
Section 9.1: Introduction to Matrix Methods for Linear Systems

Representing Systems in Matrix Form

In this chapter we focus on systems of differential equations which are all linear; an
advantage of this property is that such systems can be compactly represented in ma-
trix form. This is not only convenient for notation, but also leads to new and efficient
techniques for obtaining solutions to these systems.

In general, if we have a system of differential equations given by

x′1 = a11(t)x1 + a12(t)x2 + · · · + a1n(t)xn

x′2 = a21(t)x1 + a22(t)x2 + · · · + a2n(t)xn

...

x′n = an1(t)x1 + an2(t)x2 + · · · + ann(t)xn,

the matrix form of this system is

x′ = Ax,

where A is the coefficient matrix

A =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

...
an1(t) an2(t) · · · ann(t)


and x is the solution vector

x =


x1

x2
...
xn

 .

Such a system is called a linear homogeneous system in normal form.

Example 1. Express the following system as a matrix equation:

x′1 = 2x1 + t2x2 + (4t + et)x4,

x′2 = (sin t)x2 + (cos t)x3,

x′3 = x1 + x2 + x3 + x4,

x′4 = 0.

Solution. The matrix form is given by
x′1
x′2
x′3
x′4

 =


2 t2 0 4t + et

0 sin t cos t 0
1 1 1 1
0 0 0 0




x1

x2

x3

x4

 . ♦
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If we have an nth order linear homogeneous DE

an(t)y(n) + an−1(t)y
(n−1) + · · · + a1(t)y

′ + a0(t)y = 0,

this can be written as a linear system in normal form by defining the first (n−1) derivatives
of y (including y itself) as unknowns: x1(t) = y(t), x2(t) = y′(t), . . . , xn(t) = y(n−1)(t).
Solving the DE for y(n)(t) yields the system

x′1 = x2,

x′2 = x3,
...

x′n−1 = xn,

x′n = −a0(t)

an(t)
x1 −

a1(t)

an(t)
x2 − · · · − an−1(t)

an(t)
xn.

Example 2. Express the DE for the undamped, unforced mass-spring oscillator my′′ +
ky = 0 as an equivalent system of first-order equations in normal form, using matrix
notation.

Solution. We write y′ = v so that y′′ = v′, and the original equation becomes mv′+ky =

0. Solving this for v′ yields v′ = − k

m
y, so the matrix normal form of the system is[

y′

v′

]
=

[
0 1

−k/m 0

] [
y
v

]
. ♦

Systems of two or more higher-order DE’s can be treated in the same way, applying
this procedure to each unknown function as in the following example.

Example 3. A coupled mass-spring oscillator is governed by the system

2
d2x

dt2
+ 6x− 2y = 0,

d2y

dt2
+ 2y − 2x = 0.

Write this in matrix notation.

Solution. We write the lower-order derivatives as the unknowns: x1 = x, x2 = x′, x3 =
y, x4 = y′. In these variables, the given system becomes

2x′2 + 6x1 − 2x3 = 0,

x′4 + 2x3 − 2x1 = 0.

Putting this in normal form, we have

x′1 = x2,

x′2 = −3x1 + x3,

x′3 = x4,

x′4 = 2x1 − 2x3.
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Therefore, the matrix notation is
x′1
x′2
x′3
x′4

 =


0 1 0 0
−3 0 1 0
0 0 0 1
2 0 −2 0




x1

x2

x3

x4

 . ♦

Homework: p. 502, #1-13 odd.


