
Section 6.1: Basic Theory of Higher-Order Linear Differential Equations

General Solutions and Linear Independence for Higher-Order DE’s

In this section, we conclude Unit 2 by looking at how the theorems we had about
general solutions to second-order linear DE’s extend also to higher-order DE’s. We shall
present the results largely without rigorous proof; the reader who is interested in details
may consult the text.

Recall that a linear differential equation of order n has the form

(1) an(x)y(n)(x) + an−1(x)y(n−1)(x) + ...+ a0(x)y(x) = b(x),

where an(x) 6= 0 and all functions are continuous on an interval I. If a0, a1, ..., an are
all constants, we say equation (1) has constant coefficients; if not, it has variable
coefficients. If b(x) = 0, equation (1) is called homogeneous; otherwise it is nonho-
mogeneous. The standard form of equation (1) is

(2) y(n)(x) + p1(x)y(n−1)(x) + ...+ pn(x)y(x) = g(x),

where again all functions are continuous on I.
The first result we consider involves the general solution of a homogeneous equation.

Recall that for second-order DE’s, these were linear combinations of two linearly indepen-
dent solutions. One might guess (correctly) that the general solution for a homogeneous
DE of order n is a linear combination of n linearly independent solutions. Therefore,
we need to generalize our earlier definition of linear independence to accommodate any
number of functions.

Definition. The m functions f1, f2, . . . , fm are said to be linearly dependent on an inter-
val I if there exist constants c1, c2, . . . , cm not all zero such that

c1f1(x) + c2f2(x) + · · ·+ cmfm(x) = 0

for all x ∈ I. Otherwise, they are said to be linearly independent on I.

Some common linearly independent sets are

(1) {1, x, x2, . . . , xn}

(2) {1, cosx, sinx, cos(2x), sin(2x), ..., cos(nx), sin(nx)}

(3) {eα1x, eα2x, ..., eαnx} where αi’s are distinct constants

It is not hard to see that determining linear independence can become increasingly
more complex as the number of functions increases. To remedy this, we generalize the
Wronskian function introduced in Section 4.7.
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Definition. Let f1, ..., fn be any n functions that are (n − 1) times differentiable. The
function

(3) W [f1, ..., fn](x) :=

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
... · · · ...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
is called the Wronskian of f1, f2, ..., fn.

It turns out that the functions y1, y2, ..., yn are linearly independent on the interval (a, b)
if and only if the Wronskian W [y1, y2, ..., yn](x0) 6= 0 for some x0 ∈ (a, b). We can now
formally state the result we intuitively guessed.

Theorem 1. Let y1, ..., yn be n solutions on (a, b) of the homogeneous DE

(4) y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = 0,

where p1, ..., pn are continuous on (a, b). If at some point x0 ∈ (a, b) the solutions satisfy
W [y1, y2, ..., yn](x0) 6= 0, then a general solution for (4) is

(5) y(x) = C1y1(x) + · · ·+ Cnyn(x),

where C1, ..., Cn are arbitrary constants. The set {y1, y2, . . . , yn} is called a fundamental
solution set for (4) on (a, b).

What about the nonhomogeneous case? Again, it falls out exactly how we might hope
it would.

Theorem 2. Let yp(x) be a particular solution on the interval (a, b) to the nonhomoge-
neous equation

(6) y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = g(x),

where p1, p2, . . . , pn are continuous on (a, b), and let {y1, ..., yn} be a fundamental solution
set for the corresponding homogeneous equation (4). Then a general solution for (6) on
the interval (a, b) is

(7) y(x) = yp(x) + C1y1(x) + · · ·+ Cnyn(x).

A final helpful result is an extension of the superposition principle.

Theorem 3. (Generalized Superposition Principle) Let yp1 be a particular solution to the
DE

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = g1(x),

let yp2 be a particular solution to the DE

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = g2(x),

and let {y1, ...yn} be a fundamental solution set for the corresponding homogeneous DE
(4). Then for any constants c1, c2, a general solution to the DE

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = c1g1(x) + c2g2(x)
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is given by

y(x) = c1yp1(x) + c2yp2(x) + C1y1(x) + C2y2(x) + · · ·+ Cnyn(x),

for arbitrary constants C1, C2, ..., Cn.

Example 1. Find a general solution on the interval (−∞,∞) to

y′′′ − 2y′′ − y′ + 2y = 2x2 − 2x− 4− 24e−2x,

given that yp1(x) = x2 is a particular solution to y′′′ − 2y′′ − y′ + 2y = 2x2 − 2x − 4,
yp2(x) = e−2x is a particular solution to y′′′ − 2y′′ − y′ + 2y = −12e−2x, and that y1(x) =
e−x, y2(x) = ex, and y3(x) = e2x are solutions to the corresponding homogeneous equation.

Solution. Observe that the three solutions to the homogeneous equation are linearly inde-
pendent because the exponents are all distinct. Therefore, {e−x, ex, e2x} is a fundamental
solution set. Since the right-hand side of our DE is g1(x)+2g2(x) for g1(x) = 2x2−2x−4
and g2(x) = −12e−2x, by the generalized superposition principle we have the general
solution

y(x) = yp1 + 2yp2 + C1y1 + C2y2 + C3y3

= x2 + 2e−2x + C1e
−x + C2e

x + C3e
2x. ♦

Homework: p. 325 #7-13 odd, 19-23 odd.


