Section 7.2: Definition of the Laplace Transform

Basic Laplace Transforms

We begin Unit 3 by introducing the notion of a Laplace transform. This may seem
strange at the outset, but before long we will see its usefulness in solving differential
equations. The Laplace transform is known as an “integral operator”; it involves integra-
tion, and the word “operator” signals that it takes a function as its input and produces
a new function.

Definition. Let f(t) be a function on [0, 00). The Laplace transform of f is the function
F' defined by the integral

(1) F(s):= /000 e f(t)dt.

The domain of F'(s) is all values of s for which the integral (1) exists. The Laplace
transform is denoted by either F' or Z{f}.

Recall that the integral in (1) is an improper integral, and is calculated by evaluating
the limit of a definite integral:
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/ e S f(t)dt = lim e S f(t)dt.
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We now gain familiarity with this definition by finding the Laplace transforms of some
basic functions.

Example 1. Determine the Laplace transform of the constant function f(t) = 1,¢ > 0.

Solution. By the definition, we compute
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If s > 0 is fixed, then e=*Y — 0 as N — oo, so we have F(s) = ~ for s > 0. If s <0, the
s
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integral diverges since e
Example 2. Determine the Laplace transform of f(¢) = e, where a is a constant.

Solution. By the definition, we have
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for s > a. As before, if s < a the integral diverges. Note that our solution agrees with
that of Example 1 when a = 0. O

Example 3. Find Z{sin(bt)}, where b # 0 is a constant.

N
Solution. We need to find Z{sin(bt)}(s) = [;° e ' sin(bt)dt = lim e~ sin(bt)dt.
—00 0
Through a “wraparound” integration by parts, we get
: : e ! : N
L{sin(b)}(s) = lim [m(—ssm@w - bcos(bt))‘o }
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= Jim |5 — (s cos(
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for s > 0, since it is only for those values that lim e *N(ssin(bN) + bcos(bN)) =0. ¢
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Example 4. Determine the Laplace transform of

2, 0<t<5,
fit)y=<¢ 0, 5b<t<10,
et t>10.

Solution. Since our function has a different formula on three different intervals, we’ll
need to break up the integral into three parts:
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which is defined for s > 4. O

Linearity of the Laplace Transform

We shall discuss several properties of the Laplace transform in the next section, but
here mention the crucial property of linearity.
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Theorem 1. Let f, f1, fo be functions whose Laplace transforms exist for s > « and let ¢
be a constant. Then for s > «,

(2) L{fi+ 2} = L{fHi} + ZL{fo),
(3) L{cf} = c L{f}.

Proof. These properties fall out simply from the linearity of integration:

LU+ RN = [ A0 + Rl

0

— /OO et fy (t)dt + /Oo e fo(t)dt

= LUAYs) - L),
Similarly, we have
Llef)(s) = / e Mef (bt = ¢ / T ()t = e Z{f}(s). 0

Example 5. Determine Z{11 + 5e* — 6sin(2t)}.

Solution. By the linearity property, we know that
L{11+5e* — 6sin(2t)} = L{11} + L{5e"} + L{—65in(2t)}
11.2{1} + 5. 2{e"} — 6 Z{sin(2t)}.
In the first three examples, we calculated

2 =1 LN =g LN =

Therefore, we have

ZL{11 + 5¢* — 6sin(2t)} = 11 (%) o <ﬁ) -0 <s2i4)

1 n 5 12
s s—4 244
The largest interval over which these functions are defined is s > 4. O

Existence of the Transform

Because the definition of the Laplace transform involves an improper integral, a major
question to consider is whether the integral will converge for at least some values of s.
Indeed, there are examples of functions for which the integral (1) fails to converge for any
s-value, and so these do not have a Laplace transform: consider f(t) = 1/t,g(t) = e’
What behavior of a function causes the integral to diverge? The function f grows too
quickly near zero, where the function “blows up”; similarly, the function g grows too
quickly as t — oo. So it seems that there will be some condition that bounds the growth
of a function in order for its Laplace transform to exist.



Before stating the formal result, we recall some definitions from calculus. A function
f(t) is said to have a jump discontinuity at ¢, if f is discontinuous at o but the one-

sided limits lim f(t), hn}r f(t) exist (are finite). This is related to the concept of piecewise
t—ty t—tg

continuity.

Definition. A function f(t) is piecewise continuous on a finite interval [a,b] if f(t) is
continuous at every point in [a, b] except possibly for a finite number of points at which
f has a jump discontinuity. We say f is piecewise continuous on [0,00) if f is piecewise
continuous on [0, N] for all N > 0.

Example 6. Show that

t, 0<t<l,
ft)=14 2, 1<t<2,
(t—2)% 2<t<3.

is piecewise continuous on [0, 3].

Solution. The graph shows that f is continuous on every point of the interval except
t =0,1,2. Since all the one-sided limits are finite, each of these is a jump discontinuity.
Therefore, f is piecewise continuous on [0, 3]. O

We now state the conditions necessary for the Laplace transform to exist.

Theorem 2. If f(t) is piecewise continuous on [0,00) and of exponential order «, then
ZL{f}(s) exists for s > a.

The phrase “of exponential order o” in Theorem 2 basically means that the function
grows no faster than the exponential function e®. The functions frequently encountered in
solving linear DE’s with constant coefficients (namely, polynomials, exponentials, sines,
and cosines) satisfy both these conditions, so that their Laplace transforms exist for
sufficiently large values of s. Moreover, most of the time we shall not compute the
transforms by hand using (1), but rather look them up in a Laplace table.

Homework: p. 360 #1, 5-27 odd.



