
Section 6.2: Higher-Order Homogeneous Linear Equations with Constant Coefficients

Introduction: The Auxiliary Equation

Now that we understand how to solve second-order homogeneous linear DE’s with
constant coefficients, we seek to generalize these concepts to write solutions for nth-order
homogeneous linear DE’s with constant coefficients. Recall that such a DE has the form

(1) any
(n)(x) + an−1y

(n−1)(x) + ...+ a1y
′(x) + a0y(x) = 0,

where an 6= 0 and ai ∈ R for all i. Remember that when we found two linearly inde-
pendent solutions to the second-order DE, we could write the general solution as a linear
combination of these solutions. Likewise, if y1(x), y2(x), ..., yn(x) are linearly independent
solutions to (1), then the general solution of (1) has the form

(2) y(x) = c1y1(x) + ...+ cnyn(x)

How can we find these linearly independent solutions? Just as with second-order DE’s,

we try a function of the form y = erx. Observing that
dk

dxk
(erx) = rkerx, substituting

y = erx into the left-hand side of equation (1) gives

any
(n)(x) + an−1y

(n−1)(x)...+ a0y(x) = anr
nerx + an−1r

n−1erx + ...+ a0e
rx

= erx(anr
n + an−1r

n−1 + ...+ a0) = erxP (r).

Therefore, erx will be a solution to (1) exactly when r is a root of the auxiliary equation

(3) P (r) = anr
n + an−1r

n−1 + ...+ a1r + a0 = 0.

The fundamental theorem of algebra tells us that the auxiliary equation will have n
roots counting multiplicity, which can be real or complex. Although we could use the
quadratic formula for the second-order case, for higher order equations we will need to
test roots and factor polynomials using synthetic division, just as in a precalculus course.
It is recommended that one first check whether 0 or ±1 are roots as these are relatively
easy to see, before proceeding to use synthetic division to check for other roots. We now
examine the terms which occur in the general solution depending on the nature of the
roots of the auxiliary equation.

Distinct Real Roots

If the roots r1, ..., rn of the auxiliary equation (3) are all real and distinct, then similar
to the second-order case, we have the linearly independent solutions

y1(x) = er1x, y2(x) = er2x, ..., yn(x) = ernx.

(Recall that these are linearly independent since the coefficients of x in the exponent are
all distinct.) Therefore, in this case a general solution to (1) is

y(x) = c1e
r1x + ...+ cne

rnx

1
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for arbitrary constants c1, ..., cn.

Example 1. Find a general solution to y′′′ − 2y′′ − 5y′ + 6y = 0.

Solution. The auxiliary equation is r3−2r2−5r+6 = 0. Since the sum of the coefficients
is zero, r = 1 is a root. Using synthetic division, we can then factor the auxiliary equation
as

r3 − 2r2 − 5r + 6 = (r − 1)(r2 − r − 6) = (r − 1)(r − 3)(r + 2) = 0.

Therefore, the auxiliary equation has three distinct real roots r1 = 1, r2 = 3, r3 = −2, and
the general solution is

y(x) = c1e
x + c2e

3x + c3e
−2x. ♦

Complex Roots

If α+ iβ for α, β ∈ R is a complex root of the auxiliary equation (3), then so is its com-
plex conjugate α− iβ (this is because the coefficients of P (r) are real). Then as described
in Section 4.3, e(α+iβ)x and e(α−iβ)x are complex-valued solutions to (1). To get real-valued
solutions, we again apply Euler’s formula to write e(α+iβ)x = eαx cos(βx) + ieαx sin(βx);
then two linearly independent solutions to (1) are eαx cos(βx) and eαx sin(βx).

Example 2. Find a general solution to y′′′ + y′′ + 3y′ − 5y = 0.

Solution. The auxiliary equation is r3+r2+3r−5 = 0. Again, the sum of the coefficients
is zero, so r = 1 is a root. By synthetic division,

r3 + r2 + 3r − 5 = (r − 1)(r2 + 2r + 5) = 0.

To find the roots of the quadratic factor, apply the quadratic formula:

r =
−2±

√
4− 20

2
=
−2±

√
−16

2
=
−2± 4i

2
= −1± 2i,

so in this case α = −1, β = 2. Therefore, a general solution is

y(x) = c1e
x + c2e

−x cos(2x) + c3e
−x sin(2x). ♦

Repeated Roots

Now suppose that r1 is a real root of equation (3) with multiplicity m. Recall that for
a second-order DE, a root r of multiplicity 2 produced the linearly independent solutions
erx and xerx. Likewise, we get m linearly independent solutions to (1) from the single
repeated root r1 as follows:

er1x, xer1x, x2er1x, ..., xm−1er1x.

(A formal proof that these functions are truly solutions to (1) is given on pp. 329-330 in
the text.)
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If α + iβ is a complex root of equation (3) with multiplicity m (and therefore its
conjugate α − iβ is also a root of multiplicity m), the expected happens: we get 2m
complex-valued solutions

e(α+iβ)x, xe(α+iβ)x, ..., xm−1e(α+iβ)x,

e(α−iβ)x, xe(α−iβ)x, ..., xm−1e(α−iβ)x

which can be replaced by the 2m linearly independent real-valued solutions

eαx cos(βx), xeαx cos(βx), ..., xm−1eαx cos(βx),

eαx sin(βx), xeαx sin(βx), ..., xm−1eαx sin(βx).

Example 3. Find a general solution to y(4) − y(3) − 3y′′ + 5y′ − 2y = 0.

Solution. The auxiliary equation is r4 − r3 − 3r2 + 5r − 2 = 0. Since the sum of the
coefficients is zero, r = 1 is a root, and by synthetic division,

r4 − r3 − 3r2 + 5r − 2 = (r − 1)(r3 − 3r + 2).

Observe that the cubic factor has coefficients which also sum to zero, so r = 1 is a root
of this polynomial as well; using synthetic division again, we get

r4 − r3 − 3r2 + 5r − 2 = (r − 1)2(r2 + r − 2) = (r − 1)3(r + 2) = 0.

Therefore, r1 = 1 is a root of multiplicity 3, and r2 = −2 is a root of multiplicity 1.
Hence, a general solution is

y(x) = c1e
x + c2xe

x + c3x
2ex + c4e

−2x. ♦

Example 4. Find a general solution to y(4)−8y(3)+26y′′−40y′+25y = 0, whose auxiliary
equation can be factored as

r4 − 8r3 + 26r2 − 40r + 25 = (r2 − 4r + 5)2 = 0.

Solution. We find the roots of the repeated quadratic factor using the quadratic formula:

r =
4±
√

16− 20

2
=

4±
√
−4

2
=

4± 2i

2
= 2± i.

Thus, α = 2, β = 1, and these complex roots each have multiplicity 2 since this factor is
squared in the auxiliary equation. Therefore, a general solution is

y(x) = c1e
2x cosx+ c2xe

2x cosx+ c3e
2x sinx+ c4xe

2x sinx. ♦

Homework: p. 331 #1-13 odd, 19, 21.


