
Section 4.6: Variation of Parameters

A New Method for Nonhomogeneous DE’s

We have examined one procedure for finding particular solutions to nonhomogeneous
DE’s, namely, the method of undetermined coefficients. In this section, we present an
alternate method, which has the advantage of applying to any function (as opposed to
UC, which only applies for certain functions). We are trying to solve the nonhomogeneous
second-order DE

(1) ay′′ + by′ + cy = f(t).

Recall that if y1(t), y2(t) are linearly independent solutions of the corresponding homoge-
neous equation ay′′ + by′ + cy = 0, then a general solution to the homogeneous equation
is

(2) yh(t) = c1y1(t) + c2y2(t)

for arbitrary constants c1, c2. Our new strategy for finding a particular solution of the
nonhomogeneous DE (1) is to replace the constants in (2) with functions of t. Thus, we
want a solution of the form

(3) yp(t) = v1(t)y1(t) + v2(t)y2(t).

Of course, not just any functions v1, v2 will work; they will need to satisfy some con-
ditions in order for (3) to actually be a solution. To determine those conditions, let’s
assume that (3) is a solution to (1), and see what falls out. Computing derivatives of the
particular solution gives

y′p = (v′1y1 + v′2y2) + (v1y
′
1 + v2y

′
2).

Notice that the derivative of the first term in parentheses will include second derivatives
of our unknown v functions; since this would make the functions harder to calculate, let’s
impose the condition that the mentioned term drops out:

(4) v′1y1 + v′2y2 = 0.

Then the derivative simplifies to

y′p = v1y
′
1 + v2y

′
2

and thus

y′′p = v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2 .

Substituting these expressions into (1) gives

f = ay′′p + by′p + cyp

= a(v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2) + b(v1y

′
1 + v2y

′
2) + c(v1y1 + v2y2)

= a(v′1y
′
1 + v′2y

′
2) + v1(ay

′′
1 + by′1 + cy1) + v2(ay

′′
2 + by′2 + cy2)

= a(v′1y
′
1 + v′2y

′
2) + 0 + 0
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since y1 and y2 solve the homogeneous equation. Therefore, a second condition is

(5) v′1y
′
1 + v′2y

′
2 =

f

a
.

In conclusion, if we can find functions v1, v2 that solve the system of equations (4) and
(5), then (3) will be a particular solution to (1). One could solve this system generally
using algebraic manipulation or Cramer’s rule, but the resulting formulas are complicated
and difficult to remember. It is better to just solve the system of equations generated by
the method.

Example 1. Find a general solution on (−π/2, π/2) to y′′ + y = tan t.

Solution. The auxiliary equation for the homogeneous equation is r2 + 1 = 0 with roots
r = ±i, so linearly independent solutions are y1 = cos t, y2 = sin t. Therefore, our
particular solution has the form

yp(t) = v1(t) cos t+ v2(t) sin t.

The system of equations to solve is

(cos t)v′1 + (sin t)v′2 = 0,(6)

(− sin t)v′1 + (cos t)v′2 = tan t.(7)

Multiplying (6) by sin t and (7) by cos t gives

(sin t cos t)v′1 + (sin2 t)v′2 = 0,(8)

(− sin t cos t)v′1 + (cos2 t)v′2 = tan t cos t.(9)

Adding them gives v′2 = tan t cos t = sin t, so v2 =
∫

sin tdt = − cos t. Solving (6) for v′1
gives

(cos t)v′1 = − sin2 t⇒ v′1 = −sin2 t

cos t
.

Thus, we have

v1(t) = −
∫

sin2 t

cos t
dt = −

∫
1− cos2 t

cos t
dt

=

∫
(cos t− sec t)dt = sin t− ln | sec t+ tan t|.

Substituting these, we obtain the particular solution

yp(t) = (sin t− ln | sec t+ tan t|) cos t− cos t sin t = −(cos t) ln(sec t+ tan t),

where we have dropped the absolute value bars because the expression sec t + tan t =
1 + sin t

cos t
> 0 on the given interval.

Finally, a general solution is given by adding the particular solution to the general
solution of the homogeneous equation:

y(t) = c1 cos t+ c2 sin t− (cos t) ln(sec t+ tan t). ♦
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Example 2. Find a particular solution on (−π/2, π/2) to y′′ + y = tan t+ 3t− 1.

Solution. We could apply the variation of parameters to f(t) = tan t+3t−1. But it will
be easier to solve the following equations separately, and then apply the superposition
principle:

y′′ + y = tan t,(10)

y′′ + y = 3t− 1.(11)

In Example 1, we found the particular solution yp(t) = −(cos t) ln(sec t + tan t) to
equation (10). For equation (11), we can use undetermined coefficients. We guess yp(t) =
At + B, y′p = A, y′′p = 0, so that y′′p + yp = At + B = 3t − 1, so a particular solution to
(11) is yp(t) = 3t − 1. According to the superposition principle, a particular solution to
the original DE is given by their sum:

y(t) = −(cos t) ln(sec t+ tan t) + 3t− 1. ♦

Example 3. Find a general solution to y′′ − 2y′ + y = t−1et.

Solution. The associated homogeneous equation has auxiliary equation r2 − 2r + 1 =
(r − 1)2 = 0, so r = 1 is a double root, and a general solution is given by

yh(t) = c1e
t + c2te

t.

To find a particular solution, we let yp(t) = v1(t)e
t +v2(t)te

t. We need to solve the system

etv′1 + tetv′2 = 0,(12)

etv′1 + (et + tet)v′2 = t−1et.(13)

Subtracting (12) from (13) gives

etv′2 = t−1et ⇒ v′2 =
1

t
⇒ v2(t) =

∫
dt

t
= ln |t|.

Substituting v′2 = t−1 into (12) gives

etv′1 = −et ⇒ v′1 = −1⇒ v1 = −
∫

1dt = −t.

Therefore, a particular solution is

yp(t) = −tet + tet ln |t|
and a general solution is given by

y(t) = yh(t) + yp(t) = c1e
t + c2te

t + tet ln |t|. ♦

Homework: p. 193 #1-17 odd.


