 + 12r + 37 = 0, which has roots

r =
−12±

√
144− 4(36)(37)

72
=
−12± 12

√
−36

72
=
−12± 72i

72
= −1

6
± i.

Therefore, we have α = −1

6
, β = 1, so the general solution is

y(t) = c1e
−t/6 cos t+ c2e

−t/6 sin t

with derivative

y′(t) = −1

6
c1e
−t/6 cos t− c1e−t/6 sin t− 1

6
c2e
−t/6 sin t+ c2e

−t/6 cos t.

The initial conditions generate the system

y(0) = c1 = 0.7,(4)

y′(0) = −1

6
c1 + c2 = 0.1(5)
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Substituting equation (4) into equation (5) gives c2 = 0.1 + 0.7/6 = 1.3/6. Therefore, the
motion of the mass is given by

y(t) = 0.7e−t/6 cos t+
1.3

6
e−t/6 sin t

and the displacement after 10 seconds is

y(10) = 0.7e−5/3 cos 10 +
1.3

6
e−5/3 sin 10 ≈ −0.1332. ♦

Given any second-order DE of the form (1), we can interpret it as a mass-spring system
with mass a, damping coefficient b, and spring stiffness c, which makes sense physically
if a > 0 and b, c ≥ 0. In this case, we expect damped oscillatory solutions as in Example

3. However, since the angular frequency is given by β =

√
4mk − b2

2m
, oscillations will not

occur if b ≥
√

4mk, making the term under the radical negative. Such systems with large
damping coefficients are called overdamped. An example is the DE y′′+ 4y′+ 4y = 0 with
solution y(t) = c1e

−2t + c2te
−2t.

We can also predict solutions using the mass-spring analogy when the coefficients b and
c are negative. If the damping coefficient is negative, then the friction force imparts energy
to the system rather than draining it, so we expect the oscillations to increase in amplitude
rather than decrease. An example of such a situation is the DE 36y′′ − 12y′ + 37y = 0
with solution

y(t) = c1e
t/6 cos t+ c2e

t/6 sin t.

If the spring stiffness is negative, this means that as a mass moves away from the equi-
librium position, the spring repels the mass farther rather than pulling/pushing it back
to equilibrium. Therefore, we expect the solutions to approach ±∞ as t increases. An
example of this situation is the DE y′′ + 5y′ − 6y = 0 with solution

y(t) = c1e
t + c2e

−6t.

Homework: pp. 173-174, #1-17 odd, 21-25 odd, 32, 33.


