
Section 4.7: Variable-Coefficient Equations

Cauchy-Euler Equations

Before concluding our study of second-order linear DE’s, let us summarize what we’ve
done. In Sections 4.2 and 4.3 we showed how to find general solutions to homogeneous
equations with constant coefficients

ay′′ + by′ + cy = 0

using the auxiliary equation. (We also extended those techniques to higher-order DE’s in
Section 6.2.) In Sections 4.4-4.6 we looked at two different methods, namely, undetermined
coefficients and variation of parameters, for solving nonhomogeneous equations, still with
constant coefficients:

ay′′ + by′ + cy = f(t).

The final level of complexity, which we discuss in this section, involves nonhomogeneous
equations with variable coefficients:

(1) a2(t)y
′′ + a1(t)y

′ + a0(t)y = f(t),

or dividing through by the leading coefficient, we have the standard form

(2) y′′(t) + p(t)y′(t) + q(t)y(t) = g(t).

The major difficulty with such equations is that in general we cannot construct explicit
solutions. Therefore, before describing the more general theory, we mention a special class
of equations which can be solved explicitly.

Definition. A linear second-order DE that can be expressed in the form

(3) at2y′′(t) + bty′(t) + cy(t) = f(t),

for constants a, b, c ∈ R is called a Cauchy-Euler (or equidimensional) equation.

The terminology “equidimensional” arises from the fact that each of the terms t2y′′, ty′,
and y have the same dimensions (think of y in meters and t in seconds, for example).
Observe that because the standard form

y′′ +
b

at
y′ +

c

at2
y =

f(t)

at2

is discontinuous at t = 0, we expect that solutions will be valid only for t > 0 or t < 0.
To solve the associated homogeneous Cauchy-Euler equation, we utilize the equidimen-

sionality by guessing a solution of the form y = tr. This way, each of the terms mentioned
are a constant multiple of tr:

y = tr, ty′ = trtr−1 = rtr, t2y′′ = t2r(r − 1)tr−2 = r(r − 1)tr.

If we substitute these into the homogeneous form of (3) (with f = 0), we get a quadratic
equation:

ar(r − 1)tr + brtr + ctr = [ar2 + (b− a)r + c]tr = 0⇒

(4) ar2 + (b− a)r + c = 0.
1
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To distinguish it from our earlier discussions, we call (4) the characteristic equation.

Example 1. Find two linearly independent solutions to the equation

3t2y′′ + 11ty′ − 3y = 0, t > 0.

Solution. The characteristic equation is

3r2 + 8r − 3 = (3r − 1)(r + 3) = 0,

so there are distinct roots r1 = 1/3, r2 = −3. Since our solutions are of the form y = tr,
two linearly independent solutions are y1(t) = t1/3, y2(t) = t−3. ♦

The analysis in this situation is nearly identical to that encountered in Sections 4.2 and
4.3. Let us discuss the possibilities of complex and repeated roots. If the characteristic
equation has the complex root r = α+ iβ, we use the identity t = eln t and Euler’s formula
to write

tα+iβ = tαtiβ = tαeiβ ln t = tα[cos(β ln t) + i sin(β ln t)].

As before, the corresponding linearly independent solutions are the real and imaginary
parts:

y1 = tα cos(β ln t), y2 = tα sin(β ln t).

If r is a double root of the characteristic equation, then linearly independent solutions are

y1 = tr, y2 = tr ln t.

Example 2. Find a pair of linearly independent solutions to the Cauchy-Euler equations
for t > 0: (a) t2y′′ + 5ty′ + 5y = 0 (b) t2y′′ + ty′ = 0

Solution. (a) The characteristic equation is r2 + 4r + 5 = 0 with roots

r =
−4±

√
16− 20

2
=
−4± 2i

2
= −2± i,

so linearly independent solutions are y1 = t−2 cos(ln t), y2 = t−2 sin(ln t).
(b) The characteristic equation is r2 = 0 with double root r = 0, so linearly independent
solutions are y1 = t0 = 1, y2 = ln t. ♦

Remark. If we are solving a homogeneous Cauchy-Euler equation for t < 0, one simply
makes the substitution t = −τ for τ > 0. This results in the same characteristic equation,
so the only difference is that in the solutions t is replaced by −t.

Extension of Previous Theory

Recall that the main difficulty of variable-coefficient equations is that we cannot find
explicit general solutions. However, assuming that we are given explicit solutions, we
show that many of our previous results are still valid. We begin by giving an alternate
characterization of linear independence, and then show that general solutions for both
homogeneous and nonhomogeneous equations are found in the same way as before.
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Definition. Let y1 and y2 be differentiable functions. We define the Wronskian of y1 and
y2 as

W [y1, y2](t) =

∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ = y1(t)y
′
2(t)− y′1(t)y2(t).

Lemma 1. Let p(t) and q(t) be continuous on the interval I and suppose y1(t) and y2(t)
are solutions on I to the homogeneous DE

(5) y′′(t) + p(t)y′(t) + q(t)y(t) = 0.

If the WronskianW [y1, y2](t) 6= 0 at any point in I, then y1 and y2 are linearly independent
on I.

Theorem 2. If y1(t) and y2(t) are any two solutions to the homogeneous DE (5) which
are linearly independent on the interval I (that is, W [y1, y2] 6= 0 for some point in I),
then a general solution to (5) on I is yh = c1y1 + c2y2 for arbitrary constants c1, c2 ∈ R.

The superposition principle can be extended to variable-coefficient equations, which
implies the following result.

Theorem 3. A general solution for the nonhomogeneous equation (2) on I is given by

y = yp + yh,

where yh is a general solution to the corresponding homogeneous equation (5) on I and yp
is a particular solution to (2) on I.

If we are given linearly independent solutions to equation (5), then the method of varia-
tion of parameters can be used to determine a particular solution for the nonhomogeneous
equation (2). In fact, the definition of the Wronskian even allows us to give a formula
for the functions v1 and v2. (Unfortunately, the method of undetermined coefficients does
not extend to variable-coefficient equations.)

Theorem 4. If y1 and y2 are two linearly independent solutions to the homogeneous
equation (5) on an interval I where p(t), q(t), and g(t) are continuous, then a particular
solution to (2) is given by yp = v1y1 + v2y2, where v1, v2 are determined by the system

y1v
′
1 + y2v

′
2 = 0,

y′1v
′
1 + y′2v

′
2 = g,

which has the solution

v1(t) =

∫
−g(t)y2(t)

W [y1, y2](t)
dt, v2(t) =

∫
g(t)y1(t)

W [y1, y2](t)
dt.

The conclusion is that if we are handed two linearly independent solutions to the
homogeneous equation (5) at the outset, we can proceed as before to find a general
solution to (2) as well as solve initial value problems. But (in general) we cannot produce
such linearly independent solutions on our own.
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Reduction of Order

Actually, what we have just said is not quite true. It turns out that if we are given just
one nontrivial solution to (5), there is a way to construct a second, linearly independent
solution, so that we can proceed from that point as outlined above.

Theorem 5. (Reduction of Order) Let y1(t) be a solution (not identically zero) to the
homogeneous DE (5) on an interval I. Then a second, linearly independent solution is
given by

(6) y2(t) = y1(t)

∫
e−

∫
p(t)dt

y1(t)2
dt

Sometimes this formula can be applied directly, but other times it will be easier to
follow the logic of the proof, so we give an outline of the proof below.

Proof. We proceed as in Section 4.6 when constructing the variation of parameters method.
Since cy1 is a solution of (5) for any constant, try a solution of the form y2(t) = v(t)y1(t).
Then

y′2 = vy′1 + v′y1, y′′2 = vy′′1 + 2v′y′1 + v′′y1.

Substituting these into (5) yields

(vy′′1 + 2v′y′1 + v′′y1) + p(vy′1 + v′y1) + qvy1 = 0,

(y′′1 + py′1 + qy1)v + y1v
′′ + (2y′1 + py1)v

′ = 0,

y1v
′′ + (2y′1 + py1)v

′ = 0,

where the first term of the middle equation drops out because y1 is a solution to (5).
Observe that the final equation is actually a separable first-order equation in w := v′,
so it can easily be solved. The remainder of the proof is left to the overly enthusiastic
reader. �

Example 3. Given that y1(t) = t is a solution to y′′ − 1

t
y′ +

1

t2
y = 0, use reduction of

order to find a second linearly independent solution for t > 0.

Solution. We see that p(t) = −1

t
, so e−

∫
p(t)dt = e

∫
1/tdt = eln t = t. With y1(t) = t in (6),

we get

y2(t) = t

∫
t

t2
dt = t

∫
1

t
dt = t ln t.

Alternatively, multiplying through by t2 gives a Cauchy-Euler equation with characteristic
equation r2−2r+1 = (r−1)2 = 0 having r = 1 as a double root, which gives the solutions
mentioned. ♦
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Example 4. Find a general solution to the following DE which comes from modeling
reverse osmosis:

(sin t)y′′ − 2(cos t)y′ − (sin t)y = 0, 0 < t < π.

Solution. The first challenge is to find one explicit solution to the DE. Since there are
trig functions involved, one might hope that either sin t or cos t works; the first fails (you
may want to verify this for yourself), but the second works:

y1 = cos t, y′1 = − sin t y′′1 = − cos t⇒
(sin t)y′′1 − 2(cos t)y′1 − (sin t)y1 = − sin t cos t+ 2 sin t cos t− sin t cos t = 0.

Now we can use reduction of order to find a second solution. If we try to use the
formula in (6), we’ll have to integrate an exponential with a trig exponent divided by a
trig function, which sounds unpleasant to say the least. Instead, let’s follow the proof. Let
y2(t) = v(t)y1(t) = v(t) cos t; then y′2 = v′ cos t−v sin t and y′′2 = v′′ cos t−2v′ sin t−v cos t.
Substituting this into the original DE gives

(sin t)[v′′ cos t− 2v′ sin t− v cos t]− 2(cos t)[v′ cos t− v sin t]− (sin t)(v cos t)

= v′′(sin t cos t)− 2v′(sin2 t+ cos2 t) + v(− sin t cos t+ 2 sin t cos t− sin t cos t) = 0⇒
v′′(sin t cos t)− 2v′ = 0.

Separating this equation gives

(v′)′

(v′)
=

2

sin t cos t
= 2

sec2 t

tan t
,

so integrating (with a u-substitution) yields ln v′ = 2 ln(tan t) ⇒ v′ = tan2 t, and inte-
grating again, we have v(t) = tan t− t (we have used the trig identity tan2 t = sec2 t− 1).
Therefore, the second solution is y2(t) = (tan t − t) cos t = sin t − t cos t and the general
solution is

y(t) = c1 cos t+ c2(sin t− t cos t). ♦

Homework: pp. 200-202 #9-19 odd, 37-47 odd.


