
Section 7.3: Properties of the Laplace Transform

Simplifying Computation of Laplace Transforms

We saw in the last section that calculating a Laplace transform from the definition
requires evaluation of an improper integral, which is not always a simple matter. In
this section, we derive several properties of the Laplace transform that will allow us to
compute some Laplace transforms much more quickly.

The first property is that multiplying a function by an exponential simply shifts the
Laplace transform.

Theorem 1. If the Laplace transform L {f}(s) = F (s) exists for s > α, then

(1) L {eatf(t)}(s) = F (s− a)

for s > α + a.

Proof. We have

L {eatf(t)}(s) =

∫ ∞
0

e−steatf(t)dt =

∫ ∞
0

e−(s−a)tf(t)dt = F (s− a). �

Example 1. Determine the Laplace transform of eat sin(bt).

Solution. In Section 7.2, we calculated L {sin(bt)}(s) = F (s) =
b

s2 + b2
. Thus, by

Theorem 1 we have

L {eat sin(bt)}(s) = F (s− a) =
b

(s− a)2 + b2
. ♦

A second property allows us to easily find the Laplace transform of the derivative of a
function from the function’s Laplace transform.

Theorem 2. Let f(t) be continuous on [0,∞) and f ′(t) be piecewise continuous on [0,∞),
both of exponential order α. Then for s > α,

(2) L {f ′}(s) = sL {f}(s)− f(0).

Proof. Using integration by parts with u = e−st and dv = f ′(t)dt, we get

L {f ′}(s) =

∫ ∞
0

e−stf ′(t)dt = lim
N→∞

∫ N

0

e−stf ′(t)dt

= lim
N→∞

[
e−stf(t)

∣∣∣N
0

+ s

∫ N

0

e−stf(t)dt

]
= lim

N→∞
e−sNf(N)− f(0) + s lim

N→∞

∫ N

0

e−stf(t)dt

= lim
N→∞

e−sNf(N)− f(0) + sL {f}(s).
1
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The fact that f is of exponential order α means lim
N→∞

e−sNf(N) = 0, so the above equation

reduces to

L {f ′}(s) = sL {f}(s)− f(0). �

We can extend this theorem by continuing to apply it to higher-order derivatives. For
example,

L {f ′′}(s) = sL {f ′}(s)−f ′(0) = s[sL {f}(s)−f(0)]−f ′(0) = s2 L {f}(s)−sf(0)−f ′(0).

The general result is the following.

Theorem 3. Let f(t), f ′(t), ..., f (n−1)(t) be continuous on [0,∞) and f (n)(t) be piecewise
continuous on [0,∞) with all functions of exponential order α. Then for s > α,

(3) L {f (n)}(s) = sn L {f}(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0).

Loosely speaking, these theorems tell us that the Laplace transform allows us to replace
differentiation with multiplication, which is why it is useful for solving IVP’s.

Example 2. Use the formula L {sin(bt)}(s) =
b

s2 + b2
to determine L {cos(bt)}.

Solution. Let f(t) = sin(bt), so that f(0) = 0 and f ′(t) = b cos(bt). Then by Theorem
2, we have

L {f ′}(s) = sL {f}(s)− f(0)

L {b cos(bt)}(s) = sL {sin(bt)}(s)− 0

bL {cos(bt)}(s) =
sb

s2 + b2

L {cos(bt)}(s) =
s

s2 + b2
. ♦

It is clear that the Laplace transform of the derivative is not the derivative of the
Laplace transform. But it turns out that the derivative of the Laplace transform of a
function is a Laplace transform of a related function. The following theorem makes this
precise.

Theorem 4. Let F (s) = L {f}(s) and assume f(t) is piecewise continuous on [0,∞)
and of exponential order α. Then for s > α,

(4) L {tnf(t)}(s) = (−1)n
dnF

dsn
(s).

Proof. We shall prove the statement for the case n = 1; the general result then follows
from a proof method called induction. We take the derivative of the Laplace transform,
and because of the assumptions on f(t), we may switch the order of integration and
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differentiation:

F (s) =

∫ ∞
0

e−stf(t)dt⇒

dF

ds
(s) =

d

ds

∫ ∞
0

e−stf(t)dt

=

∫ ∞
0

d

ds
(e−st)f(t)dt

= −
∫ ∞
0

e−sttf(t)dt

= −L {tf(t)}(s)⇒

L {tf(t)}(s) = (−1)
dF

ds
(s). �

Example 3. Determine L {t sin(bt)}.

Solution. Recall that L {sin(bt)}(s) = F (s) =
b

s2 + b2
. Then

F ′(s) =
−2bs

(s2 + b2)2

and so by Theorem 4, we have

L {t sin(bt)}(s) = −F ′(s) =
2bs

(s2 + b2)2
. ♦

Homework: p. 365 #1-9 odd, 13-21 odd, 24, 25.


